
REPRESENTATIONS OF GRADED HECKE ALGEBRASCATHY KRILOFF AND ARUN RAMAbstrat. Representations of aÆne and graded Heke algebras assoiated to Weyl groups playan important role in the Langlands orrespondene for the admissible representations of a redu-tive p-adi group. We work in the general setting of a graded Heke algebra assoiated to anyreal reetion group with arbitrary parameters. In this setting we provide a lassi�ation of allirreduible representations of graded Heke algebras assoiated to dihedral groups. Dimensions ofgeneralized weight spaes, Langlands parameters, and a Springer-type orrespondene are inludedin the lassi�ation. We also give an expliit onstrution of all irreduible alibrated represen-tations (those possessing a simultaneous eigenbasis for the ommutative subalgebra) of a generalgraded Heke algebra. While most of the tehniques used have appeared previously in variousontexts, we inlude a omplete and streamlined exposition of all neessary results, inluding theLanglands lassi�ation of irreduible representations and the irreduibility riterion for prinipalseries representations. 1. IntrodutionThe aÆne Heke algebra is tightly onneted to the geometry and representation theory of asemisimple Lie group. In fat, the representation theory of aÆne Heke algebras provides a largepiee of the Langlands orrespondene for the admissible representation theory of a redutive p-adi group [Bo, KL℄. The aÆne Heke algebra is also present in the geometry of a semisimplegroup via the equivariant K-theory of the Steinberg variety. This onnetion plays an importantrole in the Springer orrespondene and the Langlands lassi�ation. Reent onjetures of Lusztigtie the representation theory of the aÆne Heke algebra to the modular representation theory ofsemisimple Lie algebras in positive harateristi. So there are many good reasons to study therepresentations of aÆne Heke algebras.With appropriate de�nitions, the graded Heke algebra is the assoiated graded algebra of theaÆne Heke algebra. Lusztig [Lu3℄ has shown that the representation theory of graded Heke alge-bras of Weyl groups is essentially equivalent to the representation theory of aÆne Heke algebras.In the same way that the aÆne Heke algebra is onneted to equivariant K-theory [KL, CG℄ thegraded Heke algebra is onneted to equivariant ohomology [Lu3℄.This paper is a study of the ombinatorial representation theory of graded Heke algebras as-soiated to �nite real reetion groups (inluding the nonrystallographi ases). The geometrirepresentation theory of these algebras has been studied in [Lu1, Lu2, Lu3℄ and fundamental re-sults have appeared in [HO, Op℄. However, a wealth of information an be obtained with purelyombinatorial tehniques. Here we develop the ombinatorial theory from elementary priniples.Most of the tehniques we use are known in the aÆne Heke algebra setting but they are spreadover various parts of the literature, and in several ases the generalization to the graded Hekealgebras for the rystallographi ase is nontrivial. We have olleted these results, streamlinedthem, proved them in the general setting that inludes nonrystallographi graded Heke algebrasand made an e�ort to produe an up-to-date presentation. This paper inludes(a) the Langlands lassi�ation of irreduible representations,2000 Mathematis Subjet Classi�ation. Primary 20C08; Seondary 16G99.Researh of the �rst author supported in part by an NSF-AWM Mentoring Travel Grant. Researh of the seondauthor supported in part by National Seurity Ageny grant MDA904-01-1-0032 and EPSRC Grant GR K99015.1



2 CATHY KRILOFF AND ARUN RAM(b) the theory of prinipal series representations (inluding the irreduibility riterion),() the theory of intertwining operators,(d) the lassi�ation of all irreduible representations for rank two algebras (inluding all dihe-dral ases I2(n)),(e) the lassi�ation of irreduible alibrated representations, and(f) proofs of two onjetures from [Ra3℄.The Langlands lassi�ation for graded Heke algebras is due to Evens [Ev℄. We have shortenedhis proof but the shorter proof does not di�er in any essential ideas. Our proof of the irreduibilityriterion for prinipal series modules is a graded Heke algebra analogue of the proof given byKato [Ka℄ for aÆne Heke algebras. Proofs of this riterion for graded Heke algebras have appearedin [Ch1, Kr2℄ but our proof is more onstrutive and gives detailed information about the spherialvetors in the prinipal series modules.To our knowledge, the theory of intertwining operators originates from the study of aÆne Hekealgebra representations in Matsumoto [Ma℄. In reent years this theory has played an importantrole in the theory of orthogonal polynomials, in partiular, the study of Madonald polynomi-als [Ch2, Op, KS℄. In this paper we do not view these operators as intertwiners between prinipalseries representations but rather as loal operators on the weight spaes of any representation(� -operators). This generalized approah is inreasingly ommon in the theory of Madonaldpolynomials [Ma℄. Though we do not know of a referene for this theory in its appliation torepresentations of graded Heke algebras, ertainly all of these tehniques are now standard in theorthogonal polynomial literature.The full lassi�ation of all irreduible representations for rank two graded Heke algebras is givenin Setion 3. We inlude detailed analysis of the struture (dimensions of generalized weight spaes)for these representations and their Langlands parameters. This analysis extends and ompletesthe work on representations of rank two graded Heke algebras inluded as part of [Kr1, HO℄.In [Kr1℄ only one-parameter algebras were inluded and the lassi�ation was only omplete forn odd; we now inlude the two-parameter ase that arises when n is even and treat nonregularentral haraters. In [HO℄, general graded Heke algebras were onsidered but the representationslassi�ed were spherial and tempered. An important onsequene of our rank two onstrution isthat it establishes a \Springer orrespondene" for all dihedral groups. This orrespondene is givenin the �nal part of Setion 3. As in [Ra2℄, we express the hope that the irreduible representationsin the rank two ase will provide the foundation for a ombinatorial onstrution of all irreduiblerepresentations.In Setion 4 we lassify the irreduible alibrated representations (those with a simultaneouseigenbasis for a large ommutative subalgebra) of graded Heke algebras. These results are gradedHeke algebra analogues of the results in [Ra1℄. In addition to the lassi�ation, we give anelementary ombinatorial onstrution of all irreduible alibrated representations of graded Hekealgebras. This onstrution is a generalization of the (seminormal) onstrution of the irreduiblerepresentations of the symmetri group given by Alfred Young [Yg℄. In our onstrution the loalregions and their hambers take the role that partitions and standard tableaux play in the symmetrigroup onstrution. Otherwise the formulas used in the onstrution of the irreduible alibratedmodules are exatly the same as those used by Young.In Setion 5, we give proofs of two onjetures from [Ra3℄ whih desribe the ombinatorialstruture of the weights of graded Heke algebra modules. One of these onjetures was proved byLosonzy [Lo℄ and we present a slightly simpli�ed version of his proof here. We then prove the otheronjeture with a short redution to the statement proved by Losonzy and exploit the redutionproedure to obtain new information about the ombinatorial weight struture. The onjeturesin [Ra3℄ were only stated for the ase when the reetion group W is rystallographi and ourproofs only hold for this ase. We give examples that show analagous statements do not hold inthe nonrystallographi ase.



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 3Aknowledgements. We would like to thank E. Opdam for his omments and suggestions onthe manusript. A. Ram thanks the Newton Institute for the Mathematial Sienes for hospitalityand support (under EPSRC Grant GRK99015) during the speial program on Symmetri funtionsand Madonald polynomials. 2. Preliminaries2.1. The graded Heke algebra. Let W be a �nite reetion group, de�ned by its ation on itsreetion representation h�R. For eah reetion s� 2 W �x a root � in the �1 eigenspae of s�.The roots � are hosen so that the set R of roots is W -invariant. Then s� �xes a hyperplaneH� = (+1 eigenspae of s�) = fx 2 h�R j �_(x) = 0g;where we �x the linear funtion �_ 2 hR = HomR(h�R;R) so that �_(�) = 2. By �xing a nondegen-erate symmetri W -invariant bilinear form on h�R we may identify hR and h�R. Then(2.1) s�x = x� hx; �_i�; for all x 2 h�R.Fix simple roots �1; : : : ; �n in the root system for W and let si = s�i be the orrespondingreetions.By extension of salars W ats on the omplexi�ation h�C = C 
R h�R and, in terms of its ationon h�C , W is a omplex reetion group. Then W ats on the symmetri algebra S(h�C ) whih isnaturally identi�ed with the algebra of polynomial funtions on the vetor spae hC = HomC (h�C ; C ).Fix parameters � 2 C , � 6= 0, labeled by the roots, suh that� = w�; for w 2W:This amounts to the hoie of one or two values, depending on whether there are one or two orbitsof roots under the ation of W . The group algebra of W isCW = C -spanftw j w 2Wg with multipliation twtw0 = tww0 :The graded Heke algebra is H = CW 
 S(h�C )with multipliation determined by the multipliation in S(h�C ) and the multipliation in CW andthe relations(2.2) xtsi = tsisi(x) + �ihx; �_i i ; for x 2 h�C ;where �_1 ; : : : ; �_n 2 hR are the simple o-roots. More generally, it follows that for any p 2 S(h�C ),ptsi = tsisi(p) + �i�i(p) and tsip = si(p)tsi + �i�i(p);where �i : S(h�C )! S(h�C ) is the BGG-operator given by�i(p) = p� si(p)�i for p 2 S(h�C ):Proposition 2.1. [Lu1, Theorem 6.5℄ The enter of the graded Heke algebra H is Z(H ) = S(h�C )W ,the ring of W -invariant polynomials on hC .Proof. If p 2 S(h�C )W , thenptsi = tsisi(p) + �i p� si(p)�i = tsip+ 0 = tsip;and so p ommutes with tsi . Therefore S(h�C )W � Z(H ).



4 CATHY KRILOFF AND ARUN RAMLet p 2 Z(H ) and write p = Pw2W pwtw. Fix v of maximal length suh that pv has maximaldegree. Let � 2 h�C be regular, meaning that the stabilizer W� is trivial. Then�p = Xw2W �pwtw equals p� = Xw2W pwtw� = Xw2W pw (w�)tw +Xu<w �u;wtu! ;where �u;w 2 C . Comparing oeÆients of tv yields�pv = pv � (v�):So � = (v�) and thus v = 1 sine � is regular. So p 2 S(h�C ). Comparing oeÆients of tsi inptsi = si(p)tsi + �i p� si(p)�ishows that p = si(p) for all 1 � i � n. So p 2 S(h�C )W . Thus Z(H ) = S(h�C )W . �2.2. Harmoni polynomials. Let us briey review the relationship between S(h�C ), S(h�C )W , andharmoni polynomials [CG, x 6.3℄. Let x1; x2; : : : ; xn be an orthonormal basis of hC and de�ne asymmetri bilinear form h ; i on S(h�C ) byhP;Qi = (P (�)Q)��xi=0; for P;Q 2 S(h�C );where P (�) = P � ��x1 ; : : : ; ��xn� and ��xi=0 denotes speializing the variables to 0 (or, equivalently,taking the onstant term). The monomials are an orthogonal basis of S(h�C ),hx�11 � � � x�nn ; x�11 � � � x�nn i = � ��x1��1 � � �� ��xn��n x�11 � � � x�nn= Æ�1�1 � � � Æ�n�n(�1!�2! � � � �n!);and so the bilinear form h ; i is nondegenerate. The vetor spae H of harmoni polynomials isthe set of polynomials orthogonal to the ideal of S(h�C ) generated by W -invariants in S(h�C ) withonstant term 0,H = (hf 2 S(h�C ) j f(0) = 0i)?; and S(h�C ) = S(h�C )W 
H;as vetor spaes. More preisely, if fhwg is a C -basis of H then any f 2 S(h�C ) an be writtenuniquely in the form f =Xw pwhw; pw 2 S(h�C )W :If the basis fhwg onsists of homogeneous polynomials then the number and the degrees of thesepolynomials are determined by the Poinar�e polynomial of W ,(2.3) PW (t) =Xk�0 dim(Hk)tk = nYi=1 1� tdi1� t = Xw2W t`(w);where d1; : : : ; dn are the degrees of a set f1; : : : ; fn of homogeneous generators of S(h�C )W =C [f1 ; : : : ; fn℄ andHk is the kth homogeneous omponent ofH. In partiular, dim(H) = Card(fhwg) =PW (1) = jW j and S(h�C ) is a free module over S(h�C )W of rank jW j.



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 52.3. Weights and alibrated representations. The group W ats onhC = Hom(h�C ; C ) by (w)(x) = (w�1x);for w 2W ,  2 hC and x 2 h�C .The inversion set of an element w 2W is(2.4) R(w) = f� > 0 j w� < 0gThe hoie of the simple roots �1; : : : ; �n 2 h�R determines a fundamental hamber(2.5) C = fx 2 h�R j h�i; xi > 0; 1 � i � ngfor the ation of W on h�R. For a root � 2 R, the positive side of the hyperplane H� is the sidetowards C, i.e. fx 2 h�R j hx; �i > 0g, and the negative side of H� is the side away from C. Thereis a bijetion(2.6) W  ! ffundamental hambers for W ating on h�Rgw 7�! w�1Cand the hamber w�1C is the unique hamber whih is on the positive side of H� for � =2 R(w)and on the negative side of H� for � 2 R(w).If s� is a reetion in W whih �xes  2 hC then h; �_i = 0. By [St, Theorem 1.5℄, [Bou, Ch. Vx5 Ex. 8℄ the stabilizer W of  under the W -ation is generated by the reetions whih stabilize and so W = hs� j � 2 Z()i where Z() = f� j (�) = 0g:The orbit W an be viewed in several di�erent ways via the bijetionsW  ! W=W  ! fw 2W j R(w) \ Z() = ;g(2.7)  ! �hambers on the positiveside of H� for � 2 Z()� ;where the last bijetion is the restrition of the map in (2.6). If  is real and dominant (i.e.(�) 2 R�0 for all � 2 R) then W is a paraboli subgroup of W and fw 2W j R(w) \ Z() = ;gis the set of minimal length oset representatives of the osets in W=W .Let M be a simple H -module. Dixmier's version of Shur's lemma (see [Wa℄) implies that Z(H )ats on M by salars. Let  2 hC be suh thatpm = (p)m; for all m 2M; p 2 S(h�C )W :The element  is only determined up to the ation ofW sine (p) = w(p) for all w 2W . Beauseof this, any element of the orbit W is referred to as the entral harater of M .Let M be a �nite dimensional H -module and let  2 hC . The -weight spae and the generalized-weight spae of M areM = fm 2M j xm = (x)m for all x 2 h�C g;(2.8) Mgen = fm 2M j for all x 2 h�C ; (x� (x))km = 0 for some k 2 Z>0g:(2.9)Then M = M2hC Mgen ;and we say that  is a weight of M if Mgen 6= 0. Note that Mgen 6= 0 if and only if M 6= 0. A�nite dimensional H -module(2.10) M is alibrated if Mgen =M ; for all  2 hC :



6 CATHY KRILOFF AND ARUN RAM2.4. Tempered representations and the Langlands lassi�ation. Any � 2 HomC (h�C ; C ) isdetermined by its values h�; �ii on the simple roots. De�ne Re(�) and Im(�) in hR = HomR(h�R;R)by hRe(�); �ii = Re(h�; �ii) and hIm(�); �ii = Im(h�; �ii), and write� = Re(�) + i Im(�):For any simple reetion sj, we have sj� = Re(�) � Re(h�; �_j i)�j + i Im(�) � i Im(h�; �_j i)�j =sjRe(�) + i sjIm(�); and so Re(w�) = wRe(�); for all w 2W:Let !_i be the dual basis to �_i in hR de�ned by h!_i ; �_j i = Æij and let C be the losure of thefundamental hamber C � hR de�ned in (2.5). For � 2 hC let �0 be the point of C whih is losestto Re(�). This point is uniquely de�ned beause of the onvexity of the region C. Sine �0 2 Cand the !_i are on the boundary of C there is a uniquely determined set I suh that�0 =Xj 62I j!_i ; with j > 0;and we say that the weight � is I-tempered. For eah I the set f!_j ; �_i j j 62 I; i 2 Ig is a basis ofhR and �0 and I an, alternatively, be determined by the unique expansion(2.11) Re(�) =Xj 62I j!_i +Xi2I di�_i ; with j > 0 and di � 0:Proposition 2.2. [Kn, Lemma 8.59℄ Let � � � denote the dominane ordering on hR. If �; � 2 hRsuh that � � � then �0 � �0.For any subset I � f1; : : : ; ng, let H I be the subalgebra of H generated by tsi , i 2 I, and allx 2 h�C . An H I -module M is tempered if all weights of M are I-tempered.Theorem 2.3. Let L be a simple H -module.(a) There is a subset I � f1; 2; : : : ; ng and a tempered H I -module U suh that L is the uniquesimple quotient of H 
HI U .(b) If I and I 0 are subsets of f1; 2; : : : ; ng and U and U 0 are tempered H I and H I0 -modules,respetively, suh that L is a quotient of both H 
HI U and H 
HI0 U 0 then I = I 0 andU �= U 0 as H I -modules.Proof. Let L be a simple H -module. Let � be a weight of L suh that(2.12) �0 is a maximal element of f�0 j � is a weight of Lgwith respet to the dominane ordering on hR. Let I � f1; 2; : : : ; ng be determined by�0 =Xj 62I j!_jand let V be the H I -submodule of L generated by a nonzero vetor m� in L�. Let WI be thesubgroup of W generated by si, i 2 I. The weights of V are of the form w� with w 2 WI . Ifw 2WI thenRe(w�) =Xj 62I j!_j + Xai�0;i2I ai�_i + Xai>0;i2I ai�_i �Xj 62I j!_j + Xai�0;i2I ai�_i ;sine Re(�) is as in (2.11). So, by Proposition 2.2,(w�)0 � 0�Xj 62I j!_j + Xai�0 ai�_i 1A0 =Xj 62I j!_j = �0:Thus, by the maximality of �0, �0 = �0 for all weights � of V . So V is tempered.



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 7Let U be a simple H I -submodule of V . All weights of H 
HI U are of the form w� with w 2Wand � a weight of U . Let W I denote the set of minimal length oset representatives of osets inW=WI . If w� is a weight and w = w1w2 with w1 2 W I and w2 2 WI then by the argument justgiven w2� is I-tempered and soRe(w2�) =Xj 62I j!_i +Xi2I ai�_i with j > 0; ai � 0:If w1 6= 1 then w1!_j � !_j ; for j 62 I;Re(w1w2�) < Re(w2�) sine w1�_i � �_i ; for i 2 I;(2.13) w1!_j < !_j ; for some j 62 I:Let � be a weight of U suh that Re(�) is maximal among weights of U . If N is an H -submoduleof H 
HI U suh that N� 6= 0 then, by (2.13), N� � U� and so N \ U 6= 0. Sine U is simple as anH I -module, any vetor of U generates all of H 
HI U and so N = H 
HI U . This shows that ifMmax = �sum of all H -submodules N of H 
HI Usuh that N� = 0 �then Mmax is equal to the sum of all proper submodules of H 
HI U and is the (unique) maximalproper submodule of H 
HI U . So H 
HI U has a unique simple quotient.Sine U is an H I -submodule of L and indution is the adjoint funtor to restrition, there is anH -module homomorphism H 
HI U �! Lu 7�! u for u 2 U .Thus, sine L is simple, L �= (H 
HI U)=Mmax. This proves (a) and shows that for any temperedH I -module U the module H 
HI U has a unique simple quotient.To prove (b) let us analyze the freedom of the hoies that are made in the above onstrutionof H 
HI U . Equation (2.13) and Proposition 2.2 show that �0 � �0 for all weights � of H 
HI U .In partiular, all weights � of L satisfy �0 � �0 and so �0 is the same for all weights � of L whihsatisfy (2.12). This shows that there is a unique hoie of I in the onstrution of H 
HI U . If U 0is another simple H I -submodule of V then either U \ U 0 = 0 or U = U 0. The ase U \ U 0 = 0 isimpossible sine it would imply that U � U 0 is a tempered submodule of L, and there would be asurjetive homomorphism from H 
HI (U � U 0) �= (H 
HI U)� (H 
HI U 0) to L whih is nonzeroon both omponents. This is impossible sine L is simple. �2.5. � operators. The following proposition de�nes maps �i : Mgen !Mgensi on generalized weightspaes of �nite-dimensional H -modules M . These are \loal operators" and are only de�ned onweight spaes Mgen suh that (�i) 6= 0. In general, �i does not extend to an operator on all of M .Proposition 2.4. Let M be a �nite dimensional H -module. Fix i, let  2 hC be suh that (�i) 6= 0and de�ne �i : Mgen �! Mgensim 7! �tsi � �i�i �m:(a) The map �i : Mgen !Mgensi is well de�ned.(b) As operators on Mgen , x�i = �isi(x) for all x 2 S(h�C ).() As operators on Mgen , �i�i = (�i + �i)(�i � �i)(�i)(��i) :(d) Both maps �i : Mgen ! Mgensi and �i : Mgensi ! Mgen are invertible if and only if (�i) 6=��i .



8 CATHY KRILOFF AND ARUN RAM(e) If 1 � i; j � n; i 6= j, let mij be the order of sisj in W . Then�i�j�i � � �| {z }mij fators = �j�i�j � � �| {z }mij fators ;whenever both sides are well de�ned operators on Mgen .Proof. Sine �i ats on Mgen by (�i) times a unipotent transformation, the operator �i on Mgenhas nonzero determinant and is invertible. Sine �i=�i is not an element of S(h�C ) or H it will beviewed only as an operator on Mgen in the following alulations.If x 2 h�C and m 2Mgen thenx�im = x�tsi � �i�i �m = �tsisi(x) + �ihx; �_i i � �i x�i�m= �tsisi(x)� �i x� hx; �_i i�i�i �m = �tsisi(x)� �i si(x)�i �m= �tsi � �i�i � si(x)m = �isi(x)m:This proves (a) and (b).�i�im =  t2si � �i�i tsi � tsi �i�i + 2�i�2i !m= 0�1� �i�i tsi � �i��i tsi � �i � �i�i � �i��i��i + 2�i�2i 1Am=  1 + 2�i(�i)(��i)!m = �(�i + �i)(�i � �i)(�i)(��i) �m;proving ().(d) Sine �i ats onMgen by (�i) times a unipotent transformation, det((�i+�i)(�i��i)) = 0if and only if (�i) = ��i . Thus �i�i, and eah fator in this omposition, is invertible if and onlyif (�i) 6= ��i .(e) We may assume that H is the graded Heke algebra orresponding to a rank two root systemRij generated by simple roots �i and �j . Let w0 be the longest element of the orresponding rank2 reetion group W . Every element w 2 W , w 6= w0 has a unique minimal length expression asa produt of generators of si and sj. Let tw be the orresponding produt of the tsi 's and tsj 's.Expanding both sides of the relation in (e) in terms of the tsi and using the de�ning relation (2.2)for H yields(2.14) � � ��tsi � �i�i ��tsj � �j�j ��tsi � �i�i �| {z }mij fators = � � � tsitsj tsi| {z }mij fators + Xw<w0 twPw;and(2.15) � � ��tsj � �j�j ��tsi � �i�i ��tsj � �j�j �| {z }mij fators = � � � tsj tsitsj| {z }mij fators + Xw<w0 twQw;where both sums are in fat over all w 2 W , w 6= w0 and Pw and Qw are rational funtions of the� 2 Rij . We will show that Pw = Qw.



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 9Choose generi  2 hC (the exat ondition is that P () = ; and Z() = ;, where P () andZ() are as de�ned in (2.19) below) and letM() = IndHS(h�C)(C v ) = H 
S(h�C) C vwhere C v is the one dimensional S(h�C )-module de�ned by xv = (x)v for x 2 h�C . The moduleM() has basis ftw 
 v j w 2Wg and, by the de�ning relations for H , for x 2 h�C , w 2W ,xtwv = (w)(x)tw 
 v +Xz<w zw(x)tz 
 v ; with zw(x) 2 C .Sine  is generi, all the w are distint andM() = Mw2W Mw with dim(Mw) = 1:Thus, there is a unique basis fvw j w 2Wg of M() determined byxvw = (w)(x)vw ; for all w 2W and x 2 h�C ;(2.16) vw = tw 
 v +Xu<w awu()(tu 
 v); where awu() 2 C :(2.17)Alternatively,(2.18) vw = �wvwhere �w = �i1�i2 � � � �ip for a redued word w = si1 � � � sip of w. The uniqueness of the element vwgiven by the onditions (2.16) and (2.17) shows that vw = �wv does not depend on the redueddeomposition whih is hosen for w. Thus we havevw0 = � � � �i�j�i| {z }mij fators v = � � � tsitsj tsi| {z }mij fators v + Xw<w0 twPwv = tw0 
 v + Xw<w0 (Pw)tw 
 v ;vw0 = � � � �j�i�j| {z }mij fators v = � � � tsj tsitsj| {z }mij fators v + Xw<w0 twQwv = tw0 
 v + Xw<w0 (Qw)tw 
 v :where Pw and Qw are as in (2.14) and (2.15). It follows from (2.17) that (Pw) = aw0w() = (Qw)for all w 2W , w 6= w0.We have shown that, for eah w 2 W , (Pw) = (Qw) for all generi  2 hC . Sine Pw and Qware rational funtions that agree on all generi points, it follows thatPw = Qw for all w 2W:Thus, � � � �i�j�i| {z }mij fators = � � ��tsi � �i�i ��tsj � �j�j ��tsi � �i�i �| {z }mij fators= � � ��tsj � �j�j ��tsi � �i�i ��tsj � �j�j �| {z }mij fators = � � � �j�i�j| {z }mij fators;whenever both sides are well de�ned operators on M . �Let  2 hC and de�ne(2.19) Z() = f� > 0 j (�) = 0g and P () = f� > 0 j (�) = ��g:



10 CATHY KRILOFF AND ARUN RAMIf J � P (), de�ne(2.20) F (;J) = fw 2W j R(w) \ Z() = ; and R(w) \ P () = Jg:A loal region is a pair (; J) suh that  2 hC , J � P (), and F (;J) 6= ;. Under the bijetion(2.6) the set F (;J) maps to the set of points x 2 h�R whih are(a) on the positive side of the hyperplanes H� for � 2 Z(),(b) on the positive side of the hyperplanes H� for � 2 P ()nJ , and() on the negative side of the hyperplanes H� for � 2 J .In this way the loal region (; J) really does orrespond to a region in h�R. This is a onnetedonvex region in h�R sine it is ut out by half spaes in h�R �= Rn . The elements w 2 F (;J)index the hambers w�1C in the loal region. and the sets F (;J) form a partition of the setfw 2W j R(w) \ Z() = ;g (whih, by (2.7), indexes the osets in W=W).Corollary 2.5. Let M be a �nite dimensional H -module. Let  2 hC and let J � P (). Thendim(Mgenw ) = dim(Mgenw0) for w;w0 2 F (;J);where F (;J) is given by (2.20).Proof. If w; siw 2 F (;J) then (w)(�i) 6= ��i and (siw)(�i) 6= ��i . Thus, by Proposi-tion 2.4(d), the map �i :Mgenw !Mgensiw is invertible. It remains to note that if w;w0 2 F (;J), thenw0 = si1 � � � si`w where sik � � � si`w 2 F (;J) for all 1 � k � `. This follows from the fat that (; J)orresponds to a onneted onvex region in hR. �The following lemma will be used in the lassi�ation in Setion 3 to analyze weight spaes forrepresentations with nonregular entral harater.Lemma 2.6. Let  2 hC suh that (�i) = 0. Let M be an H -module suh that Mgen 6= 0 and letw 2 F (;;). Then(a) dimMgenw � 2 and(b) if Mgensjw = 0, then (w)(�j) = ��j and hw�1�j ; �_i i = 0.Proof. Let HA1 be the subalgebra of H generated by tsi and all x 2 S(h�C ). Let C v be the onedimensional representation of S(h�C ) de�ned by xv = (x)v and let M() = IndHA1S(h�C)(C v ) =HA1
S(h�C) C v . This module is irreduible and has basis fv ; tsivg and, with respet to this basis,the ation of x 2 h�C on M() is given by the matrix(2.21) �(x) = (x)�1 �ihx; �_i i0 1 � :Let n be a nonzero vetor in M . As an S(h�C )-module C n �= C v and, sine indution is theadjoint funtor to restrition, there is a unique HA1 -module homomorphism given byM() �! Mv 7�! nSine M() is irreduible, this homomorphism is injetive, and the vetors n ; tsin span a two-dimensional subspae of Mgen on whih the ation of x 2 h�C is given by the matrix in (2.21).Let w = si1 � � � sip be a redued word for w. Proposition 2.4(d) and the assumption that w 2F (;;) guarantee that the map �w = �i1 � � � �il : Mgen !Mgenw



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 11is well-de�ned and bijetive. Thus �wn and �wtsin span a two-dimensional subspae ofMgenw and,by Proposition 2.4(b), the HA1 ation of x 2 X on this subspae is given by�w(x) = (w�1x)�1 �ihw�1x; �_i i0 1 � :This proves (a).Using �j for x and inverting the above matrix yields�w � 1�j� = 1(w�1�j) �1 ��ihw�1�j; �_i i0 1 � :If Mgensjw = 0 then �j : Mgenw !Mgensjw is the zero map and�w(tsj ) = �w ��j�j � = �j(w�1�j) �1 ��ihw�1�j ; �_i i0 1 � :Sine t2sj � 1 = (tsj � 1)(tsj + 1) = 0, �w(tsj ) must have Jordan bloks of size 1 and eigenvalues�1. Sine �i 6= 0, it follows that (w�1�j) = ��j and hw�1�j ; �_i i = 0. �2.6. Prinipal series modules. For  2 hC let C v be the one dimensional S(h�C )-module givenby xv = (x)v ; for x 2 h�C :The prinipal series representation M() is the H -module de�ned by(2.22) M() = H 
S(h�C) C v = IndHS(h�C)(C v ):The module M() has basis ftw 
 v j w 2Wg with CW ating by left multipliation.These modules are very useful for studying the ombinatoris of representations of H . In fat,we have already used this module in the proofs of Proposition 2.4(e) and Lemma 2.6.Part (a) of the following proposition implies that the dimension of every irreduible H -moduleis less than jW j. In ombination, part (a) and part (b) show that every irreduible H -modulewith regular entral harater is alibrated. Part () is a graded Heke analogue of a result ofRogawski [Ro, Proposition 2.3℄.Proposition 2.7.(a) If M is an irreduible �nite dimensional H -module with Mgen 6= 0, then M is a quotient ofM().(b) If  2 hC is regular then M() is alibrated.() For �xed  2 hC and any w 2W , M() and M(w) have the same omposition fators.Proof. (a) Sine S(h�C ) is ommutative, an irreduible S(h�C ) submodule must be one-dimensional.Thus there exists a nonzero vetorm inM and, as an S(h�C )-module, Cm �= C v . Sine indutionis the adjoint funtor to restrition there is a unique H -module homomorphism given byM() �! Mv 7�! mand, sine M is irreduible, this homomorphism is surjetive. Thus M is a quotient of M().(b) Sine  is regular, W = f1g,M() = Mw2W Mw and dim(M()w) = 1for all w 2 W . Sine M()w is nonzero whenever M()genw is nonzero and dim(M()genw ) = 1,M()w =M()genw for all w 2W .() Let si be a simple reetion suh that si 6= . Then (�i) 6= 0 and the operator �i is wellde�ned on M(si)gensi . The vetor vsi is a weight vetor in M(si)si and, by Proposition 2.4(b),



12 CATHY KRILOFF AND ARUN RAM�ivsi is a weight vetor of weight  (it is nonzero sine tsivsi and (si)(�i=�i)vsi are linearlyindependent in M(si)). Thus, there is an H -module homomorphismA(si; ) : M() �! M(si)hv 7�! h�ivsi ; h 2 H :The modules M() and M(si) have basesftw(tsi + 1)v ; tw(tsi � 1)vgsiw>w and(2.23) ftw(tsi + 1)vsi ; tw(tsi � 1)vsigsiw>w;respetively. Sine (tsi + 1)tsi = tsi + 1 and (tsi � 1)tsi = �(tsi � 1),A(si; )(tw(tsi + 1)v) = tw(tsi + 1)�tsi � �i�i � vsi = tw(tsi + 1)�1� �i�i � vsi= �si��i � �i�i �� tw(tsi + 1)vsiA(si; )(tw(tsi � 1)v) = tw(tsi � 1)�tsi � �i�i � vsi = tw(tsi � 1)��1� �i�i � vsi= �si��i + �i��i �� tw(tsi � 1)vsiand so the matrix of A(si; ) with respet to the bases in (2.23) is diagonal with jW j=2 diagonalentries equal to (si)((�i� �i)=�i) and jW j=2 diagonal entries equal to (si)((�i+ �i)=(��i)). If(�i) 6= ��i then A(si; ) is an isomorphism and so M() and M(si) have the same ompositionfators. If (�i) = ��i then dim(kerA(si; )) = jW j=2. In this ase A(si; si)A(si; ) = 0 and sothe sequene M() A(si;)�! M(si) A(si;si)�! M()is exat. Sine dim(M()) = jW j and dim(kerA(si; )) = jW j=2, M() and M(si) have the sameomposition fators. �Our next goal is to prove Theorem 2.10 whih determines exatly when the prinipal seriesmodule M() is irreduible. For this we shall need the following lemma.Lemma 2.8. Let fbwgw2W be a basis for the vetor spae of H of harmoni polynomials and letX be the jW j � jW j matrix given byX = (z�1bw)z;w2W : Then detX = � � �Y�>0��jW j=2;where � is a nonzero onstant in C .Proof. Note that if b0w is another basis of H and we writeb0w = Xv2W vwbv; vw 2 C ; thenX 0 = (z�1b0w)z;w2W = �z�1bv��vw� and so detX 0 = � detX;for some nonzero onstant � = det((vw)). Thus, by hanging basis if neessary, we may assumethat the bw are homogeneous.Subtrat row z�1bw from row s�z�1bw. Then this row is divisible by �. By doing this subtrationfor eah of the jW j=2 pairs fz�1; s�z�1g we onlude that det(X) is divisible by �jW j=2. Thus, sinethe roots are o-prime as elements of the polynomial ring S(h�C ),det(X) is divisible by �Y�>0��jW j=2:



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 13The degree of Q�>0 �jW j=2 is (jW j=2)Card(R+) and, using (2.3), the degree of det(X) isYw2W deg(bw) =Xk k dim(Hk) = � ddtPW (t)� ���t=1 = Xw2W `(w)= Xw2W Card(R(w)) = X�2R+(jW j=2) = (jW j=2)Card(R+):Sine these two polynomials are homogeneous of the same degree it follows that the quotientdet(X)=(Q�>0 �)jW j=2 is a onstant. If det(X) = 0 then the olumns of X are linearly dependent.In partiular, there exist onstants w 2 C , not all zero, suh that Pw wbw = 0. But this is aontradition to the assumption that fbwg is a basis of H. So det(X) 6= 0. �Let  2 hC and let M() = H 
S(h�C) C v be the orresponding prinipal series module for H .The spherial vetor in M() is(2.24) 1 = Xw2W twv :Up to multipliation by onstants this is the unique vetor in M() suh that tw1 = 1 forall w 2 W . The following proposition provides a graded Heke analogue of the results in [Ka,Proposition 1.20℄ and [Ka, Lemma 2.3℄. Mention of this analogue was made in [Op℄.Proposition 2.9.(a) If  is a generi element of hC and vw, w 2W , is the basis of M() de�ned in (2.18) then1 = Xz2W (z)vz ; where z = Y�2R(w0z) �+ �� :(b) The spherial vetor 1 generates M() if and only if Q�>0((�) + �) 6= 0.() For  2 hC , the prinipal series module M() is irreduible if and only if 1w generatesM(w) for all w 2W .Proof. (a) Suppose that �z 2 C are onstants suh that1 =  Xw2W tw! v = Xz2W �zvz :We shall prove that the �z are given by the formula in the statement of the proposition. Sinetsi�Pw2W tw� =Pw2W tw,1 = tsi1 = ��i + �i�i �Xz2W �zvz = ��i + �i�i � Xsiz>z (�zvz + �sizvsiz)= Xsiz>z��zvsiz + �z �i(z�1�i)vz + �siz�2i vz + �siz �i(�z�1�i)vsiz� :Comparing oeÆients of vsiz on eah side of this expression gives�siz = �z + �siz �i(�z�1�i) ; and so �z�siz = �z�1�i + �iz�1�i � ; if siz > z.



14 CATHY KRILOFF AND ARUN RAMUsing this formula indutively gives�w = �si1 ���sip = � sip � � � si2�i1sip � � � si2�i1 + �i� � � �  �ip�ip + �ip ! �1= 0� Y�2R(w) ��+ �1A �1:Sine the transition matrix between the basis ftwvg and the basis fvwg is upper unitriangularwith respet to Bruhat order, �w0 = 1. Thus, the last equation implies that�1 =  Y�>0 �+ �� ! and �w = 0� Y�2R(w) ��+ �1A � �1 = 0� Y�2R(w0w) �+ �� 1A :(b) By expanding vz = �zv = �i1 � � � �ipv for a redued word si1 � � � sip = z it follows that thereexist rational funtions muz suh thatvz = Xu2W (muz)tuv ;for all generi  2 hC . Furthermore the matrix M = (muz)u;z2W with these rational funtions asentries is upper unitriangular.Let bw, w 2W , be a basis of harmoni polynomials and de�ne polynomials quy 2 S(h�C ), u; y 2W ,by by  Xw2W tw! = Xu2W tuquy; y 2W;where these equations are equalities in H . Then,by1 = by  Xw2W tw! = Xu2W (quy) (tu 
 v);and part (a) implies that if  is generi thenby1 = by Xz2W (z)vz = Xz2W (z(z�1by)) vz = Xz;u2W (z(z�1by)muz) (tu 
 v):Sine these two expressions are equal for all generi  2 hC it follows that(2.25) quy = Xz2W muz � z � (z�1by); u; y 2W;as rational funtions (in fat both sides are polynomials).Sine tw, w 2 W , and p 2 Z(H ) = S(h�C )W at on 1 by onstants, the H -module M() isgenerated by 1 if and only if there exist onstants pyw 2 C suh thattw 
 v = Xy2W pywby1 ; for eah w 2W .If these onstants exist then, for eah w 2W ,tw 
 v = Xy2W pywby1 = Xy;z;u2W (muzz(z�1by)pyw)tu 
 v ;where, by (2.25), there is no restrition that  be generi. IfM = (muz)u;z2W ; C = diag(z)z2W ; X = �z�1by�z;y2W P = (pyw)y;w2W ;



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 15then P = ((MCX))�1 and so P exists if and only if det((MCX)) 6= 0. Now det(M) = 1, and,by Lemma 2.8 and part (a),det(X) = � �Y�>0�jW j=2 and det(C) = Yz2W Y�2R(w0z) �+ �� =  Y�>0 �+ �� !jW j=2 ;where � 2 C is nonzero. Thus P exists if and only if Q�>0((�) + �) 6= 0:() =): If M() is irreduible then, by Proposition 2.7(), M(w) is irreduible for all w 2 W .Hene M(w) is generated by 1w .(=: Suppose that 1w generates M(w) for all w 2W . Let E be a nonzero irreduible submoduleofM() and let w 2W be suh that the weight spae Ew is nonzero. Then, by Proposition 2.7(a),there is a nonzero surjetive H -module homomorphism ' : M(w) ! E. Sine 1w generatesM(w), '(1w) is a nonzero vetor in E suh that tv'(1w) = '(1w) for all v 2 W . Sine thereis a unique, up to onstant multiples, spherial vetor in M() �(1w) is a multiple of 1 and 1is nonzero. This implies that E =M() sine 1 generates M(). �Together the three parts of Proposition 2.9 prove the following graded Heke algebra analogueof [Ka, Theorem 2.1℄.Theorem 2.10. Let  2 hC and let P () = f� > 0 j (�) = ��g. The prinipal series H -moduleM() is irreduible if and only if P () = ;:3. Classifiation of Irreduible Representations for Rank 23.1. The root system. The reetion group I2(n) is the dihedral group of order 2n. Let "1; "2 bean orthonormal basis of h�R = R2 and de�ne�k = os(k�)"1 + sin(k�)"2; where � = �=n.Fix the roots, positive roots and simple roots for the reetion group I2(n) byR = f�k j 0 � k � 2n� 1g;R+ = f�k j 0 � k � n� 1g; and �1 = �0;�2 = �n�1:For 0 � k � n � 1, ��k = �n+k, s1�k = �n�k and s2�k = �n�2�k, and when n is even there aretwo orbits of roots, f��2k j 0 � k < n=2g and f��2k+1 j 0 � k < n=2g. Let k = �k be a hoieof parameters for the graded Heke algebra H . When n is odd all of the k are equal and, when nis even, there are two, possibly unequal, parameters 0 = 2k and 1 = 2k+1. Figure 1 displays theroots �k and hyperplanes H�k = fx 2 R2 j h�k; xi = 0g for I2(7) and I2(8). When n is even eahroot �k lies on the hyperplane H�k+n=2 and this is why, in the piture of hyperplanes and roots forI2(8) there are multiple labels on eah line.Figure 2 displays, using thin and thik lines, the hyperplanesH�k = fx 2 R2 j h�k; xi = 0g and H�k�Æ = fx 2 R2 j h�k; xi = �kgfor I2(7) and I2(8) (and a partiular hoie of the parameters k).3.2. The entral haraters. Using the orthonormal basis "1; "2 we an identify hR with R2 andhC with C 2 . If  2 hC thenZ() = f�k 2 R+ j h; �ki = 0g and P () = f�k 2 R+ j h; �ki = �kg:In terms of the pitures in Figure 2, if  is a point in R2 then the elements of Z() label the H�k(thin lines) that  is on and the elements of P () label the set of H�k�Æ (thik lines) that  is on.Let us analyze the possibilities for Z() and P (). For the purpose of analyzing representationsof H ,  labels a entral harater. Sine a entral harater is really a W -orbit we may replae  byany more onvenient element in the orbit W. If (�) = � then (1=�)(�) = 1 and so we may,
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Figure 1. Hyperplanes and roots for I2(7) and I2(8)without loss of generality, assume that k = 1 for all k when n is odd, and 2k = 1 and 2k+1 = when n is even.(a) If Z() ontains 2 roots or more then  = 0, sine any two distint positive roots are linearlyindependent. This is the entral harater 0 in Table 1.(b) If Z() ontains one root then, by replaing  with another element of W, we may assumethat Z() = f�0g. When n is even, we may also have to use the automorphism of the root systemwhih swithes �1 = �0 and �2 = �n�1 to get Z() = f�0g. Applying this automorphism hangesthe entral harater but the representations of H with the new entral harater will have exatlythe same struture as the representations of entral harater .(b0) If Z() = f�0g and �k 2 P () then the equations 0 = (�0) = ("1) and(3.1) k = (�k) = (os(k�)"1 + sin(k�)"2) = sin(k�)("2)uniquely determine . Sine sin(k�) = sin((n� k)�), �n�k must also be in P (). This happens forthe entral haraters b;k, b;n=2 and q in Table 1.(b00) If Z() = f�0g, �k; �` 2 P () and ` 6= n � k then equation (3.1) for k and ` fores k 6= `whih fores n even and k and ` to be of di�erent parity. Furthermore the parameters must satisfyk=` = sin(k�)= sin(`�) and, when this happens, it happens for a unique hoie of the 4-tuple(k; `; n � k; n � `). Thus, the only possible option is P () = f�k; �n�k; �`; �n�`g (if ` = n=2 thenP () = f�n=2; �k; �n�kg). This is the entral harater q in Table 1.() If Z() = ; and �k; �` 2 P () suh that k = ` =  then  is uniquely determined by theequations  = os(k�)("1) + sin(k�)("2) = os(`�)("1) + sin(`�)("2). These equations fore�(n+k+`)=2 2 Z() if (n + k + `) is even (the easiest way to see this is to look at the pitures inFigure 2). Sine we assumed Z() = ; it follows that n+ k+ ` is odd. If P () ontains 3 elementsthen at least two of them would satisfy n + k + ` even, and so it follows that P () ontains amaximum of two elements. By replaing  by an appropriate element of the orbit W we anassume that P () = f�k�1; �n�kg for some 1 � k � n=2. This ase orresponds to the entralharater ;k in Table 1.This analysis shows that Table 1 overs all (P (); Z()) possibilities.
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Figure 2. Hyperplanes for I2(7) and I2(8).



18 CATHY KRILOFF AND ARUN RAM3.3. The irreduible representations. The following analysis determines the struture of eahof the irreduible H -modules: the dimensions of eah generalized weight spae and the Langlandsparameters. The results are summarized in Table 1. An irreduible representation that is alibrated(see (2.10)) has all its weights of the form w with w 2 F (;J) for a unique J , and this is the set whihis displayed in the fourth olumn of Table 1. The notation `n' indiates that the representation isnot alibrated.The derivation of the irreduible representations below proeeds by onsidering, separately, eahentral harater . In eah ase we have inluded a piture showing the loal regions (; J). Inthese pitures the solid lines orrespond to hyperplanes H� for � 2 Z() and the dotted linesorrespond to hyperplanes H� for � 2 P (). Eah loal region is labeled by the orresponding setJ of roots whih determines its loation in the piture (see the disussion before Corollary 2.5).The Langlands parameters of an irreduible H -module M are determined by the real parts ofweights of M . This means that, aording to the labeling of the simple modules as in Table 1,the Langlands parameters an depend on the hoie of the parameters k. In our alulations ofLanglands parameters, and in the Langlands data displayed in Table 1, we assume that all k 2 R>0(this assumption is used only in the analysis of Langlands parameters). When I � f1; 2g ontainsonly one element, a tempered H I -module is determined by its maximal weight. Thus, in Table 1,we speify Langlands parameters in the form (�; I) where � indiates the maximal weight of atempered H I -module.In the ase when n is even not all roots are in the orbit of �1 = �0 and one should really onsiderentral haraters  whih have Z() = f�n�1g = f�2g. These entral haraters 0a, 0b;k, 0;k arethe images of the entral haraters a, b;k and ;k under the automorphism of the root systemwhih swithes �1 and �2. This automorphism extends to an automorphism of H and thus itfollows that the modules with entral haraters 0a, 0b;k, 0;k have exatly the same strutures asthe modules with entral haraters a, b and ;k, respetively.Central harater a: Z(a) = ;, P (a) = ;.By Theorem 2.10 the prinipal series moduleM(a) is irreduible and, by Proposition 2.7(a), thisis the unique irreduible module with entral harater a. Sine a is regular M(a) is alibrated.Central harater b;k: Z(b;k) = f�0g, P (b;k) = f�k; �n�kg, 1 � k � (n� 1)=2.The weight b;k is uniquely determined by the fat that b;k(�0) = ("1) = 0 and k = (�k) =sin(k�)("2), where � = �=n. J = ;k hambersk hambers
J = f�k; �n�kgk hambersk hambers

J = f�n�kgn� 2k hambersn� 2k hambers
H�0 H�n�kH�k

. . . . . . . . . . . . . . . . . . . . . . . . .
. .. . . . . . . . . . . . . . . . . . . . . . . . . . .Use Lemma 2.6 to deompose the prinipal series module M(b;k) and onlude that there are twoirreduible modules M and N with entral harater b;k anddim(Mgenwb;k) = 2 for w 2 F (b;k ;;); dim(Mgenwb;k) = 1 for w 2 F (b;k ;f�n�kg);dim(Ngenwb;k) = 1; for w 2 F (b;k ;f�n�kg) dim(Ngenwb;k) = 2; for w 2 F (b;k ;f�k;�n�kg);



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 19and all other weight spaes of M and N are 0. Neither of the two irreduible modules M and Nwith entral harater b;k are alibrated.The maximal weight of M is b;k whih is dominant and on the hyperplane H�1 . The Langlandsset for this weight is I = f1g. The maximal weight of N is on the hyperplane H�k if k is even, andon the hyperplane H�n�(k+1) if k is odd. This observation determines the set I in the Langlandsdeomposition of the (real part) of the maximal weight of N (equation (2.11)).Central harater b;n=2: n even, Z(b;n=2) = f�0g, P (b;n=2) = f�n=2g.
J = ;n=2 hambersn=2 hambers

J = f�n=2gn=2 hambersn=2 hambers
H�0

H�n=2.............................
Use Lemma 2.6 to deompose the prinipal series module M(b;n=2) and onlude that there aretwo irreduible modules M and N with entral harater b;n=2 withdim(Mgenwb;n=2) = 2; for w 2 F (b;n=2 ;;); anddim(Ngenwb;n=2) = 2; for w 2 F (b;k ;f�n=2g):All other weight spaes of M and N are 0. Neither of the two irreduible modules M and N withentral harater b;n=2 are alibrated.The maximal weight ofM is b;n=2 whih is dominant and on the hyperplaneH�1 . The Langlandsset for this weight is I = f1g. The module N is tempered with maximal weight � � � s1s2| {z }n=2 fators b;n=2.Central harater q: Z(q) = f�0g, P (q) = f�k; �n�k; �`; �n�`g.It may be that ` = n=2 = n� ` so that the hyperplanes H�` and H�n�` are the same and P ()ontains only 3 roots. We do not have to onsider this situation separately.In some sense, the speial entral harater q ours when the parameters are exatly rightso that the entral haraters b;k and b;` \oalese". This ours only if n is even, k and `are of di�erent parity, and the parameters satisfy k=` = sin(k�)= sin(`�). For a �xed hoie of



20 CATHY KRILOFF AND ARUN RAMparameters, there is at most one hoie of the quadruple (k; `; n� k; n� `).khambersJ = ;

khambersJ = P (q)

`� khambersJ = f�n�kg

`� khambersJ = f�`; �n�`; �n�kg
n� 2` hambersJ = f�n�k; �n�`g

H�0 H�n�kH�k H�n�`H�`

..............
..............

..............
...........

. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .

. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.....................................................
There are �ve nonisomorphi irreduible H -modules L, M , N , P and Q with entral harater q,unless ` = n=2, in whih ase there are only four (N has dimension 0).dim(Lgenwq ) = 2; for w 2 F (q ;;);dim(Lgenwq ) = 1; for w 2 F (q ;f�n�kg);dim(Mgenwq ) = 1; for w 2 F (q ;f�n�kg);dim(Ngenwq) = 1; for w 2 F (q ;f�n�k;�n�`g);dim(P genwq ) = 1; for w 2 F (q ;f�`;�n�k;�n�`g);dim(Qgenwq ) = 1; for w 2 F (q ;f�`;�n�k;�n�`g);dim(Qgenwq ) = 2; for w 2 F (q ;f�k;�`;�n�k;�n�`g);and all other weight spaes of these modules are 0.Both modules P and Q are tempered and have the same maximal weight � � � s1s2| {z }n�` fators q.Central harater ;k: Z(;k) = ;, P (;k) = f�k�1; �n�kg, 1 � k � (n� 1)=2.



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 21The weight ;k is uniquely determined by (�k�1) = k�1 and (�n�k) = n�k.J = ;k hambersk � 1hambers

k � 1hambersk hambersJ = P (;k)
n� 2k + 1 hambersJ = f�n�kg

n� 2k + 1 hambersJ = f�k�1g
H�0H�k�1 H�n�k

. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . .

. . ......................................................The dashed line in this piture is for referene only, it does not orrespond to a root in Z() orP ().Sine ;k is regular the irreduible H -modules with entral harater ;k are alibrated and anbe indexed by the sets J . The irreduible alibrated module H (;k ;J) indexed by the set J hasdim(H (;k ;J))w;k = 1 for w 2 F (;k ;J)and all other weight spaes 0. A onstrution of H (;k ;J) is given in Theorem 4.5.To ompute the Langlands parameters of these modules we �rst assume that n is odd andm = n�12 . If J = f�k�1g the maximal weight of the module H (;k ;J) is in the same hamber as�m�k if k is even, and in the same hamber as �m+k if k is odd. If J = f�n�kg the maximalweight of H (;k ;J) is in the same hamber as �m�k if k is odd, and in the same hamber as �m+kif k is even. In eah ase this information determines the set I in the Langlands parameters. IfJ = f�k�1; �n�kg the module H (;k ;J) is tempered with maximal weights� � � s2s1| {z }n�k+1 fators ;k; and � � � s1s2| {z }k fators ;k:If n is even and all parameters k are equal then the Langlands parameters are as in the previousparagraph. In the ase that n is even and 2k 6= 2k+1 then it may happen that ;k is not in thedominant hamber. The struture of the modules with entral harater ;k does not hange but theLanglands parameters of the representations may hange signi�antly. One of the four irreduibleswith entral harater ;k will always be tempered, but whih one (and thus the dimension of thetempered module with this entral harater) depends on the values of the parameters 2k and2k+1.



22 CATHY KRILOFF AND ARUN RAMCentral harater d: Z(d) = ;, P (d) = f�0g
J = ;n hambersJ = f�0gn hambers

H�0.............................Sine d is regular the irreduible modules with entral harater d are alibrated and an beindexed by the sets J . The module H (d ;J) hasdim(H (;k ;J))w;k = 1 for w 2 F (;k ;J)and all other weight spaes 0. A onstrution of H (d;k ;J) is given in Theorem 4.5.The Langlands parameters given in Table 1 for irreduible representations with entral haraterd assume that d 62 Wd0 where n is odd and d0 = � � �(n�1)=2, � 2 R>0 . In the partiular ase nodd and d 2Wd0 the irreduible module indexed by the set J = f�0g is tempered.3.4. Tempered representations and the Springer orrespondene. The Springer orrespon-dene for Weyl groups (see [BM1, p.34℄) assoiates to eah tempered representationM of H with realentral harater, the unique \maximal" irreduibleW -module whih is ontained in M . For Weylgroups (rystallographi reetion groups) this is a one-to-one orrespondene between temperedrepresentations of H and irreduible representations of W . Using our lassi�ation of H -modulesin Table 1, we an establish a similar orrespondene for the nonrystallographi groups I2(n).If n is odd then the group I2(n) has 2 one-dimensional irreduible representations and (n �1)=2 two-dimensional irreduible representations. The trivial (resp. sign) representation of I2(n)orresponds to the tempered irreduible H -module with entral harater 0 (resp. ;1). The two-dimensional representations of I2(n) orrespond to the tempered H -modules with entral haratersd 2 W0d and ;k, 1 � k � (n � 1)=2. Note that 0, d and ;k, 1 � k � (n � 1)=2, an all betaken to be multiples of the root �(n�1)=2 and in the dominant hamber. In this normalization the1-dimensional representations orrespond to the two extreme elements of this hain of weights.If n is even and the parameters k are all equal the trivial (resp. sign) representation of I2(n)orresponds to the tempered irreduible H -module with entral harater 0 (resp. ;1) and theother two 1-dimensional representations of I2(n) orrespond to the tempered H -modules with en-tral haraters b;n=2 and b0;n=2. The 2-dimensional I2(n)-modules orrespond to the temperedH -modules with entral haraters ;k, 2 � k � n=2. As in the ase n odd, the entral haraters0 and ;k, 1 � k � (n�1)=2, an be taken to be in the dominant hamber and on the line throughthe origin and the point �n=2+�n=2�1. In this normalization the trivial and the sign representationsorrespond to the two extreme elements of this hain of weights. In the ase when the parametersare unequal two of the points on this hain may oalese in the weight q and \beome" the twotempered representations of H with entral harater q. The ase where P (q) ontains only 3roots omes from one of the entral haraters b;n=2 or b0;n=2 oalesing with one of the ;k.This analysis establishes the \Springer orrespondene" for all dihedral groups and all hoies ofthe parameters k of H with k 2 R>0 .



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 23Table 1. Irreduible representations of H I2(n)Charater Z(); P () Dimension J Langlands Parameters0 = 0 R+; ; 2n n tempereda f�0g; ; 2n n (a; f1g)b;k f�0g; f�k; �n�kg n n (b;k; f1g)1�k<n=2 n n (� � � s1s2| {z }k fators b;k; f1g) k even(� � � s1s2| {z }k fators b;k; f2g), k oddb;n=2 f�0g; f�n=2g n n (b;n=2; f1g)(n even) n n temperedq f�0g; `+ k n (q; f1g)(n even) f�k; �n�k; �`; �n�`g `� k f�n�kg (� � � s1s2| {z }k fators q; f1g), k even0<k<`�n=2 (� � � s1s2| {z }k fators q; f2g), k oddn� 2` f�n�k; �n�`g (� � � s1s2| {z }` fators q; f1g), ` even(� � � s1s2| {z }` fators q; f2g), ` odd`� k f�n�k; �n�`; �`g tempered`+ k n tempered;k ;; f�k�1; �n�kg 2k � 1 ; (;k; ;)1�k�n=2 n� 2k + 1 f�k�1g (� � � s2s1| {z }k fators ;k; f1g), k odd(� � � s2s1| {z }k fators ;k; f2g), k evenn� 2k + 1 f�n�kg (� � � s1s2| {z }k fators ;k; f1g), k even(� � � s1s2| {z }k fators ;k; f2g), k odd2k � 1 f�k�1; �n�kg temperedd ;; f�0g n ; (d; ;)n f�0g (s1d; f1g)ygen ;; ; 2n ; (gen; ;)y This module is tempered if n is odd and d 2W0d, with 0d = � � �(n�1)=2, � 2 R>0 .



24 CATHY KRILOFF AND ARUN RAM4. Classifiation of Calibrated Representations4.1. Strutural results. We �rst examine some properties whih hold for irreduible modulesthat are alibrated, i.e., an be deomposed into a diret sum of weight spaes (see (2.10)). Thissetion follows losely the similar results for aÆne Heke algebras in [Ra1℄.Lemma 4.1. Let M be an irreduible alibrated module. Then, for all  2 hC suh that M 6= 0,(a) (�i) 6= 0 for all 1 � i � n, and(b) dim(M) = 1.Proof. (a) The proof is by ontradition. Assume (�i) = 0. Let HA1 be the subalgebra of Hgenerated by tsi and all x 2 h�C . Then the two-dimensional HA1 prinipal series module M() isirreduible and there is an HA1 -module homomorphism given byM() �! Mv 7�! mwhere m is a nonzero element of M . Sine M() is simple this is an injetion and thus, M is notalibrated sine M() is not alibrated. Thus (�i) 6= 0.(b) The proof is by ontradition. Assume  2 hC is suh that dim(M) > 1. Let m be a nonzeroelement of M . Sine M is alibrated �i ats on m as a linear ombination of the ation of tsiand a multiple of the identity. Sine M is irreduible it follows from Proposition 2.4(b) that theation of the � -operators must generate all of M . Thus, sine dim(M) > 1, there is a sequene of� -operators suh that n = �i1�i2 � � � �ipmis a nonzero vetor in M whih is not a multiple of m .Assume that the sequene �i1�i2 � � � �ip is hosen so that p is minimal. Sine the � -operators in thissequene are all well de�ned the elements sik � � � sip, 1 � k � p, in the orbitW orrespond (underthe bijetion in (2.7)) to a sequene of hambers in h�R on the positive side of all H�, � 2 Z().Eah hamber in this sequene shares a fae with the next hamber in the sequene. Sine both nand m are in M this is a sequene whih begins and ends at the hamber C. Sine the hambersare in bijetion with the elements of W it follows that si1 � � � sip = 1 in W .This means that there is some 1 < k � p suh that si1 � � � sik is not redued and we an use thebraid relations to rewrite this word as si01 � � � si0k�2siksik . By Proposition 2.4(e) the � -operators alsosatisfy the braid relations and son = �i01�i02 � � � �i0k�2�ik�ik � � � �ipm :By Proposition 2.4(), the operator �ik�ik in this expression will at (on �ik+1 � � � �ipm) by a onstant� 2 C and so n = � � �i01�i02 � � � �i0k�2�ik+1 � � � �ipm ;where the onstant � is nonzero sine n is nonzero. But the expression��1n = �i01�i02 � � � �i0k�2�ik+1 � � � �ipm ;is shorter than the original expression of n and this ontradits the minimality of p. It followsthat dim(M) � 1. �Lemma 4.2. Let M be an irreduible alibrated module. Suppose that M and Msi are bothnonzero. Then the map �i : M !Msi is a bijetion.Proof. By Proposition 4.1(b), dim(M) = dim(Msi) = 1, and thus it is suÆient to show that �iis not the zero map. Let v be a nonzero vetor in M . Sine M is irreduible there must be asequene of � -operators suh that vsi = �i1 � � � �ipv



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 25is a nonzero element ofMsi . Let p be minimal suh that this is the ase. Sine �i�i1 � � � �ipv 2M ,it follows, as in the seond paragraph of the proof of Lemma 4.1(b), that sisi1 � � � sip = 1 in W .For notational onveniene let i0 = i. Let 0 � k < p be maximal suh that siksik+1 � � � sip is notredued. If k 6= 0 then we an use the braid relations to getvsi = �i1 � � � �ik�ik�i0k+2 � � � �i0pv :Sine �ik�ik ats on �i0k+2 � � � �i0pv by a onstant � 2 C ,vsi = � � �i1 � � � �ik�1�i0k+2 � � � �i0pv ;and � 6= 0 sine vsi is not 0. But this ontradits the minimality of p. Thus we must have thatk = 0, p = 1 and vsi = �iv :Thus, sine vsi 6= 0, �i 6= 0. �For simple roots �i and �j in R, let Rij be the rank two root subsystem of R generated by �iand �j . A weight � 2 hC is skew if(a) for all simple roots �i, 1 � i � n, �(�i) 6= 0, and(b) for all pairs of simple roots �i, �j suh that f� 2 Rij j �(�) = 0g 6= ;, the set f� 2Rij j �(�) = ��g ontains more than two elements.Condition (a) says that � is regular for all rank 1 subsystems of R generated by simple roots.Condition (b) is an \almost regular" ondition on � with respet to rank 2 subsystems generatedby simple roots. By the analysis in Setion 3, the weights whih appear in alibrated modules forgraded Heke algebras orresponding to rank two root systems are skew.Reall from Setion 2.3 that a pair (; J) is a loal region if the setF (;J) = fw 2W j R(w) \ Z() = ; and R(w) \ P () = Jgis nonempty. A loal region (; J) is skew if, for all w 2 F (;J), the weight w is skew for all pairs�i; �j of simple roots in R.The following Theorem spei�es the weight spae struture of an irreduible alibrated H -module.Theorem 4.3. If M is an irreduible alibrated H -module with entral harater  2 hC then thereis a unique skew loal region (; J) suh thatdim(Mw) = �1; for all w 2 F (;J);0; otherwise.Proof. By Lemma 4.1 all nonzero generalized weight spaes ofM have dimension 1 and by Lemma 4.2all � -operators between these weight spaes are bijetions. This already guarantees that there isa unique loal region (; J) whih satis�es the ondition. It only remains to show that this loalregion is skew.Let H ij be the subalgebra of H generated by tsi , tsj and S(h�C ). Sine M is alibrated as anH -module it is alibrated as an H ij -module and so all fators of a omposition series of M as anH ij -module are alibrated. Thus, by the lassi�ation in Setion 3, the weights of M are skew. So(; J) is a skew loal region. �4.2. Constrution. The following Proposition shows that the weight struture of alibrated rep-resentations as determined in Theorem 4.3 essentially fores the H -ation on a weight basis.Proposition 4.4. Let M be a alibrated H -module and for all  2 hC suh that M 6= 0, assumethat (A1) (�i) 6= 0 for all 1 � i � n; and (A2) dim(M) = 1:



26 CATHY KRILOFF AND ARUN RAMFor eah b 2 hC suh that Mb 6= 0 let vb be a nonzero vetor in Mb. The vetors fvbg form a basisof M . Let (tsi)b 2 C and b(x) 2 C be given bytsivb =X (tsi)bv and xvb = b(x)vb; for x 2 h�C .Then(a) (tsi)bb = �ib(�i) for all vb in the basis,(b) if (tsi)b 6= 0 then  = sib,() (tsi)b;sib(tsi)sib;b = 1� (tsi)2bb = (1 + (tsi)bb)(1 + (tsi)sib;sib).Proof. The relation xtsi � tsisi(x) = �i x� si(x)�ifores X ((x)(tsi)b � (tsi)bb(six))v = �i b(x)� b(six)b(�i) vb:Comparing oeÆients yields(x)(tsi)b � (tsi)bb(six) = 0; if b 6= ; andb(x)(tsi)bb � (tsi)bbb(six) = �i b(x)� b(six)b(�i) :These equations imply thatif (tsi)b 6= 0 then b(six) = (x) for all x 2 h�C ; and(tsi)bb = �ib(�i) if b(�i) 6= 0 and b(x) 6= b(six) for some x 2 h�C :Thus tsivb = (tsi)bbvb + (tsi)sib;bvsib with (tsi)bb = �ib(�i) :This ompletes the proof of (a) and (b). The relation t2si = 1 in H implies thatvb = t2sivb = �(tsi)2bb + (tsi)b;sib(tsi)sib;b� vb + [(tsi)bb + (tsi)sib;sib℄ (tsi)sib;bvsib= �(tsi)2bb + (tsi)b;sib(tsi)sib;b� vb ;sine (tsi)bb + (tsi)sib;sib = 0. Thus(tsi)b;sib(tsi)sib;b = 1� (tsi)2bb = (1 + (tsi)bb)(1 + (tsi)sib;sib): �Theorem 4.5. Let (; J) be skew and let F (;J) index the hambers in the loal region (; J).De�ne H (;J) = C -spanfvw j w 2 F (;J)g;so that the symbols vw are a labeled basis of the vetor spae H (;J) . Then the following formulasmake H (;J) into an irreduible H -module. For eah w 2 F (;J),xvw = (w)(x)vw ; for x 2 h�C ; andtsivw = �iw(�i)vw +�1 + �iw(�i)� vsiw; for 1 � i � n;where we set vsiw = 0 if siw =2 F (;J).



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 27Proof. Sine (; J) is skew, (w)(�i) 6= 0 for all w 2 F (;J) and all simple roots �i. This impliesthat the oeÆients in tsivw are well de�ned for all i and w 2 F (;J).By onstrution, the nonzero weight spaes of H (;J) are (H (;J))genw = (H (;J))w where w 2F (;J). Sine dim((H (;J))u) = 1 for u 2 F (;J), any proper submodule N of H (;J) must haveNw 6= 0 and Nw0 = 0 for some w 6= w0, with w;w0 2 F (;J). This is a ontradition to Corol-lary 2.5. So H (;J) is irreduible if it is an H -module.It remains to show that the de�ning relations for H are satis�ed. Let w 2 F (;J). Then�si(x)tsi + �i x� six�i � vw = six � �iw(�i)vw +�1 + �iw(�i)� vsiw�+ �iw(x) � w(six)w(�i) vw= �iw(�i)w(x)vw +�1 + �iw(�i)� siw(six)vsiw= tsixvw:Let w 2 F (;J). Thent2sivw = tsi � �iw(�i)vw +�1 + �iw(�i)� vsiw�= �iw(�i) � �iw(�i)vw +�1 + �iw(�i)� vsiw�+�1 + �iw(�i)�� �isiw(�i)vsiw +�1 + �isiw(�i)� vw�= � �iw(�i)�2 vw +�1 + �iw(�i)��1� �iw(�i)� vw + 0= vw:Now let us hek the braid relations. Write tsi = �i + di where�ivw = �1 + �i(w)(�i)� vsiw and divw = �i(w)(�i)vw;for w 2 F (;J). Then di is a diagonal matrix and �i is a pseudo-permutation matrix, in the sensethat eah row and eah olumn ontains at most one nonzero entry. For a sequene j1; : : : ; jp de�nea diagonal matrix dj1;:::;jpi by the relation(4.1) di�j1 � � � �jp = �j1 � � � �jpdj1;:::;jpi :If  is generi then, for all w 2W ,dj1;:::;jpi vw = � �i(sjp � � � sj1w)(�i)� vw;and all diagonal entries are nonzero, but, in general, some diagonal entries of dj1;:::;jpi may be 0.Use this method to expand the expressiontsitsj tsi � � �| {z }mij fators = (�i + di)(�j + dj)(�i + di) � � �| {z }mij fators = Xz2W �zpz;and move all the diagonal operators di to the right of the �i and obtain diagonal operators pz. Theoperators �w are pseudo-permutation operators that may have some rows and olumns without anonzero entry. By replaing some diagonal entries of the pz operators by 0, we may \�x the �z"



28 CATHY KRILOFF AND ARUN RAMand replae the �z with operators � 0z whih have exatly one nonzero entry in eah row and eaholumn. This yields an expression(4.2) tsitsj tsi � � �| {z }mij fators = Xz2W � 0zp0z:If  is generi then the diagonal entries (p0z)ww of p0z are nonzero and (p0z)ww = w(P 0z), w 2 W ,where P 0z is a rational funtion in the �i. A similar expansion gives(4.3) tsj tsitsj � � �| {z }mij fators = Xz2W � 0zq0z;where the q0z are diagonal operators whih, for generi , have diagonal entries (q0z)ww = w(Q0z),where Q0z is a rational funtion of the �i. As in the proof of Proposition 2.4(e), (P 0z) = (Q0z) forall generi , and so it follows that P 0z = Q0z as rational funtions.When  is not generi the operators p0z and q0z may have some diagonal entries equal to zero.From the lassi�ation of representations of rank two graded Heke algebras we know that thereexists a alibrated representation of H ij when (; J) is skew. This representation has a unique, up toonstant multiples, basis of simultaneous eigenvetors for the ation of � 2 h�C , and Proposition 4.4shows that the ation on this basis is fored exept for the values of the o� diagonal elementsof the tsi . These values depend on the normalization of the basis. Beause we know that thisrepresentation exists we know that there are hoies of the nonzero entries in the � 0z suh that (4.2)and (4.3) are equal. If a diagonal entry (p0z)ww of p0z is nonzero then it is equal to (w)(P 0z) and(p0z)ww = (w)(P 0z) = (w)(Q0z) = (q0z)ww, sine (as shown above) P 0z = Q0z. Thus it follows thatnonzero ontributions from the terms � 0zp0z and � 0zq0z are equal and that tsitsj tsi � � � vw is equal totsj tsitsj � � � vw. �Remark 4.6. The ation of H on a weight basis of H (;J) is fored up to the freedom in Proposi-tion 4.4(). Our hoie (tsi)sib;b = 1 + (tsi)bb in Theorem 4.5 and the alternative hoie (tsi)sib;b =1 + (tsi)sib;sib yield isomorphi modules. The hange of basis v0b = 1(1 + (tsi)bb)vb provides theisomorphism.We summarize the results of this setion with the following orollary of Theorem 4.3 and theonstrution in Theorem 4.5.Theorem 4.7. Let M be an irreduible alibrated H -module. Let  2 hC be (a �xed hoie of) theentral harater of M and let J = R(w) \ P () for any w 2 W suh that Mw 6= 0. Then (; J)is skew and M ' H (;J) , where H (;J) is the module de�ned in Theorem 4.5.5. Combinatoris of Loal RegionsWhen W is a rystallographi reetion group two onjetures were stated in [Ra3, (1.3) and(1.11)℄, the �rst giving neessary and suÆient onditions for F (;J) (as de�ned in (2.20)) to benonempty when  is dominant and the seond determining the form of F (;J) as an interval in theweak Bruhat order when  is dominant and integral. Loszony [Lo℄ proved the seond onjeture(Theorem 5.2 below). His theorem implies the nonemptiness onjeture of [Ra3℄ under the addi-tional assumption that  is integral. Here we review Loszony's proof and prove the nonemptinessonjeture in full generality. We give an example (Example 5.4) to show that integrality is neessaryin Theorem 5.2. Finally, we provide Example 5.7, whih shows that one annot expet analogousstatements to hold when W is nonrystallographi.



REPRESENTATIONS OF GRADED HECKE ALGEBRAS 29Let R be the root system of a �nite real reetion group W and �x a set R+ = f� > 0g ofpositive roots in R. A set of positive roots S is losed if it satis�es the onditionIf �; � 2 S and a; b > 0 are suh that a�+ b� 2 R+ then a�+ b� 2 S.The following theorem haraterizes the sets whih appear as inversion sets of elements ofW . Reallthat R(w) denotes the inversion set of w, see equation (2.4). This result is in [Bj, Proposition 2℄,but is stated there without proof and we are not aware of a published proof. The following proofwas shown to us by J. Stembridge and appears in the thesis of D. Waugh [Wg℄.Theorem 5.1. Let W be a real reetion group. A set of positive roots S is equal to R(w) forsome element w 2W if and only if S is losed and S = R+nS is losed.Proof. =): Let w 2 W and suppose that �; � 2 R(w) and a� + b� is a positive root. Thenw(a�+ b�) = a(w�) + b(w�) is a negative root sine w� and w� are both negative roots. So R(w)is losed. Similarly one shows that R(w) is losed.(=: Assume that S is losed and that S is losed. We will onstrut w suh that R(w) = S by�nding a redued word w = si1 � � � sik for w. This is done by indution on the size of S, with theindution step being the ombination of the two steps below.Step 1: S ontains a simple root.Let � be a root of minimal height in S and assume that � =Pi �i�i, �i 2 R�0 , is not simple.Then h�; �ii > 0 for some i, sine 0 < h�; �i = nXi=1 �ih�; �ii:Sine � is not simple, � 6= �i, and so both s�i� and �i are positive roots. Sine s�i� = ��h�; �_i i�iand �i both have lower height than � they must both be in S. But then the equation� = s�i�+ h�; �_i i�iontradits the assumption that S is losed. So � is simple.Step 2: Let �i1 be a simple root in S and let S1 = si1(S n f�i1g).Claim: S1 is losed and S1 is losed.Let �; � 2 S1 and assume that a�+ b� is a positive root. Thensi1(a�+ b�) = asi1�+ bsi1� 2 S and a�+ b� 2 S1; orasi1�+ bsi1� = �i1 and a�+ b� = ��i1 :The seond is impossible sine si1�i1 is not a positive root. So a�+ b� 2 S1 and S1 is losed.Let �; � 2 S1 and suppose that a� + b� is a positive root. Sine si1� and si1� are not in S,si1(a�+ b�) =2 S. So a�+ b� 62 S1. Thus S1 is losed. �An element  2 hC is dominant (resp. integral) if (�i) 2 R�0 (resp. (�i) 2 Z) for all simpleroots �i. The losure S of a set of positive roots S is the smallest losed set of positive rootsontaining S.Theorem 5.2. Let W be a rystallographi reetion group and let R be the rystallographi rootsystem of W . Let  2 hC be dominant and integral and setZ() = f� > 0 j h; �i = 0g and P () = f� > 0 j h; �i = 1g:Let J � P () be suh thatif � 2 J , � 2 Z() and � � � 2 R+ then � � � 2 J;and set F (;J) = fw 2W j R(w) \ Z() = ;; R(w) \ P () = Jg:



30 CATHY KRILOFF AND ARUN RAMThen there exist elements wmin; wmax 2W suh thatR(wmin) = J; R(wmax) = (P ()nJ) [ Z(); and F (;J) = [wmin; wmax℄;where K denotes the omplement of K in R+ and [wmin; wmax℄ denotes the interval between wminand wmax in the weak Bruhat order.Proof. By Theorem 5.1, the element wmin 2W will exist if �J is losed. Assume that � = �1 + �2where � 2 �J , �1; �2 2 R+. We must show that �1 2 �J or �2 2 �J . Sine � 2 �J ,� = Æ1 + � � � + Æm; with Æi 2 J:We will deompose � = Æ1+� � �+Æm into two piees �1 = Æ1+� � �+Æk+�1 and �2 = �2+Æk+2+� � �+Æm,via the following indutive proedure. Sine0 < h�1 + �2; �1 + �2i =Xi h�1 + �2; Æii; then h�1 + �2; Æji > 0 for some j.By reindexing the Æi we an assume that j = 1. Thus h�1; Æ1i > 0 or h�2; Æ1i > 0 and we mayassume that h�1; Æ1i > 0: Sine sÆ1�1 = �1 � h�1; Æ_1 iÆ1 is a root and R is rystallographi, �1 � Æ1is also a root. If �1 � Æ1 is a negative root then�1 = �1 and � = (Æ1 � �1) + Æ2 + � � � + Æm;gives the desired deomposition. If �1 � Æ1 2 R+ then�1 + �2 = Æ1 + ((�1 � Æ1) + �2) and (�1 � Æ1) + �2 = Æ2 + � � � + Æm;and so we may indutively apply this deomposition proedure on �0 = (�1�Æ1)+�2 = Æ2+: : :+Æm.In this way we onlude that, after possible reindexing of the Æi, either�1 = Æ1 + � � �+ Æk and �2 = Æk+1 + � � �+ Æm;or �1 = Æ1 + � � � + Æk + �1 and �2 = �2 + Æk+2 + � � � + Æm;where �1 and �2 are positive roots suh that �1 + �2 = Æk+1. In the �rst ase it is immediate that�1; �2 2 �J . In the seond ase h; Æk+1i = h; �1+�2i = 1, and so h; �1i � 1 and h; �2i � 1. Thus,sine  is dominant and integral, one of �1, �2 is in Z() and the other is in P (). If �1 2 Z(),�2 = Æk+1 � �1 and the ondition on J implies that �2 2 J . Similarly, if �2 2 Z() then �1 2 J .Thus �1 2 �J or �2 2 �J . So �J is losed. Sine �J is losed and �J is losed, Theorem 5.1 shows thatthere is an element wmin 2W suh that R(wmin) = �J .The same method an be used to establish the existene of wmax: one must show that (P ()nJ) [ Z()is losed and this is aomplished by similar arguments.By the de�nition of F (;J) an element w 2W is in F (;J) ifJ � R(w) � (P ()nJ) [ Z():Sine the weak Bruhat order is the order determined by inlusions of R(w) [Bj, Proposition 3℄ theresult is a onsequene of the existene of the elements wmin and wmax. �Remark 5.3. An alternative way to establish the existene of wmax in the proof of Theorem 5.2 isto use the onjugation involution(5.1) F (;J) 1�1 ! F (;J)0w  ! wu�1 where (; J)0 = (�u;�u(P ()nJ));where u is the minimal length oset representative of w0W and w0 is the longest element of W .The fat that this is a well de�ned involution is proved in [Ra3, (1.7)℄. This involution takes wmaxfor F (;J) to wmin for F (;J)0 . In terms of the weak Bruhat order, the struture of the intervalF (;J)0 is the same as the struture of the interval F (;J) but with all relations reversed.
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Figure 3. Hyperplanes and a nonintegral weight for C2Example 5.4. The integrality of  is neessary in Theorem 5.2. Let W = I2(4) = WC2 be thedihedral group of order 8 (the Weyl group of type C2). The root system for type C2 is determinedby simple roots �1 = 2"1 and �2 = "2 � "1where f"1; "2g is an orthonormal basis of h�R = R2 . Let 1 = 2 = 1 be the parameters for H . If = (1=2)"2 (see Figure 3) then Z() = f�1g, P () = f�1 + 2�2g, and  is dominant but (�2) isnot integral. The set J = P () satis�es the ondition in Theorem 5.2, but �J = J is not an inversionset for any w 2W sine �J is not losed.The following method of reduing to the integral root subsystem of a weight is standard in thetheory of highest weight modules for �nite dimensional omplex semisimple Lie algebras, see [Ja℄.This method turns out to be an eÆient tool for reduing the nonemptiness onjeture of [Ra3℄ tothe statement in Theorem 5.2.Let R[℄ = f� 2 R j h; �_i 2 Zg. For any �; � 2 R[℄,h; (s��)_i = hs�; �_i = h; �_i � h; �_ih�; �_i 2 Z;and so R[℄ is a root system with Weyl group W[℄ = hs� j � 2 R[℄i � W . If � 2 W[℄ then theR[℄-inversion set of � isR[℄(�) = f� > 0 j �� < 0; � 2 R[℄g = R(�) \R[℄:Theorem 5.5. Let W be a rystallographi reetion group and let R be the rystallographi rootsystem of W . Let  2 hC suh that Re() is dominant and setZ() = f� > 0 j h; �i = 0g and P () = f� > 0 j h; �i = 1g:Let J � P () be suh thatif � 2 J , � 2 Z() and � � � 2 R+ then � � � 2 J:Then F (;J) = fw 2W j R(w) \ Z(); R(w) \ P () = Jg is nonempty.



32 CATHY KRILOFF AND ARUN RAMProof. Sine  is dominant and integral for the root system R[℄, it follows from Theorem 5.2 thatthere is an element w in W[℄ suh thatR[℄(w) \ Z() = ; and R[℄(w) \ P () = J;where R[℄(w) = f� 2 R[℄ j � > 0; w� < 0g. Usually R(w) is stritly larger than R[℄(w) but it isstill true that R(w) \ Z() = ; and R(w) \ P () = J;sine all roots of P () and Z() are in R[℄. So w 2 F (;J). �When W is rystallographi we an use the method of the proof of Theorem 5.5 in ombinationwith the result of Theorem 5.2 to give a preise desription of the set F (;J) for all entral haraters 2 hC . By hoosing  appropriately in its W -orbit we may assume that Re() is dominant.De�ne W [℄ = f� 2W j R(�) \R[℄ = ;g:Eah w 2W has a unique expressionw = �� with � 2W [℄; � 2W[℄; and R(w) \R[℄ = R(�) \R[℄ = R[℄(�):In this way the elements of W [℄ are oset representatives of the osets in W=W[℄.Sine P () � R[℄ and Z() � R[℄ it follows thatF (;J) = f�� 2W j � 2W [℄; � 2 F (;J)[℄ g; where(5.2) F (;J)[℄ = f� 2W[℄ j R(�) \ P () = J; R(w) \ Z() = ;g:(5.3)Sine F (;J) = F (Re();J) and  is dominant and integral for the root system R[℄, Theorem 5.2 hasthe following orollary.Corollary 5.6. With notations and assumptions as in Theorem 5.5F (;J) = F (;J)[℄ =W [℄ � [�max; �min℄;where, F (;J)[℄ is as in (5.3) and �max and �min in W[℄ are determined by R[℄(�max) = J andR[℄(�min) = (P ()nJ) [ Z(), where the omplement is taken in the set of positive roots of R[℄.This re�ned version of Theorem 5.2 is reminisent of the redution to real entral harater givenin [BM2℄.The following example shows that Theorem 5.5 does not naturally extend to nonrystallographireetion groups. Note that suh a generalization neessarily involves modifying the losure ondi-tion on J to beif � 2 J , � 2 Z(), a 2 R>0 , and � � a� 2 R+ then � � a� 2 J:Example 5.7. Let W = I2(n) be the dihedral group of order 2n, n even, with root system hosenas in Setion 3 (so all roots are the same length). Let  be suh that Z() = f�0g and P () =f�n=4; �n=2; �3n=4g (this  is an example of q in Table 1). Then the subset J = f�n=4; �3n=4g � P ()satis�es the generalized losure ondition above sine �n=2 annot be written as �n=4 � a�0 for anya 2 R>0 . However, F (;J) = ; sine there are no hambers whih are on the positive side of bothH�0 and H�n=2 and on the negative side of both H�n=4 and H�3n=4 .
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