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1 Introduction

Let X :=Y \ V be a connected real space of dimension 2n, n > 2, where Y and V are
compact. We consider two classes of such spaces: complex analytic spaces and symplectic
spaces. In both cases we allow singularities and we assume that Y is endowed with a
Whitney stratification such that V' is union of strata.

We say that X has the structure of a Lefschetz fibration if there exists a pencil on X
with isolated singularities, in a general sense, to be precised bellow (2.1, 2.2).

In the complex analytic case it is well known that one has generic pencils on quasi-
projective varieties, hence on spaces which can be embedded (e.g. by Kodaira embedding
theorem) into some P*(C). In Symplectic Geometry, it was shown by Donaldson [Do-1],
[Do-2] that generic Lefschetz pencils exist for compact symplectic manifolds, such that
the slices are symplectic submanifolds. See also the discution on symplectic fibrations in
McDuff’s survey [McD].

In this paper we consider mainly nongeneric pencils. We simultaneously prove, on the
one hand, an estimation, under general conditions, of the level of connectivity, say g, of
the pair space-section and on the other hand, how the g-th homotopy group of the space
X can be described, by generators and relations, from the homotopy group of the section
and the monodromies around atypical fibres.

This type of results have a long history in Complex Geometry, going back to Lefschetz
[Lef], Zariski and van Kampen. The most recent results of Zariski-Van Kampen type,
by Libgober [Li], respectively Chéniot [Ch-2], were proved for generic Lefschetz pencils of
hyperplanes and in special cases, namely for the complement of a hypersurface in P* or
C", respectively for a non-singular quasi-projective variety, at the level of homology.

We prove in this paper, under general conditions, that the g-th homotopy group of the
space X is a quotient of the homotopy group of the section by the subgroup of images of
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variation maps (which we define below). Our results use only local complex coordinates at
certain points of the space Y. Therefore this setting is suitable for Symplectic Geometry.

Our method is based on introspection within geometry of vanishing cycles, in the vein
of original Lefshetz’s ideas [Lef] (see Lamotke’s survey [La]). We also prove a number of
consequences, such as on topology of polynomial functions, viewed as nongeneric pencils,
and on the topology of complements of hyperplane arrangements.

2 Preliminaries

Let X :=Y \ V, where Y is a compact complex analytic space, respectively a compact
symplectic space and V' is some compact subspace (complex analytic, resp. symplectic).
In the complex analytic case, a pencilon Y is the ratio of two sections of a holomorphic
line bundle over Y. This defines a meromorphic function h := f/g : Y --+ P!(C), which
is holomorphic over the complement Y \ A of the base locus A := {f = g = 0}.
In the symplectic case, Donaldson introduced “topological Lefschetz pencils” [Do-2).
We give below an extension of the definition in loc.cit., for nongeneric pencils:

2.1 Definition A topological (nongeneric) pencilon Y is a smooth map h: Y \ A — §2
such that:

(i) h is a submersion out of a finite set of points {ay;} C Y \ A.

(ii) A is of real codimension 4. At any point z € A, there are compatible local complex
coordinates such that A is given by {f, = g, = 0}, for some holomorphic germs
fz, 9z and that, on the complement of A in some neighbourhood N of z, h is given
by fo/gz : No\ A = P(C) ~ $2.

(iii) at each point o; there are compatible local complex coordinates in which 4 is
represented by a holomorphic function with isolated singularity.

Donaldson’s Lefschetz pencils are those for which, at the points of A we have locally
h = z1/z,, for two linear independent functions 2;, z;, and moreover the isolated singu-
larities a;; of h are quadratic singularities (complex Morse singularities). Our definition
extends Donaldson’s along the main idea of having local holomorphic models. Donaldson
proved a striking result: a compact symplectic manifold (Y,w) with integral w admits
topological Lefschetz pencils, such that the fibres are symplectic submanifolds represent-
ing the Poincaré dual of k[w], for given large enough positive integer k.

2.2 We may allow Y be singular and assume it is endowed with a Whitney (A)+(B)
stratification W, such that V is union of strata. Then, in Definition 2.1, we replace in (i)
“submersion” by “stratified submersion” and in (iii) “isolated singularity” by “stratified
isolated singularity”, in the usual sense [GM], [Lé]. This also means that we impose to
our stratification to be, locally at points of A and the points ¢;;, a Whitney stratification
with complex analytic strata.

Then we say that h defines a pencil on X if X =Y \ V is as above and h is a pencil
on Y as in Definition 2.1. Some of the points a;; of A may be on V, hence outside X. We
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consider them also as “singularities” of Ax, since they produce jumps in the topology of
the pencil.

Our condition (ii) being too general: one can see that the pencil may have singularities
(in some sense) along the base locus A. Indeed, the local equations defining A may be
“very” singular. On the other hand, even if A is non-singular, it might happen that A is
not transversal to the strata of W, which fact is known to produce jumps in the topology
of the pencil. In order to have treatable pencils, we single out a class which we shall call
pencils with isolated singularities in the “azis” A.

Let us first explain what we mean by singularities of a nongeneric pencil.

We define a blow-up along the base locus A and work on the new space. This originates
in a suggestion of Thom, put to work by Andreotti and Frankel [AF], see also Lamotke’s
survey [La]. So, let Y := closure{(y,t) € (Y \ A) x S? | h(y) —t =0} C Y x S Itis
clear that the intersection Y N (Y \ A) x S? is just the graph of h, hence it is isomorphic
to Y \ A.

Locally, at points of A, the total space Y has the following aspect: let A be a
neighbourhood in Y of some point z € A. Then YN (N, x $%) = closure{(y,t) €
(Vo \ A) x 82| £8 — ¢ = 0} = {(3,[s: 1]) € No x P | sfa(y) — tga(y) = 0}

This is a hypersurface in A, x S§? obtained as a Nash blowing-up along A. Using
Definition 2.1(ii), it follows that the space Y is well defined. Indeed, for two intersecting
neighbourhoods of points, A, and N, we get that f, = uf, and g, = ug,, for some
holomorphic unit u, on N NN,. It also follows that the subset A x P! is included into Y.

Let us denote X := Y N (X x $?). Consider the projection p : Y — 52 to S2, its
restriction px : X — 52 and the projection to the first factor o : Y — Y. Notice that the
restriction of p to Y \ (A x P!) can be identified with h.

The stratification W on Y, restricted to the open set Y \ A induces a Whitney stratifi-
cation on Y\ (A x P!), via the mentioned identification. We then denote by S the coarsest
Whitney stratification on Y which coincides over Y\ (A x P!) with the one induced by W
on Y'\ A. This stratification exists within a neighbourhood of A x P!, by usual arguments
(see e.g. [GLPW]), hence such stratification is well defined on Y. We call it the canonical
stratification of Y generated by the stratification W of Y. The canonical stratification of
X will be the restriction of S to X.

2.3 Proposition There exists a finite set B C S such that the maps p: Y\ p~}(B) —
S*\ B and pix : X\ p~'(B) — S?\ B are stratified locally trivial fibrations. In particular,
h:Y \ (AUA™Y(B)) — 52\ B is a locally trivial fibration. O

This result is a kind of Isotopy Theorem and can be traced back to Thom'’s paper [Th]. It
is based on the fact that p is proper and complex analytic in a neighbourhood of A x P!,
and that S has finitely many strata. We tacitly assume that B denotes the minimal set
B which satisfies Proposition 2.3.

2.4 Definition We call singular locus of p with respect to & the following closed subset
of Y (and analytic in the neighbourhood of A x P*):

Sing gp := U Singps,-
Sges
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The set of critical values of p with respect to S is A := p(Sing gp).

It follows that the set A of critical values of p contains the minimal “bad set” B and, by
the compactness of Y, that A is a finite set too.

2.5 Definition We say that the topological pencil defined by A (cf. Definitions 2.1, 2.2)
is a (nongeneric) pencil with isolated singularities in the azis if the singularites of the
function p at the blown-up base locus A x P! are at most isolated.

The definition of pencil with isolated singularities in the “axis” is equivalent to the con-
dition dim Singgp < 0. Furthermore, in this case the singularities are finitely many, by
the compactness of Y. They consist of the points {¢;} together with the newly defined
singularities in the blown-up axis A x P!, of which some can be outside X.

We shall use in our results the homotopical (or homological) depth.

2.6 Definition For a discrete subset ® C X, we denote by hdsX the homotopical depth
of X at ®. We say that hdeX > ¢ + 1 if, at any point o € ®, there is an arbitrarily small
neighbourhood N of & such that the pair (M, N \ {a}) is g-connected.

For a manifold M, at some point o, we have: hd,M > dimg M. In homology, one
defines similarly the homological depth HdsX. Complex V-manifolds are rational ho-
mology manifolds. So hd (resp. Hd) measures the defect of beeing a homotopy (resp.
homology, for certain coefficients) manifold. In stratified complex spaces, Grothendieck
[G] introduced the rectified homotopical depth, this was later investigated by Hamm and
Lé [HL], who proved several of Grothendieck’s conjectures regarding it. See also our Note
5.2.

3 Variation maps and the Main Theorem

We assume that our pencil A on Y has isolated singularities in the base locus. In local
coordinates at singularities, the map p : Y — S? is holomorphic. We define global
variation maps in homotopy, using the local properties of p.

3.1 Let us fix some notation. For any M C S2, we denote Yy := p~* (M) and Xy :=
XNYy and X := X Nh~1(M). We denote by a; some point in the set of critical values
A of p. We denote by a;; € Y some point of Singgp N p~(a;). This means the discrete
set Sing gp is {a;j}i;. For c € S?\ A we say that Y, (resp. X., resp. X,) is a general fibre
of p: Y — 52 (resp. of px : X — S, resp. of hjx : X — §?).

At some singularity a;;, in local coordinates, we take a small ball B;; centered at a;.
For small enough radius of B;;, this is a “Milnor ball” of the local holomorphic germ of
function p at a;;. Next we may take a small enough disc D; C S? at a; € 5%, so that
(B;j,D;) is Milnor data for p at a;;. Moreover, we may do this for all (finitely many)
singularities in the fibre Y,,, keeping the same disc D;, provided it is small enough.

Now the restriction of p to Yp, \ U;B;; is a trivial fibration if D; is small enough. One
may construct a stratified vector field which trivializes this fibration over D; and such
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that this vector field is tangent to the boundaries of the balls Yp, N 8B;;. Using this, we
may also construct a geometric monodromy of the fibration p| : Y5, — OD;, such that
this monodromy is the identity on the complement of the balls, Y5, \ U;B;;. The same
is true when replacing Y5, by Xpp5,.

Take some point ¢; € D;. We have the geometric monodromy representation:
pi: 71'1(61_),;, C,;) — ISO(Xci,Xci \ UjBij),

where Iso(.,.) denotes the group of relative isotopy classes of stratified homeomorphisms
(which are C™ along each stratum). As shown above, we may identify, in the trivial
fibration over D;, the fiber X, \ U;B;; with the fibre X,, \ U;B;;. Then the following
morphism of groups is well defined, for any k£ > 0:

ﬂ'k(XCnXai \UJ'BiJ') — Wk(XCi)'

Furthermore, in local coordinates at a;;, X, is a germ of a complex analytic space;
hence, for a small enough ball B;;, the set B;; N X, \ Uja;; retracts to 8B;; N X,,, by the
local conical structure of analytic sets [BV].

It follows that, if we denote X := X, \ Ujay;, then X7, is homotopy equivalent, by
retraction, to X,, \ U;B;;.

3.2 Definition We call variation map the following well defined morphism of groups:
var; : Te(Xe, Xo,) = me(Xe,),

for any k£ > 0, which enters, as diagonal morphism, in the following diagram (in additive
notation):

m(Xe) S m(Xe)
i d vary 4
v;—id "
(X X)) — m(Xen X3)

where j, is induced by inclusion and v; : (X)) — m(X,,) is the monodromy.

Variation morphisms can be defined in homology also and they enter traditionally in the
description of global and local fibrations at singular fibres of holomorphic functions, see
e.g. [Mi], [Lal, [Si], [Ch-2]. In dimension 2, already Zariski used v; — id in his theorem.

For further use, we shall describe a decomposition of S2. Let K C S? be a closed
disc with K N A = @ and let D denote the closure of its complement in S%2. We denote
by S := K ND the common boundary, which is a circle, and take a point ¢ € S. Then
take standard paths 7; (non self-intersecting, non mutually intersecting) from ¢ to ¢,
v C D\ U;D;. The configuration U;(D; U ;) is a deformation retract of D and we shall
identify these two spaces in the following section. We shall also identify all fibres X, to
the fibre X, by parallel transport along paths ;.



3.3 Definition We say that an inclusion of pairs of topological spaces (N, N') — (M, M")
is a g-equivalence if the inclusion induces isomorphism of homotopy groups for 7 < ¢ and
a surjection for j = gq.

With these notations, we may now state our principal result.

3.4 Theorem Let h define a Lefschetz fibration on X = Y\ V with isolated singularities,
including singularities in the azis. Let the azis A be not included in V' and denote ¥ =
o(Singgp). For some k > 0, if the following conditions are fulfilled:
(Cl) (X, X.NA) is k-connected,
(C2) (X;) Xa; \ I) is k-connected, Vi,
(C8)  bdxrsingpX > ki +3

then

(1) The inclusion X, — X is a k + 1 equivalence.

(i) mepr(X) > meya (Xe) /(Im(var;)) o135,
where (Im(var;));_1; denotes the subgroup normally generated by the images of the
variation morphisms.

3.5 Note For the conclusion (i) we need a weaker condition (C3), namely:
(C3i) hdxnging ;pX > k + 2.

This will be clear from the proof, since (C3) is used (with k& + 3) only in Corollary
4.6 and Proposition 4.7(ii). See also Note 5.2 for comparison with rectified homotopical
depth condition.

We shall derive the form of this result in special cases, such as in case Singgp N (A4 X
P') N X = 0 and also in the complementary case A C V, see §5.

Let us discuss here one of the particular cases of the above theorem. Let Y be a
compact manifold of real dimension 2n and let V' be a compact subspace (complex analytic
or symplectic). Assume that h defines a pencil on X without singularities in the axis.
Then condition (C3) is satisfied for £ = 2n — 3 and, if condition (C1) is satisfied, then
condition (C2) is equivalent (see Observation 5.1(iii)) with:

(C2) (Xq \X,ANX,,) is k — 1 connected.

Now, if we assume in addition that Y is a complex projective manifold, then, for a
general Lefschetz pencil, we get X = 0. Under these circumstances, one may notice that
conditions (C1) and (C2)’ —cf. Obs. 5.1(iii)— are “inductive” conditions, that may be
reproduced at each step of an inductive slicing procedure. This follows from the fact that,
in quasi-projective varieties, we dispose of generic Lefschetz pencils and that the axis A
can be regarded, in turn, as a generic slice of a slice (either X, or X,,) of X. For instance,
in cases Y =P" or Y = C", we get the following:

3.6 Corollary Let) denote either P™ or C*. LetV C Y be a complez algebraic subspace,
not necessarily irreducible. For any hyperplane H C Y transversal to all strata of V, we
have:



i) HNn(Q™\V) = Y*\V is a n+ codimV — 2 equivalence.

(ii) There exist generic pencils of hyperplanes such that H is a generic member of such
a pencil. Then Tnycodimv—2(Y \ V) = T ycodimv—2(H N (Y \ V))/(Im(var;));_15-

Proof We prove the statement (i) by induction, checking at each step the conditions in
Theorem 3.4. We notice that ¥ = () at every step. Condition (C3) is empty at every step,
since J \ V is nonsingular and a generic pencil has no singularities within Y\ V.

We give the proof in the case Y = C" since in the other case the proof is the same,
except that in the affine case the generic pencils have the property that their axis is
transversal not only to the strata of V' but also to the strata of some Whitney stratification
of the projective closure of V', which restricts on the affine part to the old stratification.

We may take a second generic pencil on HN(C"\ V) = C*~1\ V having the first axis
A as generic member. We may continue this procedure a number of dim V' times, until
we get as slice the complement of a finite set V N C"~%™V into an affine space C*~4mV,
At each step, conditions (C1) and (C2)’—see Observation 5.1(iii)- reproduce, increasing k&
by 1. In the first step, we get £k = 2n — 2dimV — 3 = n 4+ codimV — 3 — dim V. Theorem
3.4 applies inductively to yield, on the one hand the conditions (C1) and (C2)’ at each
step, on the other hand the conclusion, which after the last step becomes our statement
(). Then statement (ii) follows as in the proof of Theorem 3.4. O

In case of P*\V, part (i) of Corollary 3.6 was proved at homology level, by Chéniot [Ch-1];
his article takes more than 100 pages. For generic pencils of hyperplanes on complex
spaces, Chéniot [Ch-2] and Eyral [Ey] proved connectivity results which are particular
cases of part (i) of our Theorem 3.4. Our proof, based on study of the geometry of
vanishing cycles, is different. It gives strength and clarity to the Lefschetz Principle in
a far reaching degree of generality, including the Second Lefschetz Theorem (Theorem
3.4(ii)).

We shall give more applications (§5) in case the Lefschetz structure of the space X is
hereditary on slices. We especially draw consequences of the fact that the variation maps
are injective or trivial, in two particular situations: X is C* and the pencil is defined
by a polynomial function and X is the complement of a (non central) arrangement of
hyperplanes.

4 Proofs

When dealing with homotopy groups, we shall need to apply the homotopy excision
theorem of Blackers and Massey [BM], see also [Gr]. The conditions for the homotopy
excision have to be carefully checked. In homology, proofs would simplify quite a lot.

We shall use the notations introduced in the previous section. We let A’ := AN X,
and assume that A’ # ().

4.1 Proposition If (X, A’) is k-connected, then the inclusion:
(X0, Xc) <+ (X, Xo)

18 a k + 2 equivalence.



Proof Step 1. If (X, A') is k-connected, then (Xg, X,) is k + 1-connected. Note first
that Xg is homotopy equivalent to the subset Xg U A’ X K of Xg. Let I and J be two
arcs which cover S, as in the proof of Proposition 4.7. We have the homotopy equivalence
(Xs, Xo) = (X; U(A' x K)UX; U (4 x K)),X; U (4 x K)).

Then, by homotopy excision, if we assume that the pairs (X;U(A’' x K), Xpr U(A' x K))
and (X; U (A’ x K),Xs;5 U (A’ x K)) are k + 1 connected, then the following morphism:

;i (X U (A" x K),Xpr U(A' x K)) > (X U(A' x K)UX; U (A x K),X; U (4 x K))

is an isomorphism for j < 2k + 1. This implies that (Xg, X,) is k + 1 connected.

To prove our assumption, notice the pair (X; U (A’ x K),Xpr U (A’ x K)) is homotopy
equivalent to (X, x I,X, x I U A’ x I) and this, in turn, is just the product of pairs
(X, A") x (I,0I). Since (X, A') is k-connected by hypothesis, our claim follows.

Step 2. m;(Xg,X.) ~ mi1(Xk, Xg) for all ¢ > 0. This holds without restrictions since
it follows directly from the exact sequence of the triple (Xg, X5, X.) and the fact that
Xk & X,

Step 3. (Xp, Xs) = (X, Xk) is a k+2 equivalence, by homotopy excision, since (X, X,)
is k + 2-connected. This last fact follows directly from Steps 1 et 2.

Finally, by examining the exact sequence of the triple (Xp, Xs, X.), we see that
(Xp,X.) = (Xp, X,) is a k+2 equivalence, since (Xg, X.) is k+ 1-connected (by Step 1).
Comparing this to Step 3., we conclude that (Xp, X.) — (X, Xk) is a k + 2 equivalence.

O

Consider the commutative diagram:

Te+2 (-XD1 -Xc) "2—) Tr+2 (Xa Xc)
(1) 81 \y 8
Tk+1 (Xc)
where 0 and 0, are boundary morphisms. Since Proposition 4.1 shows that ¢, is an
epimorphism, we get:

4.2 Corollary If (X,., A') is k-connected then, in the diagram (1),we have Imd = Im 9.
O

4.3 Lemma (i) (Xp, X.) is homotopy equivalent to (Xp, X.).

(i) If (Xp,,X.,) is k + 1-connected for any i, then the inclusion (UXp,,U;X,) —
(Xp, X.) 18 a k+ 1 equivalence.

Proof (i) Notice that, for any M C $2, X, is homotopy equivalent to Xjs to which one
attaches along A’ x M the product A’ x Cone(M). Since D is contractible, it follows from

this that XD g Xp.
(ii) follows by homotopy excision. O



Consider next the following commutative diagram:

6i7rk+2(XDi’XCi) = 7rk+2(Uz'XDu Uchi)
@) o o

T2 (Xp, Xe) 2 1 (Xe),

where X, is identified with X, by parallel transport along the paths and the boundary
operator 9, is identified to the sum of the boundary operators &; : mp2(Xp,, X)) —
mr1(Xe, ). With these notations we have the following:

4.4 Proposition If (Xp,,X.,) is k+1-connected for all i, then Im 0; = Im 0, in diagram
(2) -

Proof We use Hurewicz maps between homotopy and homology groups (denoted h;, hy
and hy below). We have the following commutative diagram induced by inclusions:

@imer2(Xp,, Xo,) =~ mhia(UiXp,,UiXe) —  mirya(Xop, Xe)
Dihe ~L hy ~L ) Jr h2
®iHes2(Xp;, Xe,) ~  Hiya(UiXp,, UiXe,) 2 Hiyo(Xp, Xo).

By our hypothesis and by Hurewicz theorem (see e.g. [Sp]), we have that the Hurewicz
map h; : mr2(Xp,, Xe,) = Hi2(Xp,, X;) is an isomorphism, for all 7, hence A, is an
isomorphism. The same is ho, since (Xp,X,) is (k + 1)-connected (by using Lemma
4.3(ii)). Next, j. is an excision in homology, hence isomorphism. It follows that ¢, is an
isomorphism. This shows that, in the diagram (2), 8, is “equivalent” to 0,. O

At this point, our problem reduces to the following:
(a). to prove that (Xp,, X,) is k + 1-connected, for all ¢, and
(b). to find the image of the map &; : mp42(Xp,, Xe,) = met1(X;), for all .

We shall reduce these problems again, by replacing Xp, by X}, := Xp, \ Singgp. For
this, we use condition (C3) for (b), respectively condition (C3i) for (a).

4.5 Lemma If hdxnging ;pX = ¢ + 1 then the inclusion of pairs (X}, X;) XN (Xp;, Xs;)
i8 a g-equivalence, for all i.

Proof Due to the exact sequence of the triple (Xp,,X},,X,,), it will be sufficient to
prove that (Xp,, X}, ) is g-connexe, for all 4. This is true since, by homotopy excision, the
inclusion
(U;Bi; N Xp,,U;0B;; N X)) = (Xp,, X, )

is a g equivalence. We have denoted here by B;; C X a small enough ball centered at the
singular point a;; € Sing gp. We have used the hypothesis hdxnging ;X > g + 1 and that
Xp; N B;; \ {ai;} retracts to Xp, N 0B;;, by the local conical structure, which respects the
stratification. g

4.6 Corollary If hdxnging ;pX 2> k + 3, then, for all i:
Im(ai : 7rk+2(XDuXCi) — 7rk+1(XCi)) = Im(@,’ : 7rk+2(X;),-’Xc") — 7rk+1(XCi))'



Proof From the proof of Lemma 4.5, it follows that (X}, , X,) is (k + 2)-connected. We
have that 0; = ; o ji, where j, : m2(X},, Xe;) = mi2(Xp;, X.;) is induced by the
inclusion. By Lemma 4.5, j, is surjective, hence Im & = Im §;. O

We shall use the notation X := X,, \ X. The last step in the proof of Theorem 3.4 is
the following result, where the variation maps come in:

4.7 Proposition If (X, X} ) is k-connected for all i, then:
(i) (Xp,, Xc;) is k + 1-connected.
(ii) Im 0; = Im(var; : mey1(Xe;, X3,) = mera(Xe,))-

Proof Let us take here Milnor data (B,;, D;) at the (stratified) singularities a;;, namely
small enough balls B;; and “very small” discs D;, such that radius D; < radius B;;. We
shall give the proof for a fixed index ¢ and therefore we suppres the lower indices ¢ in the
following.

(i). Let D* denote D \ {a}. By retraction, we identify D* to a circle and cover this
circle with the union of two arcs I U J, like follows: for the standard circle S, we take

I := {expint | t € [-},1]}, J := {expint | ¢t € [},2]}. Then Xp- & X; UX; and
X, £ X 7 = X x J. With these, we have the following homotopy equivalences:

(X5, Xe) 2 (Xp«UXx D, X.UX}x D) % (X;UX;UX: xD,X;UX: x D).

We then excise X; U X} x D from the last pair and get (X;, X, x 8T U X x I), which
in turn is homotopy equivalent to (X., X}) x (I,8I). Now, since (X,, X) is k-connected,
this last product is k¥ 4+ 1 connected.

It remains to examine the condition for the homotopy excision. This is the level of

connectivity of the pair (X; UX} x D, X, x 81 U X} x I). We transform this pair by the
following sequence of homotopy equivalences (we replace I by D and this by J):

(X;UX*x D, X, x 0IUX*xI) =
(X; UX*x D, X, x 01U X? x D) &
(XyUX* x J, X, x 0JUX* x J) =
(X7, Xo x 8T UX* x J) & (X, X2) x (J,8J).
The result implies that the pair on top is k + 1-connected. It then follows that the
excision in cause is a 2k + 2 equivalence. This proves that (X}, X.) is & + 1-connected.

(ii). The variation map is now identifiable, on the excision diagram, by the arrow which
makes the following diagram commutative:

a!
Tr+2(Xp, » Xe) — Tr+1(Xe:)

excision T ™ T vary

Tira(Xr, Xog X OTUXE X I) o~ mpy1(Xe,, X2) x m(I,81).

This ends the proof of Theorem 3.4.
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5 Comments and further results

Several other statements can be derived from Theorem 3.4 and its proof, by taking into
account the following (still under the condition AN X # @):

5.1 Observations (i) In case XN Singgp = @, the condition (C3) is void.

(i) In case (A x S?) N X N Singgp = @, we may replace condition (C3) by the more
global condition, which is also more general:

(C3) (X,X\ZX)is k+ 2-connected.

(iii) In case (AxS?)NSinggp = @, the condition (C2) is equivalent, under the assumption
(C1), with the following:

(C2) (X;,ANX;) is (k— 1)-connected.

Proof (ii). By examining the Proof of Theorem 3.4, we see that we have used the
homotopy depth condition only to compare Xp, to X7,.. We may cut off the proof this
comparison (Lemma 4.5 and Corollary 4.6) and start from the beginning with the space
X \ X instead of the space X. Taking into account that X}, = X}, \ X, for all ¢ (since of
(C3)’), the effect of this change is that the proof yields the conclusion “X, — X \ X is
a k + 1 equivalence” and the corresponding second part (ii). But at this final stage, we
may substitute X \ £ by X since they have isomorphic homotopy groups up to 71, by
condition (C3)’.

(iii) When there are no singularities in the axis, we have AN X} = ANX,, for any i. Then
the exact sequence of the triple (X, X, AN X ) shows that the boundary morphism

Wq(Xm X;;) - ”Tq—l(Xc’ AN X;.-)
is an isomorphism, for ¢ < k, by condition (C1). This implies our claimed equivalence. (I

5.2 Note For a pencil on a complex space, with isolated singularities in the axis, condi-
tions (C2) and (C3) can be replaced by:
(C4) rhdX >k + 3,
respectively by (see Note 3.5):
(C4i) rhdX >k +2.

Indeed, thd X > ¢ implies thd X > g (since X is a hypersurface in X x P! and then
apply the result of Hamm and Lé [HL, Theorem 3.2.1]) and this in turn implies hd,X > ¢,
for any point a € X, by definition.

Next, thd X > ¢ implies that the pair (Xp,, X,,) is ¢—1 connected, by [Ti-2, Proposition
4.1]. This shows that conditions (Cl) + (C4i) imply the connectivity statement (i) of
Theorem 3.4, by only using, as a shortcut, Proposition 4.1 and Lemma 4.3.

Furthermore, if we assume (C4) instead of (C4i), then, besides that (Xp,, X,,) is k+2
connected (shown just above), it follows that the pair (X}, ,X;) is k¥ + 1 connected, by
Lemma 4.5. By the proof of Proposition 4.7, the k + 1 connectivity of (X}, ,X,) is
equivalent to the k-connectivity of the pair (X,,, X;,), which is condition (C2). O
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The case AC V.

We discuss in the following the case A’ = @), or equivalently A C V, which is com-
plementary to the one we have considered until now. Then, for a pencil hjx : X — S2,
the condition (C1) would be replaced by the condition “X, is k-connected”, which is too
restricting.

Nevertheless, in case hjx is not onto S, the situation becomes interesting. So let us
assume that A C V' and that V contains a fibre of the pencil »: Y\ A — §2. Even if the
axis A is outside the space X, the “singularities in the axis” influence on the topology of
the pencil.

We have the following result on a class of nongeneric pencils, disjoint from the class
considered in Theorem 3.4.

5.3 Theorem Let X =Y \V have a structure of Lefschetz fibration with isolated singu-
larities in the azis, defined by the pencil h: Y \ A — 52, such that V contains a member
of the pencil. For some fired k > 0, assume that (X, X],) is k connected, for a general
member X, and any atypical one X;,. Then:

(i) If (X, X \X) is k+ 1 connected, then the inclusion X, — X is a k+ 1-equivalence.
(i) If (X,X \X) is k+ 2 connected, then:

Tre1(X) 2 My (Xe) /(Im(var;) )15

Proof The proof follows the lines of the proof of Theorem 3.4 and we shall only point
out the differences, using the same notations. In our case, the target of hx is 5%\ {a}

for some o € %, We have D = §? \ {a} and therefore Xp 2 x. Examining the proofs of
Proposition 4.1 and Corollary 4.2, we see that, under our assumptions, their conclusions
hold without any restrictions on k. Hence (C1) does not enter as condition in our proof.
On the other hand, from Observation 5.1(ii) and (iii), we can use (C2)’ and (C3)’ instead
of (C2), resp. (C3). a

Polynomials on C* as nongeneric pencils.

Let X = C" and f : C* — C be a polynomial function. This extends as a meromorphic
function on P*: if deg f = d, then h = f/2z%:P*\ A — P!, where f is the homogeneized
of f with respect to the new variable z and A = {f; = 0} C H, is the indeterminacy
locus (axis of the pencil). Here we have Y =P*, V = H,, = {z = 0} C P". Since H,, =
h~1(00), we are in the situation described above, namely we have a pencil hjcs : C* = C,
where hjc» = f. In particular, ¥ N X = Sing f.

For such a pencil, we may work under more general hypotheses, namely we assume
that f has isolated singularities, but no condition on singularities in the axis, which may
be non-isolated. Indeed, take the complement of a big ball B C C", centered at the
origin of a fixed system of coordinates on C*. The complement Cp := C* \ B is a kind
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of “uniform” neighbourhood of the whole H,, and of all singularities in the axis together.
For big enough radius of B, we have

X, NCs = X,

for any i, since the distance function has a finite set of critical values on the algebraic
sets X,,. This implies, as in 3.1, that there is a well defined geometric monodromy
representation at each a; € A C C, p; : m(8D;, ;) — Iso(X,, X¢; \ (B U U;B;;)), where
the B;;’s are small enough balls around the critical points of f on X,,, if any. This induces,
exactly as before (see Definition 3.2), a variation map:

var; : Wk(Xci;X;i) — Wk(Xc’.),
where X := X,, \ Sing f embeds into X,.

Therefore, under these notations, Theorem 5.3 holds for a pencil defined by a polynomial
function f : C* — C. When working in homology, we have in addition a more precise grip
on variation maps. Firstly, the boundary map H,,;(C"*, X,) 2 A, (X.) is an isomorphism
and secondly, we have by excision: H,.1(C", X,) ~ &;H,+1(Xp,, X.). These show that
H,(X.) decomposes into the direct sum of vanishing cycles at each atypical fibre X,.

In case of a holomorphic function germ with isolated singularity on a germ (C,0),
the variation map of the local monodromy is an isomorphism on the level of homology.
In our global case of a polynomial function with isolated singularities, the variation maps
cannot be isomorphisms since the homology of the fibre H,(X.) captures information on
vanishing cycles at all fibres X,, together. Nevertheless, we can prove the most we can
ask.

5.4 Proposition Let f : C* — C be a polynomial function with isolated singularities.
Then:

(i) If (X., X;,) is k-connected for any i, then (C*, X.) is k + 1-connected.

(ii) In homology, the variation map var; : H.(X,,, X],) = H.(X,) is injective, for any
1.

Proof Since the fibres of f are Stein spaces of dimension 7— 1, their homology groups are
trivial in dimensions > n. The condition (C3)’ is largely satisfied, since (C*,C" \ Sing f)
is (2n — 1)-connected. Hence part (i) follows from Theorem 5.3. For part (ii), remark
first that, by the above arguments, the boundary map &; : H,.1(Xp,, X, )= H.(X,)
is injective, for any i. Next one may replace Xp, by X}, since (Xp,,Xp,) is (2n —
1)-connected. It follows that the boundary morphism 8] : Hoy1(X3., Xo,)—H(X.,) is
injective. As in Proposition 4.7, one may identify H,,1(Xp, ,X,) to H.(Xc,X},), by
excision and J; can be identified with var; : H.(X,, X;,) = H.(X,,). O

The subset X, <y X, plays here the role of the boundary of the Milnor fibre in the local
case. We say that Im ¢, is the group of “boundary cycles” at a;. Then it also follows that:
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5.5 Corollary Boundary cycles are exactly those which are invariant under the mon-
odromy at a;, i.e.:
Im ¢, = Ker(y; — id).

Proof We have the following commutative diagram, where the first row is the exact
sequence of the pair (X, X}.):

H(X:) -5 H(X.) 2  Ho(Xe,XZ)

RN /v
H.(X,)

We have that Im¢, = Kerj,. Since v; — id = var; o j,, and since var; is injective, by
Proposition 5.4, our claim follows. O

Complements of arrangements and minimal models.

Consider the complex space X = C*\ V, where V is a hypersurface. Since C*\V is a
Stein space, it has the homotopy type of a CW-complex of dimension < n. For a generic
hyperplane H € C* we have that (C* \ V, H \ V) is (n — 1)-connected, by Corollary 3.6.
We may deduce:

5.6 Corollary The space C*\ V is obtained, up to homotopy type, from the slice H\'V
to which one attaches n-cells. O

Slicing again H \ V by a generic hyperplane and repeating this, we get a CW-complex
model of the space C* \ V, which starts with a bouquet of d circles, the 1-dimensional
skeleton. One may ask if this model is minimal, in the sense that the number of ¢-
cells equals the betti number by(C* \ V), for any ¢g. This question was raised to us by S.
Papadima in connection to our paper [Ti-1] (in which we construct models of hypersurfaces
in families) and in connection to his paper with A. Suciu [PS], in which they use minimal
models to get information on homotopy groups of complements of central arrangements.

We show here that the model of C* \ V is indeed minimal in case of a (not necessarily
central) arrangement of hyperplanes. This will be done by induction, using at each step
the particular behaviour of the variation maps within a generic pencil of hyperplanes
in C*. Namely, let H be defined by [ = 0 and consider the pencil {{ = a}aec. The
genericity of the pencil amounts to the condition that the direction of the pencil is chosen
such that all members of the pencil are transversal to all strata of positive dimension of
the canonical stratification of the arrangement V' (which is generically fulfilled). With
these conventions, we have the following result:

5.7 Corollary For a (noncentral) arrangement of hyperplanes A C C* and a generic
hyperplane H, we have: H;(C*\ A) ~ H;(H\ A), for j £ n—1 and H,(C" \ A) ~
H,(C*\ A H\ A).

In particular C"* \ A has a minimal model.
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Proof We work in homology. Having the result in Corollary 5.6, we still have to look at
the exact sequence:

0= H,(C"\A) = H,(C"\ A, H\A) > H,_;(H\ A) = H,_1(C*\ A) = 0.

We claim that ., is injective. Indeed, by our results, in particular Corollary 3.6(ii),
Kert, = (Im(var;));. We observe now that var; is trivial, for any 7. The reason for this
is that the atypical fibres X,, of our pencil are exactly those which intersect the point-
strata of the canonical stratification of .A. There are no singularities in the axis and the
only singularities of the pencil are in fact these points. We localize at such a point and
we notice that we may define a local geometric monodromy of the pencil, respecting the
hyperplanes of A, by z — z exp(int), for any local coordinate z. This shows that the local
monodromy is trivial and we can extend the local monodromies to a global one around
X, which is the identity on X, as subset of X;.

We have proved that ¢, is injective, which also means that the above exact sequence
splits in the middle. This proves our first statement. In particular, we get that the number
of the n-cells attached to H \ A in order to obtain C* \ A is equal to b,(C" \ A). Our
second statement follows then by induction. O
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