SUPERANALOGS OF THE CALOGERO OPERATORS AND JACK
POLYNOMIALS

A. SERGEEV

ABSTRACT. A depending on a complex parameter k superanalog S£ of Calogero operator
is constructed; it is related with the root system of the Lie superalgebra gl(n/m). For
m = 0 we obtain the usual Calogero operator; for n = 1 we obtain, up to a change of
indeterminates and parameter k the operator constructed by Veselov Chalykh and M. Feigin.
For k =1, % the operator SL is the radial part of the 2nd order Laplace operator for the
symmetric superspaces corresponding to pairs (gl(V) & gl(V), (V) and (gl(V),05p(V)),
respectively. We will show that for the generic m and n the superanalogs of the Jack
polynomials constructed by Kerov, Okunkov and Olshanskii are eigenfunctions of S£; for
k=1, -;— they coincide with the spherical functions corresponding to the above mentioned
symmetric superspaces.
We also study the inner product induced by Berezin's integral on these superspaces.

This paper is a detailed exposition of [S3] .I define superanalogs of Calogero operator and
Jack polynomials for symmetric superspaces corresponding to pairs (gl(V') @ gl(V), gi(V))
and (gl(V), 0sp(V)).

Recently Desrosiers, Lapointe and P. Mathieu suggested a different approach to superiza-
tion of Jack polynomials involving an odd indeterminates [DLM],[DLM1].

In [SchZ] Scheunert and Zhang proved the existence invariant integral for classical Lie
superalgebras.In the section 7 an algebraic analog of Berezin integral for gl(V') is constructed
in more details.

1.1. The Hamiltonian of the quantum Calogero problem is of the form

2

d a\? 1 w
L= Z_; (ﬁ) ~ 5k(k—1) Z e 1) (1.1.1)
i= <]

In this form it is a particular case (corresponding to the root system R of gl(n)) of the
operator constructed in the famous paper by Olshanetsky and Perelomov [OP]

L=A- Zka(ka—l)—g_“‘ﬁi'ﬁa—

p ) (1.1.2)
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2 A. SERGEEV

Veselov, M. Feigin and Chalykh [CFV1] suggested the following generalization of operator
(1.1.1)

n 2 2 w”
[ = 2 9 Se(k+1 -
;:1 (at{) + (3tn+1) Rk + )Z:J sinh? 5t — t:) (1.1.3)
’ 1

L w
a(h 1) 1_21 sinh? £(t; — Vktn1)

It is known ([LV]) that eigenfunctions of operator (1.1.1) can be expressed in terms of Jack
polynomials Py(zy, ..., Z,; k), where X is a partition of n. (For definition and properties of
Jack polynomials see [M], [St].) It is known ([M]) that for k = 1, 7, 2 (our k is inverse of @, the
parameter of Jack polynomials Macdonald uses in [M]) Jack polynomials are interpreted as
spherical functions on symmetric spaces corresponding to pairs (gl®gl, gl), (gl, sp) and (gl, 0),
respectively. In these cases the corresponding operators are radial parts of the corresponding
second order Laplace operators.

1.2. Superroots of gl(n|m). Let I = Iz]]I; be the union of the “even” indices I3 =
{1,...,n} and “odd” indices I1 = {1,...,m}. Let dimV = (n|m) and e,...,en,€1,...,em
be a basis of V' such that the parity of each vector is equal to that of its index. Let
€1,+.-,En, €1, ..,Em be the left dual basis of V*. Then the set of roots can be described as

follows: R = Ry1 [[ Roz [] Ri2 ][ R21, where
Ru={ei—¢;|4,i€ L}, Rn={ei—c¢;|tj€ i}, (1.2.1)
R12={6,‘—8‘7‘ |’i€I(‘), jEIi}, R21 ={8i—€j "I;EIL ] EI()}.

On V*, define the depending on parameter k inner product by setting
(v],v3)k = Zv{(ei)v;(el kZ'ul 7)v5(€e3) (1.2.2)
i=1

and set p) = kpy + %pg — p12, where

—% > o P2=% > B plZZ%Z'Y‘

a€RY, BERY, Y€R12

For any I € V*, define ¢! as a linear functional on S(V) that extends ! to a homomorphism
of S(V) (or as a formal series) and denote by # the subalgebra in the algebra of quotients
of S(V*) generated by the elements e’ for I € V* and (1 — e)7! for @« € R. On H, define
operators 0;, 0; by setting

0i(e”) =v'(e)e”,  G5(e”) = v"(es)e”
Define the superanalog of the Calogero operator to be
SL=38 ~k26-?—k(k )y ok

o (% — e E)?

%(715 -) T (:3 Bk _9 Z 1(777)k '

_é _
BERS, (e2 —e " z)2 wER1z (e7 —e77)2

(1.2.3)
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It easy to verify, that the superanalog of the Calogero operator can be rewritten in following
form

n m 1
S£=Zaf—k232 k(k—1) > g—z—i-
i=1 j=1 aeR;Ll( :—e 2) (1.2.4)
1 /N
M Z — g 2(1 — k) Z S
BeRY, (62 —€ 2) 'VER12 e 2
Observe that the change of variables
k— —s, ¢€j+r+/se; forjel
sends SL, into S£,
1
SLy = 282+ 232—3(84-1) Y v——wgt
i=1 i=1 acht (€7 —€71)?
1 1 (1.2.5)
LD ¥ 2(s+1)
 perj (e@ — e‘@) 7§2 —%)

where v, = €; — /s¢;, if ¥y = &; — €.

It implies that if dim V5 = 1, then (1.2.5) coincides with the generalization of the Calogero
(1.1.3) operator suggested in [CFV1].

In order to describe the eigenfunctions of SL, it is convenient to present SL in terms of
operator M described below. Set

60 = T (% —e%)F [] (eF —e %)V [] (e —eH). (1.2.6)
a€RY}; BERY, Y€ER12

Set
-1
M= (6M)7 (L~ (o), o)) 89,
1.2.1. Lemma . The ezplicit form of M 1s

M=38 - kzaz
i=1

+
aERn

ef+1 e +1 (1.2.7)
R e Al Dl L

where

Oa =0; — 0; for o =¢;—¢j;
Op=0;,—0; for f=¢i—¢3
Oy = 0; + kO; for v =¢; —¢j.
In terms of new indeterminates T; = e* and y; = €°i the operator M takes the form

M:i(mi%)z—ké(wag) +k Z Ti % (wiaimﬁwjaia:j)—

1<i<j<n T — &5

1.2.8)
vit+yi [ @ a)_ x,,+y,-(_a k-i> (
('y FCrm >, o — \Tiag Thuig )

1<i<j<n Vi — 1<i<n, 1<j<m %
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1.3. Following Kerov, Okunkov, and Olshanskii [KOO], determine superanalogs of Jack
polynomials. Let us consider the polynomial algebra A in infinite number variables z;, 5, ...
and y1, ¥, --- - Let p(z,y) = D, zi+)_ y; be the power sum. Let us define the automorphism

wi of A by the formula .
w(pr(2,9)) = D 2] = 7 D Y

Let Py(z,y, k) be the usual Jack polynomial. Then the superanalogs of Jack polynomials
are of the form

SP)\(x,y,k) =wk(P>‘(m,y, k)) (129)
If we set 41 = ** = Ymy1 = -+ = 0, then we can consider the superanalogs of Jack
polynomials in finite number of variables SPy(z1,...,Zn, Y1, - - Ym, k)-
Theorem . The polynomials SP\(z1,...,Zn, Y1, ---,Ym, k) are eigenfunctions

of operator (1.2.8).

1.4. Spherical functions. In this paper we adopt an algebraic approach to the theory of
spherical functions.

Let g be a finite dimensional Lie superalgebra, U(g) its enveloping algebra, b C g a
subalgebra. Let w : g —> gl(V') be an irreducible representation and V* the dual module.
If v € V is a nonzero b-invariant vector, and there exists a nonzero vector v* € V* which is
also b-invariant. The matrix coefficient 67 (v*, v) € U(g)*, where

0™ (v*,v)(u) = (—1)PWPEy* (r(u)v) for any u € U(g),
will be called the spherical function associated with the triple (mw,v*,v).

Let L* be the left co-regular representation of g; recall that it is given by the formula (in
which ¢ is the principal antiautomorphism of U(g))

L*(w)l(v) = (—1P@PO1(yty)  for any u,v € U(g).
Let I € U(g)* be a left and right b-invariant functional, i.e.,

l(zu) =l(uy) =0 for any z,y € b and u € U(g).
Then L*(z)l, where z € Z(g), is also a left and right b-invariant functional.

1.5. Let g = gl(V) @ gi(V) and b ~ g(V) is the diagonal subalgebra, i.e., b = {(z,z) | z €
g(V)}, whereas b; ~ g(V) is the first summand of g. Let § be the Cartan subalgebra of
gl(V), let X be a partition of | € N and V* an irreducible gl(V')-module in V®, corresponding
to A, see [S1].

The g-module W* = V* ® (V*)* is irreducible and contains a unique, up to a constant
factor, invariant vector vy. The dual module (W?*)* contains a similar vector v}. Let ¢y =
6™ (v}, va) be the corresponding spherical function.

Let dimV = (n|m), and let Iy = {1,...,n} and I; = {1,...,m}; let {e;; | 1,5 € I =
I3]]1 i} be the basis of gl(V) consisting of matrix units. Recall that p(j) = 0if j € I, and

p(j)=1if j € I1. Set
Cy =) (—1)Veye;.
ijel
As is easy to verify, C; is a central element in the enveloping algebra of gi(V') and even in
that of g, if gli(V) is considered to be embedded in g as the first summand.
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1.5.1. Theorem . i) Every left and right invariant functional | € U(g)* is uniquely deter-
mined by its restriction onto S(h) C S(b1).

ii) Let (S(h)*)™ be the set of restrictions of left and right invariant functional l € U(g)*
onto S(h) C S(b;). Then for every z € Z(g) there exists a uniquely determined operator 2,
on (S(§)*)™ (the radial part of z). It is determined from the formula

(1) (u) = (L*(2)1)(u) for any ' € (S(h)*)™™ and its extension I € U(g)*.

iii) The above defined operator Q¢, corresponding to Co coincides with the operator M
determined by formula (1.2.5) for k = 1.

iv) The functions @,, as functionals on S(h), coincide, up to a constant factor, with Jack
polynomials SPy(z,y;1), where x; = e for i € Ij and y; = €% for j € I3.

1.6. Let g = gl(V), dimV = (n|m) and m = 2r is even. Let b = osp(V) be the orthosym-
plectic Lie subsuperalgebra in gl(V') which preserves the tensor

der@e+ ) (@ — e ®6). (1.6.1)
1€l jEI;

Let 9 be an involutive automorphism of g that singles out osp(V):
osp(V) = {z € gl(V) | ¥(z) = —x}.

Let V* be a g-module as in sec. 1.5. By [S2], V* contains a b-invariant vector @ if and only
if A = 2u and all its rows are of even length. The vector ¥} € (V*)* is similarly defined. Let
@a = 0(v},vy) be the corresponding matrix coefficient. Set b* = {z € h | ¥(z) = z}, where
h C g is Cartan subalgebra.

1.6.1. Theorem . i) Every left and right invariant functional on U(g) is uniquely deter-
mianed by its restriction onto S(hT).

ii) Let (S(hT)*)™ be the set of restrictions of left and right invariant functionals. Then
for every z € Z(g) there exists a uniquely determined operator 0, on (S(hT)*)™ (the radial
part of z). It is determined from the formula

Q1 (u) = (L*(2))(w) for anyl' € (S(h*)*)™ and its extension | € U(g)*.

iii} The operator Q¢, corresponding to Cy coincides with the operator M determined by
formula (1.2.5) form=r and k = 1.

iv) The functions @y, as functionals on S(ht), coincide, up to a constant factor, with Jack
polynomials SP,(z,y; 1), where A =2u, z; =e*i for1<i<nandy; =€ for1<j<r.

1.7. Invariant integral. For every g-module W, define in U(g)* the subspace C(W)
consisting of the linear hull of the matrix coefficients of W. Denote by 2, ,, the subalgebra
of U(g)* generated by the matrix coefficients of the identity representation V of g = gl(V)
and its dual.

Theorem . i) On U, n, there exists a unique up to a constant factor nontrivial left and
right invariant (with respect to the left and right coregular representations) linear functional
F.

ii) On U, m, define the inner product (li,l;) = F(Iily), where | — [* is the principal
automorphism of U(g)* (the one corresponding to the principal antiautomorphism of U(g)).
Then (l1,12) = 0 for any l; € C(V?), I, € C(V#) and X # p.
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iii) If dim V} # dim V2, then (I1,15) = 0 for any l,,l, € C(V?).

§2. THE DUAL OF THE ENVELOPING ALGEBRA

In this section we rewrite some of the facts from Dixmier’s book [Di] for Lie superalgebras.

2.1. Let g be a Lie superalgebra, U(g) its enveloping algebra. On U(g), there is a canonical
antiautomorphism v — u’ given on g by the formula z* = —z and extended on U(g) by
the formula (uv)t = (—1)PMPEytyt,

We endow U(g)* with a coalgebra structure having defined the homomorphism
c:U(g) — U(g) @ U(g) by the formula

c(z)=r®1+1Q®z forany z€g.

It is easy to check that (¢(z))? = e(z*), where the first ¢ is the canonical antiautomorphism
of U(g) @ U(g) ~ U(g & 9)-

2.2. Lemma . Let dim g = n|m. Then U(g)* is isomorphic to the algebra of formal power
series in n even and m odd indeterminates.

Recall that the Poincaré-Birkhoff-Witt theorem states that the graded algebra associated
with the natural filtration of U(g) is the symmetric (polynomial) superalgebra in n even
and m odd indeterminates. Let gz = Span(es,...,e,), g1 = Span(es,...,em). Let Iz =
{1,...,n}, [ ={1,...,m} and let

M={v=01,...,Vn;Vi,...,Vm) | s € Z; forie Iy;v; € {0,1} for j € I1}.

Let t1,...,t,; %1, - - ., tm be the set of supercommuting indeterminates and
V1 vn Y1 Vi
e err eg er
€, = — ... ——— .
! vp! 1! Ve

The correspondence
U(g)* > F «— > Fle,)tor .. it .t
veM

determines the isomorphism desired. O

2.3. Left and right coregular representations. Set

(L @)F)(0) = (~1PPP) F(uto),
(R*(u)F)(v) = (=1)P)eE)+p@) F(yy), for any u,v € U(g), F € U(g)*.

The following statements are easy to check:
i) u — L*(u) is a representation of U(g) in U(g)* (called the left coregular representation);
ii) u — R*(u) is a representation of U(g) in U(g)* (called the right coregular representa-
tion);
iii) both L*(z) and R*(z) are superdifferentiations of superalgebra U(g)*.
Observe also that superalgebra U(g)* possesses a canonical automorphism F > F*, where

F'(u) = F(u?) for any u € U(g) and F € U(g)*.
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On %, define the bilinear form
(L1, L) = F(LtLy). (2.4.2)
2.4.5. Lemma . Let W be an irreducible subrepresentation « of g in T(V'). Then

i) (6" (wy,wr), 6" (w3, ws))) = (—1)dwwi(wa)ws(wr),

for any wy,wa € W and wi,w; € W*, where dw only depends on W.
i) If dim Wy # dim Wi, then (Ly, Ls) = 0 for any Ly, Ly € C(W).

Proof. i) Let ¢ : W*@W @ W*@ W* — U(g)* be the map from Lemma 2.4.3. Then Foyp
is a g @ g-invariant map W* @ W @ W* ® W* to C. But such a map is unique (up to a
constant factor) and is of the form w} ® w; ® w} ® we = w}(w;)wj(ws). This proves i).

ii) Observe that, due to §7 F(¢) = 0 for the counit ¢ € U(g)*. Now, apply L to both parts
of equality from Lemma 2.4.4 we obtain

0 = S(67(w*, ws), 07(w}, w))) = dopw* (awy)(dim Wy — dim 7).
Having selected w* and w so that w*(w) # 0 we deduce that dw = 0. O

§3. SUPERANALOGS OF CALOGERO OPERATOR

3.1 Superroots of gl(n|m). Let I = I3]]I; be the union of the “even” indices Iy =
{1,...,n} and “odd” indices I1 = {1,...,m}. Let dimV = (n|m) and ey,...,en, €1, .., €m
be a basis of V' such that the parity of each vector is equal to that of its index. Let
€1,-.-,En, €1, - - - , Em De the left dual basis of V*. Then the set of roots can be described as
follows: R = R11 H R22 H R12 H Rz]_, where

R11={€i—€j|’i,j€Iﬁ}, R22={€i-"6j|'i,j€Ii},
Ro={ei—¢cj|liely, jehi}, Ru=A{ei—¢jlicl jc I}
On V*, define the depending on parameter & inner product by setting

(47,93 = D vi(eui(en) — kY oi(e)s(es) (312

and set py = kp1 + %pz — p12, where

Plzéza; P2=%Zﬂ; P12=%Z’7-

a€R}; BeRY, TER12

For any [ € V*, define € as a linear functional on S(V) that extends [ to a homomorphism
of S(V) (or as a formal series) and denote by # the subalgebra in the algebra of quotients
of S(V*) generated by the elements €' for [ € V* and (1 — e*)! for « € R. On H, define
operators J;, 8; by setting

Bi(e”") = v*(e;)e”, 3(e”") = v*(g5)e”".

Set fora € R
A =e% +e75, A =eF —e7 3,

R
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2.4. Matrix coefficients. Let V be a g-module, 7 : g — gl(V) the corresponding
representation, V* the dual module. For any v € V and v* € V*, define a linear form
6™ (v*,v) on U(g)* by setting

0™ (v*, v)(u) = (—1)P@PEOY* (1 (u)v). (2.4.1)

Denote by C{(7) or by C(V) the subspace of U(g)* generated by the 6"(v*,v) for allv € V
and v* € V*.
2.4.1. Lemma . i) ™% (v} ® v3,v; ® v3) = (—1)PCIPERG™L (¥ 4;)6™2 (v3, va).

11) C(ﬂ'l@ﬂ'z) 20(71'1)0(71'2). .

iii) If w is finite dimensional, then (87 (v*,v)) = (—1)P1)P(3)g™" (4, v*).
2.4.2. Lemma . The map V* ®V — U(g)* given by the formula (v*,v) — 67 (v*,v) is
a g ® g-module homomorphism if we consider U(g)* as a g & g-module with respect to the
stmultaneous action of the left and right coregular representations.

If V is irreducible, the above map has no kernel.

2.4.3. Lemma . Let V be a g-module. Consider the map ¢ : V* @V @V*@V — U(g*):
(v} @ vy @ U2 ® vg) = (—1)PDPE)+P()P(E)+P(T)P(T) (971 (¥ ) 672 (03, v,).

Consider (V*@V)® (V*®V) as g ® g-module. Then ¢ is a g ® g-module homomorpism,
where we consider U(g)* as a g g-module with respect to the simultaneous action of the left
and right coregular representations.

2.4.4. Lemma . Let V be a finite dimensional g-module, m the corresponding representation.
Let {v;}icr be a basis of V, {v} }scr the dual basis of V*. Then

Z (07 (v*, v:)) 07 (v}, v) = (v*,v)e,

for any v € V and v* € V*, and where £ is the counit of U(g)*.

Proof. The functional € is uniquely, up to a constant factor, characterized by its invariance
with respect to right coregular representation. Further, w = > (—1)?*)v} ®u; is an invariant

of the g-module V*®V. Hence, by the preceding Lemma the element p(w®v*®v) is invariant
with respect to the right coregular representation functional on U(g), so ¢(w @ v* ®v) = ae.
On the other hand,

plw v ®v) = Z(—l)p(i)(p(vz QU v Q) = Z (07 (v*, v3))t 67 (v}, v).

Hence, S (8™ (v*,v;))" 07 (v}, v) = ae. To find @, substitute in both parts of this equality
u = 1. We obtain

a=ag(l) =Y (67(v",w) 07(v],0)(1) = }_(v*(ui)o} (v)).
O
Let g = gl(V) and 2 the subalgebra in U(g)* generated by C(V') and (C(V))E. It is not
difficult to verify that ¥ is invariant with respect to the left and right coregular representa-

tions. In §7 we will prove that on 2 there exists a nontrivial and invariant with respect to
the left and right coregular representations functional F' (the Berezin integral).
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A= [] A7 A= ][] 45 A= ][] &5

aER}; peRT, YERT,
1
5 = ASAF A
It is easily to verify that the operator S£ can be rewritten in the following form

Sﬁ:iaf_kiag_k(k_l) Z (a’a)k+

i=1 aeR;q (Az)?

i 5 B0 > &

ﬁER+ (A ’7ER12

Let us define the operator M* by the formula

=38 - k232+k z
i=1

czER11

where
Oa = 0; — 0; for @ = g; — ¢,
0p = 0; — 05 for 8 =¢&; — €3
Oyp = 0; + k0; foryvy=¢; —¢;
3.2. Proof of Lemma 1.2.1. We will prove identity
SELME(8® N = SLy — (ox, pr)k

equivalent to Lemma 1.2.1. The following identities are easy to verify:

8(A%) = sae)d;,  B(A7) = jale)Al

where o € R.
A L1 AY
), (5%))~ _z Za N
§9a,(5®) 1 = 5, Z )as *3 > ez~
aERf’l YER12 7
where ¢ € .
(4)9,(5)~ Ay
5®5,(5™) 1 = ; - —k Y Ble z) Z UGt
BERY, ')'ER12 v
where ¢ € I7. The operator M* can be expressed in the form
A+
=Y F-kY &#+k Z afe;) 20—
i€l J€I1 aERn,zEIO Ag

+

> Ble)% f’a- > (e,) 6+k > »y(ej)%aj.

BER, j€I; YER13 i€ YERs2,j€lf Y

(3.1.3)

(3.1.4)

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)
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Further, set X, = A4 for o € R and let

AL
o= >, ole)Xa fi= D, v(e)X, 1€;
+ +
*€RL 7eRL, (3.2.5)
= > Ble)Xp gi= Z v(e;)X, j €I
BERY, v€ER],

The following identities are easy to verify:

6""0?(6(’“))‘1=8?+(f,-—ksai>a,-+§(f,; kpi)® + 2(af, kBip;) where i€ Iy (3.2.6)

_ 1 11,5 1 :
608} (6M) ™ = 8 + (95 — £hi)0s + (9 — Tha)* + 5 (B39 a,-h,-) where j € I; (3.2.7)

Therefore, after simple transformations we obtain

SEME(BEN L =6®B(3 02—k 0% + 3 (kpi — f:)0it

icl jEI3 icly
- (kg — hj)8;) (0™t = 3 O + 3 (fi — kpi)di + § 3o (fi — ki) +
Jje€lz i€l il zEIO
3 2 (Bifi — kBips)—
i€l
k> 32'*‘ > (g5 — 1h )0 + ¢ Z (9i — lh’J) + Z (095 — lajhj) +
Jjely J€Ly JE i JG i
ZI (ko — £:)(8i + 3 fi — 3kei) + ZI (kg; — hj)(8; + 2g; — 2 h;) = (3.2.8)
i€l Jely
S~k Y - Y (fi—kp)+ % > (0ifi — kOipi)+
tel; j€lz zE 0 icly
% >, (95— %hJ’) 5 Z (9595 — hj) =
jel; JE i
Zaf—%z%z Zaz‘xot_kza2+4kzh2+ > Ok — 4Zfi2+
i€l i€l zEIa ]EII JEI7 jEIT i€l
+§Efz(pz+%zazfz+zzg] Zg; Ezajgj
i€l i€l jelp ]E i Jjel

But due to the classical case we have

282__ZS01 ——Za‘l(to’b Zaz—zk(k—l) Z )2 kplakpl)

i€l i€l i€l i€l aERn
1 1 1
2 _ 2 2 _ (- — _(Zp, =
ZB 4k2 Zh 2% Zah Za k k Z (A5)? (kpz,kpz)z
j€l; jel jel; J€R BERgy VP

where (-, -) is the usual inner products in V5 and Vi:
(ll,lg)l = E ll(ei)l2(ei) fOI' any ll,lz € I/(—)*;
i€l

(1, )2 = 3 li(ea)(es) for amy Iy, 1y € V5
JEL;
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Hence,
s M3 (5(k)) t= = > 32 —2k(k — 1) Z ﬁ — (kp1,kp1)1—
i€l a€Rn1
k(Y 02 -2(z-1) X _)2 — (302, xP2)2) + (=3 2o fi+
jE€IZ €R22 B i€l
+§Zfi¢i+§zaifi+zzgj ZQJ -3 Ea]gj)
i€l i€l J€Iz JG i JEL;

It is easy to verify that 8;(X,) = $v(e;)(1 — X2). It remains to transform the summands
in brackets. .One can show that they can attain the form ( we suppose that v,71,72 €
Ry, a€R;,, B€RY)
2 (X (e X)) + 4 g (2 (e X) (3 een) Xa) + 3 o v(e)?(1 — X3)+
iely v icly v a £,y
AT v(en)Xy)? — 3 2 (S (e X2) (X Bles) Xp) — § - v(e)*(1 - X3) =
i JjeIr v B Iy

=3 Z X2v(e) + 5 Z y(e)® +4 Z X2y(ei)® — § 2o v(es)*~

iry

E 71(61)72(61)X71X’72 + E fY(ez)a(ez)X X + Z 71(61)72(81)X71X’72

1,71,72 l e .71’71 Y2

15" v(ej)ale;) X, Xp = (take into account that X2 =1+
17,0

§ e+ T ale)? —2_24—;';)2+2k2%’£’ ;

Iy

Z(E’Yl(ez)%(ei)—kZ’h(ea)vz(ey))Xn 2 52 v(e)ale) Xy Xo—

"/1,’72 i Y,a i

LT (S e)Ble) Xy X = =S (r, M — 25 BB — 5 3 (1 ViXn X+

"6 'Y v 72

%Z(% )Xy Xa + 55 (7 Ble Xy Xp = — E('m)k —~ 22 T

7.8

2[ Z (71 12)2 X X, + Z(% a)1X;Xa] — %[ 2 (71:72)2X71X72 + Z(% B)2 XX

71,72 1,72
It is not difficult to verify that

Y (1) Xy Xy + (1 onXoXa =Y (1, 12)2 + Z v, (3.2.9)

T1y72 7 Y1572

(A )2)

Indeed, the set of ordered pairs (v;,72) can be divided into equlva.lence classes for which
(71,72) # 0. Each such class is of the form

g; — € where i € I, j € I1 for a fixed j.
To prove (3.2.9) it suffices to verify that

(71, 12)2 X0, Xop + (71, 01X 5, X + (72, 01X, Xo = (M1, 72)2 + (Y1, @)1 + (12,001
for vy = €1 —€1, Y2 =¢€2—€1 a = e — €. This is not difficult. We similarly prove the
identity

2(71372)1X71X’72 + 2(77:8)2X7Xﬁ = 2(717'72)1 + Z('Y: ,8)2

V1,72 7.8 1,72 V.0
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Therefore,

SO My(6®) = T -2k~ 1) X s — (o, bpr)i—
i€l a€R11 (Aa)
k(za]z“%(ilg_l) E (A )2 ( P2, pZ _22 71’72 +

JEIi ER22 Y172
X () + Z(%a) )= 3( X (v + Z(% B)a )
Y1,Y2 Y172
1
Y= 31'2 —2k(k—1) > A2~ (kpl,kpl)l—
¥ iely aERy1 ( ) ( )
k 62 1 1 : . 2 Y1, V2
(]%I:i (] k( )ﬁeZRzz a5)? (kpz kpz)z) 752 (A7)2 T

—(p12, pr2)k + (P12, kp1)k — (P12, 1P2)k

§4. SUPERANALOGS OF JACK POLYNOMIALS

4.1. The usual Jack polynomials. Let ¢t = (¢1,12,...) be sequences of independent inde-
terminates and A be the algebra of symmetric functions.The monomial symmetric functions
m,, is the sum of all distinct monomials that can be obtain from #* by permutations of the
t’s.We can define the power sum p, = Y ¢" and for any partition A px = px,p, ... There

2
are symmetric functions P), indexed by partitions and depending rationally on parameter k
( I use parameter k = %, the inverse of Macdonald’s parameter). They are characterized by
the following properties

P, = m, + lower terms (Py, P)=0,if A#p

where the scalar product is defined by (pap,) = 0k zy, where zy, = []#*(u,!) Let
t1,...tn be indeterminates and v an extra indeterminate. Consider the family of differential
operators D(u, k), called Sekiguchi operators defined by the formula

Zu”D(k) = V(t) 'det |t [ (ti% +(N—-5Hk+ u)]

where V(t) = H (ti —t;) .Then Jack polynomials Py(ty,...,tx), where A is a parti-
1<i<j<N

tion such that Ay,1 = 0 are uniquely determined by the following properties: i) P\(¢1,...,tn)

is symmetric with respect to tq,...,tn;

1<i<j<N

i) Py(ty,...,tx) = t)*...43" ... (dots stand for monomials of lesser lexicographic or-
der);
iii) P(t1,...,tn) are the eigenfunctions of the operators D,(,k) .More exactly

D(u, k)P)‘(tl, T ,tN) = (H()\, + (N — ’l)k + U)> P)‘(tl, . ,tN)
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4.2. Following Kerov, Okounkov, and Olshanski [KOOQ], determine superanalogs of Jack
polynomials. Let us consider the polynomial algebra A in infinite number variables zy, x5, ...
and y1, v, ... . Let pr(z,y) = > 2]+ 9y} be the power sum. Let us define the automorphism

wi of A by the formula
T 1 r
wi(pr(z,y)) = E :‘Tz Tz E :yj

Let Py(z,y, k) be the usual Jack polynomial. Then the superanalogs of Jack polynomials
are of the form

SP)\(:L'7 Y, k) = wk(PA(xa Y, k)) (421)
If we set Tpy1 = **+ = Ymy1 = -+ = 0, then we can consider the superanalogs of Jack
polynomials in finite number of variables SPy(z1,...,Tn,¥1,---,Ym, k). Observe, that our

definition differs from the one in [KOO] by the change y; — (— Uy, k=9.
4.3. Set

m n

o) =[] ~yt) [T - at)™

i=1 =1

and So(tla cee 1tN) = (p(tl) ce (ID(tN)
Set further

1<i<j<n Ti —

Yi + U y_a_y'i . mi+yj 9 p 0 (4.3.1)
By, 7 Oy, ; — (9:1:, Yi5y, Oy;

1<i<i<n Yi — Yj z;

1<i<n, 1<j<m
= ti+t; (, O 0
Ly=>) (t,-—i) +k Z ( e tja—tj) (4.3.2)

i=1 1<z<]<n

and

4.4. Lemma .
- 0
HQON — LNQON = (k‘(n — N) — m) (i=E 1 tig{) ©ON (441)

Proof: induction in V.
For N =1 formula (4.4.1) takes the form:

Ho(t) = (t%) o)+ (s(n = 1) = m) (1) ot0)

The following identities are easy to verify:

(202) 06 = 12— tt)

(vi52) ot) = (1’“_ S+ o
(yJaaTJ)‘P 1—Jyg't ()
(yaa%)zw —1—%90(75)
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Now, present 7 in the form

H = Hﬁ - kHy + k%z;p - %yy - sz

et = (§ (ot 0200

=1

then

m

Hyp(t) = — (Z 1—%) o(t)

J=1
. N T+ kx;t
i=1 \j#i ° ¢

- (52) )

J=1 \I#j

- m.’l?,; ' ka:,; i Ty 4 kj
sz‘P(t):(Z(Z .+y.)1—;t ZI(Z +y)1—yyﬁ)

m —
i=t \j=t ¢ Y i=1

Therefore
no( krit  k(k+ 1)z m ooyt - zi+z;\ kxit
Heo(t) — i i k 7% k ¢ 2 4
#(t) ;(1—xit+ (1 — x;t)2 + Zl—yjt+ Z ;mi—xj 1—z;t

m n m m m
yi+uw\| it o +y; |\ kzit Ti+y; | Y4t
- +
;(E yz)l—yjt Z Zla:,-—y]- 1—z Z z i — 1—yj;t

£ Yi — o Li— Y5

Further

(tae®) _ [N~ _kzt N~ yit
ia(t) - (Zl—m,—t _Zl—yjt)

(( at) ‘P(t)) A =\ oyt ’
R (Zl——wt_z__t) +
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Let now NV > 1. Then by inductive hypothesis we have
N1 g
Hon-1 — Ly-1pn-1 = (k(n — N +1) —m) (Z ti%) PN-1
i=1 '

Set Cp, = (k(n — p) — m). We have
H(pn) = H(pn-19(tn)) = (H(pn-1)) o(tn) + on-1 (H(p(tw))) +
) (z (seipns) (sotinn) ~+ 5 (dyom) (sboten )

N———”

2
Lynon = (Ly—1pN-1) (P(tN) + On-1 (tN%—) o(tn)+

N-1¢ +ty Nl +ty
k (Z ttgat—,<PN—1> p(ty) —k (121 o tNtN%QO(tN) PN-1

i-1 b —tn
Terefore,
&, e a
Cn_ ti= + Cityz—
(H— Ln)en _ ( w1 g figg + G Nat”) .
YN PN N1
5 i 1‘{;1 k2zitity i i kyititn
s Q-wt)(l—zity) o (- yt)(1 - ysin)
kat‘ +ty i kziti <~ yiti Tk E Lty +ty i kzity Byt
i1 -ty \iZil—=zt = 71—yt abh—tv \isl—zin j=11-—yil;
Hence,
N-1
Cn_ t2 + Citn 2
(H_LN)‘PN _ < N-1 Z:l T 1tNgy | PN +2Zn:N 1 k27 2tzt1v
N ©N ~ = (1-at)(1- zitn)
2§ N-1 ky]z-tltN Xn:Nz:l ti+1tn k Tt +zm:N ltz + iy kyjtl n
AE Q-yt)d-yty) Gogtu-tvl-ot Lo h—tyn -yt
N-1

tl ot + C’1tN Bty ) PN

I’
-

+

m C’N—l
n Nl +tn k.’E,,tN ZZtl+tN kthN . ( i

2 th—tn1—zity Jllltz—tNl—thN ON

3 i Nl 2k%tNa Lty 2wttty Ktwe |ttty Kty
j =1 tN—tll—Z',tN tz—tNl—:L‘itl tl-—tN].—.’L'itl tl—tNl—:EitN
i 2ktNyj tn 2kt1y]~ n 1 +1itn ktlyj . ti+tn ktNyj

tN_tll_yth_tl—tNl_yjtl —tnl—yti ti—inl—yin
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N-1
(CN—I > tim + CltN%) ©N

=1

m

N-1 n klritn 2 K2zt = ky]tN kyit;
IZ: ( 1—2:1 1- "L'th Z 1- -'L'ztl Z 1- yitN Z y‘ztl

& 1((1\7—1)1:2 yth i k.%tl )_

-ty <= 1wty

Cn-1 ). tz%-i-CltNgta—

( p) )
- YN
zitn )_i k*z;t; N -1 N

iz1 1 —zity ©N

(N - 1Ry

i=1 1- -thN

N-1 3 P 8 N-1
T R s e P

YN

N-1
2 8
Cn (z; b + tNﬂ) ON

YN

4.5. Proof of the Theorem 1.3 It is easy to verify that
. [1(1 - y;2)
. J
[1Q -z} [IA -y} | T1A — zat)®
j i

W

Therefore

[1(1 = y;t)
il gl

1T =zt )FTI(L - yit* | [0 - zit)F

1,0 il
Then by Couchy identity

W

1
[T — 2" 10 = yita)*

1
= Z '—P)\(w7 Y, k)PA(t> k)
R

Let us apply the automorphism wy, then

1
H(l — wity)* H(l — yit)*

W

Z —}_wk (P)\(:L', Y, k)) P)\(t, k)
A

Therefore

g(l — yiti)
[1(1 — zity)*

il

=" 25P\(z,9, k) Pa(t, k)
I
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Hence

1
o= =SPA(51, Tt Um )Pt ot B)

AN41=0

Now, by Lemma 4.4

.9
H()ON = ﬁthN + (k(n - N) - m) (Z tzg) YN
i=1 t

Let us denote by £} the operator

Then,
1
Z _H (SP,\($1, ceeaTnyY1.. - )ymyk))P)\(tls s 1tN)k) =
Aoarzp JA
N+1
1 *
Z ,—SP)\(.’El, ey oy Y1 -4 -y Ymy k‘)ﬁ (P,\(tl, e ,tN, k))
Aoaae0 IA
N+1
It is well known that Py(¢i,...,%n, k) are the eigenfunctions of the operator £*. Therefore
SP\(21,..-,Zn,Y1---,Ym, k) are the eigenfunctions of the operator #. O

§5. SPHERICAL FUNCTIONS AND RADIAL PARTS OF LAPLACE OPERATORS FOR THE PAIR
(gl(V) @ gi(V), gl(V))

5.1. Let g = gl(V) be the Lie superalgebra of linear transformations of n|m-dimensional
superspace V, let h be the Cartan Subalgebra, R the root system, U(g) the enveloping
algebra, and U(g)* the dual space endowed with the superalgebra structure . For any ad-
invariant functional on U(g) (i.e., for any I such that I(u,v) = (—1)P®P®)(y, 4)) denote by
¢; the generating function of the restriction of [ onto S(h), namely

l(eld...exn
(,a,(tl,...,tn)=Zﬁ:—))!t?...t;n. (6.1.1)
On S(h)*, define the following operators by setting for any f € S(h):
@) (f) = Uesf), (Dyl)(f) =Ueijesif), (5.1.2)

5.2. Lemma . Let a =¢; — €. Then
i) Dy = (8 = (~1+#00;).

e* —
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Proof.

(DI(F) = U feijess) = Lief(h+ a(h)ej;) =
(—1)PO+OI(f (B + a(h))ejiei;) =

= I(f(h + a(h))eijes) — I(f(h + a(h))ei;, e;i])
= (e2Dyl)(f) — I(f (R + a(h)) (e — (—1)P@HPle; )

= (¢°Dyj = e*(3 — (-1PO00,) () ).
d

5.3. Lemma . Let g be a Lie superalgebra g, = {(z, z) | = € g}, be the diagonal subalgebra,
let I be the left ideal in U(g & g) generated by g1 and M =U(gd g)/I. Leto:g— g g
be the embedding into the first summand, i.e., o(z) = (z,0). Let ¢ : U(g) — M be the
map induced by the homomorphism U(g) — U(g @ g) that extends o and o(z) = (z,z) an
isomorphism of g with g1. Then &([z,u]) = p(z)d(u).
Proof.
5 ([z, u]) = &(zu — (=1)PEPE) = gy @ 1 — (—1)PEPMyz @ 1
= zu®1— (—1)PEPMyz ® 1 — p(z)5(u) + o(z)5(u)
= p(z)e(u) + zu ® 1 — (—1)PErMyz @ 1
—(z®1+1®z)(u®1l)
= p(z)a(u) — (—1)PEPM (uz ® 1 + u ® z)

(u) — (-1)PEPM (@ 1)(z®1+1® z)

Qr

= p(z)

(mod 1y P(x)5(u).
O

Corollary . The algebra of functionals on U(g® g) biinvariant with respect to gy is isomor-
phic to the algebra of functionals on U(g) invariant with respect to the adjoint action.

5.4. Lemma . Let g = gl(V'), b be a Cartan subalgebra in g, then
U(g) = 5(b) + [U(g), U(g)]
Proof. Any element from U(g) can be represented as a sum of elements of the form

FXay .o Xa,
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where f € S(h), @; € R, R is a roots system of g and X, is an element of weight o.
Therefore, to prove Lemma, it suffices to demonstrate that

fXay - Xo, € [U(8),U(g)]

for r > 0. Let us induct on r.
If r =1, then

[Xa, f1 = (f(h — a(R)) = f(h)) Xa = Ra(f)Xa
But, as is easy to see, any element of S(h) can be represented as R,(f). Let r > 1. Then
[Xay, FXay - Xop] = [Xons [l Xay - - - Xo, + F[Xays KXo Xag - - - X+
(—1)PXe)PXon) £ X0, [ Xy, Xag)Xay - - - Koyt
(_l)p(X°1)(p(Xaz )+p(Xa3)) fXa2'Xa3 [Xal 1 'Xa4]'X05 " 'Xar + e .
But [X,, f]Xa = Ra(f)Xa and by the above and inductive hypothesis
fXa .. - Xo, €[U(9),U(9)]
O

Lemma 5.4 immediately implies statement of heading i) of theorem 1.5.1. Statement of
heading ii) is obvious.

Proof of iii). Let [ be an invariant functional on U(b;) and ¢; the generating function of
its restriction onto S(b). Then

Q((,Ol) = (Z(—l)p(j)eijeji) = ( Lemma 52) = Za? - Zafz o1+
ijel i€l j€l

e_
o

Z ((_1)p(j) € 1(61- _ (_1)p(i)+p(j)3j) + (_1)p(i) - 1(8,- — (_1)p(i)+P(J')3i)) o =

a —
a€Rt € €

Y-y e - Y 1S (ap0a - (-1999) | v
icly jel acrt = ©

which proves heading iii) of Theorem 1.5.1.

5.5. Proof of iv) of Theorem 1.5.1. As is easy to verify, § = Y e; ® e} is a b-invariant,
i€l
provided {e;}ics is a basis in V and {e} }ics is its left dual. Similarly, 8* = > e; ® e} is also
i€l
a b-invariant.
By [S2], the invariants in W = V®(V*)®P lie in the linear span of (&, ® &,) (6®) under
the natural 6,86, -action on W. Moreover, the stabilizer of 6%” is &, embedded diagonally.
Hence, the space of b-invariant vectors is, as G, X &,-module, isomorphic to

Indg?*®* (id) = ©,5* ® 5

where A runs over partitions of p such that A,;; < m . This implies that, up to a constant
multiple,

oa(u) = 07((8*)%P, 0%P)(u) = (6*)%P (ex x e ub®P) for any u € U(g),
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where e, the idempotent corresponding to the partition A, and ¢, (u) is proportional to
(6%)®P (ex x 1ud®P)

By expanding ey = #Z x*(o)o where x* is a character of the corresponding represen-
tation of &, , we see that thanks to the identity

gr1®m2 (v} @ Vi, v ® vy) = (_1)?(01)17(115)9‘”1 (v, v1)60™ (v3, v2)

it suffices to consider the case when o is the cycle (12...p). Let {e};}ics be the basis of
b and {e;}icr is the left dual basis; let ¢! denotes the homomorphism S(h) — k extending

the linear form [. It suffices to take into account only summands with 4; =43 =--- =14, in
9P — Z e, @€}, ® - Qe;, @€
i1y0nnip €T

Therefore, if o = (12...p) then

(6*)8P (uc§®P) = (9*)®P (Z(e@e ) > (67)% (uot®r) =

el el

3% (1) Viu(e; @ €)®F) = Y (—1)FVier: (u)(6)3P(e; @ €f) =

el icl
Z( 1)ief® (u) = Za: —Z
i€l i€l j€I3

A
this implies that, up to a constant scalar, we have p) = Y %sp,,

where Xi; is the value of the character of the symmetric group on the element of cycle type
p and Z, = [] " (u;)!.This coincides with SPy(z,y,1).

§6. SPHERICAL FUNCTIONS AND RADIAL PARTS OF THE LAPLACE OPERATORS FOR THE
PAIR (gl, osp)

6.1. Let g = gl(V), where dimV =n|2r;let I; = {1,...,n}, 1 = {1,...,2r}, and {ei;}ijer
the basis of matrix units in gl(V) It is easy to verify that the antiautomorphism of super-
transposition in gl(V') is of the form

eﬁj = (—l)i)(j—l_l)eji. (611)

Further, sete(?) = 1,if : € LT U{r+1,...,2r},and e(z) = -1, if i € {1,...,7}. Set also
6(i) =i+ 7( mod 2r), if i € I1, and §(z) =1, if i € I;.
Now, define operator S by setting
Se; = e(t)es() (6.1.2)

Clearly, S = J, where J is the parity operator in V ie., Je; = (—1)?®) and,
therefore, SJ = JS as well as §* = SJ = JS = §* = S~1For any z € gl(V) set
P(z) = Sz!S~1. It is not difficult to verify that 7 is an involutive antiautomorphism of
the associative superalgebra Mat(V'), i.e., ¥?> = 1 and ¥(zy) = (—1)?@P®), Therefore,g =
g~ ®g* where g~ = {z € g | $(a) = —a} and g* = {z € g | Y(2) = ).
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Observe that g~ is a Lie subsuperalgebra of gl(V) isomorphic to osp(V) and g* is a
g -module. For any z € g set
1 1
ot =@ +y() amd o= (- (@)
corresponding to the decomposition g = g~ & g*.
Let h be Cartan subalgebra in g and also set
bt = Span(ef | i € I).

It is easy to verify, thaty(e;;) = (—1)P@P0)e(5)e(8(3))esi)ac)-
6.2. Lemma . For f € S(h*) and a = ¢&; —¢; set

Ry;f = 3lf(h — a(R)) — F(h + a(h))],
Rif = 3lf(h—a(h)) + f(h + a(h))].
Then the following identities hold:
i) e;f = Rffe; + Ry f - e
ii) R;;feijesi — (Ri; — RE)f - ez, e5il € 97U(9) + U(g)g™
iii) [eg;, ef] = 3(ef — (—1)PE*2Ulet)

i1 ~ij
iv) Ifh ey, and a =¢; —¢;, then

[h, ei] = a(h)e, [h,e

ij

] = a(h)ef;
Proof is reduced to a direct verification. O

6.3. Lemma . Let T =g~ U(g) + U(g)g—-Then
U(g) =S(H") + 1.

ij

Proof. It suffices to show that for ¢ > 0 we have

— feot +
u=fe, ...e5 €1

where f € S(b*) and ef,,...,ef € g* are the weight vectors. Let us induct on ¢. If
g =1and f € S(h*) we have R;fe; = e;;f — R fe;; by Lemma 6.2.i). Hence, R;;fef; €
g~ U(g) + U(g)g™.Hence fe;; € Z Let ¢ > 1. Then

— feot + - — fot + _ Rt fe— et
R, fes, .. .€q, = ey, fes, ---ex. — RS feqel, -

+ fo— ot +
mod7) —Ry feg eq, - €ay

REf-leq ed, - et ]

= —RL f - leq, exled, - ek

ay? Toe
_R+ fet [e= et +
RY fedleq,.el,). el +... €T
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6.4. Lemma . Let a = ¢; — ¢; and j # 0(1), let | be a two-sided b-invariant functional on
U(g) and ¢ the generating function of its restriction onto S(h%). Let D;;(1)(f) = I(feije)i),
o ()(f) =l(fet) where f € S(h).Then

L(a;r — (_l)p(i)+p(j)a;-)

D;; =
J e* —e

The proof is the consequence of statement ii) Lemma 6.2.

6.5. Proof of Theorem 1.6.1. i) follows immediately from Lemma 6.3.
ii) Let Y (—1)PYe; e ; be the Laplace operator for gi(V). By Lemma 6.4 the radial part
ijel
of its restriction onto S(h) is of the form (we have excluded the roots 8 = &; — €4(;), because

e;;(i) =0):

n —O
M=% 8- za2+ y S o

i=1 aGRn -

6.5.1)

el +e P e’ +e” (

Ly SIS TP
_ .4 — 5%,

pers, ef—e R e’ —e

where
— At + _ .
0o =0 — 0] fora=¢;—¢j;

3ﬁ=3;'—-3§." for B = ¢; — €3;
Oy1 =8{"+83‘." for v =&; — €;.
Now, observe that €;|y+ = €5(;)|p+ s0 (6.5.1) takes the form

n 2a 4+ 1
382 —2 Z 0% + Z af—
i=1 R11 -1 (6 5 2)
e7+1 -
4 —0; — 2
vEZ R12

where
IRn={ei—¢;lije tht,iRo={ei—¢liclk, je sk}, ;hi={1...,7}
Set T'(e') = e'*' where [ is the even part of I. Then, as is easy to verify,
T-9tT =6F, if p(i)=1, T 6T =208, if p(i)=0, T '&T =¢itib

Therefore, this transformation sends (6.5.2) into

n 1
4387 - 2282+ 2} et Logr—
" e (6.5.3)
e? —|—1 "9
4 -4
ﬁezﬂ+ F 1% Z 62'7—1 o
CH 1R

The latter expression is equal to 4 M.
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iii) First, let us describe the invariant vector vy € V), where all the rows of the diagram A
are of even length. It is easy to verify that

6= Z i)e;®e; andd = Zs(z’)e;‘ ® e}

i€l i€l

are b-invariants. Hence, #%P is also a b-invariant. By [S2] the linear span of all invariants is
k [G3p] 0% and, as is easy to show, as Ggp-module it is isomorphic to

Indg* (id) = @,8*
where ) runs over partitions of 2p such that A,;1 < 27 and all the rows of A are of even
length and H, is the stabilizer of #%7. This implies that, up to a constant multiple,
oa(u) = 07((6*)%2,6%) (u) = (6*)®” (exud®?) for any u € U(g),
where e, is a primitive idempotent in the in the Hecke algebra (&s,, Hp) The explicit form
of ey is known ([M]):
e = Z Z2u

where o runs over the set of representatives of double cosets .

If 4 = pa...u, we may assume that ¢ = 2u;...2u,, as far as the cycle structure is
concerned.

Now, let us calculate the functional

Oau() = (6)%° (oud®)  whereu € S(b)
Thanks to the identity
gm0 (¥ @ vl vy @ vg) = (—1)PLIPLEIG™ (¥ )87 (v, vy)

it suffices to assume that o is a cycle of length 2p. We have

0% =3 c(Wley, (0 =D c(¥)e,
where the sum runs over all the maps
¥:[1,...,2p] — [1,...,n,1,...,2r] and 6(¢(26)) =9(2%—1) for i=1,...,1L

and
ey = ey(1) ® - ®eyp), (W) =e(¥(1))e((3)) .. .e(¥(2l - 1))
If o is a cycle, we only have to take into account the summands of the sum o, ,(u) for
which o possesses the same property as 1. But then

(1) =$(3) = ... 92l — 1) = 6(x(2)) = 6(¥(4)) - - - = 5(¥(20))
and ey = (e; @ es(;))®” where i € I
Direct calculations show that

(617 (uo(es @ ex)®) = (~1PVer(w)ers (u) = (~1pOei(u)
Therefore,

(6*)%P (uo6®) = [ D (e*)P -2 Z(e% P ()

i€l icl Il



24 A. SERGEEV

Hence, setting z; = e*,i € I y; = €*7,j € 3J; we obtain

1
¢’\_ZZ_2"SPT"'“ x, y’2)

whereSP,(z,y,3) = SP,,(2,9,%) ... SPmy, (2,9, fracl2) and

SP/‘P:ZCE?_ZZ?!;

i€l jein

§7. AN ALGEBRAIC ANALOG OF BEREZIN INTEGRAL

7.1. For the usual Jack polynomials corresponding to Lie algebra gl(n) there exists an inner
product induced by the invariant integral on U(n). In [B] Berezin constructed an invariant
integral on the unitary supergroup U(n|m) and established a number of its properties.

In particular, matrix coefficients of any finite dimensional irreducible representation V'
such that dim Vj # dim V7 are isotropic with respect to the natural inner product related
with Berezin integral.

In this section I construct an algebraic analog of Berezin integral and established a number
of its properties.

For every g-module W, define in U(g)* the subspace C(W) consisting of the linear hull
of the matrix coefficients of W. Denote by ., the subalgebra of U(g)* generated by
the matrix coefficients of the identity representation V' of g = gl(V') and its dual, V*.
Let{ei,...,enei...,em} beabasisof V and {e],..., e}, e ..., e} } the left dual basis of V*;
let z;; = B(e}, e;) be the corresponding matrix coefficient. Let Aj = det(z;;), where ,j € I
and Ag = det(z;;) where i,j € It
7.2. Lemma . The algebra A, m is isomorphic to S (V* @ V) [Ag", A{l] as algebra and as
a g g-module (provided we have established the natural g @® g-module structure on V*QV ).

Proof. Consider the natural map

VeV —U(g)", v"Q®uv+—8(v',v)
as in Lemma 2.4.2 and extend it to a homomorphism ¢ : S(V*® V)) — U(g)* Select in g
a basis of matrix units e;; and identify U(g)* with the algebra of formal power series in t;;.

Then ¢(z;;) = t;; + a;; where a;; is a formal series that begins with terms of degree > 2.
This implies that ¢(z;;) are algebraically independent and ¢ is an embedding. Clearly,

e(S(V*®V)) CUm and ¢ (S(V*@V)[A;YATY])) = Unm.
Moreover, by Lemma 2.4.2 this is a g @ g-module isomorphism. O

7.3. Lemma . Consider U, as a left g-module and a right gg-module. Then
Unm = EP (Ind2, (V5)%) ® V¥ (7.3.1)
X

where x runs over the set of collections (x1,Xx2) such that x1 is an integer highest weight of
gl(n),xz is an integer highest weight of gi(m) and VZ* is an irreducible gl(n) @ gl(m)-module
with highest weight x and (V§')X is the dual module.
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Proof. Set

(&nm)y =S (V" ® Vo) [Ag]
and

(an,m)z =S5 (V'@ W) [Ai_l]
We have an isomorphism of algebras and g & gy -modules

Unm = (Anm); ® nm), (7.3.2)

where gl(n) acts trivially on the right on the second factor and gl(m) trivially on the right
on the first factor.
Theorem 1.3 from [S2] implies that

SVeV) = v)yew

An41=0
where ) is a partition. Let us expand (2, ), into the sum of isotypical gl(n)-modules:

(Anym); = Z AFIS (V' @ V) = Z A7 @V e 1y) (7.3.3)
Let . . . .
xi=00 ) ezt x> > > 50

be an integer highest weight for gl(n). Then the isotypical component of type x in (A, ), is,
due to (7.3.3),

wx=> A7 (V") ®13) (7.3.4)
A

where A — i, = X, and where A is a partition, d, is the highest weight of A"(V5) ® C
gl(n) & gl(m) module, where C is a trivial gl(m) module. In the set of all such diagrams,
select a one, A(x), such that A(x) — jé, = x and which is the least with respect to the
lexicographic ordering and containing an n X m rectangle, or, equivalently: the module
(V*)* is a typical one.

Then for any summand in (7.3.4) we have

Aai ((V*)A ® V;_)A(X)) - A[-;j ((V*)'\(X) ® an\(x)) _
Indeed, if ¢ < j then A(x) — 6, = A — i, hence,A = A(x) — (j — 7)d,. Therefore,
A%—i ((V*)A ® VE_;\) C (V*)A(x) ® V(_’)\(X)

Multiplying both parts of (7.3.4) by Aj 7 we get the statement desired.
If i > j then

N ((V*)A(x) ® %A(x)) — (VY eV
from identity of dimensions and the fact that Ag is not a zero divisor. Thus, in either case
we have

WX = A7 ((V*)A(x) ® V;_]A(x))
Since (V*)*X) is typical, we have
WX = Indg,aq, (V5)* ® V') -
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Therefore,

(Anm); = @ Indgl@gﬁ ((V(‘)*)xl ® V;')Xl) :
X1
We similarly prove that
(Q[n.m)z = @Indg—lEBga ((Vi*)X'z ® Vixz) :
X2

Lemma from [S2] implies that
IndS,og, (V) ® V3%) @ Ind_ a0, (V) © Vi) =
Inds, (G ® (K & Vi @ 17%)
O

7.4. Proof of tehorem 1.7. i) Let F' be a left-invariant functional on 2,,, Lemma
7.3 implies that F' determines a unique gg-invariant functional on 2, ,, and the other way
round. This proves the existence and uniqueness and, moreover, shows that any left-invariant
functional is right-invariant with respect to gg. This implies two-sided invariance.

Set
—m —-n I I
W) = A(—) I I x.,-j Wy = i :c,-j

i€l jely icl;,jel;

= H 6.,'_7' H €ij

i€lg,jel;  ielg,jel;

Then

Hence, F(1) = 0.
ii) and iii) are immediate corollaries of Lemma 2.4.6 d
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