SINGULARITIES AND TOPOLOGY OF MEROMORPHIC
FUNCTIONS
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ABSTRACT. We present several aspects of the “topology of meromorphic functions”,
which we conceive as a general theory which includes the topology of holomorphic func-
tions, the topology of pencils on quasi-projective spaces and the topology of polynomial

functions.
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1. INTRODUCTION

Milnor [Mi! defined the basic ingredients for studying the topology of holomorphic
germs of functions f: (C*,0) — C. One of the main motivations for Milnor’s book
concerns the link K of an isolated singularity and its complement 52"\ K: links which
are exotic speres have been discovered by Hirzebruch [Hi] and Brieskorn [Bri]; in case
n = 2, the components of K are iterated toric knots. The study of isolated singularities
ever since revealed striking phenomena and established bridges between several branches
of mathematics.

In another stream of research, there has been an increasing interest in the last decade
for the study of the global topology of polynomial functions, especially in connection
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with the behaviour at infinity. This topic is closely related to the affine geometry and to
dynamical systems on non-compact spaces.

This paper reports on the class of meromorphic functions, over which the study can
be extended. A global meromorphic function is the same as a pencil of hypersurfaces,
therefore our approach also represents a generalization of the theory of Lefschetz pencils.
Polynomial functions C* — C can be viewed as a special case of global meromorphic
functions, as we explain futher on.

Another motivation for the study of meromorphic functions is Arnold’s approach to the
classification of simple germs of meromorphic functions under certain equivalence relations

[Ar].
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Let us introduce the first definitions. A meromorphic function, or pencil of hypersur-
faces, on a compact complex analytic space Y, is a function F: Y --+ P! defined as the
ratio of two sections P and @ of a holomorphic line bundle over Y. Then F = P/Q is a
holomorphic function on Y \ A, where A := {P = @ = 0} is the base locus of the pencil
(also called azis, or indeterminacy locus). A germ of meromorphic function on a space
germ is just the ratio of two holomorphic germs f = p/q: (),y) --» P'. By definition, f
is equal to f' =p'/q, as germs at y, if and only if there exists a holomorphic germ v such
that u(y) # 0 and that p = up’, ¢ = u¢’. Then f is holomorphic on the germ at y of the
complement Y \ A of the axis A = {p = ¢ = 0}.

Meromorphic functions give rise to a new type of singularities, those occuring along the
indeterminacy locus. To define them, we need to introduce some more objects attached
to a meromorphic function.

Definition 1.1. Let G := {(z,7) € (Y \ A) x P! | F(z) = 7} and let Y denote the
analytic closure of G in Y x P!, namely:

Y ={(z,[s:t])) €Y x P* | tP(z) — sQ(z) = 0}.

In case of a germ of meromorphic function at (Y, y), one similarly defines space germs,
which we denote by (G, (y, 7)), resp. (Y, (y,7)). See also Definition 2.5.

First note that G is the graph of the restriction Fy\4. Therefore Y \ A ~ G embeds
into Y and the projection 7 : Y — P! is an extension of the function Fiy\4. One may also
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say that Y = Y is a blow-up of Y along the axis A, such that the meromorphic function
F:Y --» P! pulls back to a well defined holomorphic function 7 : Y — P,

Y
1 ol Ny
(1) oo

We shall also consider the restriction of F' (or of a germ f), to X :=Y \ V, where V
is some compact analytic subspace of Y. The case V = {Q = 0} is of particular interest
for the following reason. Let P: C* — C be a polynomial of degree d, let P be the
homogenized of P by the new variable z¢ and let H*® = {z, = 0} be the hyperplane at
infinity. Then P/zd: P --» P! is a meromorphic function on Y := P* which coincides
with P over P* \ H®. We shall briefly outline in §8 some results and literature on
polynomials.

Our meromorphic function (as a global one or as a germ) defines a family (=pencil) of
hypersurfaces on each of the spaces defined above: Y, Y, Y\ A, or X =Y \ V. The map
to P!, whenever defined, yields the pencil, as the family of its fibres. In other cases, we
take the closures of fibres in the considered space. For instance, in case of Y, we take the
closure of each hypersurface F];,l\ 4(7) within Y, for 7 € P*; each such closure contains A

and we actually have Fl;l\ (1) = 771(7). The role of the “completed space” Y is that it
contains all these pencils: we just restrict the fibres of 7 to the particular subspace of Y
and we get the pencil we are looking for.

With this approach, one covers a large field. For instance, the class of holomorphic
functions (or germs) represents the case when A = 0.

Now, for any pencil on Y or on X, there is only a finite number of atypical values, or
atypical fibres. This finiteness result comes from ideas of Thom [Th] and is based on the
fact that we can stratify the space Y (such that V is union of strata, in case V # ),
restrict to Y \ A~ Y \ (4 x P!) and extend this to some Whitney stratification of Y.

In case of a germ at (),y) of a meromorphic function, one considers the germ of such
a Whitney stratification at {y} x P! C Y. Local finiteness of the strata implies that
non-transversality of the projection 7 happens at discrete values only.

Proposition 1.2. There ezists a finite set A C P! such that the map 7 : Y \ 771(A) —
P! \ A is a stratified locally trivial C* fibration.

In particular, the restrictions m: Y\ (V x P')Unr"}(A)) = P\ A and F: Y \ (V N
AN FY(A)) = P\ A are stratified locally trivial fibrations. O

In our approach, the singularities of the meromorphic function F' along the indetermi-
nacy locus A are the stratified singularities of 7 at (4 x P') NY. Usually, singularities
of functions on singular spaces are defined with respect to some Whitney stratification.
Here we use instead a partial Thom stratification, denoted G, as we already used in par-
ticular cases (cf. [Ti2, Ti5|, [ST3]). This is a more general type of stratification since
Whitney (b) condition is not required. Nevertheless, it allows one to study topological
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aspects, including homotopy type, at least for isolated singularities, in both local or global
context.

Instead of endowing Y with a stratified structure, another strategy for studying the
topology of the meromorphic function F' would be to further blow up Y in diagram (1),
such that the pull-back of {P = 0} U {Q = 0} becomes a divisor with normal crossings.
One may then use the data provided by this divisor in order to get informations. In
this spirit, some results were found in the polynomial case, in two variables, by Fourrier
[Fo] and Lé-Weber [LW]; computation of the zeta functions of the monodromy has been
done for polynomials and particular meromorphic germs (namely for ¥ nonsingular and
X =Y \ A) by Gusein-Zade, Melle and Luengo [GLM2].

This paper revisits the techniques and results of [Ti2, Ti5], [ST3] and adapts them to
the more general context introduced above. The main scope is to show how to study
vanishing cycles of meromorphic functions in both local and global context. We focus on
isolated singularities, in which case it appears that vanishing cycles are concentrated at
those singularities.

2. VANISHING HOMOLOGY AND SINGULARITIES

Let us first define vanishing homology attached to a global meromorphic function and
relate it to the singularities along the indeterminacy locus. The vanishing homology is
important in detecting and controlling (whenever possible) the change of topology of the
fibres.

We shall use the following notations. For any subset W C P!, Yy := n=}(W), Yy =
AUF Y W), Xw := X NYyw. The special case X = Y \ A and this is the object of study,
explicitly, in [ST3], and implicitly, in [Ti2]. Our presentation follows the one of [ST3],
adapting it to our more general situation; in particular our notations are different from
those in [ST3|.

Let a; € A be an atypical value of 7 and take a small enough disc D; at a; such that
D; N A = {a;}. Let’s fix some point s; € 8D;. Let s € P' \ A be a general value, situated
on the boundary of some big closed disc D C P!, such that D O D;, Va; € DN A, and
that DN D; =0, Va; € D\ A

The vanishing homology of meromorphic functions should be a natural extension of the
vanishing homology of local holomorphic functions. In the latter case, the total space of
the Milnor fibration [Mi] is contractible, by the local conical structure of analytic sets [BV).
For global meromorphic functions, the total space one may take cannot be contractible
anymore and the general fibre X, inherits part of its homology.

Definition 2.1. The vanishing homology of Fix at a; is the relative homology H.(Xp,, X,).

In the case X = Y \ A, this corresponds to the definition used by Siersma and the
author in [ST3].

We identify X, to X;,, in the following explicit manner. For each i, take a path v; C D
from s to s;, with the usual conditions: the path +; has no self intersections and does not
intersect any other path +;, except at the point s. Then Proposition 1.2 allows identifying
X, to X,,, by parallel transport along ;.
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A general result tells that vanishing homologies can be “patched” together. This type
of result was observed before in different particular situations, see e.g. [Bro2, §5], [Si].
More precisely, we have the following result, extending the context of [ST3, Proposition
21)toany X =Y \ V:

Proposition 2.2.
(a‘) H*(XD7X8) = eaaiEAH*(XDi’XSi)'
(b) The long ezact sequence of the triple (Xp,Xp,, X,) decomposes into short ezact
sequences which split:

2) 0 — H,(Xp, Xs,) = Ho(Xp, Xs) > Ho(Xp, Xp,) — 0.
(c) There is a natural identification H,(Xp, Xp,) = ®a;en jziH(XD;, Xs).

Proof. By Proposition 1.2, the fibration F} : Y\ ((v x P') Un~*(A) — P' \ A is locally
trivial. Its fibre over some b is, by definition, X;. We then get a sequence of excisions:

®a;EAH*(XD.'7 Xs;) i> H*(W—I(Ua,-eADi U ’Yi); Xs) —:-> H*(XD1 Xs)-

This also shows that each inclusion (Xp,, X;,) C (Xp, X,,) induces an injection in homol-
ogy H,(Xp,, X,;) = H.(Xp,X,). The points (a), (b), (c) all follow from this. O

Vanishing homology of F' has its local counterpart and is closely related to singularities
of F. One would like to say that vanishing homology is supported at the singular points
of F. The typical problem for a meromorphic function is that it has singularities also
outside the ground space, Y or X. Therefore we need a larger space, such as Y, to define
singularities. Then the support of vanishing cycles is included into the singular locus of
7w on Y. (In cohomology, the sheaf of vanishing cycles of a function A on a nonsingular
space is indeed supported by the singular locus of h, see [Del.)

Let now give the precise definition of what we consider as singularities of F' (resp. of f).
We relax the stratification conditions at A x P! C Y and use only the Thom condition.
Let us first recall the latter, following [Ti2].

Let G = {Ga}acs be a locally finite stratification such that Y \ X is union of strata.
Let £ := (y,a) be a point on a stratum G,. We assume, without loss of generality, that
a # [1:0]. Let f = p/q be our meromorphic germ on (),y) or a local representative
of the germ of F at (Y,y). Then q¢ = 0 is a local equation for A x P! at £. The Thom
reqularity condition (a,) at &€ € G, is satisfied (see e.g. [GWPL, ch. 1)) if for any stratum
Gp such that G, C Gg, the relative conormal space (see [Te2], [HMS] for a definition) of
q on Gg is included into the conormal of Ga, locally at &, i.e., (T¢ )¢ D (T;l%)g' This
condition is known to be independent on ¢, up to multiplication by a unit [Ti2, Prop.
3.2].

Definition 2.3. Let G be a stratification on Y as above such that it restricts to a Whitney
stratification on Y \ A, where V' \ A is union of strata. We say that G is a partial
Thom stratification (O7-stratification) if Thom’s condition (a,) is satisfied at any point
(e AxP CY.
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One may extend a Whitney stratification on Y\ A to a locally finite d7-stratification of
Y, by usual stratification theory arguments (see e.g. [GWPL)]). For instance, the Whitney
stratification W of X that we have considered before is an example of d7-stratification.
This follows from [BMM, Théoréme 4.2.1] or [Ti2, Theorem 3.9]. One can also construct
a canonical (minimal) dr-stratification; we send to [Ti2] for further details.

Definition 2.4. Let G be a O7-stratification on Y. We say that the following closed
subset of Y:

Sing gF' := Ug, cgclosure(Sing 7, )

is the singular locus of F' with respect to G. We say that F' has isolated singularities with
respect to G if dim Sing gF' < 0.

For the singular locus of a germ f, one modifies this definition accordingly. The sin-
gularities of the new type are those along the indeterminacy locus, namely on A x P!
We shall further investigate the relation between singularities and vanishing homology,
in case of isolated singularities. Let us define the local fibration of a meromorphic germ,
already used in particular cases in {ST1], [Ti2], [ST3]), and which relates to the fibration
of a holomorphic germ on a singular space defined by Lé D.T. [Lél].

Definition 2.5. Let f : (¥,y) --+ P! be a germ of a meromorphic function. For every
a € P!, one associates the germ m(y,q) : (Y, (y,a)) — P*. Abusing language, by restricting
this map to X C Y, we have a germ f : (X, (y,a)) — C, where the point (y,a) might be
in the closure of the set X.

When the point y does not belong to the axis A, then we have the classical situation of
a holomorphic germ; the point (y,a) is uniquely determined by y. However, when = € A,
then for each a € P! we get a different germ. Proposition 1.2 together with Thom’s Second
Isotopy Lemma show that, in this family, all germs are isomorphic except of finitely many
of them.

There is a well defined local fibration at (y,a), as follows. Let W be a Whitney strati-
fication of Y such that Y \ X is union of strata. For all small enough radii €, the sphere
S, = 0B.(y,a) centered at (y,a) intersects transversally all the (finitely many strata) in
some neighbourhood of (y, a). By [Lé&l], the projection 7 : Yp N B(y,a) — D is stratified
locally trivial over D*, if the radius of D is small enough. It follows that the restriction:

(3) 7 : Xp« N Be(y,a) = D*.

is also locally trivial. If y is fixed, this fibration varies with the parametre a; the radius
€ of the ball depends also on the point a. From Proposition 1.2 and Thom’s Isotopy
Lemma it follows that, since 7 is stratified-transversal to Y over P* \ A, the fibration
7 : Xp N B.(y,a) — D is trivial, for all but a finite number of values of a € P.

Definition 2.6. We call the locally trivial fibration (3) the Milnor-Lé fibration of the
meromorphic function germ f at the point (y,a) € X.
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3. ISOLATED SINGULARITIES AND THEIR VANISHING CYCLES

We show that, if the singularities along the indeterminacy locus are isolated, then one
can localize the variation of topology of fibres. The same type of phenomenon exists in
the previously known cases: holomorphic germs [Mi] and of polynomial functions (e.g.
[Ti2, 4.3]). This has consequences on the problem of detecting variation of topology,
especially when the underlying space Y has maximal rectified homotopical depth. Before
stating the localization result, let us give the definition here, for further use: Let Z be a
complex space endowed with some Whitney stratification W; denote by W; the union of
strata of dimension < i. After [HL], one says that rhd Z > m if for any ¢ and any point
z € W;\ W,_1, the homotopy groups of (U,, U, \ W;) are trivial up to the order m —1—4,
where {U,} is some fundamental system of neighbourhoods of z. It is shown in loc.cit.
that this doest not depend on the chosen Whitney stratification. A similar definition
holds in homology instead of homotopy, giving rise to the rectified homological depth,
denoted rHd . Let us mention that thdY > n when Y is locally a complete intersection
of dimension n at all its points (see [LM]).

Proposition 3.1. Let F' have isolated singularities with respect to some O7-stratification
Gata€eP (ie dimY,NSinggF <0). Then the variation of topology of the fibres of F
at X, is localizable at those points. a

What we mean by “localizable” is that there exist small enough balls in Y centered
at the isolated singularities such that, outside these balls, the projection 7 is trivial over
a small enough disc centered at a € P!. The proof in the general case of meromorphic
functions has the same structure as the proof presented in [Ti2, Theorem 4.3], inspite
the fact that in loc.cit. we consider a particular situation; we may safely skip it. The
localization result implies, as in the particular cases [Ti2], [ST3], that the vanishing cycles
are concentrated at the isolated singularities.

Corollary 3.2. Let F have isolated singularities with respect to G at a € P* and let
Y, N Sing gF' = {p1,... ,px}. For any small enough balls B; C'Y centered at p;, and for
small enough closed disc centered at a, s € 0D, we have:

(4) H,(Xp,X,) ~ &k H,(Xp N B;, X, N By).
0

One show, following [ST3], that an isolated G-singularity at a point of A x P* C Y is
detectable by the presence of a certain local polar locus. If the space Y is “nice enough”,
then the local vanishing homology (second term of the isomorphism (4)) is concentrated
in one dimension only. Then the polar locus defines a numerical invariant which measures
the number of “vanishing cycles at this point”.

1This notion was introduced by Hamm and Lé [HL] in order to realize Grothendieck’s predictions that
homotopical depth was the cornerstone for the Lefschetz type theorems on singular spaces [Gr]. We shall
come back to Lefschetz theory in §6.
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Definition 3.3. Let £ = (y,a) € A x P! and let f = p/q a local representation of F' at
y. Then the polar locus T'¢(m,q) is the germ at £ of the space:

closure{Sing 5(m, q) \ (Singgr U A x P")} C Y.
As in [ST3, §4], we have the isomorphisms:
Le(m,q) ~Te(f,q) 2 Te(p, ).

The multiplication by a unit u may change the polar locus: T'¢(w,qu) is in general
different from I'¢(7,g). Nevertheless, we have the following.

Proposition 3.4. Let £ = (y,a) € A x P! be an isolated G-singularity of F' and let
fy = p/q a local representation of F. Then, for any multiplicative unit u, the polar locus
Ie(m,qu) is either void or dimT¢(m,qu) = 1. If moreover Y is of pure dimension m
and thd (Y \ {¢ = 0}) > m in the neighbourhood of £, then the intersection multiplicity
inte (e (7, qu), Yo ) is independent on the unit u. We call this multiplicity the polar number
at €.

Proof. We follow essentially the proof of [ST3, 4.2]. The key argument to use is the
independence of PTy, from the multiplicative unit u, proven in [Ti2, Prop. 3.2], where
PT; denotes the projectivized relative conormal of g.

Since dimPTy = m + 1, it follows that T'¢(r, ) is either void or of dimension at least
1. On the other hand, since £ is a point belonging to I'¢(m, g), it follows that I's(m, ¢) has
dimension at most 1. The same argumentation holds for qu instead of g. This proves the
first claim.

To prove the second statement, let’s suppose that I'¢(m, ¢) has dimension 1. Consider
the Milnor-Lé fibration of the function 7 at ¢:

(5) 7 : Yp» N Be(§) — D7,

as explained at the end of §2. We compute the homology H.(Y, N B) of the Milnor
fibre of this fibration. Inside B, the restriction of the function ¢ to Y, N B has a finite
number of stratified isolated singularities, which are precisely the points of intersection
Y,NBNI'(m,q). By the result due to Goresky-MacPherson that cylindrical neighbourhoods
are conical [GM, pag. 165], it follows that Y, N B is homotopy equivalent to Y,NBNg~*(4),
where 4 is a small disc at 0 € C such that Y, N BNT(7,q) = ¢ *(6) N Y, N BNT(m,q).

Let now take a small enough disc § centered at 0 € C such that ¢~(§)NY,NBNI (7, q) =
(). By using the properties of the partial Thom stratification G and by retraction, it follows
that ¢~1(8) N 'Y, N B is homotopy equivalent to the central fibre ¢~1(0) N'Y, N B.

Since the subspace ¢~1(0) at £ is the product A x P!, the central fibre ¢7*(0)NY, N B

is contractible; hence ¢~1(d) N'Y, N B is contractible too.

The total space Y, N B = g~1(8) N'Y, N B is built by attaching to the space ¢~1(§) N
Y, N B finitely many cells, which come from the isolated singularities of the function ¢
on ¢71(6\ §) N'Y, N B. Since rhd (¥, \ {g = 0}) > m — 1 in some neighbourhood of ¢
(by our assumption and Hamm-L&’s [HL, Theorem 3.2.1]), it follows that each singularity
contributes with cells of dimension exactly m — 1 and the number of cells is equal to the
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corresponding local Milnor number of the function ¢ (see [Lé2| and [Ti1] for more details).
The sum of these numbers is, by definition, the intersection multiplicity int¢(I'(m, q), Y, ).

By this we have proven that dim H,,_;(Y,NB) = int(T¢(r, ¢), Y,) and that H;(Y,NB) =
0 for i # n — 1. Replacing ¢ by qu in our proof yields the same equalities; this proves our
statement. UJ

REMARK 3.5. The last part of the above proof shows in fact more, that the fibre Y, N B
of the local fibration (5) is homotopy equivalent to a ball to which one attaches a certain
number of (m — 1)-cells. Therefore Y, N B is homotopy equivalent to a bouquet of spheres
V 8™ of dimension m — 1.

One can get more precise results when lowering the generality. The situations we
consider in the following are more general that “polynomial functions”, which we consider
in §8. Let then assume:

(¥*) X :=Y \ A has at most isolated singularities.

In this case we have Sing gF'N A x P! C SingY N A X P'. In the notations of Cor. 3.2,
the following duality result holds (integral coefficients):

H.(XpNB;, X,NB;)~ H*™*(Yp N B;,Y, N B;),
where m = dim,, Y. This follows from Lefschetz duality for polyhedra, see Dold [Do, p.
296].
Since Yp N B; is contractible, we get:
(6) H.(Xpn B;, X,N B;) ~ H*™17*(Y, N B,).

When comparing this to Remark 3.5 and to Definition 2.1, Corollary 3.2 and Proposition
3.4, the following statement comes out:

Theorem 3.6. [ST3] Let F have isolated singularities with respect to G at a € P* and let
¢ € Ax{a}NSing gF. Then Fiy\a has vanishing cycles at £ if and only if int(T¢(7, q), Ya) #
0. The number of vanishing cycles at £ is A¢ := dim H,,1(Y, N B) = int(T'¢(7, g), Ya),
where m = dim; Y,. O

Let us assume now that Y, has an isolated singularity at £ € A x {a}. This happens for
instance when Y has at most isolated singularities on A. Since (Y,, £) is a hypersurface
germ in Y, it has a well defined Milnor fibration, and in particular a Milnor number,
which we denote by u(a).

It also follows that dim; Sing gF' < 0 and that Y has singularities of dimension at most
1 at £ If Sing Y is a curve at &, this curve intersects Y;, for s close enough to a, at some
points &;(s), 1 < i < k. There is a well defined Milnor yx;(s) at each hypersurface germ
(Y,,&(s)). (In case SingY is just the point £, we consider that p,;(s) = 0, Vi.) We have
the following computation of the number of vanishing cycles at ¢:

Theorem 3.7. [ST3] Let dim, Sing Y, = 0. Then:

k
Ae = p(a) — ZM(S)‘
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Proof. We only sketch the proof and send to [ST3] for details. Consider the function:
G=p—sq:(Y xC(s)) = (C0).

For fixed s, this function is a smoothing of the germ (Y,,&(s)). Since £ is an isolated
singularity, the polar locus at ¢ of the map (G,7) : Y x C — €2, defined as I'¢(G, 7)) =
closure{Sing (G, ) \ Sing G}, is a curve. By using polydisc neighbourhoods? (P, x D)
at ¢ in Y x C, one may show that (G, 7)™ (5, s) N (Px X D,) is homotopy equivalent to
the Milnor fibre of the germ (Y,,£). To obtain from this the space 771(s) N (Py X Dy),
one has to attach a number of m cells, where m denotes dim;Y. Part of these cells
come from the singular points &;(s) € Sing G N 7~1(s): by definition, their total number
is E:.;l pi(8). The other part of the cells come from the intersection with I'¢(G, ) and
their number is 7 = int(I¢(G, 7), 7—1(0)). The key observation is that r turns out to be
equal to dim H,, 1(Y, N B), which is the number of vanishing cycles at £{. Finally, since
771(s) N (Py X Dy) is contractible (since being the Milnor fibre of a linear function ¢ on
a smooth space), we have the following equality:

k
pla) =7+ 3 (o).

i=1
Notice that, in case dim, Sing Y = 0, we get just Ae = u(a). O
We send to Corollary 4.3 for the counting of the total number of vanishing cycles. Let us

give two examples of meromorphic functions, one on P?(C) and another on a nonsingular
quadratic surface in P*(C).

a+b G,,b
EXAMPLE 3.8. ([ST3])Let F: Y =P? ——» P!, F = oz yqum v)

and a,b,p,q > 1. For some s € C =P \ [1: 0], the space Y, is given by:

, where a+b+1 =p+q

(7) 220 + z%P) = syP2?

SingY N (Y x C) consists of three lines: {[1:0:0],[0:1:0],[0:0:1]} x C. We are
under the assumptions of Theorem 3.7 and we inspect each of these 3 families of germs
with isolated singularity to see where the Milnor number jumps.

Along [1:0:0] x C, in chart z = 1, there are no jumps, since the germs have uniform
Brieskorn type (b,a + b). Along [0: 0 : 1], in chart z = 1, there are no jumps, since the
type is constant Ay, for all s. Along [0:1:0], in chart y = 1: For s # 0, the Brieskorn
type is (a + 1,q), with u(s) = a(g — 1). If s = 0, then we have z°! + zz°+* = (0 with
1(0) = a? +ab+b.

There is only one jump, at £ = ([0 : 1 : 0],0); according to the preceding theorem,
de=a’+ab+b—a(lg—1)=b+ap.

2polydisc neighbourhoods were first used by Lé D.T.[Lél].
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4. HOMOTOPY TYPE OF FIBRES

In case of isolated singularities, we have the following result on the relative homotopy
type.

Theorem 4.1. Let {a;}._, be the set of atypical values of F' within some open disc D C
P. Let s € D be some typical value of F. For all 1 < i < p, let F have an isolated
G-singularity at a;, Y be of pure dimension m at a; and tHd (Y \ (V U A)) > m in some
neighbourhood of a;. If either of the two following conditons is fulfilled:

(a) X is a Stein space,
(b) X =Y \ A and X has at most isolated singularities,

then Xp is obtained from X, by attaching cells of real dimension m. In particular, the
topological space Xp/X, is homotopy equivalent to a bouquet of speres VS™.

Proof. We prove that the reduced integral homology of X/ X; is concentrated in dimen-
sion m. By Proposition 3.1, the variation of topology of the fibres of Fix,, is localizable
at the points Sing ;' N Yp. We have to take into account all the possible positions of
such a singular point £ = (y,a), namely: on X,on V\ Aoron A x P! C Y.

In all the cases, it turns out that the pair (Xp, N Be, X N Be) is (m — 1)-connected,
where B C Y is a small enough ball at §, D, is a small enough closed disc at a and
s € 0D,.

For a point ¢ in the first case, this is just Milnor’s classical result for holomorphic
functions with isolated singularity [Mi]. In the two remaining cases, this follows by a result
due to Hamm and Lé [HL, Corollary 4.2.2], in a slightly improved version for partial Thom
stratifications (see [Ti2, 2.7]). This result needs the condition on the rectified homological
depth.

By the above proven connectivity of the pair (Xp, N Be, X; N Be) and the splitting of
vanishing homology into local contributions Corollary 3.2, we get that the homology of
(Xp, X,) is zero below dimension m. Above dimension m, we also have the annulation,
due to the following reasons. In case (a) the space Xp, respectively X, is Stein of
dimension m, resp. m — 1. In case (b), we may apply the duality (6) and we have that
the cohomology H*(Y, N Be) is concentrated in dimension m — 1, by Remark 3.5.

Then one can map a bouquet of m spheres into Xp/X, such that this map is an
isomorphism in homology. This implies, by Whitehead’s theorem (see [Sp, 7.5.9]), that
the map induces an isomorphism of homotopy groups. (Remark that Xp/X, is simply
connected whenever m > 2). Since we work with analytic objects, therefore triangulable,
the space Xp/X, is a CW-complex. We may now conclude our proof, since for CW-
complexes, weak homotopy equivalence coincides with homotopy equivalence. O

In case (b), this result has been proved by Siersma and the author [ST1]. Let us point
out that, in this case (b), we also have the local bouquet result: (Xp, N Bg)/(Xs N Be) 2

V s™.
When assuming high connectivity of the space X, we get the following immediate
consequence (proved in lower generality in [ST3]).
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Corollary 4.2. Under the hypotheses of Theorem 4.1, if in addition the space X is Stein
and (m — 1)-connected, then X, S V smL, O

Particular cases of this corollary appeared previously in several circumstances: Milnor’s
bouquet result [Mi] on holomorphic germs with isolated singularity; bouquet results for
generic fibres of polynomial maps with isolated singularities in the affine [Brol, Bro2] and
with isolated singularities at infinity [ST1], [Ti2].

As another consequence, we shall draw a formula for the total number of vanishing cycles
in case of isolated G-singularities. Let us denote by A, the sum of the polar numbers
at the singularities on (A X P) N'Y, and by p, the sum of the Milnor numbers of the
singularities on Y, \ (4 x {a}). One needs to note that the Milnor fiber (in our case
Y, N B) of a holomorphic function with isolated singularity on a Whitney stratified space
is homotopically a bouquet of spheres of dimension = dim Y, N B, see [Til].

Corollary 4.3. Under the hypotheses of Theorem 4.1, we have:
dim Hm—l(-XDa; Xs) = Ho + Aa s

dim o1 (Xp, Xo) = Y fha+ D e

aeD a€D

O

REMARK 4.4. In Example 3.8, let us consider X = P?\ {yz =0}. Let s€ CCP. It
is easy to see that the fiber X is a disjoint union of ¢ 4 1 disjoint copies of C*, where
¢ = ged(a, b), therefore x(Xo) = 0. For s # 0, by a branched covering argument, one
shows x(X,) = —(b+ ap). The vanishing homology is concentrated in dimension 2, by
Theorem 4.1. When taking D = C, we get the Betti number b(X, X,) = x(X,X;) =
x(X) — x(X,) = (b+ ap). We have seen at 3.8 that the sum ) _ A, consists of a single
term A¢ = b+ ap. One can also see easily that there is no other singularity, in particular
that D .c #a = 0. Hence the second equality in Corollary 4.3 is verified.

5. MONODROMY

Let F: Y --+ P! be a meromorphic function and let A C P! denote the set of atypical
values of the associated map 7: Y — P!. There is a well defined monodromy h; around
an atypical value a; € A. This is induced by a counterclockwise loop around the small
circle 8D;. Let D denote some large disc, like in §2, such that D N A # 0. We have a
geometric monodromy representation:

pi : m1(0D;, 8;) — Iso(Xp, Xpp,» Xs:)s
where Iso(., ., .) denotes the group of relative isotopy classes of stratified homeomorphisms
(which are C*™ along each stratum). Note that the retriction of this action to Xp, Xp,
or to Xpp;, is trivial. Let T} denote the action induced by p; in homology (with integral

coefficients).
Let us identify H.(Xp, X;) to @,,epnaH«(Xp,, Xs,) as in Proposition 2.2. This iden-
tification depends on the chosen system of paths v; C D from s € 0D to s; € 0D, as
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explained in §2. There is the following general result, showing that the action of the
monodromy T; on a vanishing cycle w € H,(Xp,X,) changes w by adding to it only
contributions from the homology vanishing at a;.

Proposition 5.1. For every w € H,(Xp, X,), there is ¢;(w) € H.(Xp,, Xs;) such that
Ti(w) = w + thi(w)-

Proof. The proof goes exactly as in the more particular that we consider in [ST3, Prop.
6.1]. One may identify the map: T;—id : H,1(Xp, X,s) = Hg+1(Xp, X,) to the composed
map:

(8) Hys1(Xp, Xs) 5 Hy(X,) % Hypa(Xop,, Xs) = Hypr(Xp, Xo),

where w denotes the Wang map, which w is an isomorphism, by Kiinneth formula. The
last morphism in (8) factors as follows:

Ty

Hq+1(Xt9DnXS.') — Hq+1(XD,Xs)

N /
H‘H-l(XDu XS)

where all three arrows are induced by inclusion. It follows that the submodule of “anti-
invariant cycles” Im(T; —id : H,(Xp,X,) — H.(Xp,X,)) is contained in the direct
summand H,(Xp,, X,,) of H(Xp, X)) a

One has the following easy consequence, in full generality. Assume that the paths in D,
say 7i,-..y are counterclockwise ordered. The chosen paths define a decomposition of
H.(Xp,X,) into the direct sum @4,epnaH.(Xp,,Xs;). Denote by Tsp the monodromy
around the circle &D. One has the following imediate consequence, remarked in [DN2] for
polynomial functions and in [ST3] for the particular case Y nonsingular and X =Y \ A.

Corollary 5.2. Assume that the direct sum decomposition of H,(Xp, X;) is fized. Then
Top determines T;, Vi € {1,...,1}. O

NOTE 5.3. One may say that Proposition 5.1 is a Picard type formula, since Picard
showed it at the end of the XIX-th century, for algebraic functions of two variables with
simple singularities. Lefschetz proved later the well known formula for a loop around a
quadratic singularity, in which case ;(w) is, up to sign, equal to cA, where A is the
quadratic vanishing cycle and c is the intersection number (w, A). This became the basis
of what one calls now Picard-Lefschetz theory (which is the conterpart of the Morse theory,
in case of complex spaces), see e.g. [AGV], [Eb], [Va]. In case of polynomial functions,
the Picard formula was singled out in [DN1], [NN2].

REMARKS 5.4. The statement and proof of Proposition 5.1 dualize easily from homology
to cohomology. One obtains in this way statements about invariant cocycles ker(7% —
id: H*(X,F) —» H*(X, F)) instead of anti-invariant cycles.

A special case is that of a polynomial function ' : C* — C, for which X = C". Results
on invariant cocycles were obtained in [NN1]; they can be proved also in our more general
setting.
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In the rest of this section we review some results on the zeta function of the monodromy.
‘We shall only discuss global meromorphic functions F; following the general remark in the
Introduction, all results translate easily in case of meromorphic germs. For the particular
case of polynomial functions, we send the reader to §8, where we present more specific
results.

Definition 5.5. Let T5p be the monodromy around some disk D as above. One calls
zeta function of Typ the following rational function in variable ¢:

Cixoxn () = [ [ detlid — ¢Top « Hi(Xp, X,) = Hi(Xp, X))V
>0
We are interested here in the zeta function of the monodromy around a value a € A. Let

us first assume that F has isolated G-singularities. By the direct sum splitting (Corollary
3.2) and since the monodromy acts on each local Milnor fibration, we get:

k
Cpe 0 (&) = [T Sxoanmixanmy (8),
=1
where {p1,...,pr} = Yo NSing s F and B; is a small Milnor ball centered at p;.
For the zeta function of the monodromy Tsp, acting on the homology of the general
fibre X, we also get:

k
(x, (t) = (1 - t)_X(Xu) H C(_X}DanB,-,XsnB.-)(t)i
i=1
since the monodromy acts on Xp, as the identity and since x(Xp,) = x(Xa)-

Let us now suppose that Y is nonsingular and consider X = Y \ A, but not assume
anything about the singularities of the meromorphic function F. One may follow the
method of A’Campo [A’C2] to produce a formula for the zeta function, as follows. There
exists a proper holomorphic modification ¢: Y — Y, which is bi-holomorphic over X \
UgerXa. The pull-back F = F o ¢ has a general fibre X, which is isomorphic to F.
The action of the monodromy is also the same, therefore (z (t) = (x,(f). Then one
can write down a formula for the zeta function around the value a € P! in terms of the
exceptional divisor and the axis A. By expressing the result as an integral with respect
to the Euler characteristic (see e.g. Viro’s paper [Vi] for this technique), one can get rid
of the resolution.

Proposition 5.6. [GLM1| Let X =Y \ A and let Y be nonsingular. Then:
@)= [ Gty
Ax{a}UX,
where (, denotes the local zeta function at the pointp € Y. O

Further formulae for the zeta function and some consequences can be found in the
papers by Gusein-Zade, Luengo and Melle [GLM1, GLM2, GLM3].
From (x, one easily gets {(x,,x,), since (x, = (x, - C(—le,x,) and Cx, = (1 —t)™x(Xa),
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6. NONGENERIC PENCILS AND ZARISKI-LEFSCHETZ TYPE RESULTS

Exploring a space Y by pencils of complex hyperplanes is an old idea in mathematics.
It appeared in the work of Lefschetz [Lef], which became the fundation of the so-called
Lefschetz Theory. Almost in the same time the Morse Theory was born [Mo]. Each of the
two theories provide a method for studying the topology of the space; both use scanning
with levels of a function.? The analogous of Morse function for the Lefschetz Theory is
“Lefschetz pencil”.

One usually means by Lefschetz pencil a pencil having singularities of simplest type
(i.e. A;) and transversal axis. In the usual projective space, such pencils are generic, but
on certain spaces they might not even exist. A more general point of view is to allow
pencils with isolated singularities, alias meromorphic functions F': ¥ --» P! with isolated
singularities in the sense of this paper. We call them “nongeneric pencils” and point out
that they can have singularities also within the axis A of the pencil. The case of isolated
singularities outside the axis has been considered before by Hamm and Lé (e.g. [HL]) and
by Goresky and MacPherson (see [GM]).

The following connectivity result of Zariski-Lefschetz type holds.

Theorem 6.1. [Ti5] Let the pencil F = P/Q:Y --» P! have isolated G-singularities
(Definition 2.4). Assume that A ¢ V and let X, denote a generic member of the pencil.

IfthdX > m, m > 2, and if the pair (X,, AN X,) is (m — 2)-connected then the
morphism induced by inclusion:

mi(Xs) = mi(X)

is an isomorphism for i < m — 2 and an epimorphism fori=m — 1. U

This represents a far-reaching extension of the classical Lefschetz theorem on hyperplane
sections. The latter says that, if X is a projective variety and H is a hyperplane such
that X \ H is nonsingular of dimension m, then m;(X,X N H) = 0, for all i < m — 1.
This can be viewed as a statement about pencils with transversal axis (i.e. there are no
singularities on A), since, even if H is not a generic hyperplane, it is a member of some
generic pencil in the projective space. Indeed, one may define such a pencil by choosing
a generic axis inside the hyperplane H. Then our claim follows by the conjunction of the
following 2 observations: 1). Theorem 6.1 is true when replacing X, by the tube Xp,,
where one allows singularities of any type on Yg; 2). Xp, is contractible to X, when X is
compact (i.e. V = 0).

One may draw the following consequence on the homotopy type of the pair space-
section, which actually represents an extension of Theorem 4.1:

Corollary 6.2. [Ti5] Under the hypotheses of Theorem 6.1, up to homotopy type, the
space X is built from X, by attaching cells of dimension > m. If X is in addition a Stein
space of dimension m, then the attaching cells are of dimension precisely m. O

3for hystorical notes and new developments until about 1987, see Goresky and MacPherson’s book
[aM]
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REMARK 6.3. What happens when A C V? We prove in [Ti5] that if {@ =0} C V
(which is a special case of A C V, since A C {Q = 0}), then the conclusion of Theorem
6.1 holds, with the single assumption rhd X > m.

This result concerns in particular the polynomial functions P : C* — C. Such a function
defines a nongeneric pencil on X = C", since it can be regarded as a meromorphic function
P/Q on the (weighted) projective space Y = P*, where { = 0} is the hyperplane at
infinity. Notice that in this case the condition rhd X > n holds since X is nonsingular.
We refer to §8 for some consequences.

7. EQUISINGULARITY AT THE INDETERMINACY LOCUS

Equisingularity conditions are considered beginning with Zariski’s work on families of
algebraic (hyper)surfaces, see [Za]. There are more recent contributions to local equi-
singularity theory, especially by Teissier [Tel, Te2] and Gaffney ([Ga] and several other
papers of the same author).

The case of families on non-compact spaces, like our family {X,},cpt, where X =Y \V
and ANV # 0, is special. We have seen that the singularities at the indeterminacy
locus play an important role. The problem would be to find the weakest equisingularity
condition at A such that to imply topological triviality in the neighbourhood of A. If we
stratify everything by Whitney conditions, then we may invoke Whitney equisingularity,
which implies topological triviality; but Whitney equisingularity is too strong. The search
for a weaker alternative has itself some history behind; maybe the first result in this sense
is Lé-Ramanujam’s theorem for families of holomorphic germs with isolated singularity:
“1 constancy implies topological triviality”, see [LR]. It had been found that x constancy
is really weaker than Whitney equisingularity [BS] (i.e. that p constancy is weaker than
p* constancy?).

In the same spirit, the problem was formulated (and solved) in case of a family of affine
hypersurfaces in [Ti4], where the equisingularity at infinity, respectively C*-triviality at
infinity, comes into the picture (see next section for details). In loc.cit., these two notions
are related to the partial Thom stratification G. For a family defined by a meromorphic
function F': Y --+ P!, one may follow the ideas of [Ti4] up to some extent, as we pointed
out in [ST3]. Let us give the main lines.

Definition 7.1. We say that Fix is topologically trivial at £ € A X P! C Y, resp. at
a € P, if there is a neighbourhood A of £, resp. of Y, N (A x P'), and a small enough
disc D at a such that the map 7 : NN Xp — D is a trivial fibration.

The points £ € A x P* which pose problems are those in Sing g F, since for the others
we have the topological triviality. This claim follows by attentive re-reading of [Ti4,
Theorems 2.7, 4.6, 1.2], [ST3, Theorem 7.2]; we actually get the following:

Theorem 7.2. Let F = P/Q have isolated G-singularities at &, resp. at a € P*. Assume
that Y is of pure dimension m, that X =Y \ {@ = 0} and that thd X > m.
Then Fx 1s topologically trivial at £, resp. ata € P! if and only if \e = 0, resp. Ay = 0.

4see Teissier’s paper [Te2] for u* constancy
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In particular, if X has isolated singularities and F has isolated G-singularities at a € P!,
then X, is a general fibre of Fix if and only if X, is nonsingular and A, = 0. O

Combining Theorem 7.2 with Corollary 4.3, we get the following consequence:

Corollary 7.3. Under the hypotheses of Theorem 4.1, a fibre X, of Fix is general if and
only if it has the same Euler characteristic of a general fibre. O

Both results above have been stated, in slightly lower generality, in [ST3]. Corollary
7.3 extends the criteria for atypical fibres in case of polynomial functions in 2 variables
[HaLé], and in n variables [ST1], [Pa]. See also Proposition 8.1.

8. MORE ON POLYNOMIAL FUNCTIONS

In the last years there has been developed a flourishing activity in the topology of
polynomial maps, partly due to the links with affine geometry (see e.g. Kraft’s Bourbaki
talk [Kr]). We give here a brief overview, throughout some of the multitude of the
contributions.

We have explained in the Introduction that a complex polynomial function P : C* — C,
deg P = d, can be extended to a meromorphic functlon :P* —-+ P. Here X = C" and

Y = P, are nonsingular spaces. This is not the only way of extending P and the space
C"; one may consider® for instance an embedding of C™ into some toric variety, such as a
Weighted projective space [Pp,.

Maybe the first author who studied the topology of polynomial functions was Broughton
[Brol]. In the same time Pham [Ph] was interested in regularity conditions under which
a polynomial has good behaviour at infinity. Some of the challenging problems that have
been under research ever since are:

1. Determine the smallest set A of atypical values of P.
2. Describe the topology of the general fibre and of the atypical fibres.
3. Describe the variation of topology in the family of fibres; monodromy.

In problem 1., there are only partial answers. One has to decide which are the atypical
values among a finite set of values singled out by Proposition 1.2. For instance, our
general result Corollary 7.3 applies here (see also the comment following it). It is easy
to show that singular values of P are atypical. Then, fixing a nonsingular fibre X, of P,
one may try to prove topological triviality at infinity by constructing a controlled vector
field and “pushing” X, along it. This is an idea due to Thom [Th|. There are mainly two
strategies: to work in the Euclidean space or to compactify C* into some Y and use the
stratification G.

The first one leads to regularity conditions, in more and more generality: tameness
[Bro2], quasi-tameness [Ne|, M-tameness [NZ], p-regularity [Ti3]. There are also the
Malgrange condition (see [Ph, 2.1])—which is a condition on the Lojasiewicz number at
infinity—and its generalization by Parusiriski [Pa).

Ssee [Ti2] for a general treatment
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The second strategy leads to the t-regularity [ST1|, or more generally, equisingularity
at infinity (which has been discussed for meromorphic functions in §7).

There are of course relations between all these conditions; one may consult [Ti3] and its
references. Under certain circumstances, several of these conditions are equivalent. We
may quote the following result:

Proposition 8.1. (after [ST1, 5.8] and [Ti3, 2.15])
Let P: C* — C have isolated G-singularities at infinity, at o € C. Then the following are
equivalent:

(a) P is M-tame at X,.

(b) P satisfies Malgrange condition at infinity at X,.

(c) P is t-regular at infinity at X,.

(d) \a=0.

It follows that, for a polynomial with isolated G-singularities at infinity, a fibre X, is
general if and only if u, = 0 and one of the above conditions are satisfied.

In case of 2 variables, the hypothesis of the above statement 8.1 is fulfilled and there-
fore the conclusions are valid. Indeed, in 2 variables, any reduced fibre X, has at most
isolated G-singularities at infinity. Moreover, there are several other criteria expressing
non singularity at infinity, equivalent to the ones above; we send the reader to [Du], [Ti3].

Still in 2 variables, one may derive the following equivalent formulation of the well
known Jacobian Conjecture, in terms of singularities at infinity [LW, ST1]: Let P: C2 — C
be a polynomial without critical point. If there exists a value a € C such that A, # 0, then
for any other polynomial g, the zero locus of their jacobian ideal Jac(P, g) is not void.

Revisiting equisingularity at §7, one gets more specific results in case of polynomials. By
taking hyperplane sections with respect to P in C*, one may define global polar curves
[Ti4] and use them in order to define an intersection number with some fibre X,. By
restricting P to a general hyperplane and repeating generical cutting, we get a sequence
of intersection numbers® 471, ... 4%, We show in [Ti4, Theorem 1.1] that the constancy
of %, for s in some neighbourhood of a, is equivalent to the equisingularity at infinity of
p at X,.

Secondly, the slicing processus just described gives a model of a fibre X, as CW-
complex. Let A} :=~: — ~*, where s is a typical value of P.

Theorem 8.2. [Ti4] Let P: C* — C be a polynomial function. Suppose that the fibre
X, = P7Y(a) has at most isolated singularities. Then X, is homotopy equivalent to a
generic hyperplane section X, N H to which one attaches y*~* — u(X,) cells of dimension
n— 1.

Moreover, X, is homotopy equivalent to the CW-complex obtained by successively at-
taching to v° = deg P points a number of v cells of dimension 1, then 2 cells of dimen-

sion 2, ..., "2 cells of dimension n — 2 and finally v71 — u(X,) cells of dimension
n — 1. In particular, x(X,) = (—1)"u(X,) + E::ol(_l)i’)’i and
X(X,) = x(Xa) = (—1)"p(Xa) + S (—1)iAL. 0

6they are invariant under linear change of coordinates but not under affine automorphisms.
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One may compare this result to Corollary 4.3 and notice that the sequence A} is a re-
finement of the number of vanishing cycles at infinity A,, in case of isolated G-singularities.
Nevertheless, the numbers X! are defined without any hypothesis on singularities at in-
finity.

The vanishing cycles at infinity were described for the first time in [ST1]. It was shown
in loc.cit. that, for P with isolated G-singularities at infinity, the vanishing homology is
concentrated in dimension 7; this implies that the general fibre is homotopically a bouquet
of (n — 1)-spheres. Further progress in describing the general fibre, the special fibres and
the vanishing cycles was made by Neumann-Norbury [NN1, NN2|, Dimca-Némethi [DN1],
the author [Ti5]. The cohomology of fibres is investigated by Hamm [Ha).

The above construction of the model for the general fibre can be pushed further; one
may construct a global geometric monodromy group, acting on this model. This yields
localization results and formulae for the zeta-function [ST2]. The more geometric point of
view on monodromy at a singularity at infinity gives two types of singularities with local
A equal to 1, see [ST2, §6]. This may be contrasted with g = 1 in case of holomorphic
germs, when the singularity can only be of one type, A;.

One of the monodromies in case of a polynomial P is the one around a big disc con-
taining all the atypical values, denoted 7,,. In two variables, Dimca [Di] shows that T,
acting on the cohomology of the fibre is the identity if and only if the monodromy group
of P is trivial; the eigenvalue 1 occurs only in size one Jordan blocks. We send the reader
to loc.cit. for further results and their discution in contrast to the holomorphic germs
case.

Further aspects, such as mixed Hodge structure on fibres and algebraic Gauss-Manin
systems, have been studied by several authors: Garcia-Lépez and Némethi [GN1, GN2],
respectively Dimca-Saito [DS], Sabbah [Sal, Sa2].
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