ON THE PROPERTY M CONJECTURE FOR THE
HEISENBERG LIE ALGEBRA

PHIL HANLON! AND MICHELLE L. WACHS?

ABSTRACT. We prove a fundamental case of a conjecture of the
first author which expresses the homology of the extension of the
Heisenberg Lie algebra by C[t]/(t)*+! in terms of the homology
of the Heisenberg Lie algebra itself. More specifically, we show
that both the 0** and k + 1°* z-graded components of homology
of this extension of the 3-dimensional Heisenberg Lie algebra have
dimension 3**! by constructing a simple basis for cohomology.

1. INTRODUCTION

In a series of papers [4, 5, 6, 7] dating back to 1986, Hanlon con-
Jectured that if L belongs to a certain class of complex Lie algebras,
which includes all semisimple Lie algebras, the Heisenberg Lie algebra,
and the Lie algebra of strictly upper triangular matrices, then the ho-
mology of the Lie algebra L ® C[t]/(¢¥*!) is related to the homology of
L in a very natural way. More precisely, the conjectured relationship
is as follows:

(1.1) H,(L ® C[tj/(t*+1)) = H,(L)®®*+)

as graded vector spaces. A Lie algebra L that satisfies (1.1) is said to
have Property M.

The Property M conjecture was originally stated for L semisimple.
It is particularly important in this case, since it implies Macdonald’s
root-system conjecture [9] (see [4] and {7, Section 6]). The Property
M conjecture for L semisimple is one of two conjectures known as the
strong Macdonald conjectures. In 1990 Hanlon [5] proved that sl,(C)
has Property M. Macdonald’s original root-system conjecture was even-
tually proved by Cherednik [2] in 1995. More recently Fishel, Gro-
jnowski and Teleman (3] announced a proof of the strong Macdonald
conjectures.
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In a recent paper, Kumar [8] showed that the Property M conjecture
is false in general for the Lie algebra T}, of strictly upper triangular nxn
matrices. More precisely he proved that (1.1) is false when L = T or
Ts and k = 1. He showed, however, that (1.1) does hold for L = T3
and k= 1.

The Property M conjecture for the (2n + 1)-dimensional Heisenberg
Lie algebra, Hyn+1, remains open. This is so even for H (= T3). Par-
tial results supporting the conjecture for M3 can be found in [6] and in
[1]. Computational evidence is given in [5]. In this paper we provide
further evidence by settling an important special case.

The Poincaré polynomial for 3 is easy to compute (see [7, Example
3.8]). It is given by

D dim Ho (M) g™ =1+ 2+ 242 + %
r>0
Hence Property M for L = H; can be restated as
D dim H, (L ® Clt]/(t+1)) o™ = (1 + 2y + 22 + y3)EH
>0
which implies that
> dim H,(L ® C[g]/(£*+1)) = 6++1,
>0

Even this simple statement is still open.

Hanlon conjectured that for Hs, equation (1.1) holds for even finer
gradings than the homological dimension grading. One such grading is
an N3-grading by (e, f, x)-degree which is defined in the next section.
For this grading,

Z dim Hy, p p (Ha)u™ 0" wP = 1 4+ u + v + wu + wo + vow
m,n,peN
and the conjecture given in (1.1) becomes
(1.2) > dim Hppp(Ha @ Cle]/ (1)) umum P
m,n,peN
= (1 +u+ v + wu + wv + vow)**L,
Setting w = 0 yields
(1.3) Y dim Hyno(Hs ® Clt]/ ()™ = (1 + u -+ v)*H,
m,neEN

which implies that the homology of the 0% z-graded piece of H,(H; ®
C[t]) has dimension 3%+!,
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In this paper we prove (1.3). This is accomplished by constructing
the following basis for the 0** z-graded piece of the cohomology of
Hs @ C[t]/(t*+1):

{ea - -ANeg Afi A Afi 0K 5 < < i Skm<ji < <o <k}

We show that this set is a basis by using the coboundary relations
to show that the set spans and then applying a lower bound on the
dimension which is established by considering a deformation of H; ®
Cl¢]/(t*+). Poincaré duality enables us to construct a “complemen-
tary” basis for the k + 1* z-graded component of homology. The
paper ends with a new conjecture which presents similar looking bases
for the 0% and &k + 1% e- and f-graded pieces of (co)homology of
Hs @ C[t]/(t*+).

2. PRELIMINARIES

In this section we recall some notation and background. The Heisen-
berg Lie algebra H; is the subalgebra of gl3(C) spanned by the basis
vectors z1g, 213, 223, Where z;; is the 3 X 3 matrix with 1 as the , j entry
and 0’s elsewhere. We use the traditional notation for this basis which
is obtained by letting e = 215, f = 293 and x = z;3. The only nonzero
brackets on these basis elements are

[eaf] =—[f,6] =7

Let L be a complex Lie algebra and let A be a commutative C-
algebra. The Lie algebra L ® A is defined to be the vector space L ® A
with bracket

[u®a,v®b] = [u,v] ® ab,

where [u, v] is the bracket of u and v in L, and ab is the product of a
and b in A.

A basis for Ly := H3 ® C[t]/(t**) is given by

B= {60,61,...,ek,fg,fl,...,fk,l'o,:vl,...,mk},
where e; = e®t!, fi = f@tiand x; = 2 @ ¢t for all i = 0,1,...k.
Clearly, the only nonzero brackets on these basis elements are given by
lei, fil = =[fi, ei] = ziy;

for all 4, j such that i + j < k.

Let E, F and X denote the subspaces of L; spanned by the e;’s, fi’s
and z;’s, respectively. Then the exterior algebra of L has a N3-grading
given by

A= P A™E)® A"(F)® NP(X),

m,n,peN
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where A* denoted the ith exterior power. We will say that an element
u in A™(E) ® A*(F) ® A°(X) is (e, f, z)-homogeneous with (e, f,x)-
degree equal to (m,n,p). We will also say that the e-degree of u is m,
the f-degree is n and the z-degree is p.

Recall that the differential or boundary operator of the Koszul com-
plex for Lie algebra homology is the map 8 : AL — AL defined by

HwA---Au,) = Z(_l)i+j+1{Ui,Uj]/\u1 A NN AT A - - Ay,
i<j
where “ denotes deletion. The homology of L is
H.(L) =kerd/imé.

When L = L, the differential & reduces the e-degree and f-degree of
an (e, f, z)-homogeneous element by 1 and increases the z-degree by 1.
We can therefore let

Omnp : AT(E) ® AM(F) @ NP(X) = A™H(E) ® AL (F) @ AP*(X)
be the restriction of 8. Now define
Hypnp(Li) = kex Oy p/ I Ot 11 p1-
So H.(Ly) has an N3-grading given by
H(L)= @ Hunp(Ls)-

mln)peN
3. A LOWER BOUND ON THE DIMENSION

In this section we derive a lower bound on the dimension of Hno(Li)
by considering a deformation of the Lie algebra L; whose homology is
relatively easy to compute.

Let L} denote the Lie algebra

i =Ha @ Clt]/(t* - 1),
So the non-zero brackets in L} look like:
[ e, f]] — { +37 J

Tiyj_(k+1), Otherwise.

Just as for Li, we can restrict the Lie algebra boundary & for
Li to A™(E) ® A™(F) ® A’(X) to obtain 8, ,,. This induces an
(e, f,z)-grading of H,(L}) whose (m,n,p)-component H,,,(L}) is
ker 8,’,,,“11,/ imo!, Ll p—1-

Lemma 3.1. For all k,m,n,p € N,

dim Hy np(Li) 2 dim Hp, (L)
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Proof. As a basis for the two complexes, take the set AB of wedges
of distinct elements of B = {ep,ey,... ,ex, fo, fi... , f&, T, T1 ... , Tk }.
The weight of a wedge of elements from B is the sum of their subscripts.
Order the basis elements of AB so that this weight is weakly increasing.
With respect to this ordered basis, the boundary 8 for Ly is block
diagonal since that map preserves weight. The boundary & has the
form:

(3.1) 0'=0+10,

where U is strictly block upper triangular.

It is a simple fact from linear algebra that if A is block diagonal
and B is strictly block upper triangular, then rank(A + B) > rank(A).
Applying that to equation (3.1) we see that

rank(d) < rank(d’).

So, we see that the nullspace of & has dimension that is no smaller
than the dimension of the nullspace of 8, whereas the image of & has
dimension that is no bigger than the dimension of the image of . Since
(3.1) holds for the restriction to each (e, f, z)-graded piece, it follows
that

dim Hp np(Li) > dim Hp, 5 (L))
for all m,n,p € N. O
The (k + 1)-fold tensor power of H,(Hs) has a natural (e, f,z)-

grading. We denote the (m,n,p)-component of H,(H3)®*+\) under
this grading by (H,(H;)®¢+D), ...

Proposition 3.2. For all k,n,m,p € N,

dim Hyn,n,p(Li) 2 dim(He(Hg)®* D) 0.
Proof. By Lemma 3.1 it suffices to prove
(3.2) dim Hy, p(L},) = dim(H, (H3)®**D),, .

It is straightforward to check that Lj is isomorphic (as a Lie algebra)
to the (Lie algebra) direct sum of k + 1 copies of the Lie algebra Hs.

To see this isomorphism explicitly, let ¢) be the map from H; to Lj
defined by

k
, 1 .
D) = 4 @ — ¢4t
V(W) =ue — > Wt
=0
where w is a primitive (k4 1)% root of unity. Let ’ng ) denote the image

of ¢¥), It is easy to check that HP is a subalgebra of L isomorphic
3 k
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to Hs and that [HS?, H) =0 for 4 # j. It follows that

k
(3.3) L= PHs.
=0
It is straightforward to show that H,(L ® M) & H,(L) ® H, (M) for
Lie algebras L and M. Applying this to (3.3) yields

H,(L}) & H,(H3)®¢+D,

One can easily check that this isomorphism carries the (e, f, z)-grading
of H,(L}) to the natural (e, f, z)-grading of H,(H3)®*+) Hence (3.2)
holds. O

Corollary 3.3. For allm,n < k+1,

E+1
dim Hpp p0(L) > '
im Hy, no(Li) > (m’n,k+1—(m+n))

Proof. We use the fact that
Z dim H,, po(H3)u™v™ = 14+ u + v.

m,n

O

Remark 3.4. The Lie algebras Ly and L), are part of a more general
construction. For any complex Lie algebra L and complex number z
define
Li(z) := L @ C[t]/(t**! - 2).

For z # 0, an argument similar to the proof of (3.3) shows that the
Lie algebra Ly(z) is a Lie algebra direct sum of & + 1 copies of L. At
the singular point, z = 0, the structure of Li(2) changes dramatically.
However, the homology of Li(z) can remain constant at the singular
point. This happens if and only if L has Property M.

4. A BasIis ForR COHOMOLOGY

In this section we compute the dimension of H,, , (L) by switching
to cohomology and constructing a spanning set for cohomology which
turns out to be a basis.

Let the coboundary map d : AL, — ALy be the adjoint of § with
respect to the Hermitian form on AL, that has AB as an orthonor-
mal basis. The cohomology of L, denoted H* (L), is defined to be
kerd/imd. The key relationship between homology and cohomology is

(41) H.(Lx) & H*(Ly).
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By restricting § we obtain a linear map
Omnp : AT(E) ® A™(F) ® AP(X) — A™H(E) @ A™H(F) @ AP~1(X).

Now define the (e, f, z)-graded cohomology component of degree (m, n, p)
to be

H™™P(Lt) = ker 6mpnp/ im 6, —1n—1p+1-
The isomorphism in 4.1 restricts to
Honnp(Le) = H™™P(Ly).

Now let us set p = 0. Note that kerdpmno = A™(E) ® A™(F). So
H™™O(L) is generated by elements of the form ey N Neg, A fiji A
-++ A fj, subject only to the cohomology relations. The cohomology
relations are obtained by setting the coboundary of elements of the
form

e,-l/\---/\eim_ll\fjl /\"'/\fjn_1 /\:z:t
equal to 0. This results in relations of the form:

t
42) D e A Aei  Afi A Afi  AegA fry =0,

s=0

foreacht=0,...,k. We allow ¢; A-- ‘Nei, Afj A~ A fj, to represent
an element of cohomology of Ly, as well as of the exterior algebra of Ly.

Theorem 4.1. For all k,m,n € N, the set Smn 1=
{eah - Ae A A Af5]0 S iy <0 < Shym € i < oo - < Gy < K)
is a basis for H™™0(L,).

We will prove Theorem 4.1 by first showing that St sSpans H™™0(L,),
To conclude that the spanning set is a basis we appeal to the lower
bound given by Corollary 3.3.

The following ordering of symbols

0<0<i<l<---<k<k

induces a lexicographical ordering of sequences of these symbols which
we denote by <;. We assign to each wedge product

w=eyAe, A Ne;, A fj,
where 0 <4y, 4y, ..., im,j <k, the sequence

ﬂ(w) — (il,ig,...,2j+1,...,’im) 1f_7<m
(il,iz,...,im) 1f_7_>_m
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Lemma 4.2. Fach wedge product
e, Ney A=+ Ney, A f,

where 0 < 4y,4g,...,im < k and 0 < j < m, can be expressed as a linear
combination of wedge products with lezicographically smaller p-value.

Proof. By the cohomology relation given in (4.2)

(4.3)
en N ANe Afj = =Y ey Ao Aeiyyir A Aei, A fiy
r>1
=) e A Aeir A A, A frar.
r>1

Here welete; = f; =0ifi < Qori > k.
Consider the 7™ term of the first sum and suppose this term is
nonzero. We have

pleiy Ao e Aeigy e - Aeiy A fir)
= (il,...,E,-_T+1,...,ij+1+r,...,z'm)
<z (il,...,Zj+1,...,z‘m)
= pleg A~ ANei, Afy).

The r** term of the second sum is handled similarly. Assume the
term is nonzero. If j +r < m then

pleig Ao Neg oo oo Aeip, A finr)
= (Btye ey bia1 = Tyeees Lty ooy im)
<L (il,...,zj+1,...,im)
= puleg A---Aei, A ).
If j +7 > m then

pleiy Ao A €ijpa-r/\ 0 Aein A fitr)
= (f1,-eesbjq1 —Tyennybm)
<L (il,...,2j+1,...,’im)
= ples, Ao ANei, A f;)

Hence each nonzero wedge product on the right side of (4.3) has lexi-
cographically smaller u value than that of e;; A---Ae;, A f;. d

Proof of Theorem 4.1. It follows from Lemma 4.2, the anticommuting
exterior algebra relations and induction that Sy, ; spans H™9(L;). We
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use this to show that S, ,, spans H™™%(L;) for all m and n. Consider
an arbitrary generator of Hy, no(Lg),

w=6i1/\"'/\eim/\fjll\"'/\fjn’

where 0<4; < <4, <kand 0< j; < -+- < j, < k. We show that
w is in the span of S,,» by induction on the minimum f-index, j;.

If 5, > m then w € S,,». Now suppose j; < m. We will show
that w can be expressed as a linear combination of wedge products in
H™™0(L;) with larger minimum f-index. Since S,1 spans Hy, 10(Ls),
the wedge product e;, A+ - -Ae; A f;, is a linear combination of elements
of the form e; A--- Aey, A fj;, where 0 < 4 < .- <4 < k and
m < j; < k. It follows that w =e; A---Aei,, A fj; A--- A fj, is a linear
combination of elements of the form ez A---Aex A fu Afi Av-- A fy,
where 0 < i < -+ < i, < k and m < j; < k. Clearly the wedge
products of this form have larger minimum j-index than that of w.
It follows by induction these wedge products are in the span of Sy, .
Hence w is in the span of S,,, and we can conclude that S,,, spans
Hm,n,O( L k) .

We now have

. k+1)!
m,n,0 L) < mni — ( .
dim B (L) < [ Sl minl(k+1—m—n)
Hence by Corollary 3.3, Sy, is a basis for H™"™0(L). O

Remark 4.3. The proofs of Lemma 4.2 and Theorem 4.1 show that
(4.3) provides the basic step of a straightening algorithm for expressing
wedge products in H,, ,0(L) in terms of elements of the basis Sy, .

The conjecture given in (1.3), which is restated here, is an immediate
consequence.

Theorem 4.4. For allk >0,
> " dim Hyno(Li)u™0™ = (1 4w+ v)*+L,

Equivalently,
. E+1
(44) dim Hm,n'o(Lk) = (m, n, k +l—m— n) .
Corollary 4.5. The dimension of the 0** z-graded component of H,(L;)
is 3F+1,

Remark 4.6. Adin and Athanasiadis [1] derive the special case of (4.4)
obtained by setting m = 1.
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Since Ly is nilpotent, we can use Poincaré duality to conclude that
the dimension of the k + 1% z-graded component of (co)homology of
Ly is also 3¥+1, In fact, we can explicitly transfer the basis for the 0
z-graded component of cohomology to the k + 1* z-graded component
of homology. For I = {i; <ig < --- <i,} C€{0,1,...,k}, let

ef:=e; ANeix, A---Ne;,
and define fr and z; similarly. Let ¢ : ALy — ALy, be the isomorphism
defined by
Yler A frAzk) =ep A frAzg,
where S denotes the complement {0, 1,.. ., k}—S. It is straightforward
to check that 9 0 & = (—1)*§ o0 ¢). Hence 1 determines a well-defined
isomorphism 1 : H™™P(Lg) — Hiy1-mp+1-np+1—p(LE)-

Theorem 4.7. For all k,m,n € N,
{esANfiAZo1,.x|0,1,...,k—ne J|I|=n,|J|=m}
18 a basis for Hpy, n kt1.
Proof. Apply 9 to the basis given in Theorem 4.1. O
Corollary 4.8. For all k > 0,
Z dim Hp, o1 (L )u™v™ = (u + v + uv)rtL,
Equivalently,
kE+1
im Hy o pr1(Lk) = .
dizn Honn 1 (L) <k+1—m,k+1—n,m+n—k—-1)

Remark 4.9. Conjecture (1.2) is a special case of a conjecture involv-
ing the Laplacian of L (see [7, Conjecture 6E]). In this context The-
orem 4.4 states that the dimension of the (m,n,0)-graded piece of the
kernel of the Laplacian of L; has dimension (m,n’k’f;l_m_n). and Corol-

lary 4.8 states that the dimension of the (m,n, k + 1)-graded piece of

the kernel of the Laplacian of Ly, has dimension (., , i k)

5. CONJECTURED BASES FOR OTHER COMPONENTS OF
(co)HOMOLOGY

We now consider the 0% e- and f-graded pieces of homology. Since
Ho0,p(Li) = Hopnp(Lk)

we need only consider the 0% e-graded piece. Analogous to the 0% z-
graded piece of cohomology, Ho (L) is generated by all the elements
of A*(F) ® AP(X) subject to the boundary relations.
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By setting u = 0 in (1.2) one has the following conjectured generating
function

(6.1) Z dim Ho, 5 p(Lg)v"wP = (1 + v + vw)*+1.

n,peN

This implies that the total dimension of the 0** e-graded piece of ho-
mology is 3¥*1. It also implies that if p > n then Hy (L) vanishes.
The second consequence is not hard to prove.

The following conjecture implies (5.1).

Conjecture 5.1. Let 0 < p < n and wp=foA---A fou1. Then
{wp/\fil/\"'/\fin_p/\le/\"'/\.’L'jpI
P <<t p <k, 0<j1<--<j, <k}
i3 a basis for Honp(Lg).

We can prove this conjecture for p < 2 by using ideas similar to
those of Section 4, and expect that these ideas will lead to a proof
for all p. By applying the Poincaré duality isomorphism 1 given in
Section 4, one can formulate an equivalent conjecture for H*+1mp(L,;)
(and H™*+1p(L,Y),
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