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Abstract

We show that the non-additivity relation of the Tsallis entropies in
nonextensive statistical mechanics has a simple physical interpretation
for systems with fluctuating temperature or fluctuating energy dissi-
pation rate. We also show that there is a distinguished dependence
of the entropic index ¢ on the spatial scale that makes the Tsallis
entropies quasi-additive. Quasi-additivity implies that g is a strictly
monotonously decreasing function of the spatial scale 7, as indeed ob-
served in various experiments.
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The formalism of nonextensive statistical mechanics has been developed
over the past 13 years as a powerful and beautiful generalization of ordinary
statistical mechanics [1]-[4]. It is based on the extremization of the Tsallis

entropies

subject to suitable constraints. Here the p; are the probabilities of the phys-
ical microstates, and ¢ is the entropic index. The Tsallis entropies reduce to
the Boltzmann Gibbs (or Shannon) entropy Sy = — Y, pilogp; for ¢ — 1,
hence ordinary statistical mechanics is contained as a special case in the gen-
eralized formalism. There is growing experimental evidence that ¢ # 1 yields
a correct decription of many complex physical phenomena, including hydro-
dynamic turbulence [5]-[8], scattering processes in particle physics [9, 10],
and self-gravitating systems in astrophysics [11, 12], to name just a few. A
complete list of references can be found in [4].

The Tsallis entropies are non—extensive. Given two independent subsys-
tems I and II with probabilities p! and p!!, respectively, the entropy of the
composed system I+II (with probabilities pI HI _ pIpll

= p;pj ) satisfies
ST =87+ 81" — (g- 1)SISH. (2)

Hence there is additivity for ¢ = 1 only. This property has occasionally
lead to unjustified prejudices, using arguments of the type ‘entropy must be
extensive’. In the following, however, we will see that the non-additivity
property is not at all a ‘bad’ property, but rather a natural and physically
consistent property for those types of systems where nonextensive statistical
mechanics is expected to work.

Broadly speaking, the formalism with g # 1 has so far been observed to be
relevant for two different classes of systems. One class is systems with long-
range interactions (e.g. [11, 12, 13]), the other one is systems with fluctuations
of temperature or of energy dissipation (e.g. (6, 9, 10, 14]). For the first class
of systems, the concept of independent subsystems does not make any sense,
since all subsystems are interacting. Hence there is no contradiction with
the non-additivity of entropy for independent subsystems since independent
subsystems do no exist for these systems (by definition of the long-range
interaction).

Let us thus concentrate on the other class, systems with fluctuations.
Consider a system of ordinary statistical mechanics with Hamiltonian H.
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Tsallis statistics with ¢ > 1 can arise from this ordinary Hamiltonian if one
assumes that the temperature 7! is locally fluctuating. From the integral
representation of the gamma function one can easily derive the formula [7, 14]

(14 (q— 1)BoH) 7 = fo " et F(B)d, 3)

where

1

is the probability density of the x? distribution. The above formula is valid
for arbitrary Hamiltonians H und thus of great significance. The left-hand
side of eq. (3) is just the generalized Boltzmann factor emerging out of nonex-
tensive statistical mechanics. It can directly be obtained by extremizing S,,.
The right-hand side is a weighted average over Boltzmann factors of ordi-
nary statistical mechanics. In other words, if we consider a nonequilibrim
system (formally described by a fluctuating 3), then the generalized distri-
bution functions of nonextensive statistical mechanics are a consequence of
integrating over all possible fluctuating inverse temperatures 3, provided g
is x? distributed.

The x? distribution is a universal distribution that occurs in many very
common circumstances (see any statistics handbook on this, e.g. [15]). For
example, it arises if 5 is the sum of squares of n Gaussian random variables,
with n = 2/(g—1). Hence one expects Tsallis statistics to be relevant in many
applications. For fully developed turbulent hydrodynamic flows, where Tsal-
lis statistics has been observed to work very well [6], 37! is not the physical
temperature of the flow but a formal temperature defined by the fluctuating
energy dissipation rate times a time scale of the order of the Kolmogorov
time [7]. In the application to scattering processes in collider experiments
[9, 10], 87! is a fluctuating inverse temperature near the Hagedorn phase
transition.

The constant By in eq. (4) is the average of the fluctuating 3,

B©)= [ 61(6)48 = by (5)
0
(E denotes the expectation with respect to f(3)). The deviation of q from 1
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can be related to the relative variance of 8. One has

. B(B)-E(@p)
1= "EEer

We can now give physical meaning to eq. (2) for ¢ > 1. Consider two
independent subsystems I and II that are composed into one system I+IIL
In system I (as well as II) the fluctuations of temperature T are expected to
be larger than in I+II, due to the smaller size of I (or II) as compared to
I+II. Remember that generally entropy is a measure of missing information
on the system [16]. The entropy S} + 5] is larger than S]*!, since in the
single systems the probability distribultion of T is broader, thus our missing
information on these systems is larger. Hence there must be a negative
correction term to S} + SI' in eq. (2). It is physically plausible that this
correction term is proportional a) to the relative strength of temperature
fluctuations as given by ¢—1 and b) to the entropies S/ and S’ in the single
systems. Hence we end up with eq. (2).

For most physical applications the fluctuations of 8 (or the relevant value
of q) are observed to be dependent on the spatial scale 7. For example, in the
turbulence application detailed measurements of g(r) have been presented in
[6]. g turns out to be a strictly monotonously decreasing function of the
distance r on which the velocity differences are measured. Similarly, for the
application to ete™ annihilation [10], g(r) turns out to be again a strictly
monotonously descreasing function of the scale 7, which in this case is given
by r ~ k/E.p, where E,., is the center of mass energy of the beam. Let us
now present a theoretical argument why physical systems may like to choose
a scale-dependent monotonously decreasing q.

The observation is that it is possible to make the Tsallis entropies quasi-
additive by choosing different entropic indices at different scales. I.e., given
a certain ¢ for two small independent subsystems I and II we may choose
another ¢' for the larger, composed system I+II such that

SI+ 81 = siH, (7)

(6)

We may call this property quasi-additivity. For practical applications, g is
often close to 1, so that a perturbative expansion in ¢ — 1 makes sense. One
obtains

Zpg — Zpie(q—l)logm
i i



= 1+(g— I)Zp,-logpi + %(q— 1)22pi(10gp,-)2 +..., (8)

where the dots denote higher-order terms in ¢ — 1. This yields for the sum
of entropies of the two identical subsystems

Si+S =25 = —(1-) p)
= -2 pilogp;—(q—1)> pi(logp:)* —... (9)

On the other hand, by squaring eq. (8) one obtains

(Zpg)z = 1+2(g—1) Zpi log ps
+ (=1 _pilogp:)® + (¢ = 1) pilogp:)® + ... (10)

and hence the entropy of the composed system satisfies

1 /
col+IT . 2 q
ij

- a,{—l(uz_pz’f)
= —2) plogp — (¢ - 1) (szIng, >+ pilogp;) )

+... (11)

Quasi-additivity thus implies a relation between ¢’ and g, namely

q -1 N EPi(lOgPi)z

= , 12
g—1 > pi(logpi)* + (3 pilogp;)? (12)
which can be written in the simple form
g —1 (Bi>2 -1
— =1 .
== (1 @ 19)

Here B; := log p; is the so-called ‘bit number’ [16]. The negative expectation
—(B;) of the bit number is just the ordinary Boltzmann-Gibbs (or Shannon)
entropy. We thus see that quasi-additive behaviour necessarily implies a
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change of ¢ with system size. For ¢ close to 1, this change is determined
by eq. (13), which involves the average and variance of the bit number, i.e.
quantities related to fluctuations of the Shannon entropy. It is now clear
from eq. (13) that ¢’ — 1 (corresponding to the larger system) is smaller than
g — 1 (corresponding to the smaller system) for arbitrary probabilities p;. In
other words, g(r) is a strictly monotonously decreasing function of the scale
r, just as observed in the experiments.
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