ON EVOLUTIONARY LAWS, INDUCING CONVEX
SURFACES TO SHRINK INTO A POINT

N.M.IVOCHKINA

ABSTRACT. The paper presents general point of view on evolutionary laws, forcing
convex surfaces to shrink into a point in finite time. Collection of examples, which
fail traditional treatment, illustrates nontriviality of suggested generalization.

1. Introduction

We consider evoulution {T';,¢ > 0} of some closed surface I'q under the law
(1.1) E[ly] :=E(v,k)[I:]=f, t>0,

where v(M) is the normal component of velocity at the point M € Ty, k(M) =
(K1, ..., kn)(M¢) is the vector of principal curvatures of Iy, E=E(s,S), f=f(t) are
given functions, (s,S) € D C R x Sym(n),n > 2,Sym(n) is the space of n-th order
symmetric matrices. In this context k ought to be considered as diagonal matrix
as well as s below.

Since only the normal component of velocity involved in (1.1), desirable evolu-
tions can exist if v # 0 and function E monotone in both variables. Without loss
of generality we keep to agreements v > 0, curvatures of the spheres are positive.

This paper concerns description of the laws, which guarantee infinite expansions
of T'p in infinite time or its shrinking into a point in finite time. Such general point
of view on expansions was developed in the recent paper [8] and we just formulate
relevant results from there later on.

Many important examples of geometric contractions, with flow by mean curva-
ture [4] as starting point, were considered long since. However, turnes out that
contractions also admit general approach and its description is the actual subject
of this paper.

As it follows from modern development of the theory of fully nonlinear second-
order differential equations, monotonicity of function E in both variables over some
convex domain D C R' x Sym(n) such that if (s, S) € D, then (s + osgn(s), S +
€ x &) € Dforo >0, € R is one of the necessary restrictions. In fact, we need
strict monotonicity, i.e., assume

(1.2) E(s+0,S+¢x§) > E(s,5), >0, £€R® o+|f>0
for D C R* x Sym(n) and

(1.3) E(5,S+{x€) > E(s—a,8),
matics Subject Classification. 35J65, 53A05.

Typeset by ApmS-TEX



if D C R~ x Sym(n). Here R*, R~ are the sets of positive and negative numbers
respectively. Our agreement v > 0 means that either s=v, or s=-v and (1.2), (1.3)
present opposite types of monotonicity in v, while always positive monotone in S.
In further proceeding we separate (1.2) from (1.3) saying that variables v, S are
E-cooperating or E-competing respectively. Now we can say right away, what kind
of evolution the law (1.1) prescribes.

Proposition 1.1. If v,k are E-cooperating, then equation (1.1) prescribes ezpan-
sion in the sense that relevant parabolic problem is correct, if they are E-competing,
then it can only be contraction.

Indeed, Proposition 1.1 separates correct from inverse parabolic problems, what
can be easily seen in some local parametrization.

Monotonicity requirements (1.2), (1.3) carry out the notions of E-admissible
surfaces, E-admissible evolutions, which are the analogs of relevant notions from
the theory of fully nonlinear elliptic and parabolic equations [2], [6], [7].

Definition 1.2. A surface I is E-admissible if it is closed C®-surface and there
exists positive function v = v(M) € C' such that (s(v),k)(M) € D,M € T. An
evolution {I's,t € [to;t1)} is E-admissible if the sufaces Ty are E-admissible for
every t € [to;t1). A solution to (1.1) is admissible if it appears to be E-admissible
evolution.

Here and below s(v) equals v or -v depending on D. If a set of E-admissible
surfaces belongs to the set of strictly convex surfaces, the law of evolution can be
prescribed in the form

(1.4) G(v,r)[Ts] = g,

with r[T] = (r1,...,7a)[¢] to be the vector of principal radiuses of curvature. The
notion of E-admissibility admits obvious reformulation in terms of (v, r) and if so, we
will speak about G,-admissibility. The form (1.4) allows to consider contractions of
convex surfaces as cooperative case, what will mostly be the basis of our proceeding,.
Associated with (1.4) version with competing variables will be taken in the form

é(_vi k) = —G(’U, (k)—l)

Note that we always keep positive in second variable type of monotonicity.

We admit only orthogonal invariant couples (D, E). Namely,if (s, S) € D, then
(s,BSBT) € D,E(s,S) = E(s, BSBT) for B € O(n). For diagonal matrices s it
reduces to the invariance under permutation of diagonal elements.

Due to the strict monotonicity of E in v, equation (1.1) can be rewritten in the
form

(L.5) v = F(k)

what actually was the case in all previous papers but [8], concerning general de-
scription of the laws of evolution [1], [3], [10]. It is remarkable that in [1] right hand
side of (1.5) was taken as F' = F(k), while in [3], [10], & = 1/F(k). In both cases
F was assumed to be positive monotone in k over some convex domain in R™. This
difference in setting agrees with Proposition 1.1 and also separates contractions
from expansions.
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General form (1.1) of evolutionary laws introduces new sources of information,
namely, domain D, its boundary, function f(t) and allows to include into consider-
ation more examples.

One of particular problems in the theory of fully nonlinear equation is to keep
under control admissibility of solutions. Some general situations, when right hand
side of equations regulates the latter, were first considered in the paper [2] for fully
nonlinear differential second order elliptic Hessian equations. Relevant generaliza-
tions on parabolic case were suggested in [6], [7]. To adapt the idea from there to
equation (1.1) we, as was done in [8] for expansions, relate to the couple {D, G}
two numbers, which may turn out infinite:

= li g= 1l .
g S,;lg(s,S)—l)I(I;O,SO)G(S’S)’ g all)rgoG(a,aI)

The cases of interest are

(1.6) 9<9.
To formulate principal results we introduce notations:

OFE ;i OF
E'=-—=, EY=_"—", S=(s).
a s 3 6 Sij’ ( "J)
Note that E°, (E%) are always positive for assumed type of monotonicity of E.
Denote also by Sym*(n) the set of positive definite matrices. For the sake of
simplicity we assume all given functions and surfaces to be as smooth as necessary.

Theorem 1.3. Let D C Rt x Sym*(n) and I'g be G,-admissible surface. Assume
that for any constant B € (0;1]) there exists sz such that (sg,BI) € D,

(L7) 7= lim G(s,AI).
(1.8) G < p G¥ry + g

holds with some constants py, p2 on admissible solutions to equation (1.4) and
(1.9) g9<g(t)<yg, 0<g, te[0T]

where T is the time of shrinking of the sphere, enclosing Ty, into a point.

Assume also G to be concave over D function. Then there exist T < T, a
point M € R"H! and the unique G.-admissible evolution {T';,t € [0;T)} satisfying
equation (1.4) and in addition Ty - M, whent — T.

The relevant expansion version from [8] looks as follows.
Theorem 1.4. Let D C Rt x Sym(n),(s,0) ¢ D, G be concave over D, I'y be

G-admissible starshaped surface. Assume

(1.10) g= alingo G(s,aS) (s,5)€eD
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and the ineguality

(1.11) G%s > G"s;;, (s,8) € D.
holds. Assume also g to be constant and
(1.12) g<g<g

Then there erxists the unique G-admissible evolution {I':,t € [0;00)}, satisfying
equation G(v,k = g. Moreover, the rescaled flow {I':/R:} converges to a sphere,
when t = co. Here R; =r(t),G(r',1/rI) =¢,Ry = 1.

Theorem 1.4 has been initially proved for equations in form (1.5) with concave
homogeneous function F = 1/F in [3], [10}, what corrsponds to equality in (1.11).
In presented generality the uniqueness and existence were obtained in [8], (see
Theorem 1.1). Asymptotic behaviour was also considered in there under assumption
(1.11) to be strict inequality (Theorem 1.2). Recently the author has learnt the
proof of asymptotic convergence to a sphere under (1.11), discovered by Th.Nehring
(private communication).

There exist flows, when strict convexity of initial surface regulates E-admissibility
of solution, instead of inequalities (1.9), (1.12), i.e. the whole boundary of D
is not of interest and requirement (1.6) gets redundant. For expansions it was
observed in [10]. Namely, there was shown that evolution (1.5) with ¥ = 1/F(k),
F to be homogeneous, positive monotone, concave in k and convex in r preserves
strict convexity of initial surface, while convexity was not necessary for solutions to
be admissible. Here we present sufficient conditions, ensuring such preserving for
contractions. To proceed with introduce the numbers

c= 3213 t}‘% G(s,al), €= gg EILIEO G(s,al)
instead of g, g. Note that the analog of inequality (1.6) is also required for ¢, €.
Theorem 1.5. Let D C Rt x Sym*(n), G be concave over D and Ty be G,-
admissible surface. Assume that for any constant B € (0;1]) there exists sg such
that (sg, BI) € D,
¢ < lim G(s,B1),
§—00

the inequality (1.8) gets satisfied with some i, s,

(1.13) Go% < G
on admissible solutions to equation (1.4) and
(199 c<g(t)<e g >0.

Assume also that function v defined by (1.5) is concave in k. Then there exist
T <T, a point M € R*"! and the unigue G,-admissible evolution {T's,t € [0;T)}
satisfying equation (1.4) and in addition Ty — M, when t — T.

Note that boundary of D does not appear in conditions of Theorem 1.5. It
means we are free to consider only part of maximal domain of E-admissibility, if
have managed to relate numbers ¢, € to some D C RT x Sym™(n). The examples
will be presented in Sections 2, 5.

It is of common knowledge that evolution of E-admissible immersed surface under
the law (1.1) does exist, if started by E-admissible surface, at least some finite time
t; and its further existence depends on possibility to establish a priori estimates.
In order to ensure convergence of the flow into a point we apply the following idea
from [9].
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Proposition 1.6. Let v[T], k;[T:],% = 1,...,n be a priori uniformly in t bounded
from below by positive constant and from above, untill the surfaces 'y enclose a ball
B, with some p > 0 and evolution of {I's} under the law (1.1) stays E-admissible.
Then, if v,k are E-competing, there exist T € (0;T),T < oo and a point M such
that admissible solution to equation (1.1) ezists for t < T and Ty — M, when
t—=T.

Construction of relevant estimates under conditions of Theorems 1.3, 1.5 is the
subject of Sections 4 — 5. Section 3 contains local reduction of geometric flow
(1.1) to fully nonlinear second order parabolic equation. In Section 6 we discuss
pinching property, imposing some homogenuity requirements on E, and also the
case of convex E. Section 2 contains examples to indicate the tendencies. There are
also examples in Sections 4 - 6 to illustrate speciality of relevant Section.

This paper resumes author’s contemplation over the papers of [1], [9]. It was
started in cooperation with Prof.F.Tomi and Dr.Th.Nehring in Heidelberg Univer-
sity, 1999, where the first version of Theorem 1.4 was proved. The whole picture,
presented here, was inspired by author’s participation in the programme ” Nonlinear
Partial Differential Equations”, Isaac Newton Institute, Cambridge, 2001.

2. Examples

Our examples based on nowdays well known properties of elementary symmetric
functions and quotients. Denote

tr;, S

1
e Frni(8)=H77'(S) 0<l<m<na,

Hm,z(S) =

where tr;S is the sum of all principal i-th order minors of matrix S. When 1=0,
we omit the second index, i.e., Hy := Hpo. Function Fi,,; is one-homogeneous,
positive monotone, concave over the cone Cp,,

Cm = {S € Sym(n) : Hi(S) >0, i=1,..,m}.

The following simple observation from [8] will also be of use.

Proposition 2.1. Let {G;} be positive monotone, concave functions over D C
R* x Sym(n), ¢i, defined on the range of G; respectively, be strictly increasing,
concave functions and X\; be positive constants. Then function G := Y, Mid; 0 G;
succeeds properties of positive monotonicity and concovity over D.

Proposition 2.1 allows to increase the amount of examples, subjected to Theorem
1.3. For instance, to include into consideration the following function from (8]

(2.1) G(v,5) =logs + flog F, — SF B,y > 0.
1
with D = Dt := Rt x Sym™(n).
We start our collection of examples with
(2.2) v[l] = Fr, ,(K)[T'].



Proposition 2.2. Any strictly convez closed surface Ty starts strictly convez, pos-
itive monotone in t evolution by (2.2), which converges into a point in finite time
T, if either of conditions fulfilled:

6] g€ (0;1)U(L;00), I=0;

(ii) g=1, 0<l<m.
Moreover, if —1 < ¢ < 0, then any starshaped surface T' with
(2.3) k(M)eCp, Mgl

starts the unique expansion {I's,t € (0 : 0o)}, satisfying (2.2) and (2.8). In addi-
tion, evolution {I';} asymptotically tends to o sphere.

To prove Proposition 2.2, when (i), we rewrite equation (2.2) on D in equivalent

form
1

CvFL ()

and see that conditions of Theorem 1.3 are fulfilled with D = DT, g = —00,g =
0,p1 = 1/q, pz = 0, due to Proposition 1.1 and properties of functions Fy, p— .
If (ii), associate with equation (2.2) relations

G(v,r) = [y =-1

-1 N 1
G(v,r) = TFn_m,n_;(r) =-1, G(-v,k)= - mi(k) =1

and apply Theorem 1.5 with ¢ = —00,% = 0, ;1,2 to be the same as above.
Inequality (1.13) turnes into equality and v is concave in k, hence all conditions of
this Theorem are fulfilled and contraction part of Proposition 2.2 gets valid.
As to expansions, we just rewrite equation (2.2) in the form
1
G(’U,k) = —'—l-l— =-1
vF, ng,l (k)

and check that all conditions of Theorem 1.4 are satisfied. In fact, this example
was taken from [8].

We see of particular importance equation (2.2) with 1 <1l <m <n —1. ;From
general point of view we should relate to such equations D = R~ x Cpn, i.e. admit
nonconvex surfaces I'; as admissible to our problem. It is rather remarkable that
rewriting of these equations in terms of (v,r) neither helps because formally it
brings out as natural the domain D € R* x C,,—; and we can not control convexity
of admissible surfaces by right hand side of (1.1). That was the reason to speak
about ”preserving convexity” flows .

To our knowledge, Proposition 2.2 has no analogs for I > 1,m < n in previous
investigation of contractions. For expansions this phenomenon was discovered in
[10].

It may be shown that evolutionary laws from Theorem 1.5 always admit expres-
sion (1.1) with homogeneous in v,k function E. It is far not so with Theorem 1.3.
For instance, the equation

(2.4) v=Hy(k+~I), v>0,
6



can not be reduced to homogeneous in k form but Theorem 1.3 covers it. To show
the latter we include (2.4) as particular case in the following set of evolutionary
laws

n

n
a-
(25) PaHM = 620 Ya>0 a>0
Proposition 2.3. Assume ¢ = c(t),c; <0 in (2.5). Then arbitrary strictly convez
surface shrinks into a point in finite time T under the law (2.5). Moreover, {Ts,t €

[0;T)} is strictly convez monotone solution to (2.5).

To prove Proposition 2.3 we apply Theorem 1.3 to the following, equivalent on
convex surfaces to (2.5), equation

n

Gv,r) = =Y = Hp_in(r) = —c.
]

%
Here D = D*,g = —00,3 =0,

(2.6) pr=maxg; =¢q, M= q—%’, vp = minuv.
i Vg To
Since I'y has been given G-admissible surface, po is well defined. Due to Proposition
2.1 and concavity of F, »—;, function G is concave in D*. Hence, equation (2.5)
and (2.4), in particular, satisfy assumptions of Theorem 1.3.
We resume indication of tendencies by

Proposition 2.4. Let Ty be strictly convez closed surface and G be given by (2.1)
with constant g. Then, if B,v € (0;1], equation G(v,k) = g defines the unique G-
admissible infinite expansion of Ty, asymptotically converging into a sphere, while
G(v,r) = g defines the unique G-admissible evolution of I'g shrinking into a point
in finite time whatever positive 3, be.

Assertions of Proposition 2.6 follows from Theorems 1.4, 1.3 respectively.
We remark also that, by Theorem 1.4, evolutionary law

v =Hp(r+vI), 0<m<n,

uniquely defines infinite expansion of arbitrary strictly convex surface and, properly
rescaled, it converges to a sphere.

3. Reduction of geometric evolutionary problems to the problems for
fully nonlinear parabolic equations

The variety of parametrizations of hypersurfaces suggests variety of reductions
of our problems to relevant pieces in the theory of second order parabolic equations.
We choose two simplest local parametrization, one will treat the case of competing
and the second cooperating variables (v,S).

Let (Mp) € Ty, be the origin of Euclidian coordinate system {Y" = (y, y*t),y =
(y1,.--,Yn)}, ¥(M,t) be interior normal to I's at M and v(Mo, %) = (0,...,1). There
are vector-functions Y(t) such that in some vicinity of (Mo, to)

(3.1) Ty = {y®), " =u(y,t)}, |uy(0,t0)| =0, v=(Y,v)
7



with

(3.2) V= _Ml"___ﬂ

VJ1+ul

Here and below lower indices are differential. Namely,

Ou
u; = y” |y|2 Zu,, Ut = -—.

We also notate Hesse matrix of u by u,y = (u;;). When competing variables, i.e.,
(v,k) are of interest, parametrization (3.1) will be fixed such way that vector y is
independent on t and matrix uy,(0,%) gets diagonal. Consider symmetric matrix

T[Ft]a
1 . UiUj

i, g4 = 5 —
9%, g \/m(, T+u2

and let u(yy) := Tuy,7. Then

);

Ut

—— = (),
A1+l

principal curvatures of I'; are the eigenvalues of u(,,) and, due to orthogonal invari-
ance of E, in our vicinity of (Mp, to) evolutionary geometric equation (1.1) reduces
to partial parabolic second-order differential equation
(3.3) E(v,k) = G(—uq), U(yy)) = J-
The case of cooperating variables (v,r) will be attended by different parametriza-
tion. To describe it we introduce X(t) as a position vector of strictly convex sur-
faces (3.1) with origin enclosed by I';. Let P(t) be Legendre transformation of
Xt)=Xo+Y(t),ie,

p=1uy, h=(z0+y,p) - (25" +u)
Then locally Ty = {p,pn+1 = h(p,t)},» = v(p). In contrast to previous special-
ization we fix P-parametrization of I'; with vector p independent on t in some

neighborhood if {My, o). Now, the radiuses of curvature of I'; are the eigenvalues
of the matrix h,y) := nhypn with 7 = n{p) been the inverse to 7,

n* = (9:3)(p) = V1 + p*(8} + pipj).

—-h

—_t .= hs)
Vv1+p?

and partial differential equation

(35) G(—h’(t)) h(pp)) =9,

with G associated with G, gets locally equivalent to (1.1).

To construct a priori estimates we use the following linearizations of fully non-
linear operators from (3.3), (3.5).
(36) L[w] = —Eo’lU(t) + Eij’lU(.,;j),
where the meaning of round brackets depends on the type of parametrization, and
actually line (3.6) presents two different linear parabolic operators.

The following obvious generalization of common approach to maximum principle

will be involved somtimes in the later reasoning.
8
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Proposition 3.1. Let w',w" € C*(Q),Q C R™,w" > 0. Assume w = w'/w"
atteins its mazimum al some interior point from . Then at this point

(3.7 L[w'] — wL[w"] <0.

Theorem 1.5 contains the requirement for v, implicitly given by G‘(-—v, k)y=4§
as function of k, to be concave. Applied to parametrized equation (3.3), it leads to
conclusion

Proposition 3.2. If equation G(—v, S) = ¢ defines concave in S function v, then

8%G , 82G 82G

. 1 L —_—  Uis <0.
(38) 52 L ¥ 2ty O T By Bugy et <0

4. Estimation, when cooperating v,r. Proof of Theorem 1.3

Geometric evolutionary equation (1.4) is under consideration here and we start
the proceeding with

Lemma 4.1. Let T'y,t € [0;t,] be admissible solution to (1.4). Assume

(4.1) g:20, te(0;t4]

Then

(4.2) v[le] > min v{l] > 0.
4

If in addition G is concave over D, then

(4.3) ri[ly) < qu,xri[Fo], i=1,..,n.
Hhlo

Proof. Fix some point (M,t) and rewrite equation (1.4) as (3.5) in vicinity of this
point. Due to the choice of parametrization,

(4.4) vt = —hst, V) = —hi — v

at this point. Differentiating equation (3.5) in t, we arrive to inequality
n -
Lvl=—g; —UZG" <0
1

at (M,t), what proves assertion (4.2).

To obtain (4.3) assume there are t' € (0;t;], M' € Ty such that r(M',¢') >
ril[¢],t € (0;t1],% = 1, ...,n. Relate again eguation (3.5) to this point and note that
h(11) also attains maximum at (0,%'). Since at our point

(4.5) heiye = heiss  hiyGa) — hiiai = ha — hi, 4,3=1,..,n,
(4.4) and relevant differentiation of equation (3.5) brings out the inequality
L[h(u)] > G% + Gﬁ(hu —hi) > 0.

But then h(1;) can not attain maximum for ¢ > 0. This contradiction proves (4.3).
The uniqueness of admissible solution to equation (1.4) follows, for instance,
from Inclusion Principle for G,-admissible evolutions.
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Theorem 4.2. Let Ty, T be G-admissible evolutions of o, To respectively and sat-
isfy the relations

(4.6) GIl=g, Gl<§ te[0;T)
Assume Ty encloses Ty, g satusfies (4.1 ) and
(4.7) g(t) 2 §@t), te€(0;T)

. Then Ty encloses Ty for all t.

Proof. Let _
d(t) := dist{Tse; e}

Due to (4.2), d°(0) > 0 for arbitrary small € > 0. Assume there exists

0<t=min{t <T:d(t) =0}.

Then function d¢(t) attains its minimum at some ¢, on any interval (0;t1],¢1 < £.
Also, there is parametrization of I's,,'; such that function

(h — h)(p,1)

Vierg

attains its minimum at the point (0, %), what follows from the fact that in some
neighborhood of (0,%5) w is the difference of normalized support functions of the
surfaces Ty, [y respectively, i.e., w = (X, —v) — (X¢, —v)) with the same normal
v. Since wy < 0,wpp > 0 at (0,%p), presentation (3.5), monotonicity of G and
speciality of our point bring out relations

G(~hsy, hpp) > G(=h§, hS, + d¥(to)I) > g(to +€) > g(to)-

The latter contradicts to assumptions (4.6), (4.7) and o does not exist. But then
also there is no t, what means I'; encloses T+, untill both evolutions exist. Since
¢ has been arbitrary, it proves Theorem 4.2.

To estimate velocity from above we adapt one finding from the paper [9] to new
enviroments.

Lemma 4.3. Let {T';,t € [0;t1]} be admissible solution to equation (1.4) and T'y,
encloses a boll B,. Assume function G is concave over D and satisfies conditions

(1.7), (1.8). Then

(4.8) u[['s] < C(p,To), te€[0;t4]

Proof. Let v, be solution to equation

c=maxg+ pat 0
(0t1) 14+
10

p —
(4.9) G(v, m) =c,



with some § > 0. Assumption (1.7) guarantees existence of v, if ¢ < g. Without
loss of generality u; in (1.8) can be taken sufficiently large and & small to get the
latter fulfilled. Denote
|94 Ro
T}’
where Ry is the radius of a sphere, enclosing I'g, and introduce function

v
4. =
(4.10) w X+l
where X(t) — position vector of T'; with origine in the centre of given ball B,. Then,
by Theorem 4.2, T; encloses B, for all t € [0;¢1] and —(X,v) > p,w > 0. Let w
attains maximum at (M',t') € {TI'1}. Relate to (M',t') standard parametrization
and equation (3.5). Then function (4.10) looks as

CThos AR

in some neighborhood of (0,t") and at (0;¢')

7 = max{v,; 2

) > — e — 0 e P i
(4.11) 0> L{w] = —g; w(Gv+Gh)+221:G

Assume v > T in {4.11). Then, due to concavity of G in S, the following line reads
true

pa +8 p ’ p ;
412) ———— < G(v, =/——=1) - G(v,h < —G%hy + ———— ) G*™.
(4.12) 2(p1 +1) w 2(p +1) ) = Gl him) < ' 2(u1+1)2i:
But inequality (1.8) makes (4.11), (4.12) incompatible, what means that v < 7 at

the point of maximum of w. The latter validates (4.8).
We are now in position to deliver

Proof of Theorem 1.3. We constructed all estimates to apply Proposition 1.6
but the estimate for curvatures from above. The latter is equivalent to estimation
of radiuses of curvature from below and here the left hand inequality (1.9) gets
involved. Indeed, let the reqirements of Lemma 4.3 be satisfied and

r:= Tl(Mlat') < T’i(M’t)) (M,t) € {rt}’ To:= ml.a\'xri[rﬂL i=1,...,n
Hlo

Then, due to (1.9), (4.3), (4.8), the relation
g <g= G('U,I') < G(C(erO)’F’ e )Far.)

holds valid at (M',#') and gives wanted estimate for r from below.

To underline speciality of Theorem 1.3 consider an example of G associated with
nontrivial domain D, namely, the equation
(4.13) V(] —k) = g™, 0<i<n, ¢20.
Rewrite (4.13) as

G(v,r) = (vIFn(v] — r—l))#f =g
and relate to G
D = {(s,8) € Rt x Sym*(n): sI — $~' € Sym*(n)}.
Function G is concave over D, g = 0, = oo, inequality (1.7) and (1.8) with
l1 = q,p2 = gmax; g are satisfied. Moreover, arbitrary strictly convex surface is
G,-admissible and capable to start evolution (4.13), which shrinks into a point in
finite time, if g > 0,g; > 0.
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5. Estimation, when competing (v,k). Proof of Theorem 1.5

Equations (1.1) with D C R~ x Sym(n) determine contractions and we rewrite
it here as

(5.1) E(s,8)[T] = G(—v,k)[Ts] = .
This time we keep to parametrization (3.1), (3.2) and, instead of (4.4), (4.5), involve

_ - 2
(5.2) Vg = Ugt,  V(s5) = Utis — Vg,

(5.3) U(in)(7) — W) = Wists (i — ;)

at the point (0,%5) as a substitute to (M,t) € {I;}. Identities (5.2), (5.3) are
ifinitesimal versions of some well known global relations in differential geometry
and can be easily derived by differentiaticn of us), u(yy) in vicinity of zero, [5].

Differentiation of equation (3.3), which is locally equivalent to (5.1), carries out
the following line

(5.4) L[v] = =G%; + Gy = s — vG¥u;

and also for v concave in k over D, due to (3.8),

(5.5) Llugy) > 11 (w11 (—G% + Giuy) — GPiud).

Lemma 5.1. Let {I'y,t € [0; T} be admissible solution to equation (5.1). Assume
Gt <0. Then

(5.6) v[l¢] > nrl‘in v[To].

Lemma 5.1 is obvious consequence to (5.4). Moreover, line (5.6) formally iden-
tical to (4.1). But assertion of Lemma 5.1 serves more general set of equations,
there is no requirement D C R~ x Sym™(n). For instance, it holds for m-convex
solutions to equation (2.1 ) with m # n. We don’t know if Inclusion Principle holds
in such generality.

Further development involves requirement (1.13) for admissible to (3.3) solutions.

Lemma 5.2. Assume in addition to assumptions of Lemma 5.1 concavity of v in
k, (1.13) and also convezity of the surfaces T'y,t € [0;t1]. Then

ki ki .
. — < — =1,...,n.
(57) U[I‘t]_rffa,‘gcvs i=1, ) T
Proof. Let
— . — l
(5.8) max exp( et)k«,,[r ] — exP( Ct )kl (Ml,tl).

i, {C:} v t v
Relate to (M’,t') parametrization (3.1), (3.2). Then function

—et
o = exp(—et)uy) (1,2)
Ut

12



attains maximum at (0,%'). If ¢ > 0, Proposition 3.1 with

w=w, w =exp(—et)uni), w"'=ugy

and relations (5.4), (5.5) bring out inequality
1 "
(59) 0> —;ﬁt + eGP + uu(G’”uﬁ - Gout).

But assumption (1.13) makes line (5.9) impossible, hence ¢’ = 0. Since € > 0 has
been arbitrary, our argument validates inequality (5.7).

Now we are to prove Theorem 1.5. Two functions G, G participate in conditions
of this Theorem. Both of them originated by our evolutionary equation (1.1) and
G will be function from Section 4, associated with G.

Proof of Theorem 1.5. As the result of above development, we have a priori
estimates for curvature from above depending on velocity, (5.7), and from below
for very velocity, (5.6). The requirement of convexity of v in r and strict convexity
of I'; makes available some results from Section 4, namely, Inclusion Principle,
estimate (4.3) for curvatures from below and also (4.8) for velocity from above, if
T, encloses a ball B,. By assumption (1.9") our solution succeeds G-admissibility
of initial surface, i.e., equation does not degenerate. So, we are again in conditions
of Proposition 1.6, what proves Theorem 1.5.

Remark. Reguirement of concavity (convezity) of function v in k, when compete-
ing variables, can be compatible with inequality (1.13) or inverse for only homoge-
neous F, v = F (k). Hence, the law (1.1), subjected to Theorem 1.5, may always be
expressed in terms of homogeneous function E.

Corollary to Theorem 1.5. Any admissible solution {T's,t > 0} to equation (1.1)
shrinks into e point in finite time under conditions of Theorem 1.5, if there ezisted
t = t1 such that I'y, turned out to be strictly convez.

Theorem 1.5 contains implicit assumption that admissible surfaces do exist and
this point ought to be attended to for concrete evolutionary equations. Consider,
for instance, following example.

(5.10) G(-v,k)=—v+Fo(k)=§ 0<l<m<n
with § = §(t). We associate to G function G from Section 4:
(5.11) Gu,r) =v—Fp_pmp(r)=g

with ¢ = —§. Functions G, G are concave, positive monotone, satisfy inequalities
(1.8), (1.13) and by assumption g; > 0. Hence, Theorem 1.5 can be applied with
¢ = —00,6=0 and g < 0. But requirement of E-admissibility of initial surface [y
presupposes vg = Fp, 1(k)[T'g] > 0, i.e., I’y ought in addition to satisfy inequality

(5.12) Fri(K)[To] > 3(0), M€T.

Therefore, Theorem 1.5 guarantees that contraction (5.10) can be started by strictly
convex surface satisfying (5.12).
13



The case § = 0 fails the above argument but can be treated by Theorem 1.5
with arbirary strictly convex I’y if, instead of (5.10), (5.11), we rewrite the law of
evolution in the form

(513) G0,k == ~(AnM): =—¢, G'(v,r) = WFin-m(®)i =g

with ¢' = 1. Actually, it is the example from Section 2, where different choice of
G was suggested. Reformulation (5.13) satisfies all conditions of Theorem 1.5 but
with another ¢, €. This time ¢ = 0,€ = oo and g’ = 1 certainly gets included.

So, there exists the unique admissible solution, started by strictly convex Ty,
to equation (5.10) with § > 0,§; < 0, if in addition (5.12) holds. Moreover, this
solution shrinks into a point in finite time.

If I = 0, equation (5.10) is also subject to Theorem 1.3 as particular case of
equations (2.3) with g=1. When [ > 0,m < n, the set of all G-admissible evolu-
tions to (5.10) contains nonconvex flows and we see here the example of preserving
convexity laws.

Equation (5.13) with ¢’ > 0, g; > 0 represents one more example of evolutionary
preserving convexity law because maximal domain of E-admissible evolutions is
considerably wider, than the set of monotone convex flows if 1 < I < m < n.
Note that, in contrast to (5.10), arbitrary strictly convex surface is E-admissible
for (5.13).

6. Homogeneous laws of contractions

We consider here evolutionary laws in the form

(6.1) E[ly) := E(s,s)[T:] =0, (s,s)€DCR xSym*(n),
where E is homogeneous function,
(6.2) s[[¢] = ap — a1v, s[[¢] =k —axvl

with consant a; > 0,7 = 0,2,a; > 0. Option (6.2) indicates the possibility to
involve linear functions of v,k in capacity of s,s. It also describes, in what sense
laws (6.1) are to be homogeneous.

We always assume E to be defined on D° = R~ x Sym™(n). Then for homoge-
neous E relation (—1,I) € D implies D° C D and in further development D will be
fixed as D°.

Denote

s =(5,..,5,38), 528
and consider first the case of concave E.

Lemma 6.1. Let E be concave over D, ag = 0. Assume that for arbitrary o >
0,3 > 1 there exists s, = 8(,3) such that (—a, sg_l’l) €D and

(6.3) E(-a,s" 1) <0,

Then for admissible to equation (6.1), (6.2) solutions {T';,t € [0;t1]} the following
inequalities hold

(6.4 Bemalioo ij=1m
v I‘Dn’ v
k;
(6.5) 0<8(a1,C) < 2 —az, METw.



Proof. First of all, note that E-admissible surfaces are strictly convex. Moreover,
homogenuity of E brings out the relation
OF 6E
ot —k; =
a’U vt 6’6,’ 0
being true on admissible solutions. The latter means inequality (1.13) gets valid,
conditions of Lemma 5.2 satisfied and assertion (6.4) proved.
To obtain (6.5) we fix some point (M,t), M € I';,0 < t < t; and choose

5=C—-az, s= lm‘inlc:i—ag, a=a.
vt
Due to (6.4), the following line holds under conditions of Lemma 6.1.
0= CBIN)(M,1) < B(-a,s™%).

But because of (6.3) it may only be possible if 5 > s, with s, = s(a1,C), what
proves inequality (6.5).

The immediate sequence to Lemma 6.1 and Proposition 1.6 is the following
existence theorem.

Theorem 6.2. Let assumptions of Lemma 6.1 be fulfilled and Ty be E-admissible
surface. Then there exist T < 0o, My € R™ and the unique E-admissible evolution
{Ts,t € [0;T)} satisfying equation (6.1) such that T'r = M.

Indeed, if our evolution exists for 0 < t < 1, then it encloses the ball B,,p =
1/ max;r, k;and inequalities (6.4), (6.5) give estimates for the principal curvatures
and velocity in terms of p. Inequality (6.5) guarantees that (s,s) can not arrive to
the boundary of D, i.e., concerned parabolic problem does not degenerate.

Theorem 6.2 was motivated by the part of Theorem 1.2 from [1], containing the
existence of admissible solution shrinking into a point to equation

(6.6) v=F(k), F>0

for homogeneous, positive monotone, concave functions F, vanishing at 8Sym™ (n).
To show the point of our generalization consider the example

(6.7) Elj=—v+Fhi(s)=0, s=k-—avl.

If a = 0, it is the example to the theorem of B.Andrews. If a > 0, then equation
(6.7) of course can be reduced to (6.6) but we are loosing vanishing of new F at
O0Sym*(n) and existence of admissible evolutions is the subject to Theorem 6.2.
We also could not treat equation (6.7) with a > 0 by Theorems 1.3, 1.5 because
failed to find equivalent setting in (v,r) variables with concave function G.

Theorem 1.2 from [1] also implies existence of admissible solutions shrinking
into a point for evolutionary equations (6.6) with positive convex homogeneous
functions F without other assumptions but positive monotonicity of F. We sur-
vey this situation in terms of function E. Note that convexity of E provides the
inequality

E(s,S +£ x £) - E(s,S) > Eigi¢d

and local positive monotonicity has as a consequence nonlocal monotonicity. This
fact facilitates the treatment of equation (6.1).
We begin with the following analog of Lemma, 6.1.
15



Lemma 6.3. Let {T'y,t € [0;t1]} be admissible to equation (6.1), (6.2) solution,
ao,az2 > 0,a1 > 0. Then the following inequalities hold

(6.8) v > minv > -a—o,
I‘o 011

(6.9) E—(12ZmiI;E’;—a.2=1'r.',>0,

v FD!J

k; 1Y ..

{6.10) ;—a25;+ﬁ, i,j=1,...,n, ME€Ty,
where 18

u=—E(-a1,k), v= Ea_ﬁ

Proof. The first of inequalities (6.8) contains two assertions. One of them is
already known as the estimate (5.6), whereas relation v > ag/ae; reads as necessary
condition for admissibility of solutions to the problem (6.1), (6.2) with homogenous
function E.

Estimate (6.9) presents opposite to (6.4) inequality and bases on the opposite to
(1.13) inequality

(6.11) EO; > Etuy,

which gets valid due to homogenuity of E in s, s and requirement ag > 0. Appear-
ance of function u in (6.11) indicates that we have again related standard coordinate
system to the point under consideration. Similar to the proof of Lemma 5.2, we fix
M',t" as the point of maximum of ratio exp(—et)v/k; and consider

_ exp(—et)uy
U11

w€

< w(0,t).

This time identities (5.2), (5.3), Proposition 3.1, arbitrariness of € and (6.11) to-
gether with convexity of E conclude estimate (6.9).
To derive inequality (6.10) we introduce diagonal matrix s~ (M, t) with

F=-maxk;—az, S=K
v o1

and apply the following consequence of convexity of E,

a—E(—a.l, st 1) > .,

g3
Indeed, (6.10) follows from the line
0= %E[Ft] > E(-a1,s"" ) > —u+ V(% maxk; — az — k).

Lemma 6.3 guarantees fhat, untill admissible solution to equation (6.1), (6.2)
exists, it encloses some ball B, and Proposition 1.6 carries out
16



Theorem 6.4. Let E be convex over D and Ty be E-admissible surface. Then
there exists the unique started by [y admissible solution to (6.1), (6.2). Moreover,
it shrinks into a point in finite time.

To illustrate Theorem 6.4 we generalize relevant examples from [1] following way,
n 1
0= E[Ft] =agp—aiv+ (Z(k, - az'u)'");, m>1.
1

When ap = az = 0,a; = 1, it is exactly the example from [1} and without loss
of generality equation (6.1) can be rewritten in the form (6.6). Also notion of E-
admissible surfaces looks rather redundant, when az = 0. The set of strictly convex
surfaces suits the case.

Assumption ay > 0 totally changes the situation. Actually, Theorems 6.2, 6.4
are conditional in this case because contain implicit requirement of existence of E-
admissible surfaces. We give sufficient condition for E-admissibility of the surface
and show that this set is never empty.

To proceed with we relate to function E new parameter g as the root of equation
E(—0,I) = 0. The existence of oo > 0 is necessary for solvability of equation (6.1).
Function f(¢) := E(—o,I) is positive for & > oo and negative otherwise. QOur
further argument will be based on this observation.

Proposition 6.5. Let E be homogeneous positive monotone over D function and
T be strictly convex surface with

i, 1,
Assume that
az
{6.12 _
(6.12) k> ™
and
(613) (a1 + azdo)k > az(ao + UOE).

Then T is E-admissible surface.

Proof. In this Section D = R~ x Sym™(n) and to satisfy Definition 1.2 will be
sufficient to prove the existence of v(M) such that s(v) = ag —a1v <0, S(k,v) =
k — agvl € Sym*(n) and

(6.14) 0= E(ap —a1v,k —agvl) M €T,

Fix a point M € T' and consider function of one variable fa(v) = E(s(v), S(M)).
The inequality (6.12) is obviously necessary for E-admissibility of I and there exist
é,e > 0 such that

Qg ap +¢€ €
02 465, v=""2 k-uv=86-—>0, s(v)=-e
a1 ay ay

k=

17



Then, due to homogenuity of E,
(6.15) fu(®) 2 E(=6,(6 = —)1) >0
1
for sufficiently small e.
Assume now a; > 0 and let

_ ap (S—E
v=— .

ai G2

Requirement (6.13) brings out the line
fu(®) < B(-2(5 - 9, (E—k+e)]) <0.
2

The latter together with (6.15) guarantees the existence of vy € (u;7) satisfying
fm(var) = 0, what implies (6.14). To conclude the proof we remark that for
az = 0,5 = 00.

Back to Theorems 6.2, 6.4, we can say that spheres satisfying (6.12) are always
E-admissible surfaces, i.e., this set is never empty.

In the theory of geometric flows there appears pinching condition as the first
step in investigation of asymptotic behaviour, [1]. Namely, evolution {I';} satisfies
pinching condition if there exists independent in t constant C such that

(6.16) ) <C.

(Bl Il

Inequalities (6.4), (6.5) and (6.9), (6.10) ensure pinching condition for the flows from
Theorem 6.2, 6.4 respectively. We see it as direct consequence to homogenuity of
E. It is rather remarkable that for az > 0 requirement (6.13) contains restrictions
on the value of C in (6.16) for initial surface I'o.
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