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Dynamical systems can be formulated in general on the basis of the Rieman-
nian geometry and Lie algebra, provided that a dynamical system has a group
symmetery, namely it is invariant under group transformations, and further that
the group manifold is endowed with a Riemannian metric. The basic ideas and
tools are described, and their applications are presented to the following five
problems. (a) Free rotation of a rigid body, which is presented as an illustrara-
tive example. This is well-known in physics and one of the simplest systems of
finite degrees of freedom. (b) Derivations of a geodesic equation on a group of
diffeomorphisms of a circle and KdV equation on its extended group, in which one
of the soliton equations is derived on a geometric framework. (c) Geometrical
analysis of chaos of a Hamiltonian system, which is a self-gravitating system of
a finite number of point masses. (d) Geometrical formulation of hydrodynamics
of an incompressible ideal fluid, which gives not only geometrical characteriza-
tion of flows but also interpretation of the origin of Riemannian curvatures of
the fluid flow. (e) Derivation of a geodesic equation on a loop group leads to
the local induction equation of the motion of a vortex filament, and the equa-
tion on its extended group is found to be equivalent to the equation derived by
Fukumoto and Miyazaki (1991) for a vortex filament with an axial flow along it.
It is remarkable that the present geometrical formulations are successful for all
the problems considered here and give insight into deep background common to
the diverse physical systems. Further, the geometrical formulation opens a new
approach to various dynamical systems, which is rewarded with new results.
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1 Introduction

Various dynamical systems have often common geometrical structures and can be formulated
on the basis of Riemannian geometry and Lie group theory. In this note, the mathematical
features are illustrated and physical aspects are exemplified by five systems: (a) Rotation
of a rigid body, (b) KdV equation and geodesic equation on the group of diffeomorphisms
of a circle, (c) A self-gravitating system (a conventional Hamiltonian dynamical system) of
a finite number of point masses, (d) Flow of an incompressible ideal fluid and geometrical
characterization of volume-preserving flows, and (e) Motion of a vortex filament and geodesic
equations on a loop group and its extended group. Before describing the details of particular
dynamical systems, mathematical concepts are presented first and reviewed briefly.

In the chapter 2, an introductory review is given for flows and diffeomorphisms, vectors
and forms, Lie group and Lie algebra. In the subsequent chapter 3, the theory of Rieman-
nian differential geometry is reviewed and basic concepts are presented: the first and second
fundamental forms, affine connection, geodesic equation, Jacobi field, and Riemannian cur-
vatures. Full accounts are found in the textbooks by Frankel (1998) [1], Arnold (1978) 2],
and Abraham and Marsden (1978) [4].

In the chapters 4 ~ 8, typical five dynamical systems are reformulated according to the
mathematical framework presented in the preceding chapters. The governing equation of
each system is now obtained as a geodesic equation on a group manifold associated with
the individual system. It is to be noted that, although the governing equations are derived
already in the physics, the present derivations are new and based on very general setup
and concepts of metric, connection and Lie algebra in the Riemannian differential geometry.
Chapters 4, 5 and 6 are reviews of published works: Suzuki et al. (1998) [8] (Ch.4); Ovsienko
& Khesin (1987) [9], Misiolek (1997) [10], and Kambe (1998) [7] (Ch.5); and Cerruti-Sola &
Pettini(1996) [13] (Ch.6), respectively.

One of the aims of this note is to give a geometrical framework to the description of flows
of an ideal incompressible fluid and an iterpretation to the origin of Riemannian curvatures
of the flows in chapter 7, based on Misiolek (1993) [16], Nakamura et al. (1992) [20], and
Hattori & Kambe (1994) [19]. Further, the chapter 8 describes a new formulation for the
geodesic equations of motion of a vortex filament on the basis of the theory of loop group
and its extension. This gives a new interpretation to the local induction equation and the
equation of Fukumoto & Miyazaki (1991) [23] from a geometrical point of view.



2 Flows, Diffeomorphisms and Lie group (Reviews)

2.1 Differentiable map and Diffeomorphisms

A manifold M™ is an n-dimensional topological space that is locally R™, namely, in terms of
local coordinates, a point p € M™ is represented as p = (z},- - -, zp).

Let F: M™ — V" be a map from a manifold M™ to another V”. In local coordinates
z = (¢%,---,2") in the neighborhood of the point p € M™ and y = (y',---,y") in the
neighborhood of F'(p) on V7, the map F is described by r functions F*(z), (i=1,---,7) of
n variables, abbreviated to y = F(z) or y = y(z), where F* are differentiable functions of
2/ (j =1,---,n), and such functions are continuous.

When n = r, we say that the map F' is a diffeomorphism, provided F is differentiable
(thus continuous), one-to-one, onto, and in addition F~! is differentiable. Such an F is
a differentiable homeomorphism with a differentiable inverse F~1. If the inverse F~! does
exist and the Jacobian determinant does not vanish, then the inverse function theorem would
assure us that the inverse is differentiable. In the next section, the fluid flow is described to
be a smooth sequence of diffeomorphisms of particle configuration (of infinite dimension).

2.2 Vector fields and Flows

Given a flow of a fluid in R3, one can construct a 1-parameter family of maps,
¢t : R3 — Ra,

where ¢; takes a fluid particle located at p when £ = 0 to the position of the same fluid particle
é:(p) = z4(p) at a later time ¢ > 0. The maps are the so-called Lagrangian representation of
motion of fluid particles. In terms of local coordinates, the j-th coordinate of the particle is

written as 77 o ¢4(p) = 27(¢4(p)) = i ().
Associated with any such flow, we have a velocity at p,

v(p) = %xt(l’)lmo = %¢t(p)|t=0 '

In terms of coordinates we have

- d x{
vp) =239

Taking a smooth function f: R® — R and differentiating f(z:(p)) = f(¢:(p)) with respect
to £, we have
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where v, = v(p). Thus, one obtains

b f = LHG(0) = 5T 0 BuB). )

Conversely, to each vector field v(z) = (v) in R®, one may associate a flow {¢;} having v
as its velocity field. The map ¢;(p) with ¢ a continuous parameter can be found by solving
the system of ordinary differential equations, dz? /dt = v?(z'(¢), 2 (t), 3(t)) with the initial
condition, £(0) = p. Thus one finds the integral curves, which is a one-parameter family of
maps ¢;(p) for any p € R?, called a flow generated by the vector field v, where v = &; = s
The map ¢:(p) is a diffeomorphism because ¢:(p) is differentiable, one-to-one, onto and F'~!
is differentiable, with respect to every point p. This is assured by the physical property that
each fluid particle is a physical entity which keeps its identity during the motion and two
particles do not occupy the same point simultaneously.

In general, on a manifold M™, we consider a vector v tangent to the parametrized curve
&; at p. The vector field v(z) at a point x € M™ is called a tangent vector, or a vector in
the tangent space T, M to the manifold M at a point z.
Remark: Continuous distribution of fluid particles in a space has infinite degrees of
freedom. Therefore, the velocity field of all the particles as a whole is regarded to be
of infinite dimensional. In this context, the set of diffeomorphisms ¢; forms an infinite
dimensional manifold D) and a point n = ¢; € D(* represents a configuration (as a
whole) of all particles at a given time .

A flow ¢:(p) = (z](p)) on an n-dimensional manifold M™ is described by the system of
ordinary differential equations,

dx?

*—dt—='l)j (xl(t)v"'smn(t))v (j:l’ *t n’) (3)

with the initial condition, ¢y = p. The one-to-one correspondence between the tangent
vector v = (v7) to M™ at p and the first-order differential operator v/ (p)9/0z7, mediated by
(1)~(3), implies the following correspondence,

V=300 o @

which defines the vector field v as a differential operator. See Arnold [2] (1978).

Usually, in the differential geometry, no distinction is made between a vector and its
associated differential operator. Then each one of the n operators 3/8z7 defines a vector,
written 8/8z7, at each p. The j-th vector 8/8z7 (v = 1) is the tangent vector to the
j-th coordinate curve parameterized by z7.

The tangent space to M™ at the point x € M", written T, M, is a vector space consisting
of all tangent vectors to M™ at x. The n vectors

form a basis of the vector space, and this base is called a coordinate basis. The basis vector
8/8z’ is simply written as ;.



If = (rl,---,7") is a position vector in the space R™ and M™ C R", then the vector
8/0x’ is understood as

_ @ o 0 n
aj:axj_axj_axj(r’ ™)

A tangent vector X is written in general as

X =Xj 8j 3 or X;,; =Xj($) Bj 3

In the case of time-dependent velocity field, an additional coordinate z° is to be intro-
duced, and the n equations (3) are replaced by the following (n + 1) equations,

‘iii: = X9(2°(t),2'(¢), -+, 2"(t)), with X°=1 (5)

for j =0,1,---,n. Naturally the additional equation is reduced to z° = ¢. Correspondingly,
the tangent vector in the time-dependent case, denoted by the hat symbol, is written as

X=X0=X%+ X% =8, + X0, , (6)

where the index « denotes the spatial components (e =1,---,n).

2.3 Covector and Inner product
2.3.1 Covector (1-forms):

We regard the differential of a function f defined by df[v] = vf as a linear functional
M"™ — R for any vector v € M™. This is a basis-independent definition. In local coordinates,
using (1) and (4), we have

4f] = dflids] = S vi(e) o )

Therefore, the differential df[v79;] is linear with respect to the scalar coefficient »/. In
particular, if f is the coordinate function z*, we obtain, replacing f by 2?,

oz’
OxI

Y R
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i i, j ivi| 9 j
dz'v] = dz*[v?9;] = v/ dz [55;] =’

Thus the operator dz* reads off the i—th component of any vector v. It is seen that

da:i[c')j] = 6} . (8)
Thus the n functionals dz® (i = 1, - -, n) yield the dual bases corresponding to the coordinate
bases (8y,---,0,) of a vector space E®. The dual bases (dz!,---,dz") form a dual space

(E™)".



The most general linear functional, & : M™ — R, is expressed in coordinates as
@ =adz! + - + a,dz". (9)

The « is called a covector, or covariant vector, or (differential) 7-form. When the coefficients
a; are smooth functions a;(z), the « is a 1-form field. Given a vector v = v79;, the 1-form

afv] takes the value, o ,
ofo) = 3 a;dao’d)] = 3 o |

The differential of a function f (without [-]) is a typical example of the covector (1-form):

0 ,
df=23;:.dx’,

where dz* is a basis covector and 8f/0z" is its component. This form holds in any manifold.
In the next subsection, a vector grad f is defined as one corresponding to the covector df.
For transformations of a vector and a covector, see (17) and (25) below.

2.3.2 Inner (Scalar) product:

Let the vector space E™ be endowed with an inner (scalar) product (-, -). For each pair
of vectors X,Y € E", the inner product (X, Y) is a real number, and it is bilinear and
symmetric with respect to X and Y. Furthermore, the (X, Y') is non-degenerate in the
sense that (X, Y') = 0 for any Y only if X = 0. Writing X = X'; and Y = Y79;, the inner
product is given by o

(X,Y) = ginzYJ (10)
where

9ii = (0 8;) = gji (11)
is called the metric tensor.

By definition, the inner product (A, X'} is linear with respect to X when the vector A
is held fixed. Then the following operation on X,

a[X]=(A’X),

is a linear functional. In other words, to each vector A = (Al,.--,A") € E™, one may
associate a covector . By definition, one has o[X] = g;; A7X* = (g;; A7) X*. On the other
hand, one has from (9)

a[X] = a;dz’'[X] = a; X* ,

in terms of the basis dzt. Thus one obtains
a; = Gij Al = A; ) (12)

which defines A4;. Thus the component g; is given by g;; A’ and written as A; using the same
letter A. The covector o = A;dz* = (g;; A7)dz! is called the covariant version of the vector
A = A99;. In tensor analysis, one says that the upper index j is lowered by means of the
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metric tensor g;; in (12). In other words, the covector is obtained by lowering the upper
index of the vector by means of g;;.
On the other hand, a vector A7 is obtained by raising the lower index of the covector A

Al =git A, (13)

which is equivalent to solving the equation (12) to obtained A7, This is verified by reminding
that the metric tensor matrix g = (g;;) is assumed non-degenerate, therefore that the inverse
matrix g~ must exist and is symmetric. The inverse is written as g~! = (%) in the above
equation using the same letter g. Thus we have the expression of the vector grad f as

(grad Y = g O (149

2.4 Mapping of vectors and covectors

Let ¢ : M™ — V" be a smooth map and ¢, : M; — V, be the corresponding differential
map. In local coordinates, the map ¢ is represented by the function y = F(z), where z € M™
and y e V7.

Let p(¢) be a curve on M with p(0) = p and p(0) = X (velocity vector), where X € T, M".
Then, the differential map ¢,X is defined by ¥ = ¢.X = F, X = d/dt(F(p(t))|;=o. Thus,
the vector X is mapped to Y, whose component is given as Y* = (¢, X)* = (0F*/927) X7 =
(8y*/0z7) X7, by definition. The transformation ¢, is linear with respect to the (scalar)
coefficient X7, and also written as

.9 . 0 Oyt 0
$X = [ X gl =X 0[5 = X5 5y =
= Y’“aiyk=y. (16)

This is called a push-forward transformation of the velocity vector X to the vector Y (the
velocity vector of the image curve at F(p)). The component of Y is given by

oyF _ .
k_
vt= L xi. (17)

This is also written as Y = JX, where the transformation matrix is the Jacobian,

_ 6(y) _ a(yl,_“,yr)
7= 8@ " A, o) 1o

In particular, setting that X* = 1 (for an integer k) and others are zero in (15), it is found
that the bases (8/8z*) are transformed as

6]_8yj 0

5] = acF oy (19



This is also written as

0 o0y’ 8 3] 0
b 50| = Bah = o 10 = e £ o 406). (20
Writing as X = X7 (x)8/0x7, b X[f]= X[f 0 ] . 1)

Corresponding to the push-forward ¢., one can define the pull-back ¢*, which is the linear
transformation taking covectors at y to covectors at z, i.e. ¢*: V(y)* = M (z)*. Suppose
that a vector X at x € M is transformed to Y = ¢,(X) at y = ¢(z) € V, then the pull-back
@* of a covector « is defined, using the push-forward ¢,(X), by

(6" )[X] = ol (X)] (22)
for any covector & = A; dy*. Note that, owing to (8), one has
0 i 0|
o (o] = 40 ] = )
Writing as .
¢*'a =qa;dz’, (24)

one obtains a; = ¢* a[0/0z], and further one can derive the following transformation of the
components of covectors by using (19) and (23):

. 1 9 By’ &
= ¢ 57| =oft5 ] = ol 5]

oy a1 _, oy
Substituting the expression A;dy* for ¢ in (24) and using (25), we have
(Aidy’) = 4 L dad | (26)

oz?

Setting Ag(only) = 1 as before (for an integer k), it is found that the bases (dy*) are
transformed as

* ki ayk j
$'ldy’] = 5da” . (27)
The definition (22) is understood as the invariance of the pull-back transformation. In
fact, the value of the covector @ = Y;dy' with the vector Y = ¢, X (in V) is equal to
the value of the pull-back covector ¢*a with the original vector X (in M). If one sets
A; = 0f/0y", the equation (22) expresses invariance of the differential: ¢,[(3f/dy)dy] =
(0f/0y*)(8y*/0z7)dz? = (8f/Bz7)dz. (See also the next section for M = V)
Based on this invariance, the general pull-back formula is defined for the integral of a
form (covector) « over a curve o as
Loyo=[#a, (28)

where ¢: 0 C M — ¢(0) C V. In words, the integral of a form a over the image ¢(c) of a
curve ¢ is the integral of the pull-back ¢*« over the original o.
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2.5 Lie group and Invariant vector fields

A set G of smooth transformations (maps) of a manifold M into itself is called a group,
provided that (i) with two maps g,k € G, the product gh = goh belongs to G: G x G — G,
(i) for every g € G, there is the inverse map g~ € G. From (i) and (i), it follows that the
group contains the identity map e (unity): gg=! = g~ lg = e.

A Lie group is a group which is a differentiable manifold, for which the operations (i) and
(ii) are differentiable. A Lie group always has two families of diffeomorphisms, the left and
right translations. Every element g € G defines the left translation of the group onto itself,

Ly,: G—=G, i.e. Lg(h)=gh forany heG@G,

and similarly the right translation is as follows, R, : G — G, i.e. R,(h) = hg for any
h € G. The operation inverse to L, (or R,) is simply Ly-1 (or R,-1), respectively.

Given a tangent vector X, to G at the identity e, one may right-translate or left-translate
X, to every point of G by

X} = RpX.=X.o0g (right translation), (29)

X; = LaX.=g.X. (left translation, push forward), (30)

respectively. The right-translation of the vector field X (z) (at the identity e) by the map g
is denoted as Xg(z) = X o g(z) and understood as follows: the map g acts to the point z
first and then the vector X is considered at the point g(x).

It is said that a vector field X on G is right invariant (or left invariant) if it is invariant
under all right-translations (or left-translations), namely if

Rp X =X} (or Ln X} = Xy, ,respectively).

(In mathematics it is common to define a vector field right-invariant, however there is an
example of left-invariant field in physics in §4.) It should be readily seen that the transfor-
mation (29) gives a right-invariant field generated by X, at e. Similarly, the transformation
(30) gives a left-invariant field.
For two right-invariant tangent vectors X;‘ and YyR, the metric (10) is called right-
invariant if
(X ¥R) =(Xo Y) .

Similarly, the metric is left-invariant if (X[, Y) = (X., Y.) for left-invariant tangents,
Xk, YE

2.6 Lie algebra and Lie derivative

2.6.1 Adjoint operator and Lie bracket

Every pair of vector fields defines a new vector field called the Lie bracket [-, -]. More
precisely, the tangent space T,G at the identity e of a Lie group G, equipped with the



bracket operation [-, -] of bilinear skew-symmetric pairing, is called the Lie algebra g of the
group G, where [-, -]: g x g — g, if the bracket satisfies the Jacobi identity :

[[X, Y], Z]+[[Y, Z], X]+[[2, X], Y] =0, (31)

for any triplet of X, Y, Z € g = T.G.
Provided that an element £ € G acts as a linear transformation on VY € g (i.e. its own
Lie algebra element) in the following way,

AdeY = Lgy o Rer, Y = €YY

then the operator Adg is called the adjoint representation.
Consider a curve §; : ¢ — G with the tangent {; = X. The differential of Adg, Y with
respect to ¢ at the identity (¢ = 0) is a linear transformation from Y to adx Y

adXYs%gY@—l:[x,Y]. (32)

The Lie bracket is skew-symmetric: [ X, Y| = —[Y, X ], as shown below. The ady is a linear
transformation from g — g, i.e. ¥ — [X, Y]. The bracket operation is usually called the
commutator. The operator adx stands for the image of an element X under the action of the
linear map ad. The representation of [X, Y] depends on each dynamical system, as shown
below.

As a first example, consider the rotation group G = SO(3), of which an element A is
represented by a 3 x 3 orthogonal matrix of detA = 1. Let £(t) be a curve issuing from
e with the velocity a on SO(3). Then one has £(¢) = e + ta + O(t?) for an infinitesimal
time parameter ¢, where a = £(0) is an element of the algera g = so(3) and represented by
a skew-symmetric matrix due to the orthogonality property and det&(t) = 1. The algebra
element a is called a generator of £(¢). Then, for a, ¥b € so(3), the operator ad, : g — g is
given by

adab=[a, bj]=ab-ba=c, (33)

where the commutator ab — ba = c is in the form of another skew-symmetric matrix. The
well-known representation of a 3 x 3 skew-symmetric matrix a in terms of a three-component
(axial) vector & leads to the rule of cross product,

A~

é=axb. (34)
Let s~ 7(s) be another curve with the initial velocity $(0) = b. Then,

ER)n(s) €)™ = (e+ta+O0(t)) (e+sa+0(s))(e—ta+ O(t?))
= e+ s(b+t(ab —ba)+ O(t?)) + O(s?) (35)

as t,s — 0. This verifies the equation (33).
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2.6.2 Lie derivative and Lagrange derivative

Suppose that we are given a vector field X = X'9; on a manifold M™. As described in §2.2,
with every such vector field, we associate a flow, or one-parameter group of diffeomorphisms
§&: M — M, for which & = id and (d/dt)&®|;=0 = X (), where id denotes the identity
map.! In addition, a first-order differential operator Lx is defined by

Lxf(@) = Xin f(2) = = F6a)]_, = < E1@)_, (36)

The operator Lx is called the Lie derivative. According to the definition of the pull-back
(22), the Lie derivative Lx f = X*8;f of a function f (a zero-form) is interpreted as the time
derivative of its pull-back & f at t = 0. The point £z moves forward in accordance with
the flow. Relatively observing, the pull-back &} f is estimated at x, and its time derivative
defines the Lie derivative. This is sometimes called as a derivative of a fisherman [5) sitting
at a fixed place . 2 This refers to the rightmost expression (d/dt) & f ().

In the fluid dynamics however, the same derivative is called the Lagrange derivative,
which refers to the middle expression,

Df=d

Dt f(&w) .

This is understood as denoting the time derivative observed by the fluid particle at &z
moving with the flow.

In order to consider the derivative of vectors, suppose that we are given another vector
field Y = Y*0;, and denote the flow generated by Y as 5, with 7o = id. The commutator of
Lx and Ly defines the Poisson bracket {-, - }: [5]

[Ex, Ly] =[,X£y—£y[.X —_—[.:{X,y} . (37)

Expression of {X,Y} in local coordinates will be given just below.

Now, let us consider the Lie derivative of a vector field Y (z). The flow is transporting
the vector Y (z) in front of the fisherman sitting at a fixed point p. After an infinitesimal
time t, the point & 'p will arrive at p and the man will see the vector ¥ transported forward
by the map & from there, that is & Y (£ 'p) (precisely, &. Y (& 1p)). Its time derivative is
nothing but adx Y according to the definition (32). Thus we have

L',XY=adXY=[X,Y] ftYEt ftnsgt ? (38)

Btc’?

where [X, Y] is the Lie bracket. The two diffeomorphisms &; and 7, corresponding to the
vector fields X and Y respectively can be written in the form:

& : T = z+tX(@)+0@), t-0 (39)
s : = — z+sY(z)+0(s*), s—0. (40)

! The id may be also written as e. The id is used here in order to emphasize that this is a map.
2 The Lie derivative Lx also acts on any form fields in the same way. [1]
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The inverse £ " is given by z — z — t X (z) + O(¢?). Reminding that 7, & ' z = 7,(§7(z)),
we have

W&z o z—tX(z)+0E) +sY(z -t X(z)+ O(t?)) + O(s?)
= z—tX(z)+s(Y(z) - tX8;Y + O(t?) + O(t% %) .

Finally, [5]

& &t a:»—-)a:+s(Y( )—t(X”%—Y’gX;))+O(t2,32). (41)

According to the definition (38), the Lie derivative of a vector field Y is given as LxY =
—{X, Y}, where {X, Y} is given by

oYk . OX*
= k = - J
(X, Y} ={X, Y} §j:(x -~ Yi )ak. (42)
In summary, it is found that
LxY =[X,Y]|=—{X,Y}=-Lixy;=—[Lx, Ly]. (43)

Note the minus sign in front of {X, Y} in (43), which is characteristic of the right-invariant
field such as the diffeomorphisms (see also §5 and §7). This is in contrast with the left—
invariant field such as the case considered in the previous subsection a and §4 for the rotation
group. Compare the equations (35) and (41).

In the point of view of the fluid dynamics, the Lagrange derivative would be given by

OY’“ (z)

YH&x) O = X(2) 0% , (44)

D lizo

which corresponds to only the first term on the right hand side of (42).

In order to see the significance of the commutator [Lx, Ly], let us consider the mul-
tiplication of two maps &;7,, where a point z is mapped to another point & 7,(z), which
is equivalently represented as &:(n,(z)). The two flows & and 7, do not in general com-
mute: &7, # 7s&. A measure of the degree of non-commutativity is given by the difference
of values of a differentiable function f(-) at two points & ns(z) and 7, &(z), defined by
A(t,s;x) = f(ns &(x)) — f(&ns(z)). Clearly, this function vanishes for both of ¢ = 0 and
s = 0, and therefore the first term of A(t, s;z) different from 0 in Taylor series in s and ¢ is
the term proportional to st, the other terms of second order vanishing. It can be shown [2]

that
2

B G oo (1 6(2)) = F&m(@)) = Lx (Ly [ ) (@) = Ly (Lx f) (@) (45)

In fact, the first term on the right hand side is written as

Lx (Ly f)|, =0 (Lv f o&)|,, =8 8, fon,08] ,

§=0,{=0

12



by applying the operation (2) twice, and similarly we have Ly (L', x f ) Ld = 0, O; fo&on, "
Thus the above equation (45) is verified. Its right hand side is the commutator of £x and
Ly.

For f = 1id, we obtain Lx (Ly (id))|,; = ¢ 05 5 0 &|,; . Therefore,
[Lx, Ly] = (8 8y mob— 8,8 &om, )| (46)

As a particular case, it is to be noted that the coordinate bases commute. In fact, substituting
X = 04, Y = 0p, we have

[0a, O8] =00 03— 830x =0 . (47)
which states that each pair of coordinate curves intersects by definition.

Remark: A vector field Y defined along the integral curve of X is said to be invariant if
Yo = .Yz, Then, putting z = £ 'p and using (42)~(44), the equation (38) reduces to

DY* . 0X*
_vi )
Dt Y ozJ ) o

Note the minus sign in front of DY/Dt, suggesting that appropriate time evolution is given
by —LxY (z). In the fluid dynamics, this form of equation (48) is often called an equation
of frozen field. The Jacobi field Y (= J introduced later) satisfies this equation (see §7.3.4
d.). Its solution is given by the Cauchy’s solution, Y*(t) = Y#(0)8y®/8z7, which is nothing
but the equation (15).

0=LxY(z)=—( (48)

2.7 Diffeomorphism of a circle S!

Diffeomorphism of the manifold S* (circle of periodicity T') is represented by a map g :
z €8 = g(x) €S and g(z+T) = g(z) + T. Such maps constitute a group D(S') of
diffeomorphisms with the composition law:

h=gof, i.e. h(z) =g(f(z)) € D(S"),

for f,g € D(S'). The diffeomorphism is a map of infinite degrees of freedom, i.e. hav-
ing pointwise degrees of freedom. In §5, the diffeomorphism is assumed to be orientation-
preserving in the sense that ¢’(z) > 0, where the prime denotes 8/9z.
Associated with a flow & (z) that is a smooth sequence of diffeomorphisms with the
parameter ¢ (see (39)), its tangent field at ¢ is defined by
(@) = 560, = 1m D=1 0) = u(e) 0 (o)

70 T
in a right-invariant form. The tangent field at the identity is given by
dé;(z)
U(ﬂ:) - T lt:(] )

Put it in another way, an element X in the tangent space T;;D(S') at the identity is

represented as
X =u(z)0, .
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For the two diffeomorphisms &; and 7, corresponding to the vector fields X and Y respectively,
the Lie bracket (commutator) is given by (38) with using (43) and (42):

X, Y] =—(uv' —vu')d, . (49)

for X = u(2)8;, Y = v(x)d, € T, D(S"). The Lie algebra is sometimes called Witt algebra.
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3 Riemannian Geometry (Reviews)

3.1 Riemannian metric

On a Riemannian manifold M™", a positive definite inner product (-,-) is defined on the
tangent space T, M" at z = (z',---,2") € M with a differentiable fashion. For two tangent
fields X = X%(z)8;, Y = Y¥(z)8; € TM", the Riemannian metric is given by,

(X, Y)z) = g Xi(z)Y(z),

as already defined in (10), where the metric tensor, g;;(z) = (8;, 8;) = g;i(z), is sym-
metric and differentiable with respect to z*. This bilinear quadratic form is called the first
fundamental form. The line element ds is given by ds* = g;; dz* dz7 .

The inner product is non-degenerate, for VY € TM, if

(X,Y)=0  onlywhen X=0. (50)

If the inner product is only non-degenerate rather than positive definite, the resulting struc-
ture on M™ is called a pseudo-Riemannian.

3.2 Examples of metric tensor
3.2.1 Finite dimensions

Consider a dynamical system of N degrees of freedom in a gravitational field with the po-
tential V(g) and the kinetic energy

1 o )
T=§a,-jq"cjj, where ¢ = (¢*), (t=1,---,N).
The metric is defined by g;; ¢* ¢/, where
% =050 =2(E-V(@)ay for i,j=1,---,N

is the Jacobi’s metric tensor [12]. In chapter 6, we consider a physical system in terms of
another metric called the Eisenhart metric gg- ;

3.2.2 Infinite dimensions

Metric on the group D(S') of diffeomorphisms (§2.7) is defined for the right-invariant tangent
fields Ug(x) = u 0 £(x) and V¢(z) = v o §(z) in the following invariant way (also see §7.2) :

U, V)e= [ Weot™ Veot ™) do= [ u@)e(e)dz=(X, ),  (51)

for X = u(z) &;, Y = v(z) 8, € T;aD(S).
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3.3 Connection (Covariant derivative)

An affine connection is an operator V that satisfies the following relations, at z € M:

(1) Vf (CLX + bY) = a,VEX + bVEY
(ii) VaEJ,b,,, X = ang + anX (52)
(iii ) Ve fz)X = f(@)VeX+E()X

for any vector fields X, Y and a function f(z) with a, b € R and for vectors ¢ and 7 at z.
‘The connection VxY is also called the covariant derivative of the vector field Y (z) in the
direction of the vector X. Using the representations X = X*9; and Y = Y7 0; and applying
the above properties (i)~(iii), we obtain

VxY = Vxip Y98, = X'V, (Y70;)
= (X*6,Y%)0; + X'YIT% o, (53)

where T'F is the Christoffel symbols defined by

Vo8; = I'f

ij

O - (54)
Therefore, .
oYy*
OxI

Most dynamical systems are time-dependent and every tangent vector is written in the
form, X = X*9; = 8, + X*8, (see (6)). Correspondingly, the connection is written as

(VxY)i= [ + P;kyk] X3 (55)

A

ViV = V3, V70,
= Va V90, + XV, (Y79;)
where ¥ = 8, + Y28, and « denotes the indices of spatial components (& = 1,:--,n). For

the spatial part Y = Y*0, (with X = X°d,), we have

ViY = %Y+VXY, (where V,Y =8,Y and V0, =0). (56)
3.4 Riemannian connection

There is a unique connection V on a Riemannian manifold called Riemannian connection or
Levi-Civita connection that satisfies

(i) VxY -VyX = [X,Y] (torsion free) (57)
(ii) Z{X,Y) = (VzX,Y)+ (X, VzY) (compatibility with metric) (58)

for vector fields X, Y and Z. The torsion-free requires the symmetry, I‘fj = I‘fi, with respect
to z and j. One consequence of the second compatibility condition with metric is given at

the end of the next section §3.5.
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Owing to the two properties, the Riemannian connection satisfies the following identity,

AVxY,Z) = X(Y,2)+Y(Z X) - Z(X,Y)
H[X,Y], 2) - (Y, 2], X) +([Z, X],Y) , (59)

where X (-, -) = X78; (-, -). The last equation defines the connection V in terms of the inner
product (-, -) and the commutator [-,-].

In most dynamical systems studied below, the metrics are defined invariant (with respect
to either right or left translation). Thus, if X, Y, Z are invariant vector fields, the first three
terms on the right hand side of (59) vanishes identically. Hence on the Riemannian manifold
of invariant vector fields, the equation (59) reduces to

2(VxY, 2) =(X,Y], 2) - (Y, 2], X) + ([Z, X],Y) . (60)

3.5 Covariant derivative along a parameterized curve

Consider a curve z(t) on M passing through p whose tangent at p is given by T = dz/dt =
and let ¥ be a tangent vector field defined along the curve z(t). According to (55), the
covariant derivative V1Y is also written as

vy _Jovi 1k dyi pi by
V7Y = F = I:a—mk—+1_‘ijJ] ¢ 0; = lay ‘t']-‘ij ijl 9;. (61)

The second expression VY/dt emphasizes the derivative along the curve z(t) parameterized
with ¢.

On the manifold M endowed with the connection V, one can consider parallel displace-
ment of a vector Y along a parameterized curve z(¢), which is defined by vanishing covariant
derivative:

vY

Thus, Y is translated parallel along the curve z(t) when &* (9Y?/8z*) + I, ;4*Y7 = 0.
It is readily seen from (58) that the scalar product is invariant, T (X, Y) = 0, for the
vector fields translated parallel along the curve:

(X,Y) =constant (under parallel translation).

3.6 Curvature tensors

The vector field given by

R(X,Y)Z = Vx(VyZ)-Vy(VxZ)~Vixn Z (62)
= (RiyZ’X*Y" ¢, (63)

defines a linear transformation, Z — R(X, Y) Z, called the curvature transformation for a
pair of vector fields X, Y, where R}, is the Riemannian curvature tensor. Then we have

(W, R(X, Y) Z) = RSy (B, 3a) W ZIX*Y! = Ry WiZI X*Y! (64)
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according to the traditional ordering of suffices of the tensor R;ji;, where Rijui = gioRjy and
gia = (0;, Oa). From its definition, one may write

R(X,Y)=[Vx, Vy] - Vixy],

which clearly shows the anti-symmetry R(X, Y) = —R(Y, X). Correspondingly, we have

R}y, = —R},, . In particular, for X = 8,, Y = 85 and Z = 8,, we have

R(Ba, 0p) 8y = V3,(Va, 0y) — V3,(Va, 8y) = Rl 5 0; (65)

where the third term Vi, s, disappeared in the middle expression because [8,, 85] = 0.
Using (54), we obtain

R(Oa, 05) 8y = V5,(T},0k) — Vo, (T~ 85)
= 0O, l"},,,al - 6,; Fiwal + I",‘.j,,FfI,cal - F’g,,I‘qual
This leads to the formula of the curvature tensor in terms of I‘fj:
i i i i Tk i Tk
R'yaﬁ -— 3a Fﬂ’)’ - aﬂ Fa,y + Fa_kl_'ﬁ,y - ﬂkFa'y (66)

The Christoffel symbol l"fj is in turn represented in terms of the metric tensor g = (g;;) by
the following:
1
I}, = 3 9"™(8: gjm + 0; Gmi — Om Gi5) (67)
where g*™ denotes the component of the inverse g~1, that is ¢F™ = (g71)*™, satisfying the
relations g*"gm = gimg™* = 8F (Kronecker’s delta). Note that Ffj = T'%; since g;; = gji. The
formula (67) can be shown by using (11), (54) and (58), and noting that

Om 955 = Om (0, ) = (V5,8i, 8;) + (i, V5,,05) = Thigkj + T igwi

and that 0;gjm + 0;9mi — Om8ij = 20kmI ;.
The curvature tensor (05, R(Oa, 0p) 0y) = R ,5(0s, 0;) = Rsyap is anti-symmetric with
respect to y and ¢ as well as @ and . In fact, using (65) and (58), we have

(05, R(Oa; 95) Oy) = (05, Va(V50y)) — (05, Vs(Vady))
= 00,(65, Vﬂ 6,,) - (Va Os, Vﬁ 67) - aﬂ(aa, Va ay) + (Vﬂ 05, Vo 37>

where Vo = Vp,. The third term —05(V, 0,, 05) in the last expression can be written as
—0o(Vp0s, Oy) + (V5Va0s, 0y) — (05, V5V aby) — (05, R(Da, Op) 0,)
Thus, 2 (05, R(0,, 0s) 8,) is given by

3,1(35, Vﬂ 87) —_ 8Q(V,385, 8,,) — (Va 0, Vﬂ 37> + (Vﬁ 85, Va 87)
+(VﬂVa85, 37) - (35, VﬂVac').,)

which is obviously anti-symmetric with respect to v and 4.
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3.7 Induced connection and Second fundamental form

Let V™ C M™ be a submanifold of a Riemannian manifold M with the metric g;;. Let us
consider the restriction of the Riemannian metric g;; to the tangent vectors to V. This action
induces the Riemannian metric (an induced metric) for V. An arbitrary vector field Z in M
can be decomposed into two orthogonal components: Z = Zy + Zy, where Zy = P{Z} is the
projected component to V and Zy = Q{Z} the component perpendicular to V. The symbols
P and Q denote the orthogonal projections onto the space V and the space orthogonal to it.

Let V be the Riemannian connection for M™ , and define a new connection V for V™
(m < n) as follows. Consider a vector X tangent to V and a vector field Z defined along V,
but Z is not necessarily tangent to V. Then the V is defined by

?XZEﬁXZ—Q{@XZ}=P{VXZ} y (68)

where the right hand side is the projection of VxZ onto the tangent space of V. It can
be checked that the operator V satisfies the properties (52) and said to be an induced
connection.

Let X, Y and Z be tangent to V, hence one has Q{X } = 0, etc. and further Q{ [X, Y]} =0
by (42) and (43). Then we extend the vectors X and Y to be vector fields on M. By the
torsion-free of the Riemannian connection V, one has Q{Vx¥ — VyX} = {[X, Y]} = 0.
Thus, the connection V is also torsion-free:

VxY -VyX=[X,Y]. (69)

Thus it is verified that the connection V is also Riemannian (the condition (57) is satisfied).
Now, the second fundamental form S(X,Y) is introduced by the definition:

6XYV=vXYv—i_‘S’(*X:Y')a (70)

which is called the Gauss’ formula. It is not difficult to see that the function S(X,Y) satisfies
the following relation, which is found to be symmetric with respect to X and Y,

S(X,Y) (=VxY —VxY) =q{VxY}=0{VyX}=5(,X). (71)

This is a Riemannian generalization of the Weingarten equation.
Corresponding to V and V, we have two kinds of curvature tensors, R(X,Y)Z and
R(X,Y)Z, respectively. Using the definition (62) of R(X,Y)Z and the above relations (70)
and (71), one can show the following Gauss-Codazzi equation:

(W, R(X,Y) Z) = (W, R(X, Y) Z) + (S(X, 2), S(Y,W)) - (S(X, W), 8(V, 2)), (72)

where X, Y, Z, W are tangent to V and hence (W, S([X,Y], Z)) vanishes. See Frankel [1] or
Abraham & Marsden [4] for more details.
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3.8 Geodesic equation
3.8.1 Local coordinates representation

A parameterized curve y(s) is geodesic if its tangent T = dy/ds = 4 is displaced in parallel :

E:vTT=Z(d_7)=o.
ds

In local coordinates y = (z?),

: dy dzt
T = T¢ i=—=_ai7 73
g ds ds (73)
vT d7* L
- = = L T9T* 9, =0.
P VT [ds + ]6 0 (74)
Thus we obtain the geodesic equation :
d?zt  _, d2f dz*

ds? T Mds ds

3.8.2 Group-theoretic representation

On the Riemannian manifold of invariant metric, another formulation of the geodesic equa-
tion is possible, because most dynamical systems considered below are equipped with in-
variant metrics (with respect to either right or left translation). In such cases, the following
derivation would be useful.

In terms of the adjoint operator adx Z = [X, Z] introduced in (32), let us define the

coadjoint operator by
(ad% Y, Z) = (Y,adx Z) = (Y, [X, Z]) . (76)

Then the equation (60) is transformed to 2(VxY, Z) = (adxY, Z) — (ad} X, Z) — (ad% Y, Z).
The non-degeneracy of the inner product given in (50) leads to

VxY = % (adx Y — adyY — adh X) . (77)

Thus, the another form of the geodesic equation is given by VxX = —ad} X = 0, since
adxX = [X,X] = 0. In particular, the geodesic equation of a time-dependent problem is

represented as
ViX=0,X+VxX=0X—-0adx X =0, (78)

for the spatial part X from (56). It should be noted that this is valid for the left-invariant
field such as the rotation group considered in §2.6.1a and §4. There is difference by the
sign % in the relation between the commutator of the Lie algebra and the Poisson bracket
whether the vector fields are left-invariant or right-invariant, as illustrated in §2.6. [5]

In the case of the right-invariant field, it was shown in §2.6.2b that [X, Y] = LxY =
—{(dY*/dt) — Y7(0X?/0z7)} 8;, where L is the Lie derivative. When the time evolution
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of such system is concerned, the negative of £LxY = [X, Y] is appropriate to derive the
connection. This requires that
VY =-_vyxY

should be used instead of (77), and that the time-dependent geodesic equation takes the

form,
AX+VPX=0,X+ad, X =0, (79)

instead of (78). This describes a curve with the time parameter ¢ whose tangent is displaced
parallel along itself in the right-invariant way.

However, the curvature tensor and the Jacobi equation considered in the next section are
not changed because those include the nabla twice or its equivalent of multiplying (—1)2.

3.9 Jacobi equation

Let Cp : o(s) be a geodesic curve with the length parameter s € {0, L], and C, : (s, ) a
varied geodesic curve where a € (—1,+1) is a variation parameter and ,(s) = (s, 0) with
s being the arc length for @ = 0. Because (s, @) is a geodesic, we have V(d,v)/8s = 0 for
all . The function (s, ) is a differentiable map v : U C R? — M™ with the property
[0/0s, 8/0a] =0 in U. In this circumstance, the following two identities are known,

e (o
;(%}%(?) — R(0,0:) 2, (51)

(see Frankel [1]), where 0;y = 9v/0s and 8,7 = 87/8a. Along the reference geodesic vy(s),
let us use the notation T = 0,7y for the tangent to the geodesic and J = 0,7y (@ = 0) for the
variation vector. Using VT'/3s = 0 and the above identities with Z = T', we have

v VvT \YAYE
~%ads = 8s0a LT
vV vV
= 5-5=0s7+ R(J,T)T = 5-=- 87+ R(J,T)T
vV
= 35057 TRUDT.

Thus we have obtained the Jacobi equation for the geodesic variation J,

vV
——J+R(J,T)T=0. 82
55550 T BT (82)
The variation vector field J is called Jacobs field.
Defining || J ||>= (J, J) and differentiating it two times with respect to s and using (82)

and (58), we obtain

0

L EA &

dsz 2 = ” VTJ ”2 - K(T: J) ; (83)
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where VpJ = VJ/3s, and
K(T,J) = (J, R(J,T)T) = Rijiy J' T? J*T* (84)

is a sectional curvature factor associated with the two-dimensional section spanned by J and
T. The sectional curvature is defined by K(T,J)/(|| T ||| J ||> —(T, J)?), which reduces
to K(T,J) when T and J are orthonormal. Writing J =| J || e; where || e; ||= 1, the
equation (83) is transformed to

d2
= 17I=(IVres I -~ KT en)) Il 7]l (85)

The equation (82) provides the link between the stability of geodesic curves and the Rie-
mannian curvature, and one of the bases for geometrical description of dynamical systems
considered below.

3.10 Arc length
Arc length of the curve C, is given by

)_/ |375 @) /OL<3’YS>’;0£), 37§;a)>1/2d3=/OL(T(S,oz),T(s,a))l/zds,

and its variation is

v [ (5 5 e [P (5 Rae. 6o

When a = 0, we have ||07(s,0)/0s|| =1 and

ey (£ O [0y Oy Ljoy Voy
L(O)_./o Os <Boz’ 6s>ds /o <8a’ 95 9s | %

where the identity (80) is applied to (86). Thus, the first variation of arc length is given by

0s

where P= 7(0,0), Q= v(L,0) and T = 9,7(s,0), J = 8,7(s,0).

Thus, another definition of the geodesic is as follows. The curve Cy : v(s) is said to be
a geodesic if L'(0) = 0 for all variations J that vanish at the end points P and Q, i.e. J =0
at P and Q. Then we have

L v
L’(0)=<J,T>Q—<J,T>p—/ <J, —T> ds,
0

<J,Y—T>=O for 0<s< L,
0s

for every vector J tangent to M along the geodesic Cy. Thus the vector VT'/8s must be
normal to the manifold M. The geodesic is a curve on which the component of V1T tangent
to M vanishes. Denoting VT'/0s as VT'/ds, we have the equation for a geodesic as
vT
ds
by the non-degeneracy of the metric.

=VrT=0,
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4 Free Rotation of a Rigid Body

We now consider a physical problem, that is, an application of the geometrical theory formu-
lated in the previous two sections to one of the simplest dynamical system: Free rotation of
a rigid body without action of external torque. The basic idea is that the governing equation
is the geodesic equation over the manifold space of a group of transformations SO(3) (a Lie
group), which describes the motion of the physical problem. We begin with this simplest
system in order to illustrate the underlying geometrical ideas. This chapter is based on
Arnold (1978) [2], Kambe (1998) {7], and Suzuki et al. (1998) [8].
In the mechanics of rigid bodies, free rotation is described by the Euler’s equation,
1 2 3
B e =0, B _-neei=o, 53 __paer=o @)
dt dt dt
in the body frame (i.e. in the moving frame of reference), where Q = (Q!, Q2 Q%) is the
angular velocity vector in the frame of the principal axes (z!, z2, %) of the body’s moment of
inertia J = (Jop) =diag(Jy, Jo, J3), Jo being the diagonal elements. The moment of inertia
is defined by J,s = [ z*2zPpd®x, where p is the mass density assumed constant.
The angular momentum is given by M = (M,) = JQ = (J,597), and the kinetic energy
K is expressed as

K= %(M, Q)ps = %Maﬂ"‘ = %(m, Qg (88)
which is invariant during the motion, where
(A, B)gs = A, B® = A;B' + A,B? + A;B® (89)

is the scalar product in R®. Stability is considered by deriving the Jacobi equation for the
geodesic variation vector J.

4.1 Rotation as elements of SO(3)

Rotation of a rigid body is regarded as a smooth sequence of transformations of the body (e.g.
body’s principal axes), which are elements of the group of special orthogonal transformation
of dimension 3: SO(3). By a transformation matrix A € SO(3), a point x (fixed to the
body) is moved (mapped) to x’ = Ax where det A = 1. The group G = SO(3) is a Lie
group and consists of all orientation-preserving rotations (i.e. det A = +1) of a rigid body.
An element g of the group G corresponds to a position of the body with its motion
arriving at g from the initial position e (the identity). A motion of the body is described by
acurve C: ¢ — g; on the manifold SO(3) with ¢ the time parameter (go =€) : [2, 3]

g =A(t), A(t)€SO(3), teR.

An infinitesimal transformation (2 is defined by §tQ-A(t) = A(t+0t)—A(t) for an infinitesimal
time increment &t at g;, where (2 is shown to be an anti-symmetric matrix.

The time derivative §; is the angular velocity of the body in the (fixed) inertial space
and given by g, = Qg,. The angular velocity Q in the (moving) body frame is obtained by
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the left translation of g, by (g; )«d: = (g )+{g:, the axial vectors equivalent to  or g
being denoted as Q or 9;- The Qis a tangent vector at the identity e of the group G and
an element of the Lie algebra so(3). The space of such vectors is denoted by T.G = so(3).
According to (33) and (34), the commutator of this algebra is given by the vector product
in R3:

[X, Y]=XxY, for X, Y € T.G = so(3). (90)

The kinetic energy of the body motion is given by the scalar product of the angular velocity
vector g, and the angular momentum J§, multiplied by L 1, where J is the moment of inertia
in the fixed space. The kinetic energy is a scalar of frame-independent. In other words, it
does not depend on the coordinate change of left-translation mentioned above. Hence the
energy K gives a left-invariant Riemannian metric on the group:

K= —(th, gt) = _(Jﬂa Q)) (91)

where J = (J;;) = (g9:)"'Jg: is a diagonal matrix (in the principal axes) with positive
elements J,(> 0). The angular momentum M = JQ (in the body system) is a covector (an
element in the cotangent space TG to the group at e).

Now one can define the metric < -, - > on T,G by

<X, Y>=(JX,Y) for X, Y € T,G. (92)

Then the kinetic energy is given by £ = % < 1, Q >. The group G is a Riemannian manifold
endowed with the left-invariant metric (92).

4.2 Geometry of the rigid body motion

Let us consider the geodesic equation on the manifold SO(3). We have already introduced
the commutator (90) and the inner product (92) together with the moment of inertia J in
diagonal form. Further, the metric is left-invariant, that is, the metric (92) is conserved by
the left-translation on the Lie group SO(3). In such a case of invariant metric, the connection
satisfies the equation (60), and in terms of the operators ad and ad*, we have the expression
(77) of Vx Y for X, Y € so(3). By the definition (32), adxY = [X, Y] = X x Y. Then the
ady Y satisfies

(ady Y, Z) = (Y,adx Z) = (JY,X x Z)pzs = (JY X X, Z)ps = (J}(JY x X), Z).
Hence, the non-degeneracy of the metric leads to
ady Y = JH(JY x X).
Thus it is found from (77) that

VxY = %J‘l(J(XxY)—(JX) xY = (JY) x X)

— -;-J-l(f{XxY), (93)
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8], where K is a diagonal matrix with the diagonal elements, Ky = —J, + Jg + Jy for
(e, B,7) = (1,2, 3) or its cyclic permutation (all K, > 0 owing to the fundamental deﬁnltlon
of the moment of inertia).

In the case of the left-invariant field, it is sufficient to give expressions at the identity
e, and the tangent vector at e is the angular velocity Q. The geodesic equation of the
time-dependent problem is given by (78) with X = Q:

d
3927 (I x Q) =0, (94)
which is also written as (d/df)JQ = (JQ) x Q. This is nothing but the Euler’s equation

(87). Equation of the Jacobi field ¥ along the geodesic generated by X is derived as [8]

2
d°Y Xde F(X

dY 1
@ X )

< +2F(XX)><Y—F(X,X><Y)=O,

where
F(Xx, Y) - J—l(JX XY +JY x X) .

To calculate the curvature tensor, we apply the expression of the connection V of (93)
repeatedly in the formula (62) together with the definition of the commutator (90). Finally
it is found that )

4,1 J2J5

where M =diag(]\7.f1, M, Mg) is a diagonal matrix of third order with the diagonal element
My = =372+ (Js — J,)% +2J4(Js + J,) with (o, 8,7) = (1,2 ,3) and its cyclic permutation.

Deﬁnmg the unit basis vectors as e, e; and e; in the principal-axes system and writing
the sectional curvature K (e;, e;) (see (84)) as Km in short, one obtains

1 1 -~
Ky = 7 Ms, Ky = 71 My, Kz = % M,. (96)

R(X,Y)Z = —

(M (X xY))xJZ, (95)

It is not difficult to see that all the three sectional curvatures are positive for an ellipsoidal
rigid body whose deviation from a sphere is sufficiently small (by using the definition of the
moment of inertia). On the other hand, if the rigid body is flat like a plate, then one of the
sectional curvatures will be negative.

For the stable steady rotation, it is found that the curvature K;; take either positive
values always, or both positive and negative values in oscillatory manner, depending on the
tensor J. However, it is found that the time average K is always positive for any J in
the linearly stable case, while there exist J’s which make K negative in the case of linear
instability [8]. The results are consistent with the known properties of rotating rigid bodies
in Mechanics.
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5 Geodesic equation on D(S!) and KdV equation on
D(SY)

Now we consider a second example of application of the geometrical theory. This is a dy-
namical system of smooth mapping along a circle and found to be a fundamental problem in
physics. The geodesic is a curve over the manifold of orientation-preserving diffeomorphisms
of a circle S (with a periodicity T') noted in §2.7. Two systems are considered below: the
first one is the geodesic equation over a group of diffeomorphisms D(S!), describing a simple
diffeomorphic flow on S, and the second one is the KAV equation, which is the geodesic
equation over an extended group lA)(Sl). The manifold S? is spatially one-dimensional, but
its diffeomorphism has infinite degrees of freedom because the pointwise mapping describes
arbitrary (but orientation-preserving) deformation of the circle. Thus we consider infinite-
dimensional Lie groups D(S') and D(S'), including an infinite-dimensional algebra called
the Virasoro algebra [6]. This part is based on Ovsienko & Khesin (1987) [9], Misiotek (1997)
[10], and Kambe (1998) [7].

5.1 Dispersionless KdV

Consider a group D(S') of diffeomorphisms of a circle S* of periodicity T' = 1, equipped
with a right-invariant metric (see §3.2). Because of this metric invariance, the Riemannian
connection V is given by the expression (77): Vx V¥ = (adx Y — ady X — ad}Y), for two
elements X and Y of the corresponding Lie algebra, T;;D(S!).

Using the tangent fields X = u(z)d;, ¥ = v(2)8:;, Z = w(z)d, € TD(S') of the S!
diffeomorphisms (see §2.7) and the definition (49) of Witt algebra, we have adxY = [X, Y] =
—(uv' —vu')0,, where v’ = ,u = u,. Then the ad% Y is given by

(ady Y, Z) = (Y,adx Z) = — /sl v(uw'—wu’)dx:fgl(uv’+2vu’)wdz,

where the definition of metric (51) is used and integration by parts is performed with the
periodic boundary conditions u(z + 1) = u(z), etc. Hence, one obtains

adxY = (uv' +204u') 0, .

It is found from (77) that the Riemannian connection on the group manifold D(S?) is given
by
VxY =—(2w' +vu) 9, .

Remind that the present system is right-invariant (§2.7, §3.2). Then, the nabla Vg?) Y =
— Vx Y must be used for the connection in the time evolution and the geodesic equation is
given by the form (79) :

aX+VPXx=0.

Thus it is found that the geodesic equation on the manifold D(S?!) is

U +3uu, =0.
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Compared with the KdV equation of the form, 94/t + @ 04/0x + Kiigz, = 0, this equation
has no third-order dispersion term &,,, where & is a constant and @ = 3u. The third-order
derivative term is only introduced by the central extension considered in the next section.
The above equation would be termed as the one governing a simple diffeomorphic flow.

5.2 Central extension

An extension of the group D, denoted by the hat symbol, is defined as
f=(fa) §=(s:0) eD(SY,
for f,g € D(S') and a,b € R, where D(S') = D(S') @ R. The group operation is given by
gof=(gof a+b+B(g,f) (97)

where

B(g,f)=-;-/sl In 8,(go f) dn 8, f (98)

is the Bott cocycle (Bott 1977). It can be readily shown that the following subgroup Dy is
a center of the extended group D, where D, is defined by {fo : fo = (id, a), | a € R}, and
id(z) = z.

5.3 KdV equation as a geodesic equation on D(S?)

We now consider the geodesic equation on the extended manifold D(S?) [9]. Let ¢t~ &, be a

flow starting at £ = (id, 0) = id in the direction £, = (u(z)d;, @), and the second flow ¢ — 7
starting at id in the direction 7, = (v(z)d,, ) (see §5.5). Non-trivial central extension of
T:aD(S") to Ty D(SY) is the Virasoro algebra [6], in which the extended component is the
general 2-cocycle found by Gelfand-Fuchs [11]. For any two tangent fields

i=(u(z,t), @), 0= (v(z,1),B) € TuD(S",
the commutator is given by
[4, 0] =—(udv—vipu, c(u,v)) (99)

where

c(u,v) = / 02 8,v dr = —c(v, u) (100)
(see §5.5 for the cocycle ¢(u,v)). The metric is defined by

(4, 9) =/u($)v(x)dx+aﬂ, (101)

Following the procedure of §5.1, the covariant derivative is derived for % and 7,
1
R o = — P ) = —
Vit =—=Va0= (waz, 5 '/:91 umvzdx)
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1
where w = 2uv, + vug + E(ommm + fUzzz)

The geodesic equation is written as 94/dt + Vid = 0, which leads to the following two
equations:

U + 3Uly + QUggy, = 0 (102)
Bt a =0

Thus, the KdV equation is derived, where the constant « is called a central charge.

5.4 Sectional curvatures of KdV system

The geometrical theory leads to a relationship between the stability of geodesic curves on
a Riemannian manifold and its curvature. The link is expressed by the Jacobi equation for
geodesic variation J in §3.9. An evolution equation for the norm || J || is given by Eq. (83):

d? || J 1

ds? 2
where the second term on the right-hand side K (J,T) is the sectional curvature associated
with the two-dimensional section spanned by J and 7. If K(J,T) is negative, the right-
hand side is positive. Then exponential growth of the magnitude of the variation || J || is
predicted, which is understood that the geodesics are unstable.

In this context, the sectional curvature of the KdV system is estimated {7, 10] for the sec-

tion spanned by the two tangent vectors (with a common central charge «), 4 = (u(z, 1), )
and 9 = (v(z, 1), a):

= ” VrJ ”2 - K(Ja T) ) (83)

1
4

2
_ mo__m )
F = /S1 (a(u v") + 2(vu’ — uv )) dz,

K(3,8) = ~F — 9G — 232

where

G = «a /1 u'v'(u" + ") dz,
s
H = / u'v dx .
Sl
For the sinusoidal fields 4, = (a, sinnz d,, &) and ¥, = (a, cosnz 8;, ), it is found that

Kby, 4,) = %(a%% +0%(ann®)’ + 2(b18,)* (1 +n%)) >0 for n>3,
K (%, 0,) = —Z(azbf + 02 (6an°) + 2(01b)*(1 +1%)) >0 for n>3.
Therefore, both of the sectional curvatures K(?1, 4,) and K(9,, 9,) are positive for n > 3.
Thus, most sectional curvatures are positive, however there are some sections which are not

always positive. In fact,

2@} ‘Hﬁ)
afb} /-

Similarly it can be shown that K (9y, 4,) is not always positive for any integer n as well.

K(’ﬁl, ’t’ll) = %(albl)z(— Ir+8+a
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5.5 Note on the cocycles of the extended algebra

Here a note is given about the relation between the group cocycle B(g, f) of (98) and the
algebra cocycle c(u,v) of (100). On the extended space D(S"), we consider two flows &, and
7)s generated by U = (u 0,, &) and V = (v 8,, B) respectively, defined by

. . di +

t— & where & = (id, 0), EL_O& =U,
d .

5 = 7, where iy = (id, 0), | A=V

(see §2.6.2). Lie bracket of the two tangent vectors U/ and V which is defined by
LU, V] (f) =U (V (f))l(id, 0) -V (U (f))!(id, 0)
is represented, according to Eq.(46), as

U, V] = (at By iy 0 & — 0y &, étoﬁs)|(1;al, 0)

Denoting only the extended component of the product 7 o € of (97) as Ext{#, o ft}, we have
EXt{ﬁs © ét} = a + bs + B(nsa é-t) .

Therefore, i
Ext{8; 8, ;0 &} = 8, 8, B(n,, &) .

and

Ext{ [U, V]1} = 8 8, B(ns, &) — 05 8; B(&,7s)

(id, 0)

Carrying out the calculation, we have

Oz(vomn,o&
Oy B(ns;é.t) =0, /Sl Ind; (ns © §t) dln 8z§t = / .(’U—T’_Q

Y (773 - Et) dln 9,&; .

Since the Taylor expansion of & is & = id + ¢t u(z) + O(t?), its z-derivative is given as
0:& =1+t 9, u+ O(t%). Hence, one obtains

In6;& = Im(1+t8,u+0(t%) )=t 8 u+ O(t?)
dlnd,& = tug dz+O(?) dx

and further
ns0& = (.’l:+8U(:l:)+---)o(a;+tu,(x)+...)

z+tu(@)+svz+tul@)+--)+--
z+1t u(z) + s v(z) + O(s?, st, 1?)
6z(77s Oft) = 1+t uz+sv,+0(s% st,8%)
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Therefore one finds

8, B(n,, &) =/ 9z v(z + O(s,1))

t Ugg t%))d
5t T+ Uy 50, + O(s2, o1, )  F e T O()) du

Differentiating with respect to ¢ and setting ¢t =0 and s = 0,
|
at as B(ns’&)is=0,t=0 — /51 Vp Uy dz .
Thus finally one finds
c(u,v) = Ext{[U, V]}= ‘/S1 Vg Ugg d:v—/s1 Uy Vg dT
= 2 /Sl Uz Uz AT = —c(v,u).

This form of c(u,v) is the Gelfand-Fuchs cocycle [11]. The anti-symmetry of c(u,v) can be
shown by performing integration by parts and using the periodicity.
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6 Geometrical theory of chaos of a Hamiltonian system

A self-gravitating system of N point masses is one of the typical dynamical systems studied
in the conventional analytical dynamics. As a third example, the differential geometric
formulation is given to this system of finite degrees of freedom (M. Pettini [12] (1993)). A
simplest non-trivial case is the Hénon-Heiles system, a two-degrees-of-freedom Hamiltonian
system, which is well known to be a chaotic system. Within the present framework, stability
of the trajectories of the dynamical system is studied when the Riemannian curvatures of
the manifold are known. This leads to the geometric characterization of Hamiltonian chaos
(M. Cerruti-Sola and M. Pettini [13] (1996)).

It has recently been revealed that the phenomenon of phase transitions is related at a
deep level to a change in the topology of configuration space of the system. Fluctuations of
the configuration-space curvature exhibit a singular behavior at the phase transition.

In this section, only the former chaos analysis is presented. As to the latter subject of
geometrical theory of phase transition, only the following reference is given here: Casetti,
Pettini and Cohen (2000) [14].

6.1 A dynamical system with self-gravitation

Consider a dynamical system described by the Lagrangian function,

L@,d) =T~V = e@i'¢ - V@, (103)

where § = (¢*,---,¢") and § = (¢%,---,¢") are the coordinates and velocities of the N
degrees of freedom system, and V(g) is the potential of self-gravitation. The first term
T = (1/2)a;;¢'¢’ represents the kinetic energy and a;; (¢, = 1,---, N) are the mass tensors.
We consider only the case of a;; = d;; (Kronecker’s delta). The Hamiltonian H is represented
as H = p.q® — L(q,q) = (1/2) C“ﬂpapﬁ +V(q) =T + V where p, = aqi¢’, and (a®?) is the
inverse of (a;;) =g, i.e (a®f )

Here the FEisenhart metric g% is deﬁned [12] by introducing two additional coordinates
¢® (=t) and ¢"*t!. Defining @ = (¢°,q,¢"*'), the arc length ds is represented by

ds® = g£(Q) dQ* dQ’ = a;;¢’'¢’ — 2V(7)dg’dg® + 2dg°dg™ ™,
= t), where the metric tensor g” = ¢7(Q) is represented as, for 4,5 = 0,+++, N +1,

-2V 0 1 B 0 0 1
gE — _QT QT , (gE) —_ QT %—1 QT (104)
1 0 1 0 2vV(a)

where g = (a;; ), 0 is the null row vector and 07 is its transpose.
The Christoffel symbols I‘ are given by (67) with the metric tensors g®. Since the
matrix elements a;;(= d;;) are consta,nt only non-vanishing I‘ are
a0V

Bo—ga,—aiv, L+ =1+ = g°”+1g;/_—av ((=1,---,N). (105)

")

(¢°

ole
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The natural motions are obtained as the projection on the space-time configuration space
(t,q) and given by the geodesics satisfying ds* = k2d¢* and dg"*' = (k?/2 — L(g, §))dt. The
constant k can be always set as k = 1, leading to ds? = dt? . [14]

The covariant derivative VY/ds is defined by the form (61). The geodesic equation is
represented as (V/ds)dQ/ds = 0, which is given by the form (75) in local coordinates:

a? ; dg®dg®
gl t Twgygy =0 @=Lonh),
d? 4> yi v+1dg° dg?
! = PRl i P e
Using (105) and ds = dt (and g = ¢~! = (d;;) ), we obtain
d? ov dq°
— t = _— ;) — - —_— = ]_
dtzq aqz (Z 1, ’N)’ dt 3 (106)
d® N ovdg  dL
—_— frd _— i dT t = _dV .
oL o7 dt P (since dT'/d /dt)

Choosing arbitrary constants appropriately, we have ¢° = ¢t and d¢"*'/dt = 1/2 — L. The
equation (106) is the Newton’s equation of motion. Thus it is found that the geometric
machinery works for the present dynamical system too. The Eisenhart metric (Newtonian
limit metric of the general relativity) is chosen here because it is seen just below to have very
simple curvature properties, although there is another metric known as the Jacobi metric.

The link between the stability of trajectories and the geometrical characterization of the
manifold (M(g) x R?, g¥) is expressed by the Jacobi equation (82) (rewritten):

(dZ) TR0 =0. (107)

From (66), the non-vanishing components of the curvature tensors are

The Ricci tensor, defined by Rx; = R},;;, has only nonzero component Rgp = RL, = AV.
The scalar curvature, defined by R = g R;; = g Rqo, vanishes identically since g® = 0 by
(104).

It is interesting to find that the Jacobi equation (82) is equivalent to the equation of
tangent dynamics, that is the evolution equation of infinitesimal variation vector £(t) along
the reference trajectory go(t). In fact, writing the perturbed trajectory as ¢'(¢) = g§(¢) +
¢i(t) and substituting it to the equation of motion, d’q*/dt? = —8V/dq¢‘, the linearized
perturbation equation with respect to £(t) reads

iz_é-i — 82V(q) fJ
At — \0g'0g ) gy

This is equivalent to the Jacobi equation (82) by using (61), (105) and (108) because, noting
J® =0, one has (VJ/ds)* = dJ/dt + T5,J°Q° = dJ/dt and R(J,Q) Q = (8;0;V) J*.
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6.2 System of two degrees of freedom (Hénon-Heiles model)

In regard to the information of dynamical behaviors, either regular or chaos, all is included
in this geometrical characterization. In order to see this, the previous formulation is applied
to a two-degrees-of-freedom system described by the Lagrangian,

L= % ((41)2 + (11'2)2) - V(a1 q2)

where we are using the lower suffices such as ¢; (or J2) in this section only in order to
make a concise definition of its square (q1)? = ¢?. The enlarged coordinate and velocity
are Q@ = (t,q1,42,93) and @ = (1,¢1,4d,qs), and the geodesic separation vector is J =
(Jo=0, J1, J2,J3). On the constant energy surface and along the geodesic Q(t), one can
always assume that J is orthogonal to Q, i.e. (J, Q) = gi;J; QJ = 0. In fact, expressing
as J = J* + ¢Q and substituting in Eq. (82), it is readily seen that the terms related to
the parallel component cQ(= ¢T) drop out and the equation is nothing but the one for
the orthogonal component J+. Further, the components J; and g3 are irrelevant because
g33 = 0.

The equation for the norm of geodesic separation || J || is Eq.(83): (d/ds)* || J || /2 =
| VzJ |2 —K(J,Q), where the sectional curvature K (J,Q) is given by

: d d
K(J,Q) = RijoJ: i" J; (ﬁ" (8:0;V) JiJ;
RV, . BV 2V
= 62J +28162J1J2+ azJ .

Cerruti-Sola and Pettini [13] chose as J = (0, g2, —¢1,0). Then the normalized curvature K
is given by

Ny K(J,Q) 1 (62V *v .. 'V )
K = - ~9 2 ,
QO=T7F 25 —va) \og 2 ™ %on0g 1% og &

(E =T +V, total energy), which is computable on the constant energy surface Sg. They
define the integral of negative curvature value K_ = {K : K(Q, Q) < 0} by

1

)= a5 s

K_dgdg
E
where A(Sg) is the area of Sg. The quantity (K_) was estimated at different energy values
E.
In the Hénon-Heiles [15] model, the Hamiltonian is H = (1/2)(p? + p3) + V (g1, ¢2) and
the potential is chosen as

1 1
Q@ = 57"2 + 57"3 sin 36,

where q; = rcos@ and g, = rsinf. It is shown that the transition from order to chaos
is quantitatively described by measuring, on a Poincaré section, the ratio o of the area

V(le‘h) = (Q1 + Q2) + Q1QZ

o:»lr—\
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covered by the regular trajectories divided by the total area accessible to the motions. For
low energies E the whole area is practically covered by regular orbits and hence the ratio
o is almost 1. As F is increased, o begins to decrease from 1, and drops rapidly to very
small values. At E = 1/6, the accessible area is marginal because the equi-potential curve
V(g1,92) = 1/6 is an equilateral triangle (including the origin within it). Beyond E = 1/6,
the equi-potential curves are open, and the motions are unbounded. Thus the accessible
area becomes infinite.

It is shown in Cerruti-Sola and Pettini [13] that for low energies E the integral of the
negative curvature (K’_) is almost zero, but that, at the same E value (=~ 0.1) at which ¢
begins to decrease, the value (K_) starts to increase. The exact coincidence between the
critical energy level for the o decrease below 1 and the one for the (K_) increase above 0 is
understood that the onset of sharp increase of chaotic domains is detected by the increase
of the negative curvature integral (K_). Along with this, the fraction of the area A_(Sg)
where K < 0 is also estimated as a function of E. The transition is again detected by this
quantity too.
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7 Flows of an inviscid incompressible fluid

Motion of fluid particles of an inviscid incompressible fluid on a bounded domain is described
on the basis of the geometrical framework. In the conventional approach, flows of an inviscid
fluid are well described already in the fluid dynamics. However, the fluid flows are equiva-
lently expressed by the geodesics on the manifold of all volume-preserving diffeomorphisms.
This formulation is based on the Riemannian geometry and Lie group theory, developed first
by Arnold [3] (1966). The present approach reveals new aspects which are not studied in
the conventional fluid dynamics. For example, behaviors of the geodesics are controlled by
Riemannian (sectional) curvatures, which are quantitative characterizations of the flow (in
infinite many numbers). In particular, the analysis shows that the curvatures are found to
be mostly negative (with some exceptions), which can be related to mixing and ergodicity
of the fluid motion in a bounded domain.

It is known that the geodesic equation on a central extension of the group of volume
preserving diffeomorphisms is equivalent to the flow of a perfectly conducting fluid. Here,
only the following references are referred: Vizman (2001) [24] (and Zeitlin (1992) [25]). The
present chapter is based on the works of Misiolek (1993) [16], Nakamura et al. (1992) [20],
Hattori & Kambe (1994) [19], and Ebin & Misiolek (1997) [17].

7.1 Basic concepts

We consider flows of an inviscid incompressible fluid on a manifold M (which is the flow re-
gion): R? (or T?%), or R* (or T®). The motivation of the geometrical analysis is the observation
that Euler’s equation of motion is a geodesic equation on a group of volume-preserving dif-
feomorphisms with the metric defined by the kinetic energy. The set of all volume-preserving
diffeomorphisms of M composes a group manifold D, (M), of which an element g € D,(M)
isamap, g: M > M.

Suppose that a curve t — g,(z) denotes a fluid flow, then a point z is mapped to the point
g:(z) at a time . This is a Lagrangian description of flows. Tangent vector field (velocity
field) at the time ¢ is represented as

. .1
Ui(z) = g1(x) = Alm A_t(gAt —1) 0 gi(z) = wo gi(z) = u(g(x)).
By definition, the tangent field Uy(z) = U, at g, is a right-invariant field (see the next
section). Right translation with g;' yields the velocity field at e = gq:

uy(z) = g 0 g; (), u € Te Dy (M) .

At the identity e (i.e. at the initial manifold Mp), the velocity field uy(z) satisfies the
divergence-free property, i.e. div u; = 0. The suffix ¢ denotes that the tangent vector u, is
time-dependent. In terms of the fluid-dynamics, uy(z) represents an Eulerian velocity field
at a time ¢, whereas U,, is its Lagrangian counterpart. In mathematical language, u, is an
element of the Lie algebra T, D,(M).

It is useful to consider the manifold D; (M) which is a subgroup of volume-preserving
diffeomorphisms (of M) of Sobolev class H*, where s > n/2+1 (n =dim M). The group
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manifold D},(M) is a weak Riemannian submanifold of the group D*(M) of all Sobolev
H*-diffeomorphisms of M.

An arbitrary vector field v(z) € T.M can be decomposed into L?-orthogonal components
of divergence-free part 7 and gradient part (Appendix A2):

v==u+grad f, f e H M) . (109)

7.2 Right invariant field

Before presenting the geometrical theory of hydrodynamics, it is essential to introduce the
notion of right invariant field for its basis. Consider the tangent field U, € T, D; (M) at any
n € Dy (M), and suppose that U, is right-invariant, that is,

Up(z) = Ug o n(z), for U, € T.D, (M) .

Correspondingly, the right-invariant L?-metric is defined on D,(M) (not on all of D(M)) by

(U, V= [ (Uyon™, Vyon™), du(@) = (Ue, Vo) (110)

where Uy, V; € T, D;(M), dp is the volume form and (-, -), is the scalar product at each
point z € M. Applying a right translation to the middle side of (110) by n and using the
formula (141) in the appendix with f =7, n(c) = M and o = n~1(M), we have

OV = /n-l(M) (Uyon™, Vyon™) on ndu
= /M (Un(z), Va(2))pey dul(z)-

The second equality is verified by the commutability of d and n* and the change of variables
with the volume-preserving property n*u(n~'z) = p(z). Thus the present L2-metric (110)
is isometric with respect to the right translation by any n € D, (M).

The metric (110) induces, on D*(M) and D; (M), smooth Riemannian connections V and

V =PV respectively, where the symbol P is the projection operator to the divergence-free
part. For any right invariant vector fields U,, V,, € T,,D;(M ), we have the right-invariant

connection, A
(VUn V;I)'r, = (VUE ‘/e)e ° 77 ) (111)

for n € D3 (M), where V is the covariant derivative on M (manifold of Eulerian description).

Similarly, we have B
(Yo, Vi), =PIVu Vil on . (112)

An arbitrary vector field X, (z) on D°(M) can be decomposed into L*-orthogonal com-
ponents of divergence-free part X, and gradient part by (109) and the isometry of the
L2-metric:

X, =X, +grad f, (113)
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for any n € D5(M), where X, € T,Di(M) = {X € T,D° : div(X on~!) = 0} and
f € H**}(M) o). We denote by P, and Q, the orthogonal projections onto the first and the
second terms at 7 in (113) respectively.

The difference of the two connections V and V is the second fundamental form S of
D;, (M), given by

S(U"l’ Vv’l) = VUnV;7 - VUnv"l = Qﬂ[vUn‘/ﬂ] (114)

(see (71)). This is also right-invariant. A

For tangent fields U,V,W, Z € T, D;(M), the curvature tensor R on D*(M) and R on

D: (M) are also defined in the right-invariant way. First, the curvature tensor R is defined
on D*(M) by

(R, V) W)n = (RUon™,Voqg)yWon)on, (115)
where the R is the curvature tensor on M for u, v, w, € T.D; (M):
R(u, v)w = Vyu(Vyw) = Vy(Vyw) = Vg w . (116)

The curvature tensor R on D$(M) is given by the right hand side of (115) but V replaced
with V in (116). Both of the curvature tensors R and R are related by the following Gauss-

Codazzi equation (72):
(R, VW, z)_, = (R(U, VW, Z)+(S(U, W), S(V, 2)) - (S(U, 2), S(V, W)). (117)

L2

7.3 Formulation of hydrodynamics
7.3.1 Hydrodynamic connection

Let us consider the geodesic equation on the manifold Dj, (M), the group of volume-preserving
diffeomorphisms of M. This is a mathematical derivation of the hydrodynamic equation of an
inviscid incompressible fluid, for which the Eulerian representation is given in the manifold
M at the identity.

Because of the right-invariance of the metric on TDZ(M ) defined in the previous section,
the Riemannian connection satisfies the expression like (60). In the present case, using the
symbol V for the induced connection, we obtain

2{Vuv,w) = ([u,v],w) — {[v,w],u) + (Jw,u],v) , (118)
for u, v, w € T. D, (M). The commutator of the present problem is given by
[u, v](s) = V- V,u (119)

(see (57)), where the right hand side is divergence-free too.
Introducing the adjoint operator ad, w = [v, w] and the coadjoint operator by {(ad} u, w) =
(u, ad, w) = (u, [v, w]), we obtain from (118)
1

Vuv=-2—( [u, v] —adjv —adyu )+ grad f,
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by the non-degeneracy of the metric (§2.3). The function f is naturally introduced because of
the divergence-free of the tangent vector w. In fact, {(grad f, w) = 0 for any scalar function
f(z), which is determined so as to satisfy the condition, divV,v = 0.

Because of the right-invariance of the diffecomorphisms, the commutator is [u, v] = L,v =
—P{(dv*/dt) — v/(0u’/027)} 8;. Therefore the time evolution is described by the nabla
VB y = —V, v (see §3.8.2b) in the right-invariant way.

7.3.2 Formulas in R? space
In the space R?, for u, v € T.D,(R?),
—adyv = —[u,v]=[Ly, Ly]=(u-V)v—(v-V)u,

(see (42), (43) ), where V = (8,,05,83), u-V = 1410 +usB +uzb3 and V.-u =0, V-v = 0.
The definition relation {(ady -, v) = (-, ad}, v) leads to, with integration by parts,

—adyv = —(u-V)v—"VyF
= ux(Vxv)—Vh-Vf,,

k

for a function f,,, where h = u* v* = u . v. Thus, we obtain

- _ 1
Vi o=—Vyv = P[-z-( [u, v] — adyv — adyu ) + grad f]

= P[(u—V)v+%Vh+Vf+Vfuu+Vfw]
= P[(u-V)v+Vp]
where p = (1/2)h + f + fuy + fou and div Vv = 0. In particular setting v = u, we have

Vi u=P[(u-V)u+Vp].

7.3.3 Geodesic equation

The geodesic equation in the right-invariant time-dependent problem must be considered
according to the formulation of §3.8.2.

Consider a curve t — 7, = 7 and its tangent 7. Using (79) and (111) with U, = V, and
U, = 1o n~L, the right-invariant connection of a time-dependent problem is given by

o d . _ -
(Vi Un),, = g(hon™) on+ (Vi inon™)on. (120)
A geodesic is a curve g; whose tangent is translated parallel along itself:
~(R) .
O=P[(V(gt)gt)gt] =P[8tu+V1(‘R)u]ogt, (121)

(Ue = u and n; — g;), where divu = 0. The Euler’s equation of motion of an incompressible
fluid in R3 is obtained by right translation g;! to the identity e = gq:

Ou+(u-V)u+Vp=0, (122)
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where the function p is determined so as to satisfy the condition V - u = 0.
The Jacobi equation (85) is rewritten as

d2

T 171=(IVres [P — KT en)) 171, (123)

where T = 9g/0t and J = 8g/0c. =|| J || e; for a varied family of geodesic curves g(t, @),
and
K(T,e;) =< R(T,e;) €5, T >= Ry T" ¢}, T*¢},

is the sectional curvature in the two-dimensional section spanned by the tangent vector 7’
and the Jacobi vector J.

7.3.4 Jacobi field as a frozen field

Let us consider the Jacobi field from a different point of view. According to the above
definitions of T and J, the equation (80) is written as VrJ = VT (see (61)). Therefore,
both of the vector fields 7" and J commute by the torsion-free property (57), and further the
Lie derivative vanishes:

LrJ=[T,J|=VrJ-V,;T=0 (124)

(see (48)). This suggests also that, when the T-field is a divergence-free field, then the
Jacobi field is also a divergence-free tangent field. In addition, the argument just above the
equation (69) asserts that the torsion-free is valid not only with the connection V, but with
the connection V as well. Thus, we have

Ved =V,T.
In the time-dependent problem in R? space, this is rewritten as
OJ+(u-V)I=(J -V)u,
(equivalent to (48)), which is transformed to
OJ+Vx(Ixu)=0, (125)

due to a familiar vector identity, because V -u = 0 and V - J = 0. This equation is
usually called the equation of frozen field, since it describes that the vector field J is carried
along with the flow u and behaves as if J was frozen to the carrier fluid. If the flow u;
is represented by the map ¢;(z) = y(z), then the J(¢) = (J?) is given by the Cauchy’s
solution (see Remark of §2.6.2):

arg) = V¢
Jo(t) = 52 740) .

It is well-known that the vorticity w = V X wu satisfies the equation of the form (125) with
J replaced by w. The magnetic induction B in the ideal magneto-hydrodynamics is also
governed by the equation of frozen field.
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7.3.5 Interpretation of the Riemannian curvature

(1) Time evolution of Jacobi field

A Jacobi field J(t) is uniquely determined by its value J(0) and the value of V¢ J at
t = 0 on the geodesic g;. Provided that J(0) = 0 and (V7J)i—o = ay, it can be shown
that [18]

M—t_ﬁK(T’J)
Go 6 171

where limy,o K(T,J)/ || J ||*= K (T, e5) = K;(0), and T, = T(0). Therefore, if K;(0) < 0,
then || J(t)/aet || > 1 for sufficiently small ¢, and if K;(0) > 0, then || J(t)/aot || < 1 for ¢
near zero. Thus, the time development of the Jacobi vector is controlled by the curvature
K(Ts, e;) and in particular by its sign.

An L?-distance between two corresponding points (having the same time t) on two
geodesics g:(x : v1) and g, (x : v;) starting at the same point go(x : v;) = go( : v2) = =
with different initial velocity fields v; and v, of flows in a bounded domain D is defined by

+O(t%) (t>0), (126)

e ) = (/D |9¢(@ = v1) — gu(z - vz)|2dm) ”

Evidently, one has d(v;, v3 : 0) = 0. The distance d is the mean L2-distance between particles
starting at the same position but evolving with the different velocity fields. It is shown in
Hattori and Kambe [19] that

3 = !

d(vi, vg : t) = 2¢[0/| (t — %E(%%%S_Z) + O(e%, et%), (127)
where 7 = (v; + v2)/2, ev' = (v, — v2)/2 and € is an infinitesimal constant. According to
the definition of the Jacobi filed, J(t) = (8/0¢) g:(x,: 0+ €v')|c=0, one finds that d ~ £J for
infinitesimally small €.

It is found that the sectional curvature appears as a factor to the #3 term with a negative
sign and determines the departure from the linear growth of the L?-distance. This means,
if the curvature is negative, that the L?-distance d grows faster than the linear behavior,
and further infers an exponential growth of the distance d ~ €J (see (123)). The d is also
interpreted as the distance between two neighboring particle in the same flow field. [19]

In the case of fluid motions in a bounded domain D without mean flow, the particle
trajectory will be folded within the domain D during its evolution. Thus, there would occur
stretching and folding of the Lagrangian segment connecting two neighboring particles which
would lead to mizing of particles and ergodicity of the fluid motions.

(ii) Second fundamental form

Let us consider how the fluid motion acquires a curvature and what the curvature is. On
the group D (M) = {n € D* : n*(u) = p} of all volume preserving diffeomorphisms of M,
the Jacobian operator J, applied to n(z) at z € M takes always the value unity:

Di(M)={ne€ D’ : Ju(n(zx)) =1, Vze M}
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(see Appendix Al), where J : D*(M) — H¢~Y(M). From the implicit function theorem,
Di (M) =n={J;*(1)} is a closed submanifold of D*(M). According to the formulation of

§3.7 and §7.2, the difference of the two connections, V in D*(M) and V in D} (M), is given
by the second fundamental form S of (114).

The curvature of the closed submanifold D5 (M) is given by ( R(U, V)W, Z) in the Gauss-
Codazzi equation (117). In particular, the sectional curvature of the section spanned by the
tangent vectors X,Y € T, D, (M) is given by

R(X,V)” = (R(X,Y)Y, X >f2
- <R(X, Y)Y, X>M+ (S(X, X), S(v, Y)>— I S(X, )| .

Even when the manifold M is flat, i.e. the curvature <R(X , Y)Y, X >M vanishes, the sec-

tional curvature K(X, Y)P* of the closed submanifold D(M) does not necessarily vanish
due to the second and third terms (defined as Ks(X,Y)) associated with S(X,Y), etc..
Namely the curvature of a fluid motion in this case originates from the K part,

I_{S(Xa Y) = <S(X1 X)’ S(Ya Y)>L2— ” S(X: Y) ”2 :

for a flow of an incompressible (inviscid) fluid. Thus it is found that the restriction to the
volume-preserving gives rise to the above curvature.

Further it is interesting to observe that the second fundamental forms are related to the
pressure gradients. In fact, we have

S(X,Y) = VxY—VxY=Qq[VxY]

In the Appendix A2, it is shown that an arbitrary vector field v can be decomposed orthog-
onally into a divergence-free part and a gradient part. Taking as v = Vx Y, one obtains
immediately the form, Q[Vx Y] = grad (Fp(v) + Hx(v)). Thus it is found that the curvature
is related to the ’grad’ part of the connection Vx Y which is normal to TD;,(M).
In particular, for 7 € D;,(M) and 7 = X, we have
& d,. _ -
S(X,X) = Qq(Va, i) =Qu(giom™) on+(Vimuion™)on)
= —(gradpx)on,

where pyx is the pressure of the velocity field X. Hence, the first term of K is represented

as (S(X, X), S(Y,Y)) = (gradpx, gradpy ), which is the correlation of two pressure
gradients. Thus the Kg part of the curvature is given by

Ks(X,Y) = (gradpx, gradpy )— || grad (Fp(v) + Hx(v)) II? .
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7.3.6 Space-periodic flows in a cubic space (Fourier representation)

Explicit forms are given for space-periodic flows in a cube by Fourier representation, i.e. for
flows on the flat 3-torus M = T% = R3/(2rZ)3 (Nakamura, Hattori and Kambe[20], Hattori
and Kambe(19]). With & € T°, we have # = {(z!,22,2%); mod 2x}. The manifold 7 is
a bounded manifold without boundary. The elements of the Lie algebra of D,(T?) can be
thought of as real periodic vector fields on T3 with divergence-free property. Such periodic
fields are represented by the real part of corresponding complex Fourier forms.

The Fourier bases are denoted by e, = ek where k = (k;) is a wave number covector
(1 = 1,2,3). Now the representations are complexified so that all the fields become linear
(or multilinear) in the complex vector space of the complexified Lie algebra. The bases of
this vector space are given by the functions e; (k € Z3,k # 0). The velocity field u(z,t) is

represented as
(e, t) =) ug(t)ex,
k
where u(t) is the Fourier amplitude and also written as u(k) (i = 1,2,3). The amplitude
must satisfy the two properties,

k-u,=0, U_p = uj, (128)

to describe the solenoidal condition and reality condition respectively, where the asterisk
denotes the complex conjugate. It should be noted that u; has two independent polarization
components.

‘Let us take four tangent fields satisfying (128): ugex, vie;, Wmem, 2ne,. Then we have
the followings. The scalar product convention such as (u - v) = ulv! + u2v? + u30® is used
below. The metric is

(urex, vier) = (2m)% (ug - v)) So e

where 8o = 1 (if k41 = 0) and 0 (otherwise). The covariant derivative is

_ . k+1 k+1
Ve, vier =1 (uy - 1) m X (vl X U“—"‘TI) €kl (129)

where the amplitude vector on the right hand side is perpendicular to k+I. The commutator
is
[uker, vie)) =1 ((uk Do~ (v - k)uk) €kt

the right side being also perpendicular to k +I. The geodesic equation (122) reduces to

9 , bk
U 1 T3 (0= 2) k) wi@) =, (130)
p+g=k ™"

by using (129), where 4y, is the Kronecker’s delta. From the definitions (115) ~ (117) and
(129), the curvature tensor is

Rklmn = (R(ukek, vlel) W Cm, znen)
= (2m)’ ((uk - m) (W - k) (v n) (24 - 1) (v m) (Wi - 1) (ug - n) (2, - k))
|k + m)| It +n [l + m] ey ,
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for k+1+m+mn = 0 only and vanishes otherwise (derived from the definitions (114)~(117)
and (129) ). The cases when the denominator vanishes should be excluded. It is to be noted
that the above formulas reduce to those of Arnold [3] when two-dimensionality is imposed.

As an application, a flow with Beltrami property is considered, that is, we assume that
the velocity field Up = upe, + u_pe_, =Re[upePT| satisfies the Beltrami condition,
V x Up = AUp, A € R. This eigenvalue problem can be solved with A2 = [p|2. It is readily
shown that Up is a steady-state solution. Let X = ¥ w;e; be any velocity field satisfying
(128). Then one obtains

K(Up, X) = {negative terms} [20].

This result of negative sectional curvature is a three-dimensional counterpart of the Arnold’s
two-dimensional finding [3]. The negative sectional curvature leads to exponential growth
of the Jacobi vector || J || according to (123) (see also (126), (127)). This means that the
distance between the two neighboring geodesics grows also exponentially.
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8 Motion of a vortex filament

The dynamics of an isolated thin vortex filament, embedded in an ideal incompressible
fluid, is known to be well-approximated by the local induction equation (LIE) [21] when the
filament curvature is small. A vortex filament is assumed to be spatially periodic and given
by a time-dependent C-curve z(s, t) in R® with s € S* the length parameter and ¢ the
time parameter, that is, z : S x R — R3.

As illustrated just below (Suzuki et al. [22]), this system is characterized with the rotation
group G = SO(3) associated pointwise with the S* manifold. The group G(S') of smooth
mappings, g : s(€ S') — g(s) € G = SO(3), equipped with the pointwise composition
law, g"(s) = g'(s) o g(s) for g,¢',¢" € G, is an infinite-dimensional Lie group, i.e. a loop
group. The corresponding loop algebra leads to the Landau-Lifshitz equation as the geodesic
equation (§8.2). Further in §8.3, its central extension results in the so-called Kac-Moody
algebra [6]. This chapter includes a new formulation for the geodesic equations of motion
of a vortex filament on the basis of the theory of loop group and its extension. This gives a
new interpretation to the local induction equation and the equation of Fukumoto & Miyazaki
(1991) [23] from a geometrical point of view.

8.1 Local induction equation

Suppose that motion of a vortex filament is governed by the LIE, namely,
Oy = O,z x Oz . (131)

In the conventional mechanics terms, x(s,t) € M is the position vector of a point on
the filament. Mathematically, (s, t) is an element of the C'*-embeddings of S! into a
three-dimensional (oriented) manifold M. This system is reconsidered on the basis of the
Riemannian geometry.

A well-known local orthonormal system, at each point z(s) on the filament at a time ¢, is
denoted as (T, N, B), where T'(s) is the unit tangent T'(s) = da/0s, N (s) and B(s) are the
unit principal normal and binormal respectively. These unit vectors satisfy the Frenet-Serret

equation:
d T 0 k¥ 0 T
—| N |=|-« 0 7 N (132)
s(3)-(5 2 0)(3)

where k(s), 7(s) € R are the curvature and torsion of the filament. The Hamiltonian of the
system (131) is given by
H=/ﬁ@d& (133)
The motion of the curve (s, ) is a map ¢+ g, that is, z(s) s z,(s) = ¢10xo(s), where
z¢(s) = x(s,t). Following the motion, the tangent vector T:(s) on the curve is left-translated,
i.e. Ty(s) = 0z(5)/0s = #; 0 Bzo(5)/0s = (¢:),To(s). Correspondingly, its derivatives are
left-translated, e.g. 9,7y = (¢:)+8,To(s). Note that 8, = k(s)N(s), the suffix ¢ being
omitted here and below. Differentiating the equation (131) with respect to s, one obtains

GT=Tx®#T=-0"TxT, (134)
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for the unit tangent vector field 7. The equation of the form 0; X = Q x X describes
“rotation” of the vector X with the angular velocity . Hence, the factor —32T (= Q, say)
in the above equation is interpreted as the angular velocity at s pointwise, that is, the
) = —T" is an element of the Lie algebra so(3), where the prime denotes the differentiation
with respect to s. The commutator of the so(3) is given by the vector product of two
elements of (see §2.6a and §4.1). In the sense of the pointwise locality, the group G(S?) is
called the local group. As illustrated just below, the vector T (= —0;2Q) itself is interpreted
as an element on the dual space so(3)".

Associated with the Hamiltonian (133), it is useful to observe that (05T, 8;T)ps =
(6N, kN) = &7, and further that Q = —-T" € so(3) (Lie algebra). Then the metric of
the system is defined as follows:

(Q, Q) = <T", T") = [gl (T”, AT")Ra ds = /51 (asT, a.sT)RS ds :/ K? ds 3
where A = —9;?, thus AT” = —T, and (A4, B)gs = §A*B. Integration by parts is carried

out at the last equality. The left-translation of 8,7 noted above and the invariance of the
Hamiltonian H induces the left-invariant property of the above metric.

Using 0,7 = —9,1(2, the metric is also written as
(Q, Q) = /S (079, 0,'0) o ds = /S (@, AQ) g ds (135)
The operator A = —8;2 is often called the inertia operator (or momentum map) of the

system.? Thus, it is found that, using the new symbol L for T,

L" € C*(S', so(3))
L(=-AL") € C*(S' so(3)*)

where C*(5",50(3)) = Lg = s0(3)[S"] is the loop algebra of the loop group, LG =
SO(3)[S"], and C*(S',50(3)") is the dual algebra.

8.2 Loop algebra and Landau-Lifshitz equation

Now let us reformulate the above dynamical system in the following way. Let
X, Y, Z € Lg=s0(3)[S"] = C=(8, s0(3))
be the vector fields. Correspondingly, we define the dual fields:
AX, AY, AZ € C*(S", s0(3)"),

where A = —0;2. The left-invariant metric is defined by

— -1 -1 —_
(X, Y)—/Sl (671X, 9, Y)Rads_/sl (X, AY) s ds.

3 According to the theory of elliptic operators, A = 2 is defined uniquely for C°° functions.
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The commutator is given by
[X, Y](s) = X(s) x Y(s)

at each s, pointwise.

In the case of the invariant metric, the connection satisfies the equation (60), and in
terms of the operators ad and ad*, we have the expression (77) of Vx Y = +(adx Y —ady X
—adyY), for X, Y € so(3). By the definition (32), adxY = [X,Y] = X x Y. Then the
ad% Y satisfies

(ady Y, Z) = (Y, adx Z) =/Sl (AY, X x Z)R3d5=[51 (447(AY x X), Z)_,ds,

which leads to
ady Y = A‘I(AY x X) = —83 [AY, X].

Thus it is found that the connection V of the filament motion is represented as [22]
VxY = %([X, Y]+ 0[AX, Y] + 8}[AY, X))

for X(s), Y(s) € Lg = s0(3)[S"], the loop algebra.
The geodesic equation (9,X + Vx X = 0) on the loop group LG = S0O(3)[S"] is given
by
X +(AX x X)=0.

Applying the operator 8,2 = — A, we get a corresponding equation in the dual space,
3tL—(L XL”) =0.

where L = —AX and X = L”. Thus, we have recovered the equation (134) for the vector
T = L. This type of equation is called the Landau-Lifshitz equation. Further, integrating
with respect to s, one gets back to the equation (131).

The Jacobi equation is of the form: (d*/ds?) || J ||2= 2 || V¢J |2 —2K(T,J). The
sectional curvature is defined by

K(X,Y) = (R(X",Y")Y", X") = |  f(s)ds
for X", Y" € C*(S', so(3)), where [22]
F8) = (X x X" (¥ xY") = (07 (X" x ¥"))’
1 /] m\ 2 1 "2 "o 0 "o
+Z(38(X x Y" +YXX')) +§(|X l IY, +|Y”| IIXI )
+%(X" Y ((X-Y") +(X"-Y))

The curvature was estimated in two example cases [22]. First one is the section spanned by
the tangent vector X = (0,0, 1) of a straight-line vortex and an arbitrary tangent field Y,
for which the curvature is found to be '

K(X,)Y) = 2/51 (X xY™?2ds >0,
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that is, the curvature is always positive.

The second case is the section spanned by the tangent vector X of a spiral vortex and
an arbitrary tangent field Y. If the wave lengths of Y field are shorter than the radius of
curvature of the spiral, then the curvature K(X,Y) is positive and large enough to make
the right hand side of the Jacobi equation (83) negative, thus the spiral vortex being stable.
On the other hand, if the wave lengths of Y field is large enough, then the X (X,Y) becomes
negative and the spiral vortex is unstable.

8.3 Central extension of the algebra of filament motion

The central extension of the algebra of the previous section is considered in an analogous
way to the KdV problem (§5.2, 5.3). Let us introduce an extended algebra denoted as

X,Y,Z e so(3)[SY] ® R

where X X X
X=(X,a), Y=(,b), Z=(Zc)

and a,b,c € R. The new metric is defined by
(X, ?):fSl (X, AY)psds + ab
where A = —8;2. The extended algebra is defined by
(X, Y] = (X, Y)(s), o(X,Y)), (136)

where
e(X,Y) = [ (X(s), V(o)) ds = (¥, X),

and remarkably the Jacobi identity is satisfied by the new commutator:
[X,¥], Z]+[[V, 2], X]+[[Z,X],¥]=0.

It is not difficult to show that the commutator (136) is equivalent to that of Kac-Moody
algebra [6]. The extended connection is found to be given by

. 1
Vel = (VxY, 5 /S (X,8,Y)psds)
where
ViV = -;—([X, Y]+ 2[AX, Y] + G2AY, X] - 9%(ad,Y +09,X) )

Then the geodesic equation (8,X + V %X = 0) for the extended system is obtained as

OX +2(AX x X) —ad3X = 0,
ata = 0.
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Applying the operator A, we obtain the equation for ¢, = L = —AX (X = L"):
&L —(LxL")—adL=0.
Integrating this with respect to s, we get back to the equation for the space curve x(s, t):
Ly = L3 X Lygg + QTggs

in R®. Reparameterizing s to make it to be the arc-length, one finds

Ty =T, X T +a(:z: +§nzaz)
t E] 88 888 2 8j
where k(s) = (@55, T55)*/? is the curvature of the filament at a point s. The shape of the
filament is not changed by the additional term. The velocity x; is also represented as

1
T, = mB+a(-2-nzT+n’N+K,T)

where (T, N, B) is the local orthonormal bases and 7 is the torsion.

This is equivalent to the equation of Fukumoto and Miyazaki [23], called FM equation
here. The equation was originally derived for the motion of a thin vortex tube with an axial
flow along it. These are known to be the first two members of the hierarchy of completely
integrable equations for the filament motion. First five members of the integral invariants of
the system are as follows [26]:

Ioz/ds, I = [rds, I2=/n2ds,
13=//¢,27' ds, I4=/((Ii')2+li27'2—-(1/4)f64) ds,---

It was shown in §5 that the KdV equation is a geodesic equation on the diffeomorphism
group of a circle S! with a central extension. Here it is verified that the motion of a vortex
filament governed by the LIE equation is a geodesic on the loop group £LG = SO(3)[S!]
which is SO(3)-valued with pointwise multiplication. Further, the infinite-dimensional loop
algebra Lg has non-trivial central extension equivalent to the Kac-Moody algebra. This is a
new formulation verifying that the extended system leads to another geodesic equation with
an additional third derivative term, which was derived earlier by Fukumoto and Miyazaki [23]
and shown to be a completely integrable system. It is remarkable that there is a similarity
in the forms between the KdV equation and FM equation. These are two integrable systems
defined over the S* manifold: one is a geodesic equation over the extended diffeomorphism
group D(S") and the other is the one over the extended loop group S0(3)[SY.
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9 Conclusion

A geometrical theory is developed for diverse dynamical systems of both finite and infinite
degrees of freedom. Based on the mathematical framework presented in the beginning chap-
ters 2 and 3, and according to the published works by the author and others, five dynamical
systems are reformulated geometrically in the subsequent chapters. Although those sys-
tems are already studied with the conventional methods in physics, the present formulation
provides us a deep insight into the systems and adds new geometrical characterizations of
the dynamical evolutions in terms of the geodesic equations, Jacobi fields and Riemannian
curvatures. The last chapter for the motion of a vortex filament includes a new formulation
on the basis of notion of the loop algebra, disclosing an analogy between the diffeomorphic
flows on a circle and the flows over loop groups.

Finally, it is to be remarked that, as noted already in the beginning of the chapter 6 but
not included, the geometrical approach can be applied to the phase transition problem. It is
found [14] that fluctuations of the configuration-space curvature exhibit a singular behavior
at the phase transition. This is an evidence that the scope of geometrical theories are
fundamental and very broad.

The present article was originally prepared as a lecture note during the author’s stay
at the Isaac Newton Institute in the programme ”Geometry and Topology of Fluid Flow”
(September to December, 2000). After that, the note has been rewritten, revised and ex-
panded largely into the present paper.
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Appendix

Al. Forms and Exterior multiplications

A covector is also called 1-form, which is a linear function w'(v) : R* = R. The set of all
1-forms on R" constitutes an n-dimensional dual space. Similarly, a 2-form w? is defined as a
function on pairs of vectors w?(v1, 1) : R*x R™ — R, which is bilinear and skew-symmetric
with respect to two vectors v, and Vs.

A k-form is defined as a function of k vectors w*(vy, -+ vk) 1 RPX --- x R® (k-direct-
product of R") — R, which is k-linear and skew-symmetric in the sense, wk(vay, -, Va,) =
(=1)°w*(vy,- - -, v) where o = 0 (if the permutation (a,, - - -, ax) with respect to (1,---, k)

is even) and o =1 (if it is odd), where v, = v79;.
We now introduce an exterior multiplication of two 1-forms, which associates to every
pair (wg, wj) on R" a 2-form w! A wp on R™ x R™ defined by

W A h(v, 18) = Wl (va)eoh(vs) — W (08)h(u) (137)

which is obviously bilinear with respect to v, and vy, and skew-symmetric. For example, if
wg, and w} are differential 1-forms, 4.e. wg = dz’ and w} = dz?, then we have

dz* A dz? (vy, vy) = dz*(v;) dz? (vg) — dz?(v,) dz? (v1)
v 'U{
J

o | (138)

= viv) —viv] =

2
1
V
| Vo

where the last one is the determinant.
In general, a differential k-form on R™ can be written in the form,

wF =N . Az A A dgie
1<l

Definition of exterior multiplication: The exterior multiplication of an arbitrary k-form w*
by an arbitrary I-form ' is a (k + [)-form, and satisfies the following properties:

(2) wEAW = (=DM AWk (skew-commutative)
i awf + wi) Awt = qwf Awl + ek A W distributive
1 2 1 2
(443) (w’“ A wl) Aw™ = wkA (w’ A w"‘) (associative)

For example, let us consider a volume form. Let (zvl,xz,a:3) be a local orthonormal
coordinate system of M®. Then the volume form vol is a 3-form: wvol® = dz! A dg? A dz3,
Let y = f(z) be any coordinate transformation in the neighborhood of the point z =
(z!,2% 2°) € M®. The differential is given as dz‘ = (0z*/8y*)dy*. Then, the length element
is

ox' 8zt . -
= ————dyfdy* = g;p dyfdy*
ayj ayk y] y g]k y y H

ds? = (dz?)?

where L
_ Oz' Oz

"= o
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Hence,

9(2) )’
det (g;x) = | det( —= = .
(9x) ( ( 3(s) )) 9(y)
The Jacobian of the transformation at z is given by
_ a(y) — 4 a—1/2
Jz[y(z)] = det (8(1;)) =+g 2. (139)

Consider the volume form defined by

vol®(y) = o(y)y/g(y) dy* A dy? Ady?,

where o(y) = %1 is an orientation factor of the coordinate frame ¥y = (¥,3% 9%). Reminding
the definition (22), the transformation (27), and using the above properties (i) — (), the
pull-back of the volume form is given by

frvold(z) = 0(y) /g Je[y(z)] dz' A dz? A da® = dz' A dz? A dz , (140)

where the orientation o(y) is chosen according to the sign of the Jacobian determinant
Jz(y(z)), that is, o(y) = 1 if the (y',y?,y®)-frame has the same orientation as the (2, 22, 23)-
frame (assumed to be right-handed usually), and o(y) = —~1 otherwise.

Let f be a differentiable map of an orientation-preserving diffeomorphism, f : M; — M,,
from an interior ¢ of M; onto an interior f(o) of M,. Then, for any differential k-form w*
on My, the following general formula of pull-back integration holds:

/f(a) wk = /Uf*wk , (141)

which is a generalization of the integral formula (28) for 1-form. The integral of a k-form w*
over the image f(o) is equal to the integral of the pull-back f*w* over the original subset .

A2:. Orthogonal decomposition (Helmholtz decomposition, or Hodge decomposition)

An arbitrary vector field v on M can be decomposed orthogonally into divergence-free and
gradient parts. In fact, a H? vector field v € T,M is written as

v = P(v) +Q.(v)
where Qe(v) = grad Fp +grad Hy = grad (Fp + Hy),
Po(v) = v—Q.v),

The scalar functions F,, and Hy are the solutions of the following Dirichlet problem and
Neumann problem, respectively,

A Fp(v) = divo, where supp Fp C M
A Hy(v) = 0, and (V Hy, n)=(v—V Fp, n)
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where n is the unit normal on the boundary 8M. There is orthogonality, (grad Fp, grad Hy)
= 0. Then, it can be shown that

div P,(v) = 0,
(Pe(v)1 Qe(v)> = 0.
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