ON A FREE BOUNDARY PROBLEM ARISING FROM POPULATION
BIOLOGY

E.N. DANCER AND YIHONG DU

ABSTRACT. In this paper, using variational inequality techniques, we completely solve the
existence and uniqueness question for a free boundary problem arising from the studies of
certain population models. We also confirm a conjecture of ours in an earlier paper that
this free boundary problem is the correct limiting problem of a degenerate predator-prey
model.

1. INTRODUCTION
In this paper, we study the following free boundary problem

(1.1) —Au = AX{u<1)¥, ¥ > 0 in D; ulgp =0, max u = 1,

and its relations to certain population models, where ) is a constant and D a bounded
smooth domain in RY (N > 2).

Problem (1.1) arises as the limiting problem of several population models. It is
shown in [DDM, Theorem 1.3] that for any fixed A > AP, where AP stands for the
first eigenvalue of the problem

—Au = Au, ulpp =0,
the unique positive solution u, of the steady-state logistic equation
—Au = Au— v?, ulsp =0,

converges in C*(D) to a solution of (1.1) as p — co.

In [DD], we conjectured that (1.1) is also the limiting problem of a degenerate
predator-prey model. To be more precise, to understand the influence of spatial
heterogeneity on population models, we considered in [DD] the degenerate steady-
state predator-prey model

—Au = du — b(z)u?® — cuv,
(1.2) —Av = pv — v? + duv,

ulaq = vlaq = 0,
where ) is a bounded smooth domain in RY, A, y, ¢, d are constants with ¢, d positive,
and b € C*(Q) (0 < € < 1) is a nonnegative function which vanishes on the closure

of a subdomain D of Q and b(z) > 0 on Q\ D. We assume that D C  and D has
smooth boundary.
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We have shown in [DD] that (1.2) behaves like the classical model (i.e., (1.2) with
b(z) = 1 on Q) when A < AP but essential changes occur once A > AP. More precisely,
for fixed positive ¢ and d, when A < A, (1.2) has no positive solution for any value
of p; when A! < A < AP, (1.2) has a positive solution if and only if y lies in a
certain bounded open interval; and when A > AP, then (1.2) has a positive solution
if and only if x4 belongs to an unbounded interval of the form (—oo, yg) with g a
certain positive number. To better understand the change of behavior of (1.2) from
the classical case, we fix A > AP and consider the asymptotic behavior of the positive
solutions of (1.2) as y — —oo. This is a situation not occurring in the classical model
and hence of considerable importance in the understanding of the new behavior of
the degenerate model.

Let {u,} be a sequence of decreasing negative numbers converging to —oo, and let
(Un, Un) be a positive solution of (1.2) with p = p,,. We want to know the asymptotic
behavior of (uy, v,) for large n. It has been proved in [DD, Theorem 2.7] that, among
other things, both ||unlleo := [|tn|lLeo(@) and |[tn||z1(n) blow up at the rate of |uy,),
but ||vn|L1() stays bounded away from both 0 and co. Moreover, if {||vs||zq)}
is bounded for some ¢ > 1, then subject to a subsequence, uyn/|un||co converges in
L?(Q), for any p > 1, to a solution of (1.1), say u, and v, converges weakly in L9(Q2)
to (A/c)x{u=1)- However, we were unable to determine whether we can always find
some ¢ > 1 such that {||vn||ze(n)} is bounded. Thus, it is unclear whether (1.1) is
always a limiting problem for (1.2).

In this paper, we first show that (1.1) has a unique solution whenever A > AP,
and then we show that (1.1) is always the limiting problem for (1.2) as y — —oo.
Combined with the uniqueness result for (1.1), this gives a rather complete description
of the asymptotic behavior of (1.2). (See Theorem 3.4 in section 3 for details.)

Our approach uses a combination of variational inequalities, fine properties of func-
tions in Sobolev spaces and certain elliptic estimates. The free boundary problem
(1.1) is discussed in section 2, and the asymptotic behavior of (1.2) is studied in
section 3.

The use of variational inequalities in our approach appears rather indirect but direct
arguments do not seem to work. It seems that variational inequality techniques are
useful for other limit problems. We intend to return to this.

2. THE FREE BOUNDARY PROBLEM

This section is devoted to proving the following result.

Theorem 2.1. Problem (1.1) has a unique solution whenever A > AP, and it has no
solution when A < \P.

Proof. We first prove the nonexistence result. Suppose that (1.1) has a solution u.
As Ax{u<1y € L*®(D), it follows from the Harnack inequality that u is strictly positive
in D, and a standard regularity consideration shows u € H>*(D) N C'(D), Vs > 1.
Let ¢ > 0 be an eigenfunction corresponding to AP: —A¢ = AP¢, ¢|lsp = 0. Then
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one easily sees that
0< Af’/ oudzr = / V¢ - Vudz = /\/ X{u<1}pudz < )\/ dudz.
D D D D

It follows that A > AP. This proves the nonexistence part of the theorem.

When A = AP, we see from the above inequality that necessarily X{u<1} = 1 almost
everywhere in D. Thus any solution must satisfy —Au = Au in D. It follows that
u must be the positive normalized eigenfunction corresponding to AP whenever it is
a solution of (1.1) in this case. As such a function is well known to be unique, the
uniqueness for this case is proved. Conversely, suppose that ¢ is the unique positive
normalized eigenfunction corresponding to AP, then it is well known that V¢ never
vanishes on a set of positive measure in D. (For example, one can prove that if V¢ is
zero on a set of positive measure, then ¢ = —A¢/AP = 0 almost everywhere on this
set.) Thus {¢ = 1} has measure zero and hence x{4<1} = 1 almost everywhere in D.
It follows that ¢ is a solution to (1.1).

We now consider the much more difficult case that A > AP. The existence of a
solution of (1.1) for this case follows from Theorem 1.3 in [DDM]. (We will also provide
a self-contained proof for this later in this section.) It remains to prove uniqueness
for this case. Let us note that if u is a solution to (1.1) with A > AP, then {u = 1}
must have positive measure, for otherwise, u solves —Au = Au, u|sp = 0 and hence
A = AP, a contradiction. This implies that u satisfies a semilinear equation with a
discontinuous nonlinearity.

To cope with the discontinuity of the right hand side of (1.1), we resort to a
variational inequality approach. Let

K :={u € Hy(D) : u < 1 almost everywhere in D}.

Then for each f € L?(D), the variational inequality

(2.1) /éVu V(v —u)dz > /Df(v —u)dz, Yv € K,

has a unique solution u € K. This follows directly from Theorem 1.4 in chapter III of
[KS] on strictly monotone operators. Define the solution operator by L : u = L(f).
Then one can easily show that L has the following properties:
(i) L: L*(D) — L*(D) is completely continuous;
(ii) L(f) € H*»*(D)n C**(D), u=1— (N/s), if f € L*(D) with s > N;
(iii) L(f) > 0 a.e. in D when f > 0 a.e. in D;
(iv) L(f1) < L(f>) a.e. in D when f; < fp a.e. in D.
(v) L(f) = (=AY 'f if f > 0and (—A)™'f <1 on D, where (—A)~! denotes the
inverse of —A over D under Dirichlet boundary conditions.
These are mostly well-known, but we prove them for completeness.
To see (i), it is enough to show

I1L(f1) = L(fo)llmg < ellfu = fallra-
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Denote u; = L(f1) and us = L(f3). Then, by (2.1),
/ Vup - V(ug — uy)dz > / fi(us — uy)dz,
D D

/ VUz . V(ul - ’ll,g)dfr 2 / fz('ul d ’u,2)d$
D D

Adding the above inequalities we obtain
o1 = vally = [ 1V~ )Pz < [ (1= ) = )
D D

< M = fellze(lva — wal| 2
By Poincare’s inequality, ||ui — us||z2 < cljui — ug||gy for some ¢ > 0. Thus
flur = uallg < ellfi — follzz,

as required.
To see (ii), we note that u solves (2.1) if and only if w = —u solves

(2.2)
/ Vw: V(v —w)dz > /(—f)(v —w)dr, Yo € K’ :={v € Hy(D) :v> —1}.

By Theorem 2.3 in chapter IV of [KS], the unique solution w of (2.2) satisfies w €
H?%3(D) N C**(D) provided that f € L*(D), s > N. Thus, so0 is u = —w.

Since clearly L(0) = 0, we find that (iii) follows from (iv). To prove (iv), we let
w; = —L(f;), i = 1,2. It is easily seen that wy and w, are solutions to (2.2) with
f = f1 and f, respectively. For 0 < £ € H}(D), clearly wy + £ € K’. Therefore, by
(2.2) with f = fi,w =w; and v =w; +§,

/D Vu, - Veds > /D (—f)éds > fD (—fu)€da.

This is to say that w; is a supersolution of —A + f» and hence, by Theorem 6.4 in
chapter II of [KS], w; > ws, i.e., L(f1) < L(f2), as required.
Property (v) is self-evident from the definition of L(f).

With these preparations, we are ready to prove the uniqueness of solutions to (1.1).
For fixed A > AP, we define Ly : L?(D) — L?(D) by

Lyf = L(Af).

Claim 1: u is a solution to (1.1) if and only if u is a positive fized point of Ly in K.

To prove the necessity, we assume that u is a solution to (1.1). Clearly u € K. It
suffices to show that

/Vu-V(v—u)d:cZ / Au(v — u)dz, Yv € K.
D D
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As u solves (1.1) weakly, we have

/ Vu - Vodz =/ AX{u<1yuddz, V¢ € Hy(D).
D D

Taking ¢ = v — u with v € K, we obtain

/ Vu-V(v—u)der = / AX{u<1}u(v — u)dz
D D

= /D/\u(v —u)dz + /D Axqu<y — Du(v — v)dz

= /D)\U(v — u)dz + /{u=1} Al —v)de

> / Au(v — u)dz,
D

as we wanted.

We consider next the sufficiency. Suppose that » is a positive fixed point of L) in K.
Then, 0 < » < 1 and hence Au € L*(D), Au > 0. From properties (ii) and (iii) of the
operator L proved earlier, we find that 0 < u € H>*(D)NCY(D), Vs > 1, p € (0,1).

Using Theorem 6.9 in chapter II of [KS] to w = —u, we find that in the distribu-
tional sense,

—Aw=—-Xu+min D,

where m is a nonnegative Radon measure with supp(m) C {w = -1} = {u = 1}.
Thus,
(2.3) —Au=Au—min D.

But from the regularity of u we have Au + Au € L*(D) for any s > 1. Thus m is in
fact a function belonging to L*(D).

If ||u|le < 1, then m has empty support and hence (2.3) reduces to —Au = u,
which implies that A = AP, a contradiction. Thus {u = 1} has positive measure.
On this set, by repeatedly using Theorem 6.19 of [LL], we deduce Au = 0 almost
everywhere. Thus m = Au — Au = X almost everywhere in {u = 1}. As we already
know that m = 0 outside this set, we must have m = Ax(y,=1}; and hence

—Au = A — AX{u=1} = AX{u<1}t for almost every z € D.

It follows that u is a weak solution to (1.1).

Claim 2: L) has a minimal positive fized point in K.

As mentioned before, (1.1) always has a solution. (Recall that we have assumed
A > AP). Thus, by Claim 1 above, Ly always has a positive fixed point in K. Let u
be an arbitrary positive fixed point of Ly in K. From equation (1.1) and standard
elliptic regularity we know u is C! up to the boundary. The Harnack inequality
implies v > 0in D. As u = 0 on 9D, we find that u < 1 near ¢D, and hence u
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solves —Au = Au near 0D. It follows that u is smooth here and the Hopf boundary
lemma gives du/0v < 0 on 8D, where p denotes the unit outward normal of 0D.
Thus, u > €¢ on D for all small positive number €, where ¢ denotes the positive
eigenfunction corresponding to AP with ||¢|jcc = 1.

If € is small enough, say € < ¢ for definiteness, we have vy := (A\/AP)e¢ < 1 on D
and v, solves, by an easy calculation, —Awy = Ae¢. Thus, Ly(ed) = vy and

u= Ly(u) > Ly(ed) > €.

It follows that {(L))"(e¢)} is an increasing sequence of functions bounded from above
by u. A standard argument shows that

wei= lim (£)"(ed)

is a fixed point of L, satisfying e¢ < w, < u. Thus it is a positive fixed point of L,
lying in K.

Let us remark that if we replace u by 1 in the above discussion, then since clearly
Ly(1) < 1, we have (L,)"(e¢) < 1 for all n > 1 and therefore the existence of the
fixed point w, of L, also follows. Combined with Claim 1, this gives a self-contained
proof for the existence of a solution to (1.1) for the case A > AP.

We show next that w, is independent of € € (0,¢p). Let 0 < €; < €2 < €. By
property (iv) of the operator L, - we easily see that (Lx)"(e1¢) < (Lx)"(e29). It follows
that we; < we,. On the other hand, if ¢ is small enough, then it is easily checked
that for any €; € (0, ¢5), one can find a positive integer ng such that

€0 < (A APy < 1,
Using
(A/AD)ad < (M) ad < --- < (MDY Pad <1,
we deduce
Ly(a) = (M/AD)ad, (L) (ad) = VA0V ad, - (L) (eg) = (A7)
Therefore,
(In)"(e19) 2 €09 > e20.
It follows that
(LA)"™(e19) 2 (La)"(e29), Yn 2 1,

which implies w,, > w,,. Thus we must have w,, = w,,, and w, is independent of e.

Denote by wg the common function w,. Then our previous discussion shows that
wp < u for an arbitrary positive fixed point of Ly in K. Thus, wy is the minimal
positive fixed point of L in K.

Claim 3: (1.1) has a unique solution.
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Otherwise, L, has a fixed point in K, say w;, satisfying w; > wy but w; # wy.
Denote D; = {w; < 1} for ¢ = 0,1. We have D; C D, and
—Aw; = Axp;wi, wilap =0, i=0,1.

It follows that
’\/ XD, Wowrdz =/ Vuw, - Vugdr = /\/ X Do Wow1dT.
D D D
Hence
/ (XD, — XDo)wowrdz = 0.
D

As wy, w; are positive on D and xp, — Xp, is nonpositive, we necessarily have xp, =
Xp, almost everywhere in D, i.e., Dy \ D; has measure zero. Recall that wy and
wy belongs to H%*(D) for any s > 1. Hence we have —Aw; = Aw; a.e. in Dy and
—Aw; =0 a.e. in D\ Dy. If we write w = w; — wyp, then —Aw = Aw a.e. in Dy and
—Aw =0a.e. in D\ Dy. Asw; =wy = 1 a.e. in D\ Dy, we have w = 0 a.e. in D\ Dy,
and hence —Aw = Aw a.e. in D. That is to say that w is a nonnegative nontrivial
solution of —Aw = Aw,w|sp = 0. Hence we must have A = AP, contradicting our
assumption. This proves Claim 3 and hence finishes the proof of the theorem. O

Remark 2.2. For A > AP, let uy denote the unique solution of (1.1). Then the
following hold.
(i) AP < X < p implies up(z) < uy(z), Yz € D.
(ii) A — uy is continuous as a mapping from [A\P, c0) to C*(D).
(iii) uy, and hence the free boundary 0{uy = 1}, inherits the symmetry of D.
(iv) up(z)/¥r(d(z,0D)) = 1 as A — oo uniformly in D, where
() = sinvt, 0<t< (n/2A12
MY 1, t>(xr/2)A 12
(v) For any given € > 0, there ezists A, such that for X > A, the free boundary of
uy lies between the smooth surfaces
I, :={z € D:d(z,8D) = (g A2}
and

T, :={zr € D:d(z,8D) = (g — A2},

The first three conclusions in Remark 2.2 are easy consequences of the uniqueness
of uy. The last two follow from a careful analysis involving upper and lower solutions.

Remark 2.3. With minor modifications, our proof of Theorem 2.1 covers the follo-
wing more general problem

(2.4) —Au = Axu<139(u), u > 0 in D; ulopp =0, maxu =1,
D

where g(u) is C*, g(0) = 0, ¢'(0) = 1, and g(u)/u is nonincreasing on (0,1). We
have the following conclusions:
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Problem (2.4) has a unique solution whenever A > AP, and it has no solution when
XA < AP. Moreover, unless g(u) = u on (0,1), (2.4) has no solution when A = AP.

Note that if g(a) = 0 for some a € (0, 1], then the unique solution of (2.4) is smooth
and does not have a free boundary.

3. LIMITING BEHAVIOR OF THE PREDATOR-PREY MODEL

To understand the limiting behavior of (1.2) as p — —o0, we need some prepara-
tions. The first result we need is the following lemma proved in [DD, Lemma 2.2].

Lemma 3.1. Suppose {u,} C C*(Q?) satisfies
_Aun < )\un’ unlBQ - 07 Un = 07 ”un“oo = 1)

where X is a positive constant. Then, there exists us, € L®(Q) N HY(Q) such that,
subject to a subsequence, u, —> U weakly in H}(Q), strongly in LP(Q), Vp > 1, and

“uoouoo =L

It turns out that we will need some finer properties of the function u,, than that
given in Lemma 3.1. To this end, let us first recall from {LL] some basic facts on

subharmonic functions.
Let f € L} (Q) and we understand that f is a definite, Borel measurable function,

loc

not an equivalent class. For each open ball B,(z) := {y € RN : |y —z] < r} C ,
with volume denoted by |B,(z)], let ' '

Flor = 1B:(2)] ™ f RO

denote the average of f in B,(z). If for almost every z € Q,

F(@) < [flar

for every r such that B.(z) C €, we say that f is subharmonic on 2. We have the
following basic facts. (See Theorem 9.3 of [LL].)

(i) f is subharmonic on (2 if and only if Af > 0 in the sense of distribution.

(ii) When f is subharmonic on €, there exists a function f : @ — R U {—oc}
satisfying f(z) = f(z) for almost every z € Q, and () is upper semicontinuous
(u.s.c for short).

(iii) The u.s.c function f(z) can be obtained in the following way:

8.) f@) = iy, Vo € 9

We next recall several facts on approximation of functions in Sobolev spaces from
[H]. Let Cy 2(A) denote the (1,2)—capacity of the set A C RY given by the following:

(1) If A is compact,
Cu2(A) = inf{[||%: gy : ¢ € C°(RY), ¢ > 1 on A}.
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(2) If A is open,
C12(A) = sup{Ci12(K) : K C A, K compact}
(3) A arbitrary,
C12(A4) =inf{C12(G) : G D A, G open}.

We have the following facts (see [H]| pages 79-80 and 82-83) :

(a) Let f € H(RM). Then we can choose a representative f in the equivalent class
of f so that f(z) = lim,_ flzy, Yz € RN, except for a set of (1,2)—capacity
zero. Note that this choice is local and agrees with (3.1).

(b) Suppose f € H'(RN) and its representative f given in (a) satisfies f = 0 on a
closed set A C RY except possibly for a subset of A of (1, 2)—capacity zero. Then
there exists a sequence of functions ¢, € H*(R") such that each ¢, vanishes on
a neighbourhood of A and ¢, — f in H'(RY).

We are now ready to state and prove the needed fine properties of 4o in Lemma
3.1.

Lemma 3.2. The function us in Lemma 3.1 can be chosen to be u.s.c. Moreover,
for any zo € Q and any given € > 0, we can find a small ball B,(zy) C Q such that
for all large n,

(3.2) un(z) < ueo(zo) + €, YV € Br(z0).

Proof. Let v, be given by —Auv, = Au,, v,|eq = 0. Clearly v, > 0. Since, subject to
a subsequence, u, — Uy in LP(Q) for any p > 1,

Un = (—A) " Atp) = Voo := (—A) T (Aueo)

in H2?(Q) N CY(Q).

Denote w, = u, — v,. Then Aw, > 0 and hence w, is subharmonic. As w, =
Up — Up — Weo i= Ugo — Uso I LP(£2), we find easily from the definition of subharmonic
functions that we, is subharmonic. Moreover, by defining Wy (z) as in (3.1) with
[ = We, we find that We(z) = weo(z) almost everywhere in 2 and Wy, is u.s.c.
Therefore @iy 1= Weo + Voo 1S U.5.C. and equals us, almost everywhere in 2.

Assuming now u., is u.s.c, then (3.2) follows from a direct adaptation of the argu-
ments in the proof of lemma 2.2 in [DD]. O

Let us now return to the discussion of the asymptotic behavior of (1.2) as y — —o0.
As in the introduction, we assume that A > AP, {u,} is a sequence of decreasing
negative numbers converging to —oo, and (uy, v,) is a positive solution of (1.2) with
p = p,. We first recall several facts proved in Theorem 2.7 of [DD] and collect them
in the following lemma.

Lemma 3.3. The following conclusions hold:

(i) Asn — 00, l[ualloo/|tin| = 1/d, ||valleo/ltsn| — 0. o
(ii) un/||tnllcc = 0, vn — O uniformly on any compact subset of 2\ D.
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(iii) There exist positive numbers c; < ¢z such that ¢; < ||va]|p1e) < €2, V0 > 1.

Theorem 3.4. Let (py, un,vy) be as above. Then

(a) On the closed set Q\ D, un/||tnllcc = 0, vy — O uniformly.

(b) On the set D, let w be the unique solution of (1.1). Then up/||tsl|coc = w in
LP(D) for any p > 1 and v, = (A ¢)X{w=1} in the weak® topology in C(D)*.
Moreover, v, — 0 uniformly on any compact subset of D\ {w = 1}.

Proof. jFrom conclusion (ii) in Lemma 3.3, we find that to prove (a), we only need to
concentrate on the part of the region Q\ D that is close to 8D. Denote @y, = un/||tn|oo-
Then it is easily seen that 4, satisfies the conditions in Lemma 3.1. Hence, subject
to a subsequence, @, — 4 weakly in H}(Q) and strongly in LP(Q2) for any p > 1.
Moreover, [|4]|e = 1. It follows from conclusion (ii) in Lemma 3.3 that 4 = 0 almost
everywhere on Q \ D. It follows that 4|p € H(D).

Define 9 by

—At =Mz € D; ﬁlaD =0.
Clearly 9 € C?(D). On the other hand, i|p satisfies in the weak sense
—At =M<, z€D; ilspp =0.

Hence we must have 4|p < ¥ a.e. on D. Now we extend ¢ to R™ by zero outside D
and still denote it by 7. We find that ¥ is continuous and % < ¥ a.e. on ). Since 7 is
continuous, from (3.1), we find that the u.s.c representative of 4, still denoted by 4,
satisfies

(3.3) t(z) < 9(x), Vz € Q.

We will from now on assume that @ has been chosen to be the representative given
by (3.1).

By (3.3), we see that i(z) = 0 for all z € Q\ D. Hence it follows from (3.2) that
{i, — 0 uniformly on the compact set Q \ D. This proves the first part of conclusion
(a) in Theorem 3.4. We would like to remark that though our arguments above are
carried out only for a subsequence of {4y}, but as the limit is a definite number 0, it
follows that the full original sequence converges to this definite limit. This trick will
be repeatedly used in the sequel without being explicitly pointed out.

We show next that subject to a subsequence, {v,} converges to 0 uniformly on any
compact subset of {& < 1} := {z € Q : i4(z) < 1}. Note that since 4 is u.s.c, {& < 1}
is relatively open in Q. As i(z) = 0 on Q \ D, the second part of conclusion (a) will
follow from this.

Let K be an arbitrary compact subset of {@ < 1}. Since 4 is u.s.c, we can find € > 0
such that 4(z) < 1— ¢ for all z € K. Let N(0f2) denote a small neighborhood of 6Q
in § such that N(8Q)ND = . By (ii) in Lemma 3.3, we know that v, — 0 uniformly
on N(99Q). Hence it suffices to show that v, — 0 uniformly on K, := K \ N(9Q).
To this end, let zy be an arbitrary point in K. As 4(z) < 1 — € on Ky, by Lemma
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3.2, we can find a small ball B,(z) such that, for all large n, 4,(z) < 1 — (¢/2) for
all z € B,(zq). Therefore, by (i) in Lemma 3.3, we can find o > 0 such that, for all
large n,

P — U+ dtn = || (=1 = vn /| pin| + dilin||tn|loo/ |tin]) < —clitn|, Yz € B, (x0).
Therefore, using the equation for v, in (1.2), we deduce
—Av, < —alpg|vn, Yz € B(z0).

Using (i) in Lemma 3.3, we have v, < |u,| on Q for all large n. In particular,
Un|0B,(z0) < |tin| for all large n.

Let
wn(z) = IIY l(e\/ alpnl(zi—ad) 4 e—\/alunl(me—w?)),
where (z9,--- ,2%) = zo. It is easily checked that

—Awy, + o pin|wy = 0, Wn|6B,(z0) = 6\/mr/‘/ﬁ,
where we have used maxj<;<y |z; — 29| > 1/ v/N when |z — xo| = 7. It follows that
wy = |,un|e—\/°‘|T"|r/‘/ﬁwn
satisfies
—Auwp, + alpn|wy =0, whiss,@o) = |Hnl-

Applying the maximum principle to v, — w} over B,(zg), we find that v, < w’ on
B.,- (Zo)
Let § > 0 be such that § < N~%2, we find, for = € B, (z),

wy(z) < I,J,nIe_\/all-‘n|r/m(26\/a|llnw7‘)N

= 2RO
as n — 0o. Thus, for such 4,
0< v, Kw; —0, Vz € By (20).

As the compact set Ky can be covered by finitely many such small balls By, (o), we
have proved that v, — 0 uniformly on Ky, as we wanted.

We now set to prove (b). Multiplying the equation for u, in (1.2) by ¢/||un||e With
¢ € C$°(D), and observing that b(z) = 0 over D, we obtain

/ Vi, - Védr = )\/ U — c/ UnUn Pd.
D D D
It follows that

(3.4)  lim | cipvadds = — / Vii- Védz + A / igdz, V¢.€ C5°(D).
D D

n—o0 D
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Clearly the right hand side of (3.4) defines a continuous linear functional on H(D):

T(¢) = — /D Vi - Védz + A /D iddz.

Using the left hand side of (3.4), we see that T'(¢) > 0 whenever ¢ € C§°(D) satisfies
¢ > 0 on D. Moreover, since v, — 0 uniformly on any compact subset of {& < 1},
and 0 < 4, < 1, it follows from the left hand side of (3.4) that 7'(¢) = 0 whenever
¢ € C$°(D) satisfies supp(¢) C {4 < 1}. Using the continuity of 7 on H!(D) and the
fact that functions in H}(D) can be approximated in the H'(D) norm by functions
in C§°(D), we find that

(3.5) T(¢) > 0, V¢ € Hy(D) satisfying ¢ > 0,

(3.6) T(¢) =0, V¢ € Hy(D) satisfying supp(¢) C {& < 1}.

Note that {@& < 1} is open.

Define K := {v € H}(D) : v < 1} and let ¢ € C°(D) be chosen such that
0<¢<1lonD, $=1onad—neighborhood N;s of {G = 1}. From (3.3) and the
fact that @ has been chosen u.s.c, we know that {& = 1} is a closed set contained in
the open set D. Thus the above choice of ¢ is possible. Let v € K be arbitrary and
denote 9 = max{v, ¢}. Clearly 0 < 4 — v € H}(D). Thus, by (3.5),

/D Vii- V(v — )dz — A /D (v — @)da = ~T(v — 1)

=T(® —v)+T(a—5) > T(—9).

Denote u* = 4 — 9. Clearly u* € H}(D). Now we choose ¢ € C$°(D) satisfying
0<9$<lonD,=0onD\Ngmsys, ¥ =1on Ny Then clearly

supp((1 — 9)u*) € D\ Nuyays € {@ < 1}
Hence, by (3.6),
T(w*) =T((1 - 9)u) + T(Yu*) = T(Pu").

As ¢ =0 on D\ Ng/3)s, and o = max{v, ¢} = 1 on Nj, we find that pu* = (% — 1)
on D. Note that due to the choice of 4, u* is itself the representative obtained by
(3.1). Hence by property (b) for H!(R") functions recalled at the beginning of this
section we find that u* can be approximated in H!(R") by functions ¢, € H*(R")
which vanishes in a neighborhood of {4 = 1}. As ¢u* vanishes outside Nz/3)5, we
may also assume that ¢, vanishes outside D including dD. Thus, ¢, € H}(D) and
supp(d,) C {& < 1}. By (3.6), T(¢,) = 0 and hence T(yu*) = lim,, 00 T(¢n) = 0. It
follows finally that

/ Vi - V(v —a)dz — /\/ (v —-a)dr > T(u*) =T(u*) =0, Vv € K.
D D
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By Claim 1 in the proof of Theorem 2.1, this implies that % is the unique solution of
(1.1). Hence the full original sequence {i,|p} converges to @ weakly in H}(D) and
strongly in L?(D) for any p > 1.

We consider now {v,|p}. Since {||vn||z1(n)} is bounded by part (iii) in Lemma 3.3,
v, defines a sequence of continuous linear functionals on C(D):

1n(6) = L vnddz,

and the norm of I, has a bound independent of n. As C(D) is separable, by a well-
known result in functional analysis (see, e.g., [HP, Theorem 2.10.1]), subject to a
subsequence, {l,} converges in the weak* topology of C(D)* to some Iy € C(D)*.

To find an expression for [y, we multiply the equation for v, in (1.2) by ¢/|un| with
¢ € C§°(D) and deduce

n d L[| OO ~ n
(3.7) 2t (~Ad)dz = — / vngdz + Anl / nUnddz — / e,
D |pm| D lual  Jb D |pn|
By (i) in Lemma 3.3, we find that the left hand side of the above equation converges

to 0 as n — co. Using (i) and (iii) of Lemma 3.3, we obtain
' Un- Unloo .
0L I/ LC 'Unqbd:v] < ”I || !|¢||oo/ vpdr < c2||¢||°°” n”oo 0.
D |,u'n| i.u'n' D |'u,n|

Thus we obtain from (3.7), (i) in Lemma 3.3, equation (3.4) and the fact that 4|p
satisfies (1.1),

lim vppdr = lim UpUp Qdx
n—oo D n—>00 D

=c_1[—/DVﬂ-V¢d:c+/\/Dﬁ¢dm]
=c! [ - /D)\X{ﬁ<1}"1¢d$ + A /l; 'L"ubdx]
— [ W/ - xgaer)isds
D

= A(A/C)X{ﬁ=1}¢dx.
On the other hand,
] vatda = 1¢) = (@)

Thus we have

(3.8) w(8) = | (Moxanda, V6 € CF(D).
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Consider now an arbitrary ¢ € C(D). Let £ € C(D) satisfy £ = 1 on a small
neighborhood of {& = 1} and £ = 0 near dD. We find that A :=supp((1 — {)¢) C
{@ < 1}, and hence, since v, — 0 uniformly on A,

(1 - )4) = lim L ua(1 = £)dz = 0.
It follows that

lo(¢) = lo((1 — £)¢) + lo(£8) = lo(£9).-
Clearly,

/ (A e)xta=13€pdz = / (A e)x(a=139dz.
D D
As £¢ can be approximated by C§°(D) functions, it follows from (3.8) that
lo(ép) = / (Me)xqa=)éddz.
D

Thus,

lo(¢) = / (A/)x{a=1}¢dz, V¢ € C(D).

D

That is to say that v, converges to (A/c)x{a=1} in the weak* topology in C(D)*.
As the uniform convergence to 0 of v, on compact subset of {4 < 1} has already

been proved, the proof of Theorem 3.4 is complete. O
REFERENCES
D] E.N. Dancer, On the number of positive solutions of weakly nonlinear elliptic equations when a

parameter is large, Proc. London Math. Soc., 53(1986), 429-452.

[DD] E.N. Dancer and Y. Du, Effects of certain degeneracies in the predator-prey model, preprint, 2001.

[DDM] E.N. Dancer, Y. Du and L. Ma, Asymptotic behavior of positive solutions of some elliptic problems,
preprint, 2001.

[GNN] B. Gidas, W.M. Ni and L. Nirenberg, Symmetry and related properties via the mazimum principle,
Comm. Math. Phys., 68(1979), 209-243.

[GT] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equation of Second Order, 2nd Edition,
Springer-Verlag, 1983.

[H] L. Hedberg, Spectral synthesis and stability in Sobolev spaces, in Lecture Notes in Math., Vol 779,
Springer-Verlag, 1980, pp73-103.

[HP] E. Hille and R.S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc., Providence,
1957.

[KS] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Appli-
cations, Academic Press, New York, 1980.

[LL] E.H. Lieb and M. Loss, Analysis, Amer. Math. Soc., Providence, 1997.

E.N. DANCER: SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SYDNEY, NSW 2006,
AUSTRALIA, AND NEWTON INSTITUTE, UNIV. OF CAMBRIDGE, UK
E-mail address: normd@maths.usyd.edu.au

Y. Du: SCHOOL OF MATHEMATICAL AND COMPUTER SCIENCES, UNIVERSITY OF NEW ENGLAND, AR-
MIDALE, NSW 2351, AUSTRALIA
E-mail address: ydu@turing.une.edu.aun



