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Abstract

The aim of this paper is to give a review of our results on the nonstandard g-deformation
U, (son) of the universal enveloping algebra U(so(n, C)) of the Lie algebra so(n, C) which does
not coincide with the Drinfeld—Jimbo quantum algebra U,(so0,). It is exposed why this algebra
appears. It is shown that finite dimensional irreducible representations of Uj(so,) separate
elements of this algebra. Irreducible representations of the algebra U, (so,) for ¢ not a root
of unity and for ¢ a root of unity (¢ = 1) are given. The main class of representations
in the last case acts on p’-dimensional linear space (where N is a number of positive roots
of the Lie algebra so(n,C)) and are given by r = dimso(n,C) complex parameters. The
algebra Ué (so,) is related to Macdonald symmetric polynomials. Some consequenses of this
relation for Macdonald polynomials are derived. The algebra U, (so,) acts on the n-dimensional
quantum vector space. This leads to the theory of harmonic polynomials on this space. Explicit
expressions for g-analogue of the classical associated harmonic polynomials are given.

1. INTRODUCTION

Quantum orthogonal groups, quantum Lorentz groups and their corresponding quantized universal
enveloping algebras are of special interest for modern mathematics and physics. M. Jimbo [1]
and V. Drinfeld [2] defined g-deformations (quantized universal enveloping algebras) U,(g) for all
simple complex Lie algebras g by means of Cartan subalgebras and root subspaces (see also [3] and
[4]). However, these approaches do not give a satisfactory presentation of the quantized algebra
Ug(so(n,C)) from a viewpoint of some problems in mathematics and physics. When considering
representations of the quantum groups SO4(n + 1) and SO4(n,1) we are often interested in
reducing them onto the quantum subgroup SO,(n). This reduction would give an analogue of
the Gel’fand—Tsetlin basis for these representations. However, definitions of quantized universal
enveloping algebras mentioned above do not allow the inclusions Ug(so(n + 1,C)) D Uy(so(n,C))
and Uy(so(n,1)) D Ug(so(n)). To be able to exploit such reductions we have to consider g-
deformations of the algebra U(so(n,C)), when so(n,C) is defined in terms of the generators
It k-1 = Exp—1 — Ex_1x (where E;; is the matrix with elements (Eijs)rt = 6ir0st) rather than
by means of the Cartan subalgebra and root elements. To construct such deformations we have
to deform trilinear relations for elements Iy x_; instead of Serre’s relations (used in the case
of quantized universal enveloping algebras of Drinfeld and Jimbo). As a result, we obtain the
associative algebra which will be denoted as Ug(son)-

This g-deformation was first constructed in [5]. It permits us to construct the reductions of
Uy(s0n,1) and Uy(sop+1) onto Uy(son). The g-deformed algebra Ug(son) leads for n = 3 to the
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g-deformed algebra U,(so3) defined by D. Fairlie [6]. The cyclically symmetric algebra, similar
to Fairlie’s one, was also considered somewhat earlier by Odesskii [7]. The algebra Uj(so4) is a
g-deformation of the algebra U(so(4,C)). In the case of the classical Lie algebra so(4,C) one
has s0(4, C) = so(3, C) @ so(3, C), while for our g-deformation Uj(so4) it is not a case (see, for
example, [8]).

In the classical case, the imbedding SO(n) C SU(n) (and its infinitesimal analogue) is of great
importance for nuclear physics and in the theory of Riemannian symmetric spaces. It is well
known that in the framework of Drinfeld-Jimbo quantized universal enveloping algebras and the
corresponding quantum groups one cannot construct such embedding. The algebra U (so,) allows
to define such an embedding [9], that is, it is possible to define the embedding U, (son) C Uy(sls),
where Uy(sl,) is the Drinfeld-Jimbo quantized universal enveloping algebra.

As a disadvantage of the algebra Uy (so,) we have to mention the difficulties with Hopf algebra
structure. Nevertheless, U, (s0,) turns out to be a coideal in Uy(sl,) (see [9]) and this fact allows
us to consider tensor products of finite dimensional irreducible representations of Ué (sop) for many
interesting cases (see [10]).

Finite dimensional irreducible representations of the algebra Uy (so,) were constructed in [5).
The formulas of action of the generators of Uy (so,) upon the basis (which is a g-analogue of the
Gel’fand-Tsetlin basis) are given there. A proof of these formulas and some their corrections were
given in [11]. However, finite dimensional irreducible representations described in [5] and [11] are
representations of the classical type. They are g-deformations of the corresponding irreducible
representations of the Lie algebra so(n,C), that is, at ¢ — 1 they turn into representations of
so(n,C).

The algebra U,(so,) has other classes of finite dimensional irreducible representations which
have no classical analogue. These representations are singular at the point ¢ = 1. They are
described in [12]. Note that the description of these representations for the algebra Uj(sos) is
given in [13]. A classification of irreducible *-representations of real forms of the algebra Uy (so3)
is given in [14].

Irreducible representations of the algebra U, (so,) in the case when g is a root of unity were
considered in the paper [15]. It is proved that in thls case all irreducible representations of Uy(sop,)
are finite dimensional. In order to prove the corresponding theorem an analogue of the Pomca.re—
Birkhoff-Witt theorem for U,(so,) and the description of central elements of this algebra for q a
root of unity (given in [16]) were used. For construction of irreducible representations of Uy(soy)
for ¢ a root of unity, the method of D. Arnaudon and A. Chakrabarti [17] for construction of
irreducible representations of the quantum algebra Uy,(sl,) when q is a root of unity was applied.
As in the case of irreducible representations of the quantum algebra Ug(sl,), it is difficult to
enumerate all irreducible representations of Uy(so,) for ¢ not a root of unity. Only the main
classes of such representations were constructed.

It was shown in [9] that the g-analogue of the Riemannian symmetric space SU(n)/SO(n),
constructed by means of the quantum group SUy(n) and the algebra U (so,) (instead of the
group SO(n)) leads to the quantized space of functions F4(SU(n)/SO(n)) whose zonal spherical
functions are multiple to the Macdonald symmetric polynomials Pp(z;g,t) with ¢ = ¢'/2.

It was shown (see [18] and [19]) that by using the algebra U, (so,) and its representations we
can construct a g-deformation of the theory of harmonic polynomials on the Euclidean space and
as a result we obtain a theory of harmonic polynomials on the n-dimensional quantum vector
space.

The aim of this preprint is to give a review of the results on the algebra Ué (son), on its repre-
sentations and on applications to Macdonald symmetric polynomials and harmonic polynomials
on the quantum vector space.



2. THE ¢-DEFORMED ALGEBRA Uj(soy)

The origin of existing a g-deformation of the universal enveloping algebra U(so(n,C)), different
from the Drinfeld-Jimbo quantized universal enveloping algebra Uy (soy,), consists in the following.
The Lia algebra so(n,C) has two structures:

(a) The structure related to existing in so(n,C) a Cartan subalgebra and root elements. A
quantization of this structure leads to the Drinfeld-Jimbo quantized universal enveloping algebra
Uq(sop).

(b) The structure related to realization of so(n,C) by skew-symmetric matrices. In so(n,C)
there exists a basis consisting of the matrices I;;, 1 > j, defined as I;; = E;; — Ej;, where E;; is
the matrix with entries (Ej;)rs = 0ir0;5. These matrices are not root elements.

Using the structure (b), we may say that the universal enveloping algebra U(so(n,C)0 is
generated by the elements I;;, ¢ > j. But in order to generate the universal enveloping algebra
U(so(n,C)), it is enough to take only the elements Ia1, I3z, -, Inn—1. It is a minimal set of
elements necessary for generating U(so(n,C)). These elements satisfy the relations

2 2
LTy — 201l iliga + Livaalii g = —Tigag,

Ii,i—lIi2+1,i — 2Ly iLiialivrg + I idiien = =T,
Lialij 1 —Ijj1lii1=0 for |i—j|>1.
The following theorem is true [20] for the universal enveloping algebra U(so(n, C)).

Theorem 1. The universal enveloping algebra U(so(n,C)) is isomorphic to the compler asso-
ciative algebra (with a unit element) generated by the elements Iy, Isp,-- -, I n—1 satisfying the
above relations.

We make the g-deformation of these relations by fulfilling the deformation of the integer 2 in
these relations as

2 2l:=(*-q)/lg—a)=q+q".

As a result, we obtain the complex unital (that is, with a unit element) associative algebra

generated by elements Iy, I3z, -, In n—1 satisfying the relations
BT — @+ a DLl + eIl = —Iiyg, (1)
Ll — @+ a Dhiniliiadiv + gl = — Lo, (2)
Lijialjja —ILijalii1=0 for Ji—j|>1 (3)

This algebra was introduced by us in [5] and is denoted by Uj(son).

The analogue of the elements I;;,% > j, can be introduced into U,(so,) (see {18] and [21]). In
order to give them we use the notation Iz ;1 = I,'c"'k__1 = Ik_,k—l' Then for £ > [ + 1 we define
recursively

Iy = D g, Tegeile = @2 T digin — a2 gy Dy, (4)

Ig = M, Tegidg-r = ¢ i Tigen — 2 Tegsa D

The elements [ ,'c';, k > [, satisfy the commuftation relations

o Tile = T W Bnle = Iy UG5, Iflg = Iy for k>1>m, (5)
(L5, Ih]=0 for k>Ii>n>r and k>n>r>|, (6)
LIty =(a— g OHIGFELE - LEIh) for k>n>1>r (7)
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For I, k > I, the commutation relations are obtained from these relations by replacing I, ,‘fl by I;
and q by ¢ L.

The algebra U,(so,) can be defined as a unital associative algebra generated by I, 1<i<
k < n, satisfying the relations (5)—(7). In fact, using the relations (4) we can reduce the relations
(5)—(7) to the relations (1)—(3) for Ip1, Is2, -, Inpn-1-

The Poincaré-Birkhoff-Witt theorem for the algebra Uy(so,,) can be formulated as follows (a
proof of this theorem is given in [15]).

Theorem 2. The elements

mz1 p+ M3l Mnl p4 M32 74 M42 Mn2 +  Man-1 _
LRI LIS I L T, i =0,1,2,, (8)

form a basis of the algebra Ué(son). This assertion is true if Ii'; are replaced by the corresponding
elements L;.

Example 1. Let us consider the case of the algebra Ué(so;;). It is generated by two elements
I5; and I3s, satisfying the relations

12135 — (¢ — ¢ Vo1 Isa Iy + IspI3) = — I3, (9)

InlZ, — (g4 ¢ VIsalnlsy + I = —In. (10)

Introducing the element I3; = ql/ 251139 — q“l/ 2I30I1 we have for the elements Iy, I3z, I3 the
relations

(o1, Is2lg = Is1, [Ia2,Is1)qg = Io1, [I31,121]q = Iag, (11)

where the g-commutator [, ], is defined as [4, B],; = ¢'/2AB—q~1/2BA. The algebra U,(s03) can
be defined as the associative algebra generated by the elements I, I3z, I3 satisfying relations
(11).

Note that the algebra Uy (so3) has a big automorphism group. In fact, it is seen from (9) and
(10) that these relations do not change if we permute I3; and I33. From relations (11) we see that
the set of these relations do not change under cyclical permutation of the elements I, I3z, Is;.
The change of a sign at I5; or at I32 also does not change the relations (9) and (10). Generating
by these automorphisms a group, we may find that they generate the group isomorphic to the
modular group SL(2,Z). It is why the algebra Uy(so3) is interesting for algebraic topology and
algebraic geometry (see, for example, [22]-[24]).

Example 2. Let us consider the case of the algebra Uj(sos). It is generated by the elements
I3y, I3p and I3. We create the elements

I3y = [In1, Inolg, Ia2 = [I32,1a3]q, [Ia1 = [I21,la2)g- (12)
Then the elements I;;, ¢ > j, satisfy the following set of relations

[(I21,I32)g = Is1, [I32,Is1]qg = Im, [I31,121]q = I32.

[I32,I43lg = Iu2, [Ia3,la2lq = I32, [la2,I32]q = Is3.

(Is1,I43lg = I, [I43,Iamlq = I31, [la1,I31]q = Iu3.

[I21,Ia2)g = Ina, [Ta2,Is1lq = Im1, [Ia1,I21]q = Iaa-

[I21,143] = 0, [Isg, 1] =0, [Is2,Is1] = (¢ — ¢ ") (I211us — IsaIg). (13)

At ¢ = 1 these relations define just the Lie algebra so(4,C). Each of the sets (I31,I32,31),
(Is2, 143, I42), (I31,143,141), (21, 2, I51) determine a subalgebra isomorphic to Uy(sos).



3. THE ISOMORPHISM Uy (s05) — Ug(sly)

The algebra Uj(so,) can be embedded into the Drinfeld-Jimbo quantized universal enveloping
algebra Up(sl,) (see [9]). The last algebra is generated by the elements E;, F;, Ki' = ¢t
1=1,2,---,n —1, satisfying the relations

KiK; = K;K;, KK '=K'K;=1,
K’LE]KZ_I - qaijEj, KiFjKi_l — q—a;]- FJ,
K; — K1
(B 5] = b= — 1
E2Fiy1 — (9 + ¢ )EiEin1 Ei + E; B2 =0,
FlFi1 — (g + g )EFen Fy + Fin F} =0,
[Ei,E;] =0, [F,F;]=0 for [|i—j|>1,

where a;; are elements of the Cartan matrix of the Lie algebra sl(n, C).

In order to prove Theorem 3 below, we note that there exists a one-to-one correspondence
between the basis elements of the algebra U,(so,) from Theorem 2 and the basis elements of the
subalgebra M~ of the quantum algebra Uy(sl,), generated by Fy, Fy,:--,F,_1. The last basis
elements are constructed by means of the following ordering of positive roots of the Lie algebra
sl(n, C):

B2, P13, -, Bin, P23, B2ny 5 Brn—2,n—1: Bn—2,n Bn—1,n, (14)
where §;; = o; + 041 + -+ + ;-1 and oy are simple roots. (This ordering is the same as
in Theorem 2.) To every root of this set there corresponds the element Fg, € M~ (see, for
example, [4]). Then according to the Poincaré-Birkhoff-Witt theorem for the algebra 91~ (see,
[4], subsection 6.2.3) the elements

Fg:;ng:;s ces F[;T:,l;" ces Fﬁmn':lﬂn, mgj = 0,1,2,---, (15)

(the order of §;; is the same as in (14)) form a basis of 91~. Then the mapping

Mn—1,n — M12 y— M18 — Mnpn—1i,n
140 R A ' IR SN (16)

is the one-to-one correspondence between basis elements in M1~ and in Uy(so,) which will be

denoted by 7.
Similarly, to every root 8;; from (14) there corresponds the element Epg,. of the subalgebra

N+ C Uy(sly,), generated by Ey, E,- -+, En_1. The elements

Bg By - B - By mij =012,

(the order of (3;; is the same as in (14)) form a basis of M.
The formulas

deg (Fg2 Fgis - Fg ™ ") = —(maafz +masfis + - Mn—1,n0n-1,n),

deg (B Ege - Egl"__lln") = mazfi2 + masfis + - Mn-1,nBn—1,n,

deg (H{™ ---H'™"[ ') =0

n—1

establish a gradation in Uy(sl,) (see [4], subsection 6.1.5).



Let us introduce the elements
.., — . —Hj; .
I],J—l - FJ—l —qq 7’ Ej—~11 J = 27 3: N,

of Uy(sly). It is proved in [9] that there exists the algebra homomorphism ¢ : U (s0n) — Uy(sly)

uniquely determined by the relations ¢(fi414) = lit14, ¢ = 1,2,- -+, n — 1. The following theorem
states that this homomorphism is an isomorphism.

Theorem 3. The homomorphism ¢ : Uy(son) — Uy(sl,) determined by the relations o(Iit1,:) =

Iiv14,4=1,2,---,n—1, is an isomorphism of U,(son) to Uy(sly).

Proof. In [18] the authors of that paper state that this homomorphism is an isomorphism and
say that it can be proved by means of the Diamond Lemma. However, we could not restore their
proof and found another one. It use the above Poincaré-Birkhoff-Witt theorem for the algebra
Uy(sop). Namely, we use the explicit expressions from [18] for the elements L= (1) € Uq(sln)
in terms of the elements of the L-functionals of the quantum algebra Uy(sl,):

Li=(@@—-a ") 'aKy, §i>i, (17)
where ¢; is equal to ¢g° with an appropriate s € Z and

K™ =(Ky)ij= = (LH)'JL™. (18)
Here J = diag(¢"1,¢"2%,---,1) and explicit expressions for matrix elements l,?JT and [;; of the

matrices LT and L~ are given by formulas from [9] (see also [4], subsection 8.5.2). In particular,
l;'J'- =1;=0ifi>j and l;';- (resp. 1;;) is expressed in terms of Eg,; (in terms of Fg,;) if i < j. We
have

deglyi = Bij, degly; = —pyj.

The elements lj-cj belong to the subalgebra §) generated by K, Ks,---,K,—;. By (18) for j > i
we obtain

j
K;=> ditl;, i>i (19)
8=t

where ¢, = (¢ — ¢')q" with an appropriate r € Z. The summands in (19) have different degrees
and the lowest degree has the only summand c;-l;-*‘jljfi.

Let a be a basis element I;; ™ I5;™* ... I ;™" of the algebra U}(son) from Theorem 2.
Then

pla) = (Iz)™ (Ig)™* - (I g™

Substituting here expressions for I i from (17) and (19), we obtain ¢(a) in form of a sum with a
single summand of the lowest degree. This summand of lowest degree is ¢'Fjg 2 Fgns* - - Fﬁm" :’:1
with nonvanishing coefficient ¢/. The expression at ¢’ is just the basis element of M~ C Uy(sl,)
corresponding under the mapping 7 to the basis element a of Uy (son).

Similarly, ifac Ué (sop,) is a linear combination of the basis elements I{lmn I 3"1m31 - Iﬂf, n_lm"’"'l
from Theorem 2, then we substitute into ¢(a) expressions (19) for each K ;. As aresult, we express
¢(a) in form of a sum, containing the same linear combination of products ¢’ ngle[;;‘fl ‘.- ,f;: ':::1 .
This linear combination contains a subsum of a (fixed) lowest degree and this subsum cannot be
concelled with other summands in ¢(a). Therefore, ¢(a) # 0 and ¢ is an isomorphism from

Uy(s0n) to Uy(sly). Theorem is proved.

This theorem has the following important corollary formulated in [15].



Corollary. Finite dimensional irreducible representations of Ué(son) separate elements of this
algebra, that is, for any a € Ué(son) there exists a finite dimensional irreducible representation T
of Uy(son) such that T'(a) # 0.

Proof. If q is not a root of unity, then the assertion of the theorem follows from Theorem 3
and from the theorem on separation of elements of the algebra U,(sl,) by its representations (see
subsection 7.1.5 in [4]) if to take into account the fact (proved in [18]) that a restriction of any
finite dimensional irreducible representation of Uy(sl,) onto the subalgebra U, (so,) decomposes
into a direct sum of its irreducible representations.

Let now g be a root of unity, that is, ¢* = 1. We denote by N a positive integer such that
every irreducible representation of the quantum algebra Ug(sl,) has dimension less than N (see
section 8 below). Let a be any nonvanishing element of Uj(so,). Then there exists an irreducible
representation T’ of Uy(sl,) such that T(p(a")) # 0. (Note that a”V # 0 since U,(sl,) has no
divisors of zero.) Let T be the restriction of T to the subalgebra U,(son). Then T is reducible.
For simplicity we suppose that T' contains only two irreducible representations of Uy(s0n). (If T
contains more irreducible constituents, then the proof is the same as for two ones.) Generally
speaking, T is not completely reducible, that is in some basis the representation T is of the form

T1 *
0 T/’

where T} and T are irreducible representations of Uy(so,,). Since T(a™) # 0, then T'(a) # 0 and

70 = ("5 niw):

If Ty (a) # 0 or T3(a) # 0, then irreducible representations of U;(so,) separate the element a. Let
Ti(a) = 0 and T(a) = 0. Then

~ 0 =

T(a) = ( 0 0) ;

In this case T'(a) is a nilpotent matrix and T'(a)¥ = T'(a") = 0. This contradict the assupmtion
T'(a™) # 0. Therefore, the case T1(a) = 0 and T2(a) = 0 is not possible. Corollary is proved.

In fact, a more strong assertion can be proved when g is not a root of unity {(see [10]):

Proposition 1. If q is not a root of unity, then finite dimensional irreducible representations of
the classical type separate elements of U, (soy).

Note that irreducible representations of the classical type are defined below.
4. OTHER PROPERTIES OF THE ALGEBRA Ug(sor,)

Let give some other properties of the algebra Ué(son). In this algebra can be separated a maximal
commutative subalgebra generated by the elements Iy;, Is3, Igs, -+, In—1,n—2 (0r Inn—1). So, this
subalgebra is generated by [n/2| elements, where |n/2] is an integral part of the number n/2.
However, there exist no root elements in the algebra Uj(so,) with respect to this commutative
subalgebra. This leads to the fact that properties of Uy(so,) are not similar to those of the
Drinfeld—-Jimbo algebra Ug(soy).

The algebra Uy(son) has [n/2] independent central elements [18]. They can be construced as
follows. We form the elements

=+ — o F{r(r-1)}/2 / + =+ .7t
Jk1k2"'k2r g Z Eqil(s)Iks(z)ka(l)Ika(ll)ka(S) Ika(Zr)ka(m‘—l) ?
sE€Sar



of the algebra Ué(son), where 1 < k1 < ko < - < ko, < n and summation runs over all
permutations s of indices ki, k2, - - -, k2 such that

ks2) > k1), Ko(a) > ko(z), o0 i kear) > Ksar—1)s  ks2) < Ksa) < -0 < kg(2r)-

The symbol e +1(s) is defined as follows: eg+1(s) = (—g*)4e), where £(s) is the length of the
permutation s. Then the elements

(2r) _ > + _
Cn - Jklkz-"kzr Jk1k2"'kzr’
1<k <ka< - <kar<n

where r = 1,2,--- [n/2], are independent central elements of Uy(so,). If n is even, then the
elements Jf,' 2. a0d Ji, ., also belongs to the center of Ué(son).

If ¢ is a root of unity, then there exist aditional central elements in Ué (sop). They are described
below.

The algebra Ué(son) acts on the n-dimensional quantum vector space. This space is defined

as follows. Let
A=Clz1,z9, -, )

be the associative algebra (with unity) generated by elements 1, 2, - -, z, satisfying the defining
relations
TiT; = qTiT;, 1< J.

This algebra is called the algebra of functions on the n-dimensional quantum vector space. El-
ements of A are called polynomials on this quantum vector space and are denoted by p =
p(zy,%2,---,2n) = p(x). The elements zy,za,---,z, are called quantum coordinates on the
quantum vector space.

We define on A the g-differentiations d; and 8] which are linear operators acting as 9;p =
dip = 0 on monomials p, not contaning z;, and as

-1 _ -1

1% — % 3; —z-1 Yi — (20)

Y=rn -
Y og—qt

8: = ¥
' g—g7t’

i
on monomials containing x;, where &; and &; are the operators of left and right multiplication by
z;, respectively, and
7‘ip($11 ce >$'n) = p(wh s Ti—1, 9%, Tigl, 0 ,:L‘n)-
’Yi_lp(wl) e ,:En) = p(:L‘1, e )xi—laq_lxi) Tig1, )xn)'
We have 0;2; = £;0;, i # j, and
00 = g 0,8, Ok; = q¥;0;, i<j, v&j=d"Ev 70 =q "0
A g-analogue of the Fischer scalar product is defined on A (see [5]). It is given as

(p1,p2) = p1(81,- - -, 0, )P5|2=0, (21)

where pj is the polynomial pp in which numerical coefficients are replaced by complex conjugate
ones, p1(8y,- -, d,) means the g-differential operator obtained from the polynomial p by replace-
ment of z; by 8}, i =1,2,---,n, and the symbol p|,—¢ means a constant term of the polynomial

.
The action of the algebra Up(so,) on the space A is determied by the formula
Ijyi; = 177 05 — 375410541 (22)
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(see [18] and [19]). At ¢ =1 it turns into well known formula of action of the Lie algebra so(n)
on the Euclidean space.

5. IRREDUCIBLE FINITE DIMENSIONAL REPRESENTATIONS

The algebra U, (so,) has two types of irreducible finite dimensional representations:

(a) representations of the classical type;
(b) representations of the nonclassical type.

Irreducible representations of the classical type are g-deformations of the irreducible finite
dimensional representations of the Lie algebra so(n). So, there is a one-to-one correspondence
between irreducible representations of the classical type of the algebra Ué(son) and irreducible
finite dimensional representations of the Lie algebra so(n). Moreover, formulas for representations
of the classical type of Ué(son) turn into the corresponding formulas for the representations of Lie
algebra so(n) at ¢ — 1.

There exists no classical analogue for representations of the nonclassical type. Operators
T(a), a € Uy(son), have singularities at ¢ = 1. Let us describe irreducible finite dimensional
representations of both types.

6. IRREDUCIBLE REPRESENTATIONS OF THE CLASSICAL TYPES

In this section we describe (in the framework of the g-analogue of Gel’fand—Tsetlin formalism) irre-
ducible finite dimensional representations of the algebras Uy(so,), n > 3, which are ¢-deformations
of the finite dimensional irreducible representations of the Lie algebra so(n). They are given by
sets m,, of |n/2] numbers m n, M2, ..., M|n/2) n (here [n/2] denotes integral part of n/2) which
are all integral or all half-integral and satisfy the dominance conditions

m12p+1 = M22p+1 = - 2 Mpapt1 2 0,

mi9p > Ma2p > ... > Mp_12p > |Mpap|

for n = 2p 4+ 1 and n = 2p, respectively. These representations are denoted by Ty,,. We
take the g-analogue of the Gel’fand—T'setlin basis in the representation space, which is obtained
by successive reduction of the representation Tp,, to the subalgebras Uy(son—1), Ug(son—2), - -+,
U,(s03), Uy(s0z) := U(s02). As in the classical case, its elements are labelled by Gel’fand-Tsetlin

tableaux
my,

mp-—1

{fn} = = {mn;gn—l} = {mm mn—17€H—2}! (23)

my

where the components of my and m;_; satisfy the "betweenness” conditions
M1,2p+1 = M12p = M22p+1 = M22p = ... = Mp2p+1 = Mp2p = —Mp 2p+1,

M12p > M12p—1 > M22p > M22p—1 > ... = Mp_12p—1 = [Mp2p|-

The basis element defined by tableau {£,} is denoted as |{{,}) or simply as |£,).
It is convenient to introduce the so-called I-coordinates

bigpr1 =mjgpr1+p—Jj+1, lijop = mj2p +p—J,



for the numbers m; ;. In particular, /33 = mj3+4 1 and l; 2 = my 3. The operator Ty, (I2p+1,2p)
of the representation Tp,, of Uy(son) acts upon Gel'fand-Tsetlin basis elements, labelled by (23),
by the formula

- o (€n) o ((€n)2) ;
2p n) 2p TT2p\\S1/2p /- —Jj
Tm, (I2P+1 2p |§n Z l, 2 + q_lJ 2? Z l, 2 1 q_lJ 2 |(E")2p (24)
and the operator Tm, (I2p,2p—1) of the representation Ty, acts as
. (3
T (T2p,20-1)|én) e SR
e " ]Zl [24,2p-1 — 1][{,2p-1] =t
2 Bl 1((8)5) :
2p—-1&n)op—1 _ )
Z 21_7 2p—1;_ _ 1 [lJ 2pp 1— ]|(£n)21;1—1) + lczp_l(gn)lgn)‘ (25)

In these formulas, (En) ' means the tableau (6) in which j-th component m;; in my is replaced
by mjr £ 1. The coefficients Azp, B2p_1, Cap—1 in (10) and (11) are given by the expressions

1/2

A (€)= T lli2p1 + Lol llizp s — bigp — U TTE: (izo—1 + ligplllisgp—1 — Ligp — 1]
I17 510,20 + i 20)[li 20 — Uiamlllis2p + U2 + lli2p — Lj2p — 1] ’
(26)
and

: . 1/2

Bl _,(6) = T 1lli2p + Ligp—1llli2p — Uj,2p—1] T2, [izp—2 + Lizp—1)llizp—2 = Lj2p— 1])
n; — b
P H#J [l 2p—1+15,2p— 1][l1, 2p-1—bj .20 1][li 2p—1+15,2p—1—1][ls 2p—1—1j,2p-1—1]

(27)
151 [ls 2] Ha;l [{5,2p—2] (28)

Hg;i [ls,2p—1][ls,2p—1 —1] ,
where numbers in square brackets mean g-numbers defined by

C2P—1 (€n) =

o_ -a
la] = __—qq - ;_1 :
In particular,
-
qmu2 4 gTm2
—(lh,3 +m1,2 — lhg — m12)Y?|(a)7 ™),
T, (12,1)I€n) = i[m2]|én),

It is seen from formula (28) that the coefficient Cap_1 vanishes if my 9p = I 2p = 0.
A proof of the fact that formulas (24)-(28) indeed determine a representation of U, (so,) is
given in [11].

T, (13,2)6n) = (3 + ma]ll,s — maz — IDM2|(6)5H) -

Theorem 4. The representations T, are irreducible. The representations Ty, and Ty are
pairwise nonequivalent for my, # m/,.

Example 3. Irreducible representations of the classical type of the algebra Ué(soe,) are given
by nonnegative integral or half-integral number ! and act on vector spaces H; with a basis |I, m),
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m = —I,—1+1,---,I. We denote these representations by 7;. For the operators Tj(I2;) and Tj(I32)
we have the formulas Tj(I2;)l, m) = i[m]|l,m) and

(= mlllm + 1) = [ mflm — 1),

71!(1,32)l) m) =
where [a] denotes a g-number.
7. IRREDUCIBLE REPRESENTATIONS OF THE NONCLASSICAL TYPES
Irreducible finite dimensional representations of the nonclassical type are given by sets € :=
(€2,€3, -+, €n), € = %1, and by sets m,, consisting of |n/2] half-integral numbers my n, ma4, -,
M|n/2),n that satisfy the dominance conditions

M1 2p+1 = M22pt1 = v = Mpapt1 = 1/2,

M12p > M22p > ... > Mp_12p > Mp2p > 1/2

for n = 2p + 1 and n = 2p, respectively. These representations are denoted by T¢ m, .
For a basis in the representation space we use the analogue of the basis of the previous section.
Its elements are labelled by tableaux

my,

Mp—1 = {mn,ﬁn_l} = {mn: my—1i, 611—2}7 (29)

{é:} =
ms
where the components of mj and mjy,_ satisfy the ”"betweenness” conditions

M12p+1 = M12p = M22p41 = M22p > oo > Mpopi1 > Mpap > 1/2,

M12p = M1 2p—1 = M22p > M22p—1 2 .o = Mp—12p—1 = Mp2p.
The basis element defined by tableau {{,} is denoted as |,).
As in the previous section, it is convenient to introduce the I-coordinates
opt1 = Mizpr1+p—J+1  liop=mjop+p—J.

The operator T¢ m, (I2p+1,2p) of the representation T, m, of Ug(so,) acts upon our basis elements,
labelled by (29), by the formulas

€2
Temy, (I2p+1,2p)|€n) = 5m.p,2,,,1/2 ﬁl_lﬂpzp(gn)lfn)"'

P AJ' n —j
P ) - Z%@Mm)m (30)

Lizp — g—li2p
=17 i=1

where the summation in the last sum must be from 1 to p — 1 if myp 9, = 1/2, and the operator
T, (I2p,2p—1) of the representation Ty, acts as

COREATR PR G =(C.)
€,/mn \+2p,2p—1 n =1 21‘7 2p—1_1][.72p 1]

—P—l 2p 1((£n)2p 1)
= [24,2p-1 — lljzp-1 — 1]+

|(&n)ag-1)—

|(én)5n-1) + €25Cp-1(6n)1€n), (31)
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where [a]+ = (¢° + ¢7%)/(¢ — ¢ !). In these formulas, (fn)kij means the tableau (29) in which
j-th component m;; in my, is replaced by m;; & 1. Matrix elements A3, and Bj,_; are given by
the same formulas as in (24) and (25) (that is, by the formulas (26) and (27)) and

Hf=1[ls,2p]+ Hg;%[ls,2p—2]+ D, (En) — Hf 1[li 2p+1 2]1_[1_1 [lz 2p—1 — %]
1221 [t 2p—1)4-lls,2p—1 — 1]+ g 11 2 + 3l 2p — 2]

For the operators T, m, (I3.2) and Te m, (I21) we have

é2p— 1 (En) =

1
Temn(T2)lén) = Zo— -y

_ q"ml,Z

(1,3 +ma2)lle,s —maz — 1)Y2| () -

—([l,3 + ma2 — Ull,s — ma2])?[(€n)3 )
if myp # 1,

Toma (U2 = =7 g eltna = 1/2060)) + (i + 12 = 3226

if mi2 = %7 and Te,mn(I2,1)|§n> = 62['77741,2]+|€n)-

The fact that the above operators T, m, (I x—1) satisfy the defining relations (1)-(3) of the
algebra U, (so,) is proved in the following way. We take the formulas (25)—(28) for the classical
type representations Ty, of U,(so,) with half-integral m;,, and replace there every m; p41 by
Mj2pt1 — in/2h, every mjap, j # p, by mjop — in/2h and mp2p by mpap, — €264 - - - €xpim/2h,
where each €2, is equal to +1 or —1 and h is defined by ¢ = e®. Repeating almost word by
word the reasoning of the paper [11], we prove that the operators given by formulas (25)-(28)
satisfy the defining relations (1)-(3) of the algebra Uy (so,,) after this replacement. Therefore,
these opeérators determine a representation of Uy(so,). We denote this representation by T},
After a simple rescaling, the operators Ty, (I;x—1) take the form

P
Tia, (Tap1,2p)l6n) = D M%Kfn %l(&n) ),
j=1 j=1
-1 g
Bip-1(én)
mn (I2P,2P 1 |£n Z [21_7',21,_11,— 1][lj,2p— ] |(£H)2p 1)

& Bl (G

[215,2p-1 — 1][lj2p-1 —

N |(fn)2p 1) + €2pCap1(&n)én),
7=1

where Agp, ng_l and Cy,_; are such as in the formulas (30) and (31). The representations T,
are reducible. We decompose these representations into subrepresentations in the following way.
We fix p (p = 1,2,---,|(n — 1)/2]|) and decompose the space A of the representation T, into
direct sum of two subspaces H,,,,, €2p+1 = 1, spanned by the basis vectors

!€n>52p+1 = én) — 52p+1|§1’z)’ Mp2p 2> 1/2,

respectively, where |£],) is obtained from |¢,) by replacement of my, op by —mp 2p. A direct verifica-
tion shows that two subspaces H.,,,, are invariant with respect to all the operators Ty, (It z—1).
Now we take the subspaces #.,,,, and repeat the same procedure for some s, s # p, and decom-
pose each of these subspaces into two invariant subspaces. Continueing this procedure further we
decompose the representation space H into a direct sum of 2U"~1)/2] jnvariant subspaces. The
operators Ty, (Ixx—1) act upon these subspaces by the formulas (30) and (31). We denote the

12



corresponding subrepresentations on these subspaces by T¢ m,. The above reasoning shows that
the operators T, m, (Ixk—1) satisfy the defining relations (1)-(3) of the algebra Uy(sop).

Theorem 5. The representations Te m,, are irreducible. The representations Tem, and T ny

1N »iin
are pairwise nonequivalent for (e, my) # (¢/,m}). For any admissable (¢, m,,) and m], the repre-
sentations Te m, and Ty are pairwise nonequivalent.

The algebra U,(so,) has non-trivial one-dimensional representations. They are special cases
of the representations of the nonclassical type. They are described as follows.

Let € := (e2,€3,-"-,€n), & = %1, and let mp, = (M1pn, M2, ", M(nj2);n) = (%, %, e, %)
Then the corresponding representations 7, m,, are one-dimensional and are given by the formulas

_ €k+1
Temn (Tr41,6)1€n) = A7 — g

Thus, to every € := (ea, €3, *,€r), € = £1, there corresponds a one-dimensional representation
of U,(sop).

Example 4. Let us describe irreducible representations of the nonclassical type of the algebra
U,;(so;;) These representations are given by numbers m, €;, €2, where m is a positive half-integer
and €,e2 = +1. We replace m by the number & = m + 1/2. Then k runs over positive inte-
gers. The corresponding representation of Uj(sos) is denoted by R;**. The basis vectors of the

representation space are |r), 7 = 1,2,---, k. For the operators of the representation R;"** we have

g—gq!

R (In)|r) = &1

LoB

R (I)1) = ql/z_lw(ﬁz[k]qm +i[k — 1]¢[2)),

1
g V2 — g +1/2

RV (Is2)|r) = (ifk = rlglr + 1) +i[k +r — 1]4}r — 1)).

It is easy to see from these formulas that Tr R;V*(Iz) # 0 and Tr R;*(I32) # 0. Note that
for representations of the classical type to the elements I; and I3; there correspond operators
with vanishing trace.

8. FINITE DIMENSIONALITY OF REPRESENTATIONS FOR ¢ A ROOT OF UNITY

Everywhere below in this and in the following sections we assume that ¢ is a root of unity.
Moreover, we consider that ¢* = 1 and k is an odd integer.

We shall need an information on the center of the algebra Uy(so,). Central elements of
the algebra Uy(so,) for any value of g are described in section 4. They are given in the form of
homogeneous polynomials of elements of Ué (son). If q is a root of unity, then there exist additional
central elements of U, (so,) which are given by the following theorem, proved in [16].

Theorem 6. Let ¢* =1 for k € N and ¢/ # 1 for 0 < j < k. Then the elements

[(k—1)/2] . . .
W= k—j\ 1 ( & \¥oik3
= i=0 ( j )k—j(q—q‘l) T 5>t

where |(k — 1)/2] is the integral part of the number (k — 1)/2, belong to the center of U,(son).

It is well-known that a Drinfeld-Jimbo algebra U,(g) for g a root of unity (¢¥ = 1) is a finite
dimensional vector space over the center of Uy(g). The same assertion is true for the algebra
Ué(son). In fact, by Theorem 6 any element (I:J' 5, 8 > k, can be reduced to a linear combination
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of (Iz‘; )", r < k, with coefficients from the center C of U,(so,). Now our assertion follows from
this sentence and from Poincaré-Birkhoff-Witt theorem for Uy(soy).

Proposition 2. If q is a root of unity, then any irreducible representation of Ué(son) is finite
dimensional.

Proof. Let g be a root of unity, that is, ¢ = 1. Let T be an irreducible representation of Ué(son)
on a vector space V. Then T maps central elements into scalar operators. Since the linear
space Ué(son) is finite dimensional over the center C with the basis I;'lmzl I:.;"lmsl e I:, n_lm"’"_l,
mij <k, then for any a € Uy(son) we have T'(a) = 3 .. Cmiy TS L™ IE
where c(,, 3 are numerical coeflicients. Hence, if v is a nonzero vector of the representation space
V, then T(U,(s0,))v =V since T is an irreducible representation. Since T'(a) is of the above form

for any a € Ué(son), then V is finite dimensional. Proposition is proved.

mn,n—l)
?

It follows from this proof that there exists a fixed positive integer r such that dimension of
any irreducible representation of Ué(son) at g a root of unity does not exceed r. Of course, the
number r depends on .

9. IRREDUCIBLE REPRESENTATIONS AT ¢ A ROOT OF UNITY

Let us consider irreducible representations of U;(so,) for ¢ a root of unity (¢ =1and k is a
smallest positive integer with this property). We also assume that k is odd. If ¥ would be even,
then almost all below reasoning is true, if to replace k by &' = k/2 (as in the case of irreducible
representations of the quantum algebra Uy(sly) for ¢ a root of unity in [4], chapter 3).

There many series of irreducible representations of U,;(son) in this case. We describe the
main series of such representations. We fix complex numbers m1 n, M2 n, ..., M|n/2| n (here |n/2]
denotes an integral part of n/2) and ¢;;, hij, § =2,3,---,n—1,i=1,2,.--,[j/2] such that no
of the numbers

Min, hij, hij —hsjy hij — hsja1, Rij + hsjy hij + hsjxr, hop—1 — Men, hon-1+msn
belongs to %Z. (We also suppose that ¢;; # 0.) The set of these numbers will be denoted by w:
w = {mp,cn_1,hn_1,---,c2,h2},
where m,, is the set of the numbers my 5, M2, ..., M|n/2] 0, and ¢; and h; are the sets of numbers

cij, t = 1,2,--+,15/2], and hyj, i = 1,2,---,[j/2], respectively. (Thus, w contains r = dimso,
complex numbers.) Let V be a complex vector space with a basis labelled by the tableaux

my
_ ) Mp1 | _ _
{é‘n} = = {mm §n—1} = {mm mn—lyf‘n—Z}v (32)
m
where the set of numbers m,, consists of [n/2| numbers mj,, mapn, -+, M| /2|,n 8iven above,
and for each s = 2,3,---,n — 1, my is a set of numbers m,---,m/2/,, and each m;; runs
independently the values h; 4, h;s +1,---,h;s + k —1. Thus, dimV coincides with kN, where N
is the number of positive roots of so,. It is convenient to use for the numbers m; 4, s =2,3,--- ,n,
the so-called I-coordinates
Lopr1i=mjzpr1+p—3+1,  Lgp=mjp+p—Jj

To the set of numbers w there corresponds the irreducible finite dimensional representation
T,, of the algebra U (so,). The operators T,,(Izp+1,2p) of the representation T, act upon the basis
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elements, labelled by (32), by the formula

. ) P Al n—j iy
To(Tapr1)6n) }: cirmratS (et - ) ey

2p —,2p J.2p lj,2p —*tj.2p
+q o g tg

and the operators T;,(Iap2p—1) of the representation T;, act as

ng—l(gn)

To (I2p,2p 1 Ign ZC],2p—— [2lj,2p—1 — 1][lj,2p—1] '(én)zp 1)
= - Bl 1((én)35-1) _
- cj,;,zp—l [2lj,2p—z;_ — 1][11,’2‘;_ 1] I(En)zp 1) FiCop-1(&n) l6n), (34)

j=1
where numbers in square brackets mean g-numbers. In these formulas, (fn) ’ means the tableau
(32) in which j-th component m;, in m; is replaced by m;, + 1. f m;, +1 = h;, + k (resp.
mjs —1 = hj, — 1), then we set m;, + 1 = hj, (resp. mj, —1 = hj,; + k —1). The coefficients

A3, sz 1> Cap—1 in (33) and (34) are given by the expressions

- 1/2
A (&) = T2 Wi 2pr1 + U 2p) i 2o+ 1—L5.2p— 1 TIEC, [t 2p—1 + Ui 2l 2p_ 1 —lj2p—1]
v teillizp + Li2pllli2p — Liplllizp + Ui2p + llizp — Lj.2p — 1] ’

1/2
(&) = L1 li2p + 4 2p1{li.2p — Lii2p1] 1[’1 2p—2 + bjp-1]lli2p—2 — lj2p1]

— n), — 3
2p H,;.e, [l 2p-1+5,2p-1]li 2p-1—1 ,2p—1][lt,2p—1 +lj2p-1-1]{li 2p-1—1j2p-1—1]

T15_ [t 20) T2 1 s 20—2)

P ls2p—1]lls2p-1 — 1]

Cop-1(én) =

The fact that the operators T, (I;;—1), given above, satisfy the defining relations (1)—(3) is
proved in the same way as in the case of irreducible representations of Ug(so,) when ¢ is not a
root of unity (see [15]).

As in the case of finite dimensional irreducible representations of the Lie algebra so,, the
form of the basis elements of the above representation space V and the formulas for the operators
T, (1; j—1) allow us to decompose the restriction of the representation To,, w = {mp, cp—1,hp_y,- -,
c2, hy}, to the subalgebra Uy(son—1). We have

Tolvyaon )= D, Tom-»

where wp,_1 = {mp_1,¢Cp_2,hp_3, -, c2,h2} and m,_; runs over the vectors
(hl,n-—l + a1, h2,n—1 +az, -, hs,n—l + as): 8= i_(n - 1)/2J7 a; = 07 1121 tes 1k - 17

and c; and h; are such as in w.

Theorem 7. Representations T, with the domain of values of representation parameters, as
described above, are irreducible.

A proof is given by induction and can be found in [15].

There are equivalence relations in the set of irreducible representations 7,,. In order to extract
a subset of pairwise nonequivalent representations from the entire set, we introduce some domains
on the complex plane. The set

D={zecC||Rez|<k/4or Rex=—k/4, Imz <0 or Rez =k/4, Imz > 0}

15



is a maximal subset of C such that for all z,y € B, = # y, we have [z] # [y]. The set
Df={zeC|0<Rez<k/dorRex =0, Imz >0 or Rex = k/4, Imz > 0}

is a maximal subset of C such that for all z,y € D*, z # y, we have [z] # £[y]. We need also the
sets

Dp={zxeC||Rez|<1/4orRex =—1/4, Imz <0or Rexz =1/4, Imz > 0},

Dif={x€C|0<Rez<1/4orRex =0, Imz >0or Rex = 1/4, Imz > 0}.

We introduce an ordering in the set D* (resp. D,df) as follows: we say that z > y, x,y € D
(resp. z,y € D,f) if either Rex > Rey or both Rez = Rey and Imz > Imy.

We say that the set of complex numbers lo, = (I3,2p, l2,2p, - -, Ip,2p) 18 dominant if Iy 95, I3 2p, - - -,
lp._l,zp € Di, lp,zp. €D, a.nd:llzlyzp - lz,zp e lp—1,2p - l;,2p7 where l;,2p = lp,zp if lpigp (S D=
and l;,Zp = —lp’zp if lp,2p € D=,

The notion of dominance for the set hy, = (h1,2p, h2,2p, -, Ap2p) € (P is introduced by the
replacements I; 2, — h;2p, D — Dp and DE Df in the previous definition.

We say that the set of complex numbers laprs = (I12p+1,02,2p+1," -« lp2p+1) is dominant if
U,2p+1, 22p41, > lp2pr1 € DF and I opi1 = l2opt1 > -+ > lpapt1.

The notion of dominance for the set of complex numbers hap1 = (h1,9p+1, A2,2p+1, -+, Aip 2p+1)
is introduced by the replacements I; 2511 — h;2p41 and Dt o D,:f in the previous definition.

We say that w = {mp,cp_1,hn_1,- -, c2,ho} is dominant if every of the sets 1,, h,_1, -+, hy

is dominant and if 0 < Argey; < 2n/k, 7 =2,3,---,n—1;,i=1,2,---,j/2].

Theorem 8 [15]. The representations T, of Uy(son) with dominant w are pairwise nonequivalent.
Any irreducible representation T, is equivalent to some representation T,, with dominant w.

10. RELATION TO MACDONALD SYMMETRIC POLYNOMIALS

It was shown by M. Noumi [9] that the algebra Ug(so,) is related to Macdonald symmetric
polynomials. This relation is described in term of zonal spherical functions on the quantum
symmetric space which is a quntization of the classical symmetric space GL(n)/SO(n). This
quantum space is described in terms of the space of function F,(GL(n)/SO(n)) which is defined
as subspace of the space F3(GL(n)) of regular functions on the quantum group GL,(n) left
invatiant with respect to the algebra U, (sop,):

Fo(GL(n)/SO(n)) = {f € Fy(GL(n)) | a> f = £, a € Uy(son)}.

(Note that left action of the algebra U, (so,) on f correspond to the right action of the quantum
group GLg(n) on Fo(GL(n)/SO(n)) (see [4], chapter 1).

Under left {regular) action of the quantum group GLg(n) the space Fy(GL(n)/SO(n)) de-
composes into direct sum of irreducible representations of this quantum group:

FGL(n)/SOm) ~ D, v FoN)-

where P;(n ={X € P | \; — A\i+1 € 2Z} is the subset of the set Pt = {A = (A1, -, An) | A2z >
A2 > --- > Ap} of all highest weights of the group GL(n). The irreducible representations of the
quantum group GLg(n) with highest weights A are realized on the subspaces F,(\), respectively.

Each space F,4() has exactly one-dimensional subspace Cyp), of right invariants with respect to
the subalgebra Uy (so,—1) of the algebra Uy(so,). The function ¢ is called zonal sherical function

of the space Fg()).
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In order to describe these zonal spherical functions we note that the quantum group GL,(n)
has n-dimensional torus T™ on its main diagonal. We denote by z = (21,22, -,2,) canonical
coordinates on T". It is proved by Noumi [9] that

‘p)\lT" = C)\P#(Zf, Z%, T 721%; q4,q2)(z122 T zn)li (35)
where ¢, is an appropriate constant and A, p and [ are related as
A= (Ala )‘21 T :)‘n)(zlu‘laz.“ZJ . :2#’71) + (l’la T )l)

Here P, (z;q,t) are well known Macdonald symmetric polynomials (see [25], chapter 6), defined

for pa.rtitions b= (#17#’2)" : :,U'n); H1 > K2 =2 Hn > 0.

The explicit expression for the constant ¢y is given in [9] for the case when ) is normalized
n—1 n —ntl
by the condition ¢y(g?) = 1, where ¢* = (q z ,q 23,---,q 7).

The following formula has place for the Macdonald polynomials Py, (z;q,t) (see [25]):

PP, =) f) P
A

It is noted in [25], p. 343, that the explicit calculation of the coefficients f “,, = fw,(q, t) is open
problem. Let us give group-theoretical approach to this formula for the Macdonald polynomials
from (35) and to the coefficients f,i‘,,. This approach uses the fact that the zonal functions ) can

be realized as the matrix elements
wx = (A, 0/Tx|2,0),

where T), is the left corepresentation of the Hopf algebra F;(GL(n)) on F4(A) and |A,0) is the
right U} (sop,—1) invariant vector in Fy(A).

We consider the tensor product Ty, ® Ty, of two corepresentations of the Hopf algebra
Fo(GL(n)) such that Ay, Az € Ph,,. Then

Thy ® Try ~ @Aeﬁ nyTh. (36)

Moreover, considering the -structure on F,(GL(n)) (transforming this Hopf algebra into the
Hopf *-algebra Fq(U(n)), we may assume that all corepresentations in (36) are unitary. Then
there exists a unitary operator C from the representation space of n)T to the representation
space of T, ® Ty, such that

T,\1 ® T)‘2 =C (®A€P+ 'n)‘T}‘) c*. (37)

Now we take basis elements |\, k1; A2, k2) in the space of the representation Ty, ® Ty, (where
k1 and k2 numerate basis elements in the spaces which are tensored) and basis elements |j; A, k) in
the space of the representation n\T) (where j separate multiple representations T3 ). The matrix
elements

(A1, kis A, k2|Clj; A, k) == CR, (1, ke, k)

are called Clebsch—Gordan coefficients of the tensor product Ty, ® T»,. Let |A1,0), |A2,0) and
|7;A,0) be the normalized right U;(so,—1) invariant vectors in the correponding representation

spaces. Then
<)‘17 0; )‘27 OICIJ’ )‘1 k) = 07

if |7; A, k) # |7; A, 0). We have

(AI)O; )‘270 | Tz\1 ®T)\2 | A1,0;A2:0> = @x1Px:2
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and
(.7: A’ OIT)\ |.71 )" 0) = P

Let us introduce the notation
. A
(A1, 05 A2,0C|3; A, 0) := C%, .

Taking matrix elements of both sides of the relation (37) between the vectors (A;,0; A2,0| and
|A1,0; A2,0) we obtain the relation

2
PrPrg = Z,\eP*‘( Z ICMAZI PA- (38)
Introducing the notation
LN
2
1GNP = Cns
j=0

we may write down the relation (38) in the form

_ Asd
Pxr1Pry = E}‘EP:;(,,) C)\l)‘z%\.

It is the relation
PuPuy =)l Pu
n

for the Macdonald polynom1als P,(z;q* ¢%), written in other notations (see (35)). The Clebsch—
Gordan coeflicients C’ are now under calculation.

We can derive two propertles of the coefficients fi, ., startmg from properties of Clebsch—
Gordan coeflicients CA . Namely, it follows from (38) that C’/\ > 0. It gives the first property

of the coefficients fh -
Since Clebsch—-Gordan coefficients constitute a unitary matrix, then we have

D (A1, 05 22,0(Cl5; A, 0))* = 1.
1A

Therefore,

C3,. =1
+ AL
ZAEPsa( ) 1Az

This gives the second propery of the coefficients fl,u,. Note that ff,,, differs from the corre-
sponding C’,{‘l a; DY the coefficients from (35).

Remark. In was shown in [9] that zonal spherical functions for the quantized algebra of functions
F,(GL(2n)/Sp(2n)) are expressed in terms of the Macdonald polynomials P,(z; ¢2,¢*). For these
polynomials the above two properties of the coefficients f ﬁ‘,, are also true since the above reasoning
can be repeated word by word for this case. We only have to take into account coefficients relating
the zonal functions and the Macdonald polynomials P,(z; a2, q%).

11. HARMONIC POLYNOMIALS ON THE QUANTUM VECTOR SPACE

In section 4 we defined the action of the algebra U (so,) on the algebra A of polynomials in the
elements z1, s, -, T, such that z;x; = qzjz;, i < j. This action determine the representation
of Uy(son) on A, which will be denoted by 7.
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The algebra A can be represented as a sum A = @, _, An,, where A, denote the subspace of
homogeneous polynomials of homogeneity degree m. These subspaces are invariant with respect
to action of U,(so,). We denote the restriction of the representation T to A, by T(m),

In general, the representations T(m) of Ué(son) are reducible. It is checked by a direct com-
putation that the element

Q=a?+q 'zl 4+ +q¢ "2 c A (39)

is invariant with respect to the representation T( (and hence with respect to the representation
T), that is, T (I 1)@ = 0 for k = 2,3,---,n. Similarly, the element Q* € Ay is invariant
with respect to the representation T(2k)

To the element (39) there corresponds the operator

Q=21+q 85+ - +q "&}
on A which commutes with operators of the representation 7. We also consider on A the operator
Ay=A=q"102 +¢" 205 +--- + 82 (40)

It is called the g-Laplace operator on the quantum vector space.
A polynomial p € A is called g-harmonic if Ap = 0. The linear subspace of A consisting of all
g-harmonic polynomials is denoted by H. Let H,, = Am NH. Then

H= @:zo H,..

Similar to the classical case, the space A, can be represented in the form of the direct sum

(see [18])

This decomposition has the following consequence:
A'm = @()SZJ'Sm QJHm_Zj (42)

(the summation here is over j =0,1,2,---,|m/2], where |m/2] is the integral part of m/2).

It follows from (42) that A ~ C[Q] ® H. This decomposition is a g-analogue of Kostant’s
theorem on separation of variables for Lie groups in an abstract form.

If B (x) € Hum and B, (x) € H,, then (since Q* = ¢~ 1A with respect to the scalar product
(21)) we have

(@ hm, Q') = ¢*C" ) (b, A¥Q'RY).

It is derived by direct calculation that A(Q'h.) = Q' 1[2!][2l +n+ 25 —2]h,. Applying repeatedly
this formula we obtain from the previous formula that

[2k + n + 25 — 2]!
[n + 25 — 21!

(Q*hum, QALY = Sug® 1) [21]1 (Fm, B} (43)

Remark. In an analogy with the classical case, we may consider the scalar product (21) as an
integral of the function p;p5. Then the formula (43) means a fulfilment of “integration” with
respect to the g-radial part. Like to the classical case, the scalar product (hy,,h}) can be treated
as “integration” over g-spherical coordinates for g-harmonic polynomials.

Proposition 3 [18]. The operator A commutes with the action T' of the algebra Uy(sop)-
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It follows from this proposition that restriction of the representation 7™ onto the subspace
Hm is invariant with respect to Uy(so,). We denote the restriction of this representation to Hm
by Tp. Since @ is invariant with respect to Uy(soy,), it follows from (42) that

(m) _ )
T(m) — ®0§2j_im Tm__z_,.

Proposition 4. The representation T, of Uy(sop) is irreducible and equivalent to the classical
type representation characterized by the integers (m,0,---,0).

The decomposition (41) is orthogonal with respect to the scalar product (21). There exists
the projector Hp, : Ay = Hop ® QAm—2 — Hm. This projector can be represented in the form

[m/2]
Hpp= Y aQ¥A*p, o €C, peAn, (44)
k=0

(|m/2] means the integral part of m/2), where the coefficients ay are given by

(=1)%[n + 2m — 2k — 4]"!
[2k)!![n + 2m — 4]!!

o =

with [s]!! = [s]4[s — 2]q[s —4]q- - [2]4 (or [1]4) and [0]!! = 1. These coefficients are taken in such
a way that H2, = H,,. It is clear that the operator H,, commutes with the operators of the
representation T(m) of Uy(so,). Considering the scalar product (21) on the space A,, we have
H*=H.

Let us show how to construct, by using the operator H,,, a zonal polynomial (that is, an
invariant element with respect to the subalgebra Ug(so,—1)) in the space Hp,. In order to do
this, we have to take a polynomial p € Ay, invariant with respect to U;(so,-1) and to act
upon it by the operator Hy,. Since the projector H,, commutes with the action of Ué(son_l),
a polynomial obtained in this way is a zonal polynomial. Clearly, the polynomial p(x) = =™

x = (x1,%3, -, Ty ), belongs to A, and is invariant under the action of Ué(son_l). We have
[m/2] [m/2]
/ - Z Ak a2k, m Z mllln+2m -2k -4 o
= = = 1 .
Pm men P akQ an Tn ( m 2k]'[2k]"[ﬂ —om — 4]”Q Tn (45)

Using the notation (a;q); = (1—a)(1—ga)(1—g2a) - - - (1—g¢°*'a), we reduce the zonal polynomial
(45) to the form

lm/2] , _ -
o = 3 @@ k) o meak,
™ (g g e(gTITimES gt "

It concides with the formula for a zonal polynomial found by another method in [18].

It is known (see [26], chapters 9 and 10) that in the space of classical homogeneous harmonic
polynomials there exist different orthonormal bases. They correspond to different separations of
variables. Each separation of variables corresponds to a certain chain of subgroups of the rotation
group SO(n). A similar picture has place for spaces #,, of homogeneous g-harmonic polynomials.

In the classical case, the tree method distinguishes different separations of variables or, equiv-
alently, different chains of subgroups of SO(n) (see {26], chapter 10). The same tree method (see
[19]) can be used for g-harmonic polynomials, but instead of chains of subgroups of SO(n) we
have to take the corresponding chains of subalgebras of the algebra U, (soy).

Let us show how to construct an orthonormal basis of the space H,, of homogeneous ¢-
harmonic polynomials which corresponds to the chain

Uy(s0n) D Uy(s0n-1) D - -+ D Uy(sos) D Uy(soz), (46)
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where Ué(soz) is the commutative subalgebra generated by the element Is;. This basis is a g-
analogue of the well known set of associated spherical harmonics which are products of certain
Gegenbauer polynomials (see, [26], chapter 9). Let us first note that the following proposition is
true [19]:

Proposition 5. Let hy(x') be a homogeneous harmonic polynomial of degree s in x' = (1,22, -+,
Tn_1). Then for ™ %h,(x') € A, we have

[(m— s)/2J( 1)kq=25k[m, — s![2m + n — 2k — 4)!

[m—s—2k]![2k]!![2m+n 4" QT T [ hs(x). (47)

Hp (27~ hs(x)) =

k=0
We denote by 5™ (Q, ) the expression at hs(x') on the right hand side of (47):
L(m—s)/2]

tnm 1)k g=25%[m — s]![2m + n — 2k — 4]!! e
tg (Q,-’Bn)= Z ( [m_s_I:Zk]'[z]kg"[zm+n—4] ] Qk 2k (48)

k=0

In order to construct an orthonormal basis of H,,, we have to normalize expression (47). Let
7™ denote the expression (47). We have (see [19])

(e, 7") = (Hm(zq " he(x)), Hm (2" hs(x))) = (a1~ "ha(x'), 77)
= D (@m~ ho(x'), T hs (X)) = g™ m — sy ('), hs (x)),
(s)

where ¢y, is the coefficient at z7*~* in the expression (48). It is given as

(qz(—n—m—s+3) : q4)

_ (m—s)/2 . .
cls) = (@I, i) 2 if m-—s is even,
2(—n—m—s+4). 4)
(s) — (q 147 ) (m—s—1)/2 if _ . dd
Con 1 m 8 18 O }
( H-n—2m+4); i) )(m—s—l)/2

Instead of 3™ (Q, z,) we shall use the normalized expression
t7™(Q, 2n) = ¢V Im — ) TV2E™(Q, 2n). (49)
The space H,, can be represented as the orthogonal sum

Ho = @D, tml (@) HETY,

where 7-[5,7,,__ 11) is the space of homogeneous g-harmonic polynomials in 1, z3,---,Z,—1. Applying
this formula to HS::;_ 11) , then to 7{%;_2.‘,) and so on, we obtain the following decomposition of H,,

into the sum of one-dimensional subspaces:

Hm = b C

Mp—1,Mp—2,"",7M8,M2

[1]

m,Mnp—1,Mn—2,"",M2 (x)?

where

Em(X) = Emmn—1,mu2,ma(X)
= tn,m (Q7 xn)t:'l,nl ;n"_l (Qn——l; Tn—1 ) t3 ‘ms (Q31 .’I}3)t2 e (331, :1’22) (50)

where Qy, = z2+q 123+ -l—q_k"'1 2 and summation is over all integral values of m,_1,Mn_2, -
mg for which
M2 Mp_1 > Mg >+ > m3 > |mg|, (51)
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and t,’i;:’_"l (Qk, zx) are given by (49). A complete set of linearly independent harmonic polynomials

in 21 and x5 coincides with

s—1

29 =1, 20 = (izy + z2)(iz1 + qza) - - (iwy + ¢ 1z2), s>0,

29 = (i1 — z2)(ie1 — qu) -+~ (ims — ¢ ~*T'22), 5 <0

and t2™2 (g, zy) = (c(™2))~1/25(m2),

To every set of integers my_1,mp—_2,- -, m3, my satisfying the condition (51) corresponds a
polynomial (50). (For fixed m3 the number mgy takes the values —mg, —m3z—1,---,m3.) A direct
calculation shows that the number of these polynomials is equal to the dimension of the space
‘Hm. From the other side, the polynomials (50) are pairwise orthogonal. This means that the set
of all polynomials (50) constitute an orthonormal basis of the space H,,. This basis corresponds
to the chain of subalgebras (46).

Representation of the basis of the space #H,, of solutions of the equation Ap,, = 0 in the form
(50) gives us a g-analogue of separation of variables of the classical analysis. This g-separation of
variables corresponds to the chain of subalgebras (46). g-Analogues of other types of separations
of variables can be constructed similarly (see [19] for explicit formulas).

It is proved in [19] that the operators Tpn (I x-1), k¥ = 2,3, - -, n, of the representation T}, of
the algebra U, (so,) act upon the basis elements Ey, = |m), given by (50), as

Ton(Tp p—1)Im) = —([mx + mp_1 + k — 2][mz — mg_1])"/2 A(my_1)lm}_,)

+([mk +mp_1+k— 3][mk —mp_1+ 1])1/2A(mk__1 - 1)|m,:_1), k#2,
T (I21)|lm) = i[me]|m),

where my, = m, m,:el:_1 denote the set of numbers my_; with my_; replaced by mg_1 = 1, respec-
tively, and

1/2
PP (RTINS EETIS
k-1 2mg_1 +k — 3|[2my_1 + k — 1] ‘

These formulas give an explicit form of the representation 7}, mentioned in Proposition 4.
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