
REPRESENTATIONS OF GRADED HECKE ALGEBRASCATHY KRILOFF AND ARUN RAMAbstra
t. Representations of aÆne and graded He
ke algebras asso
iated to Weyl groups playan important role in the Langlands 
orresponden
e for the admissible representations of a redu
-tive p-adi
 group. We work in the general setting of a graded He
ke algebra asso
iated to anyreal re
e
tion group with arbitrary parameters. In this setting we provide a 
lassi�
ation of allirredu
ible representations of graded He
ke algebras asso
iated to dihedral groups. Dimensions ofgeneralized weight spa
es, Langlands parameters, and a Springer-type 
orresponden
e are in
ludedin the 
lassi�
ation. We also give an expli
it 
onstru
tion of all irredu
ible 
alibrated represen-tations (those possessing a simultaneous eigenbasis for the 
ommutative subalgebra) of a generalgraded He
ke algebra. While most of the te
hniques used have appeared previously in various
ontexts, we in
lude a 
omplete and streamlined exposition of all ne
essary results, in
luding theLanglands 
lassi�
ation of irredu
ible representations and the irredu
ibility 
riterion for prin
ipalseries representations. 1. Introdu
tionThe aÆne He
ke algebra is tightly 
onne
ted to the geometry and representation theory of asemisimple Lie group. In fa
t, the representation theory of aÆne He
ke algebras provides a largepie
e of the Langlands 
orresponden
e for the admissible representation theory of a redu
tive p-adi
 group [Bo, KL℄. The aÆne He
ke algebra is also present in the geometry of a semisimplegroup via the equivariant K-theory of the Steinberg variety. This 
onne
tion plays an importantrole in the Springer 
orresponden
e and the Langlands 
lassi�
ation. Re
ent 
onje
tures of Lusztigtie the representation theory of the aÆne He
ke algebra to the modular representation theory ofsemisimple Lie algebras in positive 
hara
teristi
. So there are many good reasons to study therepresentations of aÆne He
ke algebras.With appropriate de�nitions, the graded He
ke algebra is the asso
iated graded algebra of theaÆne He
ke algebra. Lusztig [Lu3℄ has shown that the representation theory of graded He
ke alge-bras of Weyl groups is essentially equivalent to the representation theory of aÆne He
ke algebras.In the same way that the aÆne He
ke algebra is 
onne
ted to equivariant K-theory [KL, CG℄ thegraded He
ke algebra is 
onne
ted to equivariant 
ohomology [Lu3℄.This paper is a study of the 
ombinatorial representation theory of graded He
ke algebras as-so
iated to �nite real re
e
tion groups (in
luding the non
rystallographi
 
ases). The geometri
representation theory of these algebras has been studied in [Lu1, Lu2, Lu3℄ and fundamental re-sults have appeared in [HO, Op℄. However, a wealth of information 
an be obtained with purely
ombinatorial te
hniques. Here we develop the 
ombinatorial theory from elementary prin
iples.Most of the te
hniques we use are known in the aÆne He
ke algebra setting but they are spreadover various parts of the literature, and in several 
ases the generalization to the graded He
kealgebras for the 
rystallographi
 
ase is nontrivial. We have 
olle
ted these results, streamlinedthem, proved them in the general setting that in
ludes non
rystallographi
 graded He
ke algebrasand made an e�ort to produ
e an up-to-date presentation. This paper in
ludes(a) the Langlands 
lassi�
ation of irredu
ible representations,2000 Mathemati
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2 CATHY KRILOFF AND ARUN RAM(b) the theory of prin
ipal series representations (in
luding the irredu
ibility 
riterion),(
) the theory of intertwining operators,(d) the 
lassi�
ation of all irredu
ible representations for rank two algebras (in
luding all dihe-dral 
ases I2(n)),(e) the 
lassi�
ation of irredu
ible 
alibrated representations, and(f) proofs of two 
onje
tures from [Ra3℄.The Langlands 
lassi�
ation for graded He
ke algebras is due to Evens [Ev℄. We have shortenedhis proof but the shorter proof does not di�er in any essential ideas. Our proof of the irredu
ibility
riterion for prin
ipal series modules is a graded He
ke algebra analogue of the proof given byKato [Ka℄ for aÆne He
ke algebras. Proofs of this 
riterion for graded He
ke algebras have appearedin [Ch1, Kr2℄ but our proof is more 
onstru
tive and gives detailed information about the spheri
alve
tors in the prin
ipal series modules.To our knowledge, the theory of intertwining operators originates from the study of aÆne He
kealgebra representations in Matsumoto [Ma℄. In re
ent years this theory has played an importantrole in the theory of orthogonal polynomials, in parti
ular, the study of Ma
donald polynomi-als [Ch2, Op, KS℄. In this paper we do not view these operators as intertwiners between prin
ipalseries representations but rather as lo
al operators on the weight spa
es of any representation(� -operators). This generalized approa
h is in
reasingly 
ommon in the theory of Ma
donaldpolynomials [Ma
℄. Though we do not know of a referen
e for this theory in its appli
ation torepresentations of graded He
ke algebras, 
ertainly all of these te
hniques are now standard in theorthogonal polynomial literature.The full 
lassi�
ation of all irredu
ible representations for rank two graded He
ke algebras is givenin Se
tion 3. We in
lude detailed analysis of the stru
ture (dimensions of generalized weight spa
es)for these representations and their Langlands parameters. This analysis extends and 
ompletesthe work on representations of rank two graded He
ke algebras in
luded as part of [Kr1, HO℄.In [Kr1℄ only one-parameter algebras were in
luded and the 
lassi�
ation was only 
omplete forn odd; we now in
lude the two-parameter 
ase that arises when n is even and treat nonregular
entral 
hara
ters. In [HO℄, general graded He
ke algebras were 
onsidered but the representations
lassi�ed were spheri
al and tempered. An important 
onsequen
e of our rank two 
onstru
tion isthat it establishes a \Springer 
orresponden
e" for all dihedral groups. This 
orresponden
e is givenin the �nal part of Se
tion 3. As in [Ra2℄, we express the hope that the irredu
ible representationsin the rank two 
ase will provide the foundation for a 
ombinatorial 
onstru
tion of all irredu
iblerepresentations.In Se
tion 4 we 
lassify the irredu
ible 
alibrated representations (those with a simultaneouseigenbasis for a large 
ommutative subalgebra) of graded He
ke algebras. These results are gradedHe
ke algebra analogues of the results in [Ra1℄. In addition to the 
lassi�
ation, we give anelementary 
ombinatorial 
onstru
tion of all irredu
ible 
alibrated representations of graded He
kealgebras. This 
onstru
tion is a generalization of the (seminormal) 
onstru
tion of the irredu
iblerepresentations of the symmetri
 group given by Alfred Young [Yg℄. In our 
onstru
tion the lo
alregions and their 
hambers take the role that partitions and standard tableaux play in the symmetri
group 
onstru
tion. Otherwise the formulas used in the 
onstru
tion of the irredu
ible 
alibratedmodules are exa
tly the same as those used by Young.In Se
tion 5, we give proofs of two 
onje
tures from [Ra3℄ whi
h des
ribe the 
ombinatorialstru
ture of the weights of graded He
ke algebra modules. One of these 
onje
tures was proved byLoson
zy [Lo℄ and we present a slightly simpli�ed version of his proof here. We then prove the other
onje
ture with a short redu
tion to the statement proved by Loson
zy and exploit the redu
tionpro
edure to obtain new information about the 
ombinatorial weight stru
ture. The 
onje
turesin [Ra3℄ were only stated for the 
ase when the re
e
tion group W is 
rystallographi
 and ourproofs only hold for this 
ase. We give examples that show analagous statements do not hold inthe non
rystallographi
 
ase.
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tionsand Ma
donald polynomials. 2. Preliminaries2.1. The graded He
ke algebra. Let W be a �nite re
e
tion group, de�ned by its a
tion on itsre
e
tion representation h�R. For ea
h re
e
tion s� 2 W �x a root � in the �1 eigenspa
e of s�.The roots � are 
hosen so that the set R of roots is W -invariant. Then s� �xes a hyperplaneH� = (+1 eigenspa
e of s�) = fx 2 h�R j �_(x) = 0g;where we �x the linear fun
tion �_ 2 hR = HomR(h�R;R) so that �_(�) = 2. By �xing a nondegen-erate symmetri
 W -invariant bilinear form on h�R we may identify hR and h�R. Then(2.1) s�x = x� hx; �_i�; for all x 2 h�R.Fix simple roots �1; : : : ; �n in the root system for W and let si = s�i be the 
orrespondingre
e
tions.By extension of s
alars W a
ts on the 
omplexi�
ation h�C = C 
R h�R and, in terms of its a
tionon h�C , W is a 
omplex re
e
tion group. Then W a
ts on the symmetri
 algebra S(h�C ) whi
h isnaturally identi�ed with the algebra of polynomial fun
tions on the ve
tor spa
e hC = HomC (h�C ; C ).Fix parameters 
� 2 C , 
� 6= 0, labeled by the roots, su
h that
� = 
w�; for w 2W:This amounts to the 
hoi
e of one or two values, depending on whether there are one or two orbitsof roots under the a
tion of W . The group algebra of W isCW = C -spanftw j w 2Wg with multipli
ation twtw0 = tww0 :The graded He
ke algebra is H = CW 
 S(h�C )with multipli
ation determined by the multipli
ation in S(h�C ) and the multipli
ation in CW andthe relations(2.2) xtsi = tsisi(x) + 
�ihx; �_i i ; for x 2 h�C ;where �_1 ; : : : ; �_n 2 hR are the simple 
o-roots. More generally, it follows that for any p 2 S(h�C ),ptsi = tsisi(p) + 
�i�i(p) and tsip = si(p)tsi + 
�i�i(p);where �i : S(h�C )! S(h�C ) is the BGG-operator given by�i(p) = p� si(p)�i for p 2 S(h�C ):Proposition 2.1. [Lu1, Theorem 6.5℄ The 
enter of the graded He
ke algebra H is Z(H ) = S(h�C )W ,the ring of W -invariant polynomials on hC .Proof. If p 2 S(h�C )W , thenptsi = tsisi(p) + 
�i p� si(p)�i = tsip+ 0 = tsip;and so p 
ommutes with tsi . Therefore S(h�C )W � Z(H ).



4 CATHY KRILOFF AND ARUN RAMLet p 2 Z(H ) and write p = Pw2W pwtw. Fix v of maximal length su
h that pv has maximaldegree. Let � 2 h�C be regular, meaning that the stabilizer W� is trivial. Then�p = Xw2W �pwtw equals p� = Xw2W pwtw� = Xw2W pw (w�)tw +Xu<w 
�u;wtu! ;where 
�u;w 2 C . Comparing 
oeÆ
ients of tv yields�pv = pv � (v�):So � = (v�) and thus v = 1 sin
e � is regular. So p 2 S(h�C ). Comparing 
oeÆ
ients of tsi inptsi = si(p)tsi + 
�i p� si(p)�ishows that p = si(p) for all 1 � i � n. So p 2 S(h�C )W . Thus Z(H ) = S(h�C )W . �2.2. Harmoni
 polynomials. Let us brie
y review the relationship between S(h�C ), S(h�C )W , andharmoni
 polynomials [CG, x 6.3℄. Let x1; x2; : : : ; xn be an orthonormal basis of hC and de�ne asymmetri
 bilinear form h ; i on S(h�C ) byhP;Qi = (P (�)Q)��xi=0; for P;Q 2 S(h�C );where P (�) = P � ��x1 ; : : : ; ��xn� and ��xi=0 denotes spe
ializing the variables to 0 (or, equivalently,taking the 
onstant term). The monomials are an orthogonal basis of S(h�C ),hx�11 � � � x�nn ; x�11 � � � x�nn i = � ��x1��1 � � �� ��xn��n x�11 � � � x�nn= Æ�1�1 � � � Æ�n�n(�1!�2! � � � �n!);and so the bilinear form h ; i is nondegenerate. The ve
tor spa
e H of harmoni
 polynomials isthe set of polynomials orthogonal to the ideal of S(h�C ) generated by W -invariants in S(h�C ) with
onstant term 0,H = (hf 2 S(h�C ) j f(0) = 0i)?; and S(h�C ) = S(h�C )W 
H;as ve
tor spa
es. More pre
isely, if fhwg is a C -basis of H then any f 2 S(h�C ) 
an be writtenuniquely in the form f =Xw pwhw; pw 2 S(h�C )W :If the basis fhwg 
onsists of homogeneous polynomials then the number and the degrees of thesepolynomials are determined by the Poin
ar�e polynomial of W ,(2.3) PW (t) =Xk�0 dim(Hk)tk = nYi=1 1� tdi1� t = Xw2W t`(w);where d1; : : : ; dn are the degrees of a set f1; : : : ; fn of homogeneous generators of S(h�C )W =C [f1 ; : : : ; fn℄ andHk is the kth homogeneous 
omponent ofH. In parti
ular, dim(H) = Card(fhwg) =PW (1) = jW j and S(h�C ) is a free module over S(h�C )W of rank jW j.



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 52.3. Weights and 
alibrated representations. The group W a
ts onhC = Hom(h�C ; C ) by (w
)(x) = 
(w�1x);for w 2W , 
 2 hC and x 2 h�C .The inversion set of an element w 2W is(2.4) R(w) = f� > 0 j w� < 0gThe 
hoi
e of the simple roots �1; : : : ; �n 2 h�R determines a fundamental 
hamber(2.5) C = fx 2 h�R j h�i; xi > 0; 1 � i � ngfor the a
tion of W on h�R. For a root � 2 R, the positive side of the hyperplane H� is the sidetowards C, i.e. fx 2 h�R j hx; �i > 0g, and the negative side of H� is the side away from C. Thereis a bije
tion(2.6) W  ! ffundamental 
hambers for W a
ting on h�Rgw 7�! w�1Cand the 
hamber w�1C is the unique 
hamber whi
h is on the positive side of H� for � =2 R(w)and on the negative side of H� for � 2 R(w).If s� is a re
e
tion in W whi
h �xes 
 2 hC then h
; �_i = 0. By [St, Theorem 1.5℄, [Bou, Ch. Vx5 Ex. 8℄ the stabilizer W
 of 
 under the W -a
tion is generated by the re
e
tions whi
h stabilize
 and so W
 = hs� j � 2 Z(
)i where Z(
) = f� j 
(�) = 0g:The orbit W
 
an be viewed in several di�erent ways via the bije
tionsW
  ! W=W
  ! fw 2W j R(w) \ Z(
) = ;g(2.7)  ! �
hambers on the positiveside of H� for � 2 Z(
)� ;where the last bije
tion is the restri
tion of the map in (2.6). If 
 is real and dominant (i.e.
(�) 2 R�0 for all � 2 R) then W
 is a paraboli
 subgroup of W and fw 2W j R(w) \ Z(
) = ;gis the set of minimal length 
oset representatives of the 
osets in W=W
 .Let M be a simple H -module. Dixmier's version of S
hur's lemma (see [Wa℄) implies that Z(H )a
ts on M by s
alars. Let 
 2 hC be su
h thatpm = 
(p)m; for all m 2M; p 2 S(h�C )W :The element 
 is only determined up to the a
tion ofW sin
e 
(p) = w
(p) for all w 2W . Be
auseof this, any element of the orbit W
 is referred to as the 
entral 
hara
ter of M .Let M be a �nite dimensional H -module and let 
 2 hC . The 
-weight spa
e and the generalized
-weight spa
e of M areM
 = fm 2M j xm = 
(x)m for all x 2 h�C g;(2.8) Mgen
 = fm 2M j for all x 2 h�C ; (x� 
(x))km = 0 for some k 2 Z>0g:(2.9)Then M = M
2hC Mgen
 ;and we say that 
 is a weight of M if Mgen
 6= 0. Note that Mgen
 6= 0 if and only if M
 6= 0. A�nite dimensional H -module(2.10) M is 
alibrated if Mgen
 =M
 ; for all 
 2 hC :



6 CATHY KRILOFF AND ARUN RAM2.4. Tempered representations and the Langlands 
lassi�
ation. Any � 2 HomC (h�C ; C ) isdetermined by its values h�; �ii on the simple roots. De�ne Re(�) and Im(�) in hR = HomR(h�R;R)by hRe(�); �ii = Re(h�; �ii) and hIm(�); �ii = Im(h�; �ii), and write� = Re(�) + i Im(�):For any simple re
e
tion sj, we have sj� = Re(�) � Re(h�; �_j i)�j + i Im(�) � i Im(h�; �_j i)�j =sjRe(�) + i sjIm(�); and so Re(w�) = wRe(�); for all w 2W:Let !_i be the dual basis to �_i in hR de�ned by h!_i ; �_j i = Æij and let C be the 
losure of thefundamental 
hamber C � hR de�ned in (2.5). For � 2 hC let �0 be the point of C whi
h is 
losestto Re(�). This point is uniquely de�ned be
ause of the 
onvexity of the region C. Sin
e �0 2 Cand the !_i are on the boundary of C there is a uniquely determined set I su
h that�0 =Xj 62I 
j!_i ; with 
j > 0;and we say that the weight � is I-tempered. For ea
h I the set f!_j ; �_i j j 62 I; i 2 Ig is a basis ofhR and �0 and I 
an, alternatively, be determined by the unique expansion(2.11) Re(�) =Xj 62I 
j!_i +Xi2I di�_i ; with 
j > 0 and di � 0:Proposition 2.2. [Kn, Lemma 8.59℄ Let � � � denote the dominan
e ordering on hR. If �; � 2 hRsu
h that � � � then �0 � �0.For any subset I � f1; : : : ; ng, let H I be the subalgebra of H generated by tsi , i 2 I, and allx 2 h�C . An H I -module M is tempered if all weights of M are I-tempered.Theorem 2.3. Let L be a simple H -module.(a) There is a subset I � f1; 2; : : : ; ng and a tempered H I -module U su
h that L is the uniquesimple quotient of H 
HI U .(b) If I and I 0 are subsets of f1; 2; : : : ; ng and U and U 0 are tempered H I and H I0 -modules,respe
tively, su
h that L is a quotient of both H 
HI U and H 
HI0 U 0 then I = I 0 andU �= U 0 as H I -modules.Proof. Let L be a simple H -module. Let � be a weight of L su
h that(2.12) �0 is a maximal element of f�0 j � is a weight of Lgwith respe
t to the dominan
e ordering on hR. Let I � f1; 2; : : : ; ng be determined by�0 =Xj 62I 
j!_jand let V be the H I -submodule of L generated by a nonzero ve
tor m� in L�. Let WI be thesubgroup of W generated by si, i 2 I. The weights of V are of the form w� with w 2 WI . Ifw 2WI thenRe(w�) =Xj 62I 
j!_j + Xai�0;i2I ai�_i + Xai>0;i2I ai�_i �Xj 62I 
j!_j + Xai�0;i2I ai�_i ;sin
e Re(�) is as in (2.11). So, by Proposition 2.2,(w�)0 � 0�Xj 62I 
j!_j + Xai�0 ai�_i 1A0 =Xj 62I 
j!_j = �0:Thus, by the maximality of �0, �0 = �0 for all weights � of V . So V is tempered.



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 7Let U be a simple H I -submodule of V . All weights of H 
HI U are of the form w� with w 2Wand � a weight of U . Let W I denote the set of minimal length 
oset representatives of 
osets inW=WI . If w� is a weight and w = w1w2 with w1 2 W I and w2 2 WI then by the argument justgiven w2� is I-tempered and soRe(w2�) =Xj 62I 
j!_i +Xi2I ai�_i with 
j > 0; ai � 0:If w1 6= 1 then w1!_j � !_j ; for j 62 I;Re(w1w2�) < Re(w2�) sin
e w1�_i � �_i ; for i 2 I;(2.13) w1!_j < !_j ; for some j 62 I:Let � be a weight of U su
h that Re(�) is maximal among weights of U . If N is an H -submoduleof H 
HI U su
h that N� 6= 0 then, by (2.13), N� � U� and so N \ U 6= 0. Sin
e U is simple as anH I -module, any ve
tor of U generates all of H 
HI U and so N = H 
HI U . This shows that ifMmax = �sum of all H -submodules N of H 
HI Usu
h that N� = 0 �then Mmax is equal to the sum of all proper submodules of H 
HI U and is the (unique) maximalproper submodule of H 
HI U . So H 
HI U has a unique simple quotient.Sin
e U is an H I -submodule of L and indu
tion is the adjoint fun
tor to restri
tion, there is anH -module homomorphism H 
HI U �! Lu 7�! u for u 2 U .Thus, sin
e L is simple, L �= (H 
HI U)=Mmax. This proves (a) and shows that for any temperedH I -module U the module H 
HI U has a unique simple quotient.To prove (b) let us analyze the freedom of the 
hoi
es that are made in the above 
onstru
tionof H 
HI U . Equation (2.13) and Proposition 2.2 show that �0 � �0 for all weights � of H 
HI U .In parti
ular, all weights � of L satisfy �0 � �0 and so �0 is the same for all weights � of L whi
hsatisfy (2.12). This shows that there is a unique 
hoi
e of I in the 
onstru
tion of H 
HI U . If U 0is another simple H I -submodule of V then either U \ U 0 = 0 or U = U 0. The 
ase U \ U 0 = 0 isimpossible sin
e it would imply that U � U 0 is a tempered submodule of L, and there would be asurje
tive homomorphism from H 
HI (U � U 0) �= (H 
HI U)� (H 
HI U 0) to L whi
h is nonzeroon both 
omponents. This is impossible sin
e L is simple. �2.5. � operators. The following proposition de�nes maps �i : Mgen
 !Mgensi
 on generalized weightspa
es of �nite-dimensional H -modules M . These are \lo
al operators" and are only de�ned onweight spa
es Mgen
 su
h that 
(�i) 6= 0. In general, �i does not extend to an operator on all of M .Proposition 2.4. Let M be a �nite dimensional H -module. Fix i, let 
 2 hC be su
h that 
(�i) 6= 0and de�ne �i : Mgen
 �! Mgensi
m 7! �tsi � 
�i�i �m:(a) The map �i : Mgen
 !Mgensi
 is well de�ned.(b) As operators on Mgen
 , x�i = �isi(x) for all x 2 S(h�C ).(
) As operators on Mgen
 , �i�i = (
�i + �i)(
�i � �i)(�i)(��i) :(d) Both maps �i : Mgen
 ! Mgensi
 and �i : Mgensi
 ! Mgen
 are invertible if and only if 
(�i) 6=�
�i .



8 CATHY KRILOFF AND ARUN RAM(e) If 1 � i; j � n; i 6= j, let mij be the order of sisj in W . Then�i�j�i � � �| {z }mij fa
tors = �j�i�j � � �| {z }mij fa
tors ;whenever both sides are well de�ned operators on Mgen
 .Proof. Sin
e �i a
ts on Mgen
 by 
(�i) times a unipotent transformation, the operator �i on Mgen
has nonzero determinant and is invertible. Sin
e 
�i=�i is not an element of S(h�C ) or H it will beviewed only as an operator on Mgen
 in the following 
al
ulations.If x 2 h�C and m 2Mgen
 thenx�im = x�tsi � 
�i�i �m = �tsisi(x) + 
�ihx; �_i i � 
�i x�i�m= �tsisi(x)� 
�i x� hx; �_i i�i�i �m = �tsisi(x)� 
�i si(x)�i �m= �tsi � 
�i�i � si(x)m = �isi(x)m:This proves (a) and (b).�i�im =  t2si � 
�i�i tsi � tsi 
�i�i + 
2�i�2i !m= 0�1� 
�i�i tsi � 
�i��i tsi � 
�i � 
�i�i � 
�i��i��i + 
2�i�2i 1Am=  1 + 
2�i(�i)(��i)!m = �(
�i + �i)(
�i � �i)(�i)(��i) �m;proving (
).(d) Sin
e �i a
ts onMgen
 by 
(�i) times a unipotent transformation, det((
�i+�i)(
�i��i)) = 0if and only if 
(�i) = �
�i . Thus �i�i, and ea
h fa
tor in this 
omposition, is invertible if and onlyif 
(�i) 6= �
�i .(e) We may assume that H is the graded He
ke algebra 
orresponding to a rank two root systemRij generated by simple roots �i and �j . Let w0 be the longest element of the 
orresponding rank2 re
e
tion group W . Every element w 2 W , w 6= w0 has a unique minimal length expression asa produ
t of generators of si and sj. Let tw be the 
orresponding produ
t of the tsi 's and tsj 's.Expanding both sides of the relation in (e) in terms of the tsi and using the de�ning relation (2.2)for H yields(2.14) � � ��tsi � 
�i�i ��tsj � 
�j�j ��tsi � 
�i�i �| {z }mij fa
tors = � � � tsitsj tsi| {z }mij fa
tors + Xw<w0 twPw;and(2.15) � � ��tsj � 
�j�j ��tsi � 
�i�i ��tsj � 
�j�j �| {z }mij fa
tors = � � � tsj tsitsj| {z }mij fa
tors + Xw<w0 twQw;where both sums are in fa
t over all w 2 W , w 6= w0 and Pw and Qw are rational fun
tions of the� 2 Rij . We will show that Pw = Qw.
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 2 hC (the exa
t 
ondition is that P (
) = ; and Z(
) = ;, where P (
) andZ(
) are as de�ned in (2.19) below) and letM(
) = IndHS(h�C)(C v
 ) = H 
S(h�C) C v
where C v
 is the one dimensional S(h�C )-module de�ned by xv
 = 
(x)v
 for x 2 h�C . The moduleM(
) has basis ftw 
 v
 j w 2Wg and, by the de�ning relations for H , for x 2 h�C , w 2W ,xtwv
 = (w
)(x)tw 
 v
 +Xz<w 
zw(x)tz 
 v
 ; with 
zw(x) 2 C .Sin
e 
 is generi
, all the w
 are distin
t andM(
) = Mw2W Mw
 with dim(Mw
) = 1:Thus, there is a unique basis fvw
 j w 2Wg of M(
) determined byxvw
 = (w
)(x)vw
 ; for all w 2W and x 2 h�C ;(2.16) vw
 = tw 
 v
 +Xu<w awu(
)(tu 
 v
); where awu(
) 2 C :(2.17)Alternatively,(2.18) vw
 = �wv
where �w = �i1�i2 � � � �ip for a redu
ed word w = si1 � � � sip of w. The uniqueness of the element vw
given by the 
onditions (2.16) and (2.17) shows that vw
 = �wv
 does not depend on the redu
edde
omposition whi
h is 
hosen for w. Thus we havevw0
 = � � � �i�j�i| {z }mij fa
tors v
 = � � � tsitsj tsi| {z }mij fa
tors v
 + Xw<w0 twPwv
 = tw0 
 v
 + Xw<w0 
(Pw)tw 
 v
 ;vw0
 = � � � �j�i�j| {z }mij fa
tors v
 = � � � tsj tsitsj| {z }mij fa
tors v
 + Xw<w0 twQwv
 = tw0 
 v
 + Xw<w0 
(Qw)tw 
 v
 :where Pw and Qw are as in (2.14) and (2.15). It follows from (2.17) that 
(Pw) = aw0w(
) = 
(Qw)for all w 2W , w 6= w0.We have shown that, for ea
h w 2 W , 
(Pw) = 
(Qw) for all generi
 
 2 hC . Sin
e Pw and Qware rational fun
tions that agree on all generi
 points, it follows thatPw = Qw for all w 2W:Thus, � � � �i�j�i| {z }mij fa
tors = � � ��tsi � 
�i�i ��tsj � 
�j�j ��tsi � 
�i�i �| {z }mij fa
tors= � � ��tsj � 
�j�j ��tsi � 
�i�i ��tsj � 
�j�j �| {z }mij fa
tors = � � � �j�i�j| {z }mij fa
tors;whenever both sides are well de�ned operators on M
 . �Let 
 2 hC and de�ne(2.19) Z(
) = f� > 0 j 
(�) = 0g and P (
) = f� > 0 j 
(�) = �
�g:



10 CATHY KRILOFF AND ARUN RAMIf J � P (
), de�ne(2.20) F (
;J) = fw 2W j R(w) \ Z(
) = ; and R(w) \ P (
) = Jg:A lo
al region is a pair (
; J) su
h that 
 2 hC , J � P (
), and F (
;J) 6= ;. Under the bije
tion(2.6) the set F (
;J) maps to the set of points x 2 h�R whi
h are(a) on the positive side of the hyperplanes H� for � 2 Z(
),(b) on the positive side of the hyperplanes H� for � 2 P (
)nJ , and(
) on the negative side of the hyperplanes H� for � 2 J .In this way the lo
al region (
; J) really does 
orrespond to a region in h�R. This is a 
onne
ted
onvex region in h�R sin
e it is 
ut out by half spa
es in h�R �= Rn . The elements w 2 F (
;J)index the 
hambers w�1C in the lo
al region. and the sets F (
;J) form a partition of the setfw 2W j R(w) \ Z(
) = ;g (whi
h, by (2.7), indexes the 
osets in W=W
).Corollary 2.5. Let M be a �nite dimensional H -module. Let 
 2 hC and let J � P (
). Thendim(Mgenw
 ) = dim(Mgenw0
) for w;w0 2 F (
;J);where F (
;J) is given by (2.20).Proof. If w; siw 2 F (
;J) then (w
)(�i) 6= �
�i and (siw
)(�i) 6= �
�i . Thus, by Proposi-tion 2.4(d), the map �i :Mgenw
 !Mgensiw
 is invertible. It remains to note that if w;w0 2 F (
;J), thenw0 = si1 � � � si`w where sik � � � si`w 2 F (
;J) for all 1 � k � `. This follows from the fa
t that (
; J)
orresponds to a 
onne
ted 
onvex region in hR. �The following lemma will be used in the 
lassi�
ation in Se
tion 3 to analyze weight spa
es forrepresentations with nonregular 
entral 
hara
ter.Lemma 2.6. Let 
 2 hC su
h that 
(�i) = 0. Let M be an H -module su
h that Mgen
 6= 0 and letw 2 F (
;;). Then(a) dimMgenw
 � 2 and(b) if Mgensjw
 = 0, then (w
)(�j) = �
�j and hw�1�j ; �_i i = 0.Proof. Let HA1 be the subalgebra of H generated by tsi and all x 2 S(h�C ). Let C v
 be the onedimensional representation of S(h�C ) de�ned by xv
 = 
(x)v
 and let M(
) = IndHA1S(h�C)(C v
 ) =HA1
S(h�C) C v
 . This module is irredu
ible and has basis fv
 ; tsiv
g and, with respe
t to this basis,the a
tion of x 2 h�C on M(
) is given by the matrix(2.21) �
(x) = 
(x)�1 
�ihx; �_i i0 1 � :Let n
 be a nonzero ve
tor in M
 . As an S(h�C )-module C n
 �= C v
 and, sin
e indu
tion is theadjoint fun
tor to restri
tion, there is a unique HA1 -module homomorphism given byM(
) �! Mv
 7�! n
Sin
e M(
) is irredu
ible, this homomorphism is inje
tive, and the ve
tors n
 ; tsin
 span a two-dimensional subspa
e of Mgen
 on whi
h the a
tion of x 2 h�C is given by the matrix in (2.21).Let w = si1 � � � sip be a redu
ed word for w. Proposition 2.4(d) and the assumption that w 2F (
;;) guarantee that the map �w = �i1 � � � �il : Mgen
 !Mgenw
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tive. Thus �wn
 and �wtsin
 span a two-dimensional subspa
e ofMgenw
 and,by Proposition 2.4(b), the HA1 a
tion of x 2 X on this subspa
e is given by�w
(x) = 
(w�1x)�1 
�ihw�1x; �_i i0 1 � :This proves (a).Using �j for x and inverting the above matrix yields�w
 � 1�j� = 1
(w�1�j) �1 �
�ihw�1�j; �_i i0 1 � :If Mgensjw
 = 0 then �j : Mgenw
 !Mgensjw
 is the zero map and�w
(tsj ) = �w
 �
�j�j � = 
�j
(w�1�j) �1 �
�ihw�1�j ; �_i i0 1 � :Sin
e t2sj � 1 = (tsj � 1)(tsj + 1) = 0, �w
(tsj ) must have Jordan blo
ks of size 1 and eigenvalues�1. Sin
e 
�i 6= 0, it follows that 
(w�1�j) = �
�j and hw�1�j ; �_i i = 0. �2.6. Prin
ipal series modules. For 
 2 hC let C v
 be the one dimensional S(h�C )-module givenby xv
 = 
(x)v
 ; for x 2 h�C :The prin
ipal series representation M(
) is the H -module de�ned by(2.22) M(
) = H 
S(h�C) C v
 = IndHS(h�C)(C v
 ):The module M(
) has basis ftw 
 v
 j w 2Wg with CW a
ting by left multipli
ation.These modules are very useful for studying the 
ombinatori
s of representations of H . In fa
t,we have already used this module in the proofs of Proposition 2.4(e) and Lemma 2.6.Part (a) of the following proposition implies that the dimension of every irredu
ible H -moduleis less than jW j. In 
ombination, part (a) and part (b) show that every irredu
ible H -modulewith regular 
entral 
hara
ter is 
alibrated. Part (
) is a graded He
ke analogue of a result ofRogawski [Ro, Proposition 2.3℄.Proposition 2.7.(a) If M is an irredu
ible �nite dimensional H -module with Mgen
 6= 0, then M is a quotient ofM(
).(b) If 
 2 hC is regular then M(
) is 
alibrated.(
) For �xed 
 2 hC and any w 2W , M(
) and M(w
) have the same 
omposition fa
tors.Proof. (a) Sin
e S(h�C ) is 
ommutative, an irredu
ible S(h�C ) submodule must be one-dimensional.Thus there exists a nonzero ve
torm
 inM
 and, as an S(h�C )-module, Cm
 �= C v
 . Sin
e indu
tionis the adjoint fun
tor to restri
tion there is a unique H -module homomorphism given byM(
) �! Mv
 7�! m
and, sin
e M is irredu
ible, this homomorphism is surje
tive. Thus M is a quotient of M(
).(b) Sin
e 
 is regular, W
 = f1g,M(
) = Mw2W Mw
 and dim(M(
)w
) = 1for all w 2 W . Sin
e M(
)w
 is nonzero whenever M(
)genw
 is nonzero and dim(M(
)genw
 ) = 1,M(
)w
 =M(
)genw
 for all w 2W .(
) Let si be a simple re
e
tion su
h that si
 6= 
. Then 
(�i) 6= 0 and the operator �i is wellde�ned on M(si
)gensi
 . The ve
tor vsi
 is a weight ve
tor in M(si
)si
 and, by Proposition 2.4(b),



12 CATHY KRILOFF AND ARUN RAM�ivsi
 is a weight ve
tor of weight 
 (it is nonzero sin
e tsivsi
 and (si
)(
�i=�i)vsi
 are linearlyindependent in M(si
)). Thus, there is an H -module homomorphismA(si; 
) : M(
) �! M(si
)hv
 7�! h�ivsi
 ; h 2 H :The modules M(
) and M(si
) have basesftw(tsi + 1)v
 ; tw(tsi � 1)v
gsiw>w and(2.23) ftw(tsi + 1)vsi
 ; tw(tsi � 1)vsi
gsiw>w;respe
tively. Sin
e (tsi + 1)tsi = tsi + 1 and (tsi � 1)tsi = �(tsi � 1),A(si; 
)(tw(tsi + 1)v
) = tw(tsi + 1)�tsi � 
�i�i � vsi
 = tw(tsi + 1)�1� 
�i�i � vsi
= �si
��i � 
�i�i �� tw(tsi + 1)vsi
A(si; 
)(tw(tsi � 1)v
) = tw(tsi � 1)�tsi � 
�i�i � vsi
 = tw(tsi � 1)��1� 
�i�i � vsi
= �si
��i + 
�i��i �� tw(tsi � 1)vsi
and so the matrix of A(si; 
) with respe
t to the bases in (2.23) is diagonal with jW j=2 diagonalentries equal to (si
)((�i� 
�i)=�i) and jW j=2 diagonal entries equal to (si
)((�i+ 
�i)=(��i)). If
(�i) 6= �
�i then A(si; 
) is an isomorphism and so M(
) and M(si
) have the same 
ompositionfa
tors. If 
(�i) = �
�i then dim(kerA(si; 
)) = jW j=2. In this 
ase A(si; si
)A(si; 
) = 0 and sothe sequen
e M(
) A(si;
)�! M(si
) A(si;si
)�! M(
)is exa
t. Sin
e dim(M(
)) = jW j and dim(kerA(si; 
)) = jW j=2, M(
) and M(si
) have the same
omposition fa
tors. �Our next goal is to prove Theorem 2.10 whi
h determines exa
tly when the prin
ipal seriesmodule M(
) is irredu
ible. For this we shall need the following lemma.Lemma 2.8. Let fbwgw2W be a basis for the ve
tor spa
e of H of harmoni
 polynomials and letX be the jW j � jW j matrix given byX = (z�1bw)z;w2W : Then detX = � � �Y�>0��jW j=2;where � is a nonzero 
onstant in C .Proof. Note that if b0w is another basis of H and we writeb0w = Xv2W 
vwbv; 
vw 2 C ; thenX 0 = (z�1b0w)z;w2W = �z�1bv��
vw� and so detX 0 = � detX;for some nonzero 
onstant � = det((
vw)). Thus, by 
hanging basis if ne
essary, we may assumethat the bw are homogeneous.Subtra
t row z�1bw from row s�z�1bw. Then this row is divisible by �. By doing this subtra
tionfor ea
h of the jW j=2 pairs fz�1; s�z�1g we 
on
lude that det(X) is divisible by �jW j=2. Thus, sin
ethe roots are 
o-prime as elements of the polynomial ring S(h�C ),det(X) is divisible by �Y�>0��jW j=2:



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 13The degree of Q�>0 �jW j=2 is (jW j=2)Card(R+) and, using (2.3), the degree of det(X) isYw2W deg(bw) =Xk k dim(Hk) = � ddtPW (t)� ���t=1 = Xw2W `(w)= Xw2W Card(R(w)) = X�2R+(jW j=2) = (jW j=2)Card(R+):Sin
e these two polynomials are homogeneous of the same degree it follows that the quotientdet(X)=(Q�>0 �)jW j=2 is a 
onstant. If det(X) = 0 then the 
olumns of X are linearly dependent.In parti
ular, there exist 
onstants 
w 2 C , not all zero, su
h that Pw 
wbw = 0. But this is a
ontradi
tion to the assumption that fbwg is a basis of H. So det(X) 6= 0. �Let 
 2 hC and let M(
) = H 
S(h�C) C v
 be the 
orresponding prin
ipal series module for H .The spheri
al ve
tor in M(
) is(2.24) 1
 = Xw2W twv
 :Up to multipli
ation by 
onstants this is the unique ve
tor in M(
) su
h that tw1
 = 1
 forall w 2 W . The following proposition provides a graded He
ke analogue of the results in [Ka,Proposition 1.20℄ and [Ka, Lemma 2.3℄. Mention of this analogue was made in [Op℄.Proposition 2.9.(a) If 
 is a generi
 element of hC and vw
, w 2W , is the basis of M(
) de�ned in (2.18) then1
 = Xz2W 
(
z)vz
 ; where 
z = Y�2R(w0z) �+ 
�� :(b) The spheri
al ve
tor 1
 generates M(
) if and only if Q�>0(
(�) + 
�) 6= 0.(
) For 
 2 hC , the prin
ipal series module M(
) is irredu
ible if and only if 1w
 generatesM(w
) for all w 2W .Proof. (a) Suppose that �z 2 C are 
onstants su
h that1
 =  Xw2W tw! v
 = Xz2W �zvz
 :We shall prove that the �z are given by the formula in the statement of the proposition. Sin
etsi�Pw2W tw� =Pw2W tw,1
 = tsi1
 = ��i + 
�i�i �Xz2W �zvz
 = ��i + 
�i�i � Xsiz>z (�zvz
 + �sizvsiz
)= Xsiz>z��zvsiz
 + �z 
�i
(z�1�i)vz
 + �siz
�2i vz
 + �siz 
�i
(�z�1�i)vsiz
� :Comparing 
oeÆ
ients of vsiz
 on ea
h side of this expression gives�siz = �z + �siz 
�i
(�z�1�i) ; and so �z�siz = 
�z�1�i + 
�iz�1�i � ; if siz > z.



14 CATHY KRILOFF AND ARUN RAMUsing this formula indu
tively gives�w = �si1 ���sip = 
� sip � � � si2�i1sip � � � si2�i1 + 
�i� � � � 
 �ip�ip + 
�ip ! �1= 
0� Y�2R(w) ��+ 
�1A �1:Sin
e the transition matrix between the basis ftwv
g and the basis fvw
g is upper unitriangularwith respe
t to Bruhat order, �w0 = 1. Thus, the last equation implies that�1 = 
 Y�>0 �+ 
�� ! and �w = 
0� Y�2R(w) ��+ 
�1A � �1 = 
0� Y�2R(w0w) �+ 
�� 1A :(b) By expanding vz
 = �zv
 = �i1 � � � �ipv
 for a redu
ed word si1 � � � sip = z it follows that thereexist rational fun
tions muz su
h thatvz
 = Xu2W 
(muz)tuv
 ;for all generi
 
 2 hC . Furthermore the matrix M = (muz)u;z2W with these rational fun
tions asentries is upper unitriangular.Let bw, w 2W , be a basis of harmoni
 polynomials and de�ne polynomials quy 2 S(h�C ), u; y 2W ,by by  Xw2W tw! = Xu2W tuquy; y 2W;where these equations are equalities in H . Then,by1
 = by  Xw2W tw! = Xu2W 
(quy) (tu 
 v
);and part (a) implies that if 
 is generi
 thenby1
 = by Xz2W 
(
z)vz
 = Xz2W 
(
z(z�1by)) vz
 = Xz;u2W 
(
z(z�1by)muz) (tu 
 v
):Sin
e these two expressions are equal for all generi
 
 2 hC it follows that(2.25) quy = Xz2W muz � 
z � (z�1by); u; y 2W;as rational fun
tions (in fa
t both sides are polynomials).Sin
e tw, w 2 W , and p 2 Z(H ) = S(h�C )W a
t on 1
 by 
onstants, the H -module M(
) isgenerated by 1
 if and only if there exist 
onstants pyw 2 C su
h thattw 
 v
 = Xy2W pywby1
 ; for ea
h w 2W .If these 
onstants exist then, for ea
h w 2W ,tw 
 v
 = Xy2W pywby1
 = Xy;z;u2W 
(muz
z(z�1by)pyw)tu 
 v
 ;where, by (2.25), there is no restri
tion that 
 be generi
. IfM = (muz)u;z2W ; C = diag(
z)z2W ; X = �z�1by�z;y2W P = (pyw)y;w2W ;
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(MCX))�1 and so P exists if and only if det(
(MCX)) 6= 0. Now det(M) = 1, and,by Lemma 2.8 and part (a),det(X) = � �Y�>0�jW j=2 and det(C) = Yz2W Y�2R(w0z) �+ 
�� =  Y�>0 �+ 
�� !jW j=2 ;where � 2 C is nonzero. Thus P exists if and only if Q�>0(
(�) + 
�) 6= 0:(
) =): If M(
) is irredu
ible then, by Proposition 2.7(
), M(w
) is irredu
ible for all w 2 W .Hen
e M(w
) is generated by 1w
 .(=: Suppose that 1w
 generates M(w
) for all w 2W . Let E be a nonzero irredu
ible submoduleofM(
) and let w 2W be su
h that the weight spa
e Ew
 is nonzero. Then, by Proposition 2.7(a),there is a nonzero surje
tive H -module homomorphism ' : M(w
) ! E. Sin
e 1w
 generatesM(w
), '(1w
) is a nonzero ve
tor in E su
h that tv'(1w
) = '(1w
) for all v 2 W . Sin
e thereis a unique, up to 
onstant multiples, spheri
al ve
tor in M(
) �(1w
) is a multiple of 1
 and 1
is nonzero. This implies that E =M(
) sin
e 1
 generates M(
). �Together the three parts of Proposition 2.9 prove the following graded He
ke algebra analogueof [Ka, Theorem 2.1℄.Theorem 2.10. Let 
 2 hC and let P (
) = f� > 0 j 
(�) = �
�g. The prin
ipal series H -moduleM(
) is irredu
ible if and only if P (
) = ;:3. Classifi
ation of Irredu
ible Representations for Rank 23.1. The root system. The re
e
tion group I2(n) is the dihedral group of order 2n. Let "1; "2 bean orthonormal basis of h�R = R2 and de�ne�k = 
os(k�)"1 + sin(k�)"2; where � = �=n.Fix the roots, positive roots and simple roots for the re
e
tion group I2(n) byR = f�k j 0 � k � 2n� 1g;R+ = f�k j 0 � k � n� 1g; and �1 = �0;�2 = �n�1:For 0 � k � n � 1, ��k = �n+k, s1�k = �n�k and s2�k = �n�2�k, and when n is even there aretwo orbits of roots, f��2k j 0 � k < n=2g and f��2k+1 j 0 � k < n=2g. Let 
k = 
�k be a 
hoi
eof parameters for the graded He
ke algebra H . When n is odd all of the 
k are equal and, when nis even, there are two, possibly unequal, parameters 
0 = 
2k and 
1 = 
2k+1. Figure 1 displays theroots �k and hyperplanes H�k = fx 2 R2 j h�k; xi = 0g for I2(7) and I2(8). When n is even ea
hroot �k lies on the hyperplane H�k+n=2 and this is why, in the pi
ture of hyperplanes and roots forI2(8) there are multiple labels on ea
h line.Figure 2 displays, using thin and thi
k lines, the hyperplanesH�k = fx 2 R2 j h�k; xi = 0g and H�k�Æ = fx 2 R2 j h�k; xi = �
kgfor I2(7) and I2(8) (and a parti
ular 
hoi
e of the parameters 
k).3.2. The 
entral 
hara
ters. Using the orthonormal basis "1; "2 we 
an identify hR with R2 andhC with C 2 . If 
 2 hC thenZ(
) = f�k 2 R+ j h
; �ki = 0g and P (
) = f�k 2 R+ j h
; �ki = �
kg:In terms of the pi
tures in Figure 2, if 
 is a point in R2 then the elements of Z(
) label the H�k(thin lines) that 
 is on and the elements of P (
) label the set of H�k�Æ (thi
k lines) that 
 is on.Let us analyze the possibilities for Z(
) and P (
). For the purpose of analyzing representationsof H , 
 labels a 
entral 
hara
ter. Sin
e a 
entral 
hara
ter is really a W -orbit we may repla
e 
 byany more 
onvenient element in the orbit W
. If 
(�) = 
� then (1=
�)
(�) = 1 and so we may,
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Figure 1. Hyperplanes and roots for I2(7) and I2(8)without loss of generality, assume that 
k = 1 for all k when n is odd, and 
2k = 1 and 
2k+1 = 
when n is even.(a) If Z(
) 
ontains 2 roots or more then 
 = 0, sin
e any two distin
t positive roots are linearlyindependent. This is the 
entral 
hara
ter 
0 in Table 1.(b) If Z(
) 
ontains one root then, by repla
ing 
 with another element of W
, we may assumethat Z(
) = f�0g. When n is even, we may also have to use the automorphism of the root systemwhi
h swit
hes �1 = �0 and �2 = �n�1 to get Z(
) = f�0g. Applying this automorphism 
hangesthe 
entral 
hara
ter but the representations of H with the new 
entral 
hara
ter will have exa
tlythe same stru
ture as the representations of 
entral 
hara
ter 
.(b0) If Z(
) = f�0g and �k 2 P (
) then the equations 0 = 
(�0) = 
("1) and(3.1) 
k = 
(�k) = 
(
os(k�)"1 + sin(k�)"2) = sin(k�)
("2)uniquely determine 
. Sin
e sin(k�) = sin((n� k)�), �n�k must also be in P (
). This happens forthe 
entral 
hara
ters 
b;k, 
b;n=2 and 
q in Table 1.(b00) If Z(
) = f�0g, �k; �` 2 P (
) and ` 6= n � k then equation (3.1) for k and ` for
es 
k 6= 
`whi
h for
es n even and k and ` to be of di�erent parity. Furthermore the parameters must satisfy
k=
` = sin(k�)= sin(`�) and, when this happens, it happens for a unique 
hoi
e of the 4-tuple(k; `; n � k; n � `). Thus, the only possible option is P (
) = f�k; �n�k; �`; �n�`g (if ` = n=2 thenP (
) = f�n=2; �k; �n�kg). This is the 
entral 
hara
ter 
q in Table 1.(
) If Z(
) = ; and �k; �` 2 P (
) su
h that 
k = 
` = 
 then 
 is uniquely determined by theequations 
 = 
os(k�)
("1) + sin(k�)
("2) = 
os(`�)
("1) + sin(`�)
("2). These equations for
e�(n+k+`)=2 2 Z(
) if (n + k + `) is even (the easiest way to see this is to look at the pi
tures inFigure 2). Sin
e we assumed Z(
) = ; it follows that n+ k+ ` is odd. If P (
) 
ontains 3 elementsthen at least two of them would satisfy n + k + ` even, and so it follows that P (
) 
ontains amaximum of two elements. By repla
ing 
 by an appropriate element of the orbit W
 we 
anassume that P (
) = f�k�1; �n�kg for some 1 � k � n=2. This 
ase 
orresponds to the 
entral
hara
ter 

;k in Table 1.This analysis shows that Table 1 
overs all (P (
); Z(
)) possibilities.
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Figure 2. Hyperplanes for I2(7) and I2(8).



18 CATHY KRILOFF AND ARUN RAM3.3. The irredu
ible representations. The following analysis determines the stru
ture of ea
hof the irredu
ible H -modules: the dimensions of ea
h generalized weight spa
e and the Langlandsparameters. The results are summarized in Table 1. An irredu
ible representation that is 
alibrated(see (2.10)) has all its weights of the form w
 with w 2 F (
;J) for a unique J , and this is the set whi
his displayed in the fourth 
olumn of Table 1. The notation `n
' indi
ates that the representation isnot 
alibrated.The derivation of the irredu
ible representations below pro
eeds by 
onsidering, separately, ea
h
entral 
hara
ter 
. In ea
h 
ase we have in
luded a pi
ture showing the lo
al regions (
; J). Inthese pi
tures the solid lines 
orrespond to hyperplanes H� for � 2 Z(
) and the dotted lines
orrespond to hyperplanes H� for � 2 P (
). Ea
h lo
al region is labeled by the 
orresponding setJ of roots whi
h determines its lo
ation in the pi
ture (see the dis
ussion before Corollary 2.5).The Langlands parameters of an irredu
ible H -module M are determined by the real parts ofweights of M . This means that, a

ording to the labeling of the simple modules as in Table 1,the Langlands parameters 
an depend on the 
hoi
e of the parameters 
k. In our 
al
ulations ofLanglands parameters, and in the Langlands data displayed in Table 1, we assume that all 
k 2 R>0(this assumption is used only in the analysis of Langlands parameters). When I � f1; 2g 
ontainsonly one element, a tempered H I -module is determined by its maximal weight. Thus, in Table 1,we spe
ify Langlands parameters in the form (�; I) where � indi
ates the maximal weight of atempered H I -module.In the 
ase when n is even not all roots are in the orbit of �1 = �0 and one should really 
onsider
entral 
hara
ters 
 whi
h have Z(
) = f�n�1g = f�2g. These 
entral 
hara
ters 
0a, 
0b;k, 
0
;k arethe images of the 
entral 
hara
ters 
a, 
b;k and 

;k under the automorphism of the root systemwhi
h swit
hes �1 and �2. This automorphism extends to an automorphism of H and thus itfollows that the modules with 
entral 
hara
ters 
0a, 
0b;k, 
0
;k have exa
tly the same stru
tures asthe modules with 
entral 
hara
ters 
a, 
b and 

;k, respe
tively.Central 
hara
ter 
a: Z(
a) = ;, P (
a) = ;.By Theorem 2.10 the prin
ipal series moduleM(
a) is irredu
ible and, by Proposition 2.7(a), thisis the unique irredu
ible module with 
entral 
hara
ter 
a. Sin
e 
a is regular M(
a) is 
alibrated.Central 
hara
ter 
b;k: Z(
b;k) = f�0g, P (
b;k) = f�k; �n�kg, 1 � k � (n� 1)=2.The weight 
b;k is uniquely determined by the fa
t that 
b;k(�0) = 
("1) = 0 and 
k = 
(�k) =sin(k�)
("2), where � = �=n. J = ;k 
hambersk 
hambers
J = f�k; �n�kgk 
hambersk 
hambers

J = f�n�kgn� 2k 
hambersn� 2k 
hambers
H�0 H�n�kH�k

. . . . . . . . . . . . . . . . . . . . . . . . .
. .. . . . . . . . . . . . . . . . . . . . . . . . . . .Use Lemma 2.6 to de
ompose the prin
ipal series module M(
b;k) and 
on
lude that there are twoirredu
ible modules M and N with 
entral 
hara
ter 
b;k anddim(Mgenw
b;k) = 2 for w 2 F (
b;k ;;); dim(Mgenw
b;k) = 1 for w 2 F (
b;k ;f�n�kg);dim(Ngenw
b;k) = 1; for w 2 F (
b;k ;f�n�kg) dim(Ngenw
b;k) = 2; for w 2 F (
b;k ;f�k;�n�kg);
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es of M and N are 0. Neither of the two irredu
ible modules M and Nwith 
entral 
hara
ter 
b;k are 
alibrated.The maximal weight of M is 
b;k whi
h is dominant and on the hyperplane H�1 . The Langlandsset for this weight is I = f1g. The maximal weight of N is on the hyperplane H�k if k is even, andon the hyperplane H�n�(k+1) if k is odd. This observation determines the set I in the Langlandsde
omposition of the (real part) of the maximal weight of N (equation (2.11)).Central 
hara
ter 
b;n=2: n even, Z(
b;n=2) = f�0g, P (
b;n=2) = f�n=2g.
J = ;n=2 
hambersn=2 
hambers

J = f�n=2gn=2 
hambersn=2 
hambers
H�0

H�n=2.............................
Use Lemma 2.6 to de
ompose the prin
ipal series module M(
b;n=2) and 
on
lude that there aretwo irredu
ible modules M and N with 
entral 
hara
ter 
b;n=2 withdim(Mgenw
b;n=2) = 2; for w 2 F (
b;n=2 ;;); anddim(Ngenw
b;n=2) = 2; for w 2 F (
b;k ;f�n=2g):All other weight spa
es of M and N are 0. Neither of the two irredu
ible modules M and N with
entral 
hara
ter 
b;n=2 are 
alibrated.The maximal weight ofM is 
b;n=2 whi
h is dominant and on the hyperplaneH�1 . The Langlandsset for this weight is I = f1g. The module N is tempered with maximal weight � � � s1s2| {z }n=2 fa
tors 
b;n=2.Central 
hara
ter 
q: Z(
q) = f�0g, P (
q) = f�k; �n�k; �`; �n�`g.It may be that ` = n=2 = n� ` so that the hyperplanes H�` and H�n�` are the same and P (
)
ontains only 3 roots. We do not have to 
onsider this situation separately.In some sense, the spe
ial 
entral 
hara
ter 
q o

urs when the parameters are exa
tly rightso that the 
entral 
hara
ters 
b;k and 
b;` \
oales
e". This o

urs only if n is even, k and `are of di�erent parity, and the parameters satisfy 
k=
` = sin(k�)= sin(`�). For a �xed 
hoi
e of



20 CATHY KRILOFF AND ARUN RAMparameters, there is at most one 
hoi
e of the quadruple (k; `; n� k; n� `).k
hambersJ = ;

k
hambersJ = P (
q)

`� k
hambersJ = f�n�kg

`� k
hambersJ = f�`; �n�`; �n�kg
n� 2` 
hambersJ = f�n�k; �n�`g

H�0 H�n�kH�k H�n�`H�`

..............
..............

..............
...........

. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .

. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.....................................................
There are �ve nonisomorphi
 irredu
ible H -modules L, M , N , P and Q with 
entral 
hara
ter 
q,unless ` = n=2, in whi
h 
ase there are only four (N has dimension 0).dim(Lgenw
q ) = 2; for w 2 F (
q ;;);dim(Lgenw
q ) = 1; for w 2 F (
q ;f�n�kg);dim(Mgenw
q ) = 1; for w 2 F (
q ;f�n�kg);dim(Ngenw
q) = 1; for w 2 F (
q ;f�n�k;�n�`g);dim(P genw
q ) = 1; for w 2 F (
q ;f�`;�n�k;�n�`g);dim(Qgenw
q ) = 1; for w 2 F (
q ;f�`;�n�k;�n�`g);dim(Qgenw
q ) = 2; for w 2 F (
q ;f�k;�`;�n�k;�n�`g);and all other weight spa
es of these modules are 0.Both modules P and Q are tempered and have the same maximal weight � � � s1s2| {z }n�` fa
tors 
q.Central 
hara
ter 

;k: Z(

;k) = ;, P (

;k) = f�k�1; �n�kg, 1 � k � (n� 1)=2.
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;k is uniquely determined by 
(�k�1) = 
k�1 and 
(�n�k) = 
n�k.J = ;k 
hambersk � 1
hambers

k � 1
hambersk 
hambersJ = P (

;k)
n� 2k + 1 
hambersJ = f�n�kg

n� 2k + 1 
hambersJ = f�k�1g
H�0H�k�1 H�n�k

. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .

. . ......................................................The dashed line in this pi
ture is for referen
e only, it does not 
orrespond to a root in Z(
) orP (
).Sin
e 

;k is regular the irredu
ible H -modules with 
entral 
hara
ter 

;k are 
alibrated and 
anbe indexed by the sets J . The irredu
ible 
alibrated module H (

;k ;J) indexed by the set J hasdim(H (

;k ;J))w

;k = 1 for w 2 F (

;k ;J)and all other weight spa
es 0. A 
onstru
tion of H (

;k ;J) is given in Theorem 4.5.To 
ompute the Langlands parameters of these modules we �rst assume that n is odd andm = n�12 . If J = f�k�1g the maximal weight of the module H (

;k ;J) is in the same 
hamber as�m�k if k is even, and in the same 
hamber as �m+k if k is odd. If J = f�n�kg the maximalweight of H (

;k ;J) is in the same 
hamber as �m�k if k is odd, and in the same 
hamber as �m+kif k is even. In ea
h 
ase this information determines the set I in the Langlands parameters. IfJ = f�k�1; �n�kg the module H (

;k ;J) is tempered with maximal weights� � � s2s1| {z }n�k+1 fa
tors 

;k; and � � � s1s2| {z }k fa
tors 

;k:If n is even and all parameters 
k are equal then the Langlands parameters are as in the previousparagraph. In the 
ase that n is even and 
2k 6= 
2k+1 then it may happen that 

;k is not in thedominant 
hamber. The stru
ture of the modules with 
entral 
hara
ter 

;k does not 
hange but theLanglands parameters of the representations may 
hange signi�
antly. One of the four irredu
ibleswith 
entral 
hara
ter 

;k will always be tempered, but whi
h one (and thus the dimension of thetempered module with this 
entral 
hara
ter) depends on the values of the parameters 
2k and
2k+1.
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hara
ter 
d: Z(
d) = ;, P (
d) = f�0g
J = ;n 
hambersJ = f�0gn 
hambers

H�0.............................Sin
e 
d is regular the irredu
ible modules with 
entral 
hara
ter 
d are 
alibrated and 
an beindexed by the sets J . The module H (
d ;J) hasdim(H (

;k ;J))w

;k = 1 for w 2 F (

;k ;J)and all other weight spa
es 0. A 
onstru
tion of H (
d;k ;J) is given in Theorem 4.5.The Langlands parameters given in Table 1 for irredu
ible representations with 
entral 
hara
ter
d assume that 
d 62 W
d0 where n is odd and 
d0 = � � �(n�1)=2, � 2 R>0 . In the parti
ular 
ase nodd and 
d 2W
d0 the irredu
ible module indexed by the set J = f�0g is tempered.3.4. Tempered representations and the Springer 
orresponden
e. The Springer 
orrespon-den
e for Weyl groups (see [BM1, p.34℄) asso
iates to ea
h tempered representationM of H with real
entral 
hara
ter, the unique \maximal" irredu
ibleW -module whi
h is 
ontained in M . For Weylgroups (
rystallographi
 re
e
tion groups) this is a one-to-one 
orresponden
e between temperedrepresentations of H and irredu
ible representations of W . Using our 
lassi�
ation of H -modulesin Table 1, we 
an establish a similar 
orresponden
e for the non
rystallographi
 groups I2(n).If n is odd then the group I2(n) has 2 one-dimensional irredu
ible representations and (n �1)=2 two-dimensional irredu
ible representations. The trivial (resp. sign) representation of I2(n)
orresponds to the tempered irredu
ible H -module with 
entral 
hara
ter 
0 (resp. 

;1). The two-dimensional representations of I2(n) 
orrespond to the tempered H -modules with 
entral 
hara
ters
d 2 W
0d and 

;k, 1 � k � (n � 1)=2. Note that 
0, 
d and 

;k, 1 � k � (n � 1)=2, 
an all betaken to be multiples of the root �(n�1)=2 and in the dominant 
hamber. In this normalization the1-dimensional representations 
orrespond to the two extreme elements of this 
hain of weights.If n is even and the parameters 
k are all equal the trivial (resp. sign) representation of I2(n)
orresponds to the tempered irredu
ible H -module with 
entral 
hara
ter 
0 (resp. 

;1) and theother two 1-dimensional representations of I2(n) 
orrespond to the tempered H -modules with 
en-tral 
hara
ters 
b;n=2 and 
b0;n=2. The 2-dimensional I2(n)-modules 
orrespond to the temperedH -modules with 
entral 
hara
ters 

;k, 2 � k � n=2. As in the 
ase n odd, the 
entral 
hara
ters
0 and 

;k, 1 � k � (n�1)=2, 
an be taken to be in the dominant 
hamber and on the line throughthe origin and the point �n=2+�n=2�1. In this normalization the trivial and the sign representations
orrespond to the two extreme elements of this 
hain of weights. In the 
ase when the parametersare unequal two of the points on this 
hain may 
oales
e in the weight 
q and \be
ome" the twotempered representations of H with 
entral 
hara
ter 
q. The 
ase where P (
q) 
ontains only 3roots 
omes from one of the 
entral 
hara
ters 
b;n=2 or 
b0;n=2 
oales
ing with one of the 

;k.This analysis establishes the \Springer 
orresponden
e" for all dihedral groups and all 
hoi
es ofthe parameters 
k of H with 
k 2 R>0 .



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 23Table 1. Irredu
ible representations of H I2(n)Chara
ter Z(
); P (
) Dimension J Langlands Parameters
0 = 0 R+; ; 2n n
 tempered
a f�0g; ; 2n n
 (
a; f1g)
b;k f�0g; f�k; �n�kg n n
 (
b;k; f1g)1�k<n=2 n n
 (� � � s1s2| {z }k fa
tors 
b;k; f1g) k even(� � � s1s2| {z }k fa
tors 
b;k; f2g), k odd
b;n=2 f�0g; f�n=2g n n
 (
b;n=2; f1g)(n even) n n
 tempered
q f�0g; `+ k n
 (
q; f1g)(n even) f�k; �n�k; �`; �n�`g `� k f�n�kg (� � � s1s2| {z }k fa
tors 
q; f1g), k even0<k<`�n=2 (� � � s1s2| {z }k fa
tors 
q; f2g), k oddn� 2` f�n�k; �n�`g (� � � s1s2| {z }` fa
tors 
q; f1g), ` even(� � � s1s2| {z }` fa
tors 
q; f2g), ` odd`� k f�n�k; �n�`; �`g tempered`+ k n
 tempered

;k ;; f�k�1; �n�kg 2k � 1 ; (

;k; ;)1�k�n=2 n� 2k + 1 f�k�1g (� � � s2s1| {z }k fa
tors 

;k; f1g), k odd(� � � s2s1| {z }k fa
tors 

;k; f2g), k evenn� 2k + 1 f�n�kg (� � � s1s2| {z }k fa
tors 

;k; f1g), k even(� � � s1s2| {z }k fa
tors 

;k; f2g), k odd2k � 1 f�k�1; �n�kg tempered
d ;; f�0g n ; (
d; ;)n f�0g (s1
d; f1g)y
gen ;; ; 2n ; (
gen; ;)y This module is tempered if n is odd and 
d 2W
0d, with 
0d = � � �(n�1)=2, � 2 R>0 .
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ation of Calibrated Representations4.1. Stru
tural results. We �rst examine some properties whi
h hold for irredu
ible modulesthat are 
alibrated, i.e., 
an be de
omposed into a dire
t sum of weight spa
es (see (2.10)). Thisse
tion follows 
losely the similar results for aÆne He
ke algebras in [Ra1℄.Lemma 4.1. Let M be an irredu
ible 
alibrated module. Then, for all 
 2 hC su
h that M
 6= 0,(a) 
(�i) 6= 0 for all 1 � i � n, and(b) dim(M
) = 1.Proof. (a) The proof is by 
ontradi
tion. Assume 
(�i) = 0. Let HA1 be the subalgebra of Hgenerated by tsi and all x 2 h�C . Then the two-dimensional HA1 prin
ipal series module M(
) isirredu
ible and there is an HA1 -module homomorphism given byM(
) �! Mv
 7�! m
where m
 is a nonzero element of M
 . Sin
e M(
) is simple this is an inje
tion and thus, M is not
alibrated sin
e M(
) is not 
alibrated. Thus 
(�i) 6= 0.(b) The proof is by 
ontradi
tion. Assume 
 2 hC is su
h that dim(M
) > 1. Let m
 be a nonzeroelement of M
 . Sin
e M is 
alibrated �i a
ts on m
 as a linear 
ombination of the a
tion of tsiand a multiple of the identity. Sin
e M is irredu
ible it follows from Proposition 2.4(b) that thea
tion of the � -operators must generate all of M . Thus, sin
e dim(M
) > 1, there is a sequen
e of� -operators su
h that n
 = �i1�i2 � � � �ipm
is a nonzero ve
tor in M
 whi
h is not a multiple of m
 .Assume that the sequen
e �i1�i2 � � � �ip is 
hosen so that p is minimal. Sin
e the � -operators in thissequen
e are all well de�ned the elements sik � � � sip
, 1 � k � p, in the orbitW
 
orrespond (underthe bije
tion in (2.7)) to a sequen
e of 
hambers in h�R on the positive side of all H�, � 2 Z(
).Ea
h 
hamber in this sequen
e shares a fa
e with the next 
hamber in the sequen
e. Sin
e both n
and m
 are in M
 this is a sequen
e whi
h begins and ends at the 
hamber C. Sin
e the 
hambersare in bije
tion with the elements of W it follows that si1 � � � sip = 1 in W .This means that there is some 1 < k � p su
h that si1 � � � sik is not redu
ed and we 
an use thebraid relations to rewrite this word as si01 � � � si0k�2siksik . By Proposition 2.4(e) the � -operators alsosatisfy the braid relations and son
 = �i01�i02 � � � �i0k�2�ik�ik � � � �ipm
 :By Proposition 2.4(
), the operator �ik�ik in this expression will a
t (on �ik+1 � � � �ipm
) by a 
onstant� 2 C and so n
 = � � �i01�i02 � � � �i0k�2�ik+1 � � � �ipm
 ;where the 
onstant � is nonzero sin
e n
 is nonzero. But the expression��1n
 = �i01�i02 � � � �i0k�2�ik+1 � � � �ipm
 ;is shorter than the original expression of n
 and this 
ontradi
ts the minimality of p. It followsthat dim(M
) � 1. �Lemma 4.2. Let M be an irredu
ible 
alibrated module. Suppose that M
 and Msi
 are bothnonzero. Then the map �i : M
 !Msi
 is a bije
tion.Proof. By Proposition 4.1(b), dim(M
) = dim(Msi
) = 1, and thus it is suÆ
ient to show that �iis not the zero map. Let v
 be a nonzero ve
tor in M
 . Sin
e M is irredu
ible there must be asequen
e of � -operators su
h that vsi
 = �i1 � � � �ipv
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 . Let p be minimal su
h that this is the 
ase. Sin
e �i�i1 � � � �ipv
 2M
 ,it follows, as in the se
ond paragraph of the proof of Lemma 4.1(b), that sisi1 � � � sip = 1 in W .For notational 
onvenien
e let i0 = i. Let 0 � k < p be maximal su
h that siksik+1 � � � sip is notredu
ed. If k 6= 0 then we 
an use the braid relations to getvsi
 = �i1 � � � �ik�ik�i0k+2 � � � �i0pv
 :Sin
e �ik�ik a
ts on �i0k+2 � � � �i0pv
 by a 
onstant � 2 C ,vsi
 = � � �i1 � � � �ik�1�i0k+2 � � � �i0pv
 ;and � 6= 0 sin
e vsi
 is not 0. But this 
ontradi
ts the minimality of p. Thus we must have thatk = 0, p = 1 and vsi
 = �iv
 :Thus, sin
e vsi
 6= 0, �i 6= 0. �For simple roots �i and �j in R, let Rij be the rank two root subsystem of R generated by �iand �j . A weight � 2 hC is skew if(a) for all simple roots �i, 1 � i � n, �(�i) 6= 0, and(b) for all pairs of simple roots �i, �j su
h that f� 2 Rij j �(�) = 0g 6= ;, the set f� 2Rij j �(�) = �
�g 
ontains more than two elements.Condition (a) says that � is regular for all rank 1 subsystems of R generated by simple roots.Condition (b) is an \almost regular" 
ondition on � with respe
t to rank 2 subsystems generatedby simple roots. By the analysis in Se
tion 3, the weights whi
h appear in 
alibrated modules forgraded He
ke algebras 
orresponding to rank two root systems are skew.Re
all from Se
tion 2.3 that a pair (
; J) is a lo
al region if the setF (
;J) = fw 2W j R(w) \ Z(
) = ; and R(w) \ P (
) = Jgis nonempty. A lo
al region (
; J) is skew if, for all w 2 F (
;J), the weight w
 is skew for all pairs�i; �j of simple roots in R.The following Theorem spe
i�es the weight spa
e stru
ture of an irredu
ible 
alibrated H -module.Theorem 4.3. If M is an irredu
ible 
alibrated H -module with 
entral 
hara
ter 
 2 hC then thereis a unique skew lo
al region (
; J) su
h thatdim(Mw
) = �1; for all w 2 F (
;J);0; otherwise.Proof. By Lemma 4.1 all nonzero generalized weight spa
es ofM have dimension 1 and by Lemma 4.2all � -operators between these weight spa
es are bije
tions. This already guarantees that there isa unique lo
al region (
; J) whi
h satis�es the 
ondition. It only remains to show that this lo
alregion is skew.Let H ij be the subalgebra of H generated by tsi , tsj and S(h�C ). Sin
e M is 
alibrated as anH -module it is 
alibrated as an H ij -module and so all fa
tors of a 
omposition series of M as anH ij -module are 
alibrated. Thus, by the 
lassi�
ation in Se
tion 3, the weights of M are skew. So(
; J) is a skew lo
al region. �4.2. Constru
tion. The following Proposition shows that the weight stru
ture of 
alibrated rep-resentations as determined in Theorem 4.3 essentially for
es the H -a
tion on a weight basis.Proposition 4.4. Let M be a 
alibrated H -module and for all 
 2 hC su
h that M
 6= 0, assumethat (A1) 
(�i) 6= 0 for all 1 � i � n; and (A2) dim(M
) = 1:
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h b 2 hC su
h that Mb 6= 0 let vb be a nonzero ve
tor in Mb. The ve
tors fvbg form a basisof M . Let (tsi)
b 2 C and b(x) 2 C be given bytsivb =X
 (tsi)
bv
 and xvb = b(x)vb; for x 2 h�C .Then(a) (tsi)bb = 
�ib(�i) for all vb in the basis,(b) if (tsi)
b 6= 0 then 
 = sib,(
) (tsi)b;sib(tsi)sib;b = 1� (tsi)2bb = (1 + (tsi)bb)(1 + (tsi)sib;sib).Proof. The relation xtsi � tsisi(x) = 
�i x� si(x)�ifor
es X
 (
(x)(tsi)
b � (tsi)
bb(six))v
 = 
�i b(x)� b(six)b(�i) vb:Comparing 
oeÆ
ients yields
(x)(tsi)
b � (tsi)
bb(six) = 0; if b 6= 
; andb(x)(tsi)bb � (tsi)bbb(six) = 
�i b(x)� b(six)b(�i) :These equations imply thatif (tsi)
b 6= 0 then b(six) = 
(x) for all x 2 h�C ; and(tsi)bb = 
�ib(�i) if b(�i) 6= 0 and b(x) 6= b(six) for some x 2 h�C :Thus tsivb = (tsi)bbvb + (tsi)sib;bvsib with (tsi)bb = 
�ib(�i) :This 
ompletes the proof of (a) and (b). The relation t2si = 1 in H implies thatvb = t2sivb = �(tsi)2bb + (tsi)b;sib(tsi)sib;b� vb + [(tsi)bb + (tsi)sib;sib℄ (tsi)sib;bvsib= �(tsi)2bb + (tsi)b;sib(tsi)sib;b� vb ;sin
e (tsi)bb + (tsi)sib;sib = 0. Thus(tsi)b;sib(tsi)sib;b = 1� (tsi)2bb = (1 + (tsi)bb)(1 + (tsi)sib;sib): �Theorem 4.5. Let (
; J) be skew and let F (
;J) index the 
hambers in the lo
al region (
; J).De�ne H (
;J) = C -spanfvw j w 2 F (
;J)g;so that the symbols vw are a labeled basis of the ve
tor spa
e H (
;J) . Then the following formulasmake H (
;J) into an irredu
ible H -module. For ea
h w 2 F (
;J),xvw = (w
)(x)vw ; for x 2 h�C ; andtsivw = 
�iw
(�i)vw +�1 + 
�iw
(�i)� vsiw; for 1 � i � n;where we set vsiw = 0 if siw =2 F (
;J).
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e (
; J) is skew, (w
)(�i) 6= 0 for all w 2 F (
;J) and all simple roots �i. This impliesthat the 
oeÆ
ients in tsivw are well de�ned for all i and w 2 F (
;J).By 
onstru
tion, the nonzero weight spa
es of H (
;J) are (H (
;J))genw
 = (H (
;J))w
 where w 2F (
;J). Sin
e dim((H (
;J))u
) = 1 for u 2 F (
;J), any proper submodule N of H (
;J) must haveNw
 6= 0 and Nw0
 = 0 for some w 6= w0, with w;w0 2 F (
;J). This is a 
ontradi
tion to Corol-lary 2.5. So H (
;J) is irredu
ible if it is an H -module.It remains to show that the de�ning relations for H are satis�ed. Let w 2 F (
;J). Then�si(x)tsi + 
�i x� six�i � vw = six � 
�iw
(�i)vw +�1 + 
�iw
(�i)� vsiw�+ 
�iw
(x) � w
(six)w
(�i) vw= 
�iw
(�i)w
(x)vw +�1 + 
�iw
(�i)� siw
(six)vsiw= tsixvw:Let w 2 F (
;J). Thent2sivw = tsi � 
�iw
(�i)vw +�1 + 
�iw
(�i)� vsiw�= 
�iw
(�i) � 
�iw
(�i)vw +�1 + 
�iw
(�i)� vsiw�+�1 + 
�iw
(�i)�� 
�isiw
(�i)vsiw +�1 + 
�isiw
(�i)� vw�= � 
�iw
(�i)�2 vw +�1 + 
�iw
(�i)��1� 
�iw
(�i)� vw + 0= vw:Now let us 
he
k the braid relations. Write tsi = �i + di where�ivw = �1 + 
�i(w
)(�i)� vsiw and divw = 
�i(w
)(�i)vw;for w 2 F (
;J). Then di is a diagonal matrix and �i is a pseudo-permutation matrix, in the sensethat ea
h row and ea
h 
olumn 
ontains at most one nonzero entry. For a sequen
e j1; : : : ; jp de�nea diagonal matrix dj1;:::;jpi by the relation(4.1) di�j1 � � � �jp = �j1 � � � �jpdj1;:::;jpi :If 
 is generi
 then, for all w 2W ,dj1;:::;jpi vw = � 
�i(sjp � � � sj1w
)(�i)� vw;and all diagonal entries are nonzero, but, in general, some diagonal entries of dj1;:::;jpi may be 0.Use this method to expand the expressiontsitsj tsi � � �| {z }mij fa
tors = (�i + di)(�j + dj)(�i + di) � � �| {z }mij fa
tors = Xz2W �zpz;and move all the diagonal operators di to the right of the �i and obtain diagonal operators pz. Theoperators �w are pseudo-permutation operators that may have some rows and 
olumns without anonzero entry. By repla
ing some diagonal entries of the pz operators by 0, we may \�x the �z"
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e the �z with operators � 0z whi
h have exa
tly one nonzero entry in ea
h row and ea
h
olumn. This yields an expression(4.2) tsitsj tsi � � �| {z }mij fa
tors = Xz2W � 0zp0z:If 
 is generi
 then the diagonal entries (p0z)ww of p0z are nonzero and (p0z)ww = w
(P 0z), w 2 W ,where P 0z is a rational fun
tion in the �i. A similar expansion gives(4.3) tsj tsitsj � � �| {z }mij fa
tors = Xz2W � 0zq0z;where the q0z are diagonal operators whi
h, for generi
 
, have diagonal entries (q0z)ww = w
(Q0z),where Q0z is a rational fun
tion of the �i. As in the proof of Proposition 2.4(e), 
(P 0z) = 
(Q0z) forall generi
 
, and so it follows that P 0z = Q0z as rational fun
tions.When 
 is not generi
 the operators p0z and q0z may have some diagonal entries equal to zero.From the 
lassi�
ation of representations of rank two graded He
ke algebras we know that thereexists a 
alibrated representation of H ij when (
; J) is skew. This representation has a unique, up to
onstant multiples, basis of simultaneous eigenve
tors for the a
tion of � 2 h�C , and Proposition 4.4shows that the a
tion on this basis is for
ed ex
ept for the values of the o� diagonal elementsof the tsi . These values depend on the normalization of the basis. Be
ause we know that thisrepresentation exists we know that there are 
hoi
es of the nonzero entries in the � 0z su
h that (4.2)and (4.3) are equal. If a diagonal entry (p0z)ww of p0z is nonzero then it is equal to (w
)(P 0z) and(p0z)ww = (w
)(P 0z) = (w
)(Q0z) = (q0z)ww, sin
e (as shown above) P 0z = Q0z. Thus it follows thatnonzero 
ontributions from the terms � 0zp0z and � 0zq0z are equal and that tsitsj tsi � � � vw is equal totsj tsitsj � � � vw. �Remark 4.6. The a
tion of H on a weight basis of H (
;J) is for
ed up to the freedom in Proposi-tion 4.4(
). Our 
hoi
e (tsi)sib;b = 1 + (tsi)bb in Theorem 4.5 and the alternative 
hoi
e (tsi)sib;b =1 + (tsi)sib;sib yield isomorphi
 modules. The 
hange of basis v0b = 1(1 + (tsi)bb)vb provides theisomorphism.We summarize the results of this se
tion with the following 
orollary of Theorem 4.3 and the
onstru
tion in Theorem 4.5.Theorem 4.7. Let M be an irredu
ible 
alibrated H -module. Let 
 2 hC be (a �xed 
hoi
e of) the
entral 
hara
ter of M and let J = R(w) \ P (
) for any w 2 W su
h that Mw
 6= 0. Then (
; J)is skew and M ' H (
;J) , where H (
;J) is the module de�ned in Theorem 4.5.5. Combinatori
s of Lo
al RegionsWhen W is a 
rystallographi
 re
e
tion group two 
onje
tures were stated in [Ra3, (1.3) and(1.11)℄, the �rst giving ne
essary and suÆ
ient 
onditions for F (
;J) (as de�ned in (2.20)) to benonempty when 
 is dominant and the se
ond determining the form of F (
;J) as an interval in theweak Bruhat order when 
 is dominant and integral. Loszon
y [Lo℄ proved the se
ond 
onje
ture(Theorem 5.2 below). His theorem implies the nonemptiness 
onje
ture of [Ra3℄ under the addi-tional assumption that 
 is integral. Here we review Loszon
y's proof and prove the nonemptiness
onje
ture in full generality. We give an example (Example 5.4) to show that integrality is ne
essaryin Theorem 5.2. Finally, we provide Example 5.7, whi
h shows that one 
annot expe
t analogousstatements to hold when W is non
rystallographi
.



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 29Let R be the root system of a �nite real re
e
tion group W and �x a set R+ = f� > 0g ofpositive roots in R. A set of positive roots S is 
losed if it satis�es the 
onditionIf �; � 2 S and a; b > 0 are su
h that a�+ b� 2 R+ then a�+ b� 2 S.The following theorem 
hara
terizes the sets whi
h appear as inversion sets of elements ofW . Re
allthat R(w) denotes the inversion set of w, see equation (2.4). This result is in [Bj, Proposition 2℄,but is stated there without proof and we are not aware of a published proof. The following proofwas shown to us by J. Stembridge and appears in the thesis of D. Waugh [Wg℄.Theorem 5.1. Let W be a real re
e
tion group. A set of positive roots S is equal to R(w) forsome element w 2W if and only if S is 
losed and S
 = R+nS is 
losed.Proof. =): Let w 2 W and suppose that �; � 2 R(w) and a� + b� is a positive root. Thenw(a�+ b�) = a(w�) + b(w�) is a negative root sin
e w� and w� are both negative roots. So R(w)is 
losed. Similarly one shows that R(w)
 is 
losed.(=: Assume that S is 
losed and that S
 is 
losed. We will 
onstru
t w su
h that R(w) = S by�nding a redu
ed word w = si1 � � � sik for w. This is done by indu
tion on the size of S, with theindu
tion step being the 
ombination of the two steps below.Step 1: S 
ontains a simple root.Let � be a root of minimal height in S and assume that � =Pi 
�i�i, 
�i 2 R�0 , is not simple.Then h�; �ii > 0 for some i, sin
e 0 < h�; �i = nXi=1 
�ih�; �ii:Sin
e � is not simple, � 6= �i, and so both s�i� and �i are positive roots. Sin
e s�i� = ��h�; �_i i�iand �i both have lower height than � they must both be in S
. But then the equation� = s�i�+ h�; �_i i�i
ontradi
ts the assumption that S
 is 
losed. So � is simple.Step 2: Let �i1 be a simple root in S and let S1 = si1(S n f�i1g).Claim: S1 is 
losed and S
1 is 
losed.Let �; � 2 S1 and assume that a�+ b� is a positive root. Thensi1(a�+ b�) = asi1�+ bsi1� 2 S and a�+ b� 2 S1; orasi1�+ bsi1� = �i1 and a�+ b� = ��i1 :The se
ond is impossible sin
e si1�i1 is not a positive root. So a�+ b� 2 S1 and S1 is 
losed.Let �; � 2 S
1 and suppose that a� + b� is a positive root. Sin
e si1� and si1� are not in S,si1(a�+ b�) =2 S. So a�+ b� 62 S1. Thus S
1 is 
losed. �An element 
 2 hC is dominant (resp. integral) if 
(�i) 2 R�0 (resp. 
(�i) 2 Z) for all simpleroots �i. The 
losure S of a set of positive roots S is the smallest 
losed set of positive roots
ontaining S.Theorem 5.2. Let W be a 
rystallographi
 re
e
tion group and let R be the 
rystallographi
 rootsystem of W . Let 
 2 hC be dominant and integral and setZ(
) = f� > 0 j h
; �i = 0g and P (
) = f� > 0 j h
; �i = 1g:Let J � P (
) be su
h thatif � 2 J , � 2 Z(
) and � � � 2 R+ then � � � 2 J;and set F (
;J) = fw 2W j R(w) \ Z(
) = ;; R(w) \ P (
) = Jg:



30 CATHY KRILOFF AND ARUN RAMThen there exist elements wmin; wmax 2W su
h thatR(wmin) = J; R(wmax) = (P (
)nJ) [ Z(
)
; and F (
;J) = [wmin; wmax℄;where K
 denotes the 
omplement of K in R+ and [wmin; wmax℄ denotes the interval between wminand wmax in the weak Bruhat order.Proof. By Theorem 5.1, the element wmin 2W will exist if �J
 is 
losed. Assume that � = �1 + �2where � 2 �J , �1; �2 2 R+. We must show that �1 2 �J or �2 2 �J . Sin
e � 2 �J ,� = Æ1 + � � � + Æm; with Æi 2 J:We will de
ompose � = Æ1+� � �+Æm into two pie
es �1 = Æ1+� � �+Æk+�1 and �2 = �2+Æk+2+� � �+Æm,via the following indu
tive pro
edure. Sin
e0 < h�1 + �2; �1 + �2i =Xi h�1 + �2; Æii; then h�1 + �2; Æji > 0 for some j.By reindexing the Æi we 
an assume that j = 1. Thus h�1; Æ1i > 0 or h�2; Æ1i > 0 and we mayassume that h�1; Æ1i > 0: Sin
e sÆ1�1 = �1 � h�1; Æ_1 iÆ1 is a root and R is 
rystallographi
, �1 � Æ1is also a root. If �1 � Æ1 is a negative root then�1 = �1 and � = (Æ1 � �1) + Æ2 + � � � + Æm;gives the desired de
omposition. If �1 � Æ1 2 R+ then�1 + �2 = Æ1 + ((�1 � Æ1) + �2) and (�1 � Æ1) + �2 = Æ2 + � � � + Æm;and so we may indu
tively apply this de
omposition pro
edure on �0 = (�1�Æ1)+�2 = Æ2+: : :+Æm.In this way we 
on
lude that, after possible reindexing of the Æi, either�1 = Æ1 + � � �+ Æk and �2 = Æk+1 + � � �+ Æm;or �1 = Æ1 + � � � + Æk + �1 and �2 = �2 + Æk+2 + � � � + Æm;where �1 and �2 are positive roots su
h that �1 + �2 = Æk+1. In the �rst 
ase it is immediate that�1; �2 2 �J . In the se
ond 
ase h
; Æk+1i = h
; �1+�2i = 1, and so h
; �1i � 1 and h
; �2i � 1. Thus,sin
e 
 is dominant and integral, one of �1, �2 is in Z(
) and the other is in P (
). If �1 2 Z(
),�2 = Æk+1 � �1 and the 
ondition on J implies that �2 2 J . Similarly, if �2 2 Z(
) then �1 2 J .Thus �1 2 �J or �2 2 �J . So �J
 is 
losed. Sin
e �J is 
losed and �J
 is 
losed, Theorem 5.1 shows thatthere is an element wmin 2W su
h that R(wmin) = �J .The same method 
an be used to establish the existen
e of wmax: one must show that (P (
)nJ) [ Z(
)
is 
losed and this is a

omplished by similar arguments.By the de�nition of F (
;J) an element w 2W is in F (
;J) ifJ � R(w) � (P (
)nJ) [ Z(
)
:Sin
e the weak Bruhat order is the order determined by in
lusions of R(w) [Bj, Proposition 3℄ theresult is a 
onsequen
e of the existen
e of the elements wmin and wmax. �Remark 5.3. An alternative way to establish the existen
e of wmax in the proof of Theorem 5.2 isto use the 
onjugation involution(5.1) F (
;J) 1�1 ! F (
;J)0w  ! wu�1 where (
; J)0 = (�u
;�u(P (
)nJ));where u is the minimal length 
oset representative of w0W
 and w0 is the longest element of W .The fa
t that this is a well de�ned involution is proved in [Ra3, (1.7)℄. This involution takes wmaxfor F (
;J) to wmin for F (
;J)0 . In terms of the weak Bruhat order, the stru
ture of the intervalF (
;J)0 is the same as the stru
ture of the interval F (
;J) but with all relations reversed.
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Figure 3. Hyperplanes and a nonintegral weight for C2Example 5.4. The integrality of 
 is ne
essary in Theorem 5.2. Let W = I2(4) = WC2 be thedihedral group of order 8 (the Weyl group of type C2). The root system for type C2 is determinedby simple roots �1 = 2"1 and �2 = "2 � "1where f"1; "2g is an orthonormal basis of h�R = R2 . Let 
1 = 
2 = 1 be the parameters for H . If
 = (1=2)"2 (see Figure 3) then Z(
) = f�1g, P (
) = f�1 + 2�2g, and 
 is dominant but 
(�2) isnot integral. The set J = P (
) satis�es the 
ondition in Theorem 5.2, but �J = J is not an inversionset for any w 2W sin
e �J
 is not 
losed.The following method of redu
ing to the integral root subsystem of a weight is standard in thetheory of highest weight modules for �nite dimensional 
omplex semisimple Lie algebras, see [Ja℄.This method turns out to be an eÆ
ient tool for redu
ing the nonemptiness 
onje
ture of [Ra3℄ tothe statement in Theorem 5.2.Let R[
℄ = f� 2 R j h
; �_i 2 Zg. For any �; � 2 R[
℄,h
; (s��)_i = hs�
; �_i = h
; �_i � h
; �_ih�; �_i 2 Z;and so R[
℄ is a root system with Weyl group W[
℄ = hs� j � 2 R[
℄i � W . If � 2 W[
℄ then theR[
℄-inversion set of � isR[
℄(�) = f� > 0 j �� < 0; � 2 R[
℄g = R(�) \R[
℄:Theorem 5.5. Let W be a 
rystallographi
 re
e
tion group and let R be the 
rystallographi
 rootsystem of W . Let 
 2 hC su
h that Re(
) is dominant and setZ(
) = f� > 0 j h
; �i = 0g and P (
) = f� > 0 j h
; �i = 1g:Let J � P (
) be su
h thatif � 2 J , � 2 Z(
) and � � � 2 R+ then � � � 2 J:Then F (
;J) = fw 2W j R(w) \ Z(
); R(w) \ P (
) = Jg is nonempty.
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e 
 is dominant and integral for the root system R[
℄, it follows from Theorem 5.2 thatthere is an element w in W[
℄ su
h thatR[
℄(w) \ Z(
) = ; and R[
℄(w) \ P (
) = J;where R[
℄(w) = f� 2 R[
℄ j � > 0; w� < 0g. Usually R(w) is stri
tly larger than R[
℄(w) but it isstill true that R(w) \ Z(
) = ; and R(w) \ P (
) = J;sin
e all roots of P (
) and Z(
) are in R[
℄. So w 2 F (
;J). �When W is 
rystallographi
 we 
an use the method of the proof of Theorem 5.5 in 
ombinationwith the result of Theorem 5.2 to give a pre
ise des
ription of the set F (
;J) for all 
entral 
hara
ters
 2 hC . By 
hoosing 
 appropriately in its W -orbit we may assume that Re(
) is dominant.De�ne W [
℄ = f� 2W j R(�) \R[
℄ = ;g:Ea
h w 2W has a unique expressionw = �� with � 2W [
℄; � 2W[
℄; and R(w) \R[
℄ = R(�) \R[
℄ = R[
℄(�):In this way the elements of W [
℄ are 
oset representatives of the 
osets in W=W[
℄.Sin
e P (
) � R[
℄ and Z(
) � R[
℄ it follows thatF (
;J) = f�� 2W j � 2W [
℄; � 2 F (
;J)[
℄ g; where(5.2) F (
;J)[
℄ = f� 2W[
℄ j R
(�) \ P (
) = J; R(w) \ Z(
) = ;g:(5.3)Sin
e F (
;J) = F (Re(
);J) and 
 is dominant and integral for the root system R[
℄, Theorem 5.2 hasthe following 
orollary.Corollary 5.6. With notations and assumptions as in Theorem 5.5F (
;J) = F (
;J)[
℄ =W [
℄ � [�max; �min℄;where, F (
;J)[
℄ is as in (5.3) and �max and �min in W[
℄ are determined by R[
℄(�max) = J andR[
℄(�min) = (P (
)nJ) [ Z(
)
, where the 
omplement is taken in the set of positive roots of R[
℄.This re�ned version of Theorem 5.2 is reminis
ent of the redu
tion to real 
entral 
hara
ter givenin [BM2℄.The following example shows that Theorem 5.5 does not naturally extend to non
rystallographi
re
e
tion groups. Note that su
h a generalization ne
essarily involves modifying the 
losure 
ondi-tion on J to beif � 2 J , � 2 Z(
), a 2 R>0 , and � � a� 2 R+ then � � a� 2 J:Example 5.7. Let W = I2(n) be the dihedral group of order 2n, n even, with root system 
hosenas in Se
tion 3 (so all roots are the same length). Let 
 be su
h that Z(
) = f�0g and P (
) =f�n=4; �n=2; �3n=4g (this 
 is an example of 
q in Table 1). Then the subset J = f�n=4; �3n=4g � P (
)satis�es the generalized 
losure 
ondition above sin
e �n=2 
annot be written as �n=4 � a�0 for anya 2 R>0 . However, F (
;J) = ; sin
e there are no 
hambers whi
h are on the positive side of bothH�0 and H�n=2 and on the negative side of both H�n=4 and H�3n=4 .
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