MODULAR HYPERGEOMETRIC RESIDUE SUMS
OF ELLIPTIC SELBERG INTEGRALS

J.F. VAN DIEJEN AND V.P. SPIRIDONOV

ABSTRACT. It is shown that the residue expansion of an elliptic Seiberg inte-
gral gives rise to an integral representation for a multiple modular hypergeo-
metric series. A conjectural evaluation formula for the integral ther implies a
closed summation formula for the series, generalizing both the multiple basic
hypergeometric g®7 sum of Milne-Gustafson type and the (one-dimensional)
modular hypergeometric g€7 sum of Frenkel and Turaev. Independently, the
modular invariance ensures the asymptotic correctness of our multiple modular
hypergeometric summation formula for low orders in a modular parameter.

1. INTRODUCTION

Modular or elliptic hypergeometric series first made their appearance via the the-
ory of exactly solvable statistical models in the construction of elliptic solutions of
the Yang-Baxter equation [D-O1, D-O2]. Their mathematical theory was developed
by Frenkel and Turaev in the seminal paper [FT], and since then has found further
applications in the study of novel biorthogonal rational functions on elliptic grids
[SZ1, SZ2]. A principal result of [FT] is a modular hypergeometric generalization of
the celebrated very-well-poised balanced terminating basic hypergeometric @7 sum
of Jackson [GR]. It is well-known that the classical basic hypergeometric summa-
tion formuias are intimately cornected—via residue calculus—to the Askey-Wilson
and Nassrallah-Rahman generalized beta integrals [AW, NR, Ra, GR]. Recently,
one of us found an elliptic beta integral built of Ruijsenaars’ elliptic gamma func-
tion that generalizes the Askey-Wilson and Nassrallah-Rahman integrals [Sp] and
reproduces the Frenkel-Turaev sum by residue caiculus [DS1].

In the present paper a multidimensional generalization of the Frenkel-Turaev sum
is derived, by means of residue calculus, starting from a conjectural elliptic Selberg
type integration formula first presented and partially proved in [DS2]. Our main
tool is an integral representation for the multiple modular hypergeometric series fol-
lowing from the elliptic Selberg integral. The series under consideration can be seen
as a modular counterpart of the multiple (basic) hypergeometric series studied by
Milne and Gustafson et al [Mi, G1, DG, LM, ML, K]. It is important to emphasize,
though, that these are not the only multidimensional generalizations of the classical
(basic) hypergeometric series appearing in the literature. Other (related) types of
muitiple (basic) hypergeometric series were for instance considered by Aomoto, Ito
and Macdonald [A, I1, 12, Ma, D] and by Schlosser [Sc]. Modular analogs of those
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types of series were discussed in [W, DS1, Ro] (Aomoto-Ito-Macdonald type) and
[W, Ro] (Schlosser type), respectively.

The material is organized as follows. In section 2 we present a residue formula
for a Selberg-type multivariate integral composed of Ruijsenaars’ elliptic gamma,
functions. It is shown in Section 3 that the residue formula in question leads to
an integral representation for a multiple modular hypergeometric series of Milne-
Gustafson type. Combined with a partially proved evaluation formula for the ellip-
tic Selberg integral from [DS2], this then leads us to a closed summation formula
for the series given in Section 4. We close by studying the modular properties of
the summation formula at issue in Section 5. More specifically, it turns out that
both sides of our multiple modular hypergeometric summation formula are given
by Jacobi modular functions on SLy(Z) (in the sense of Eichler-Zagier [EZ]). This
enables an independent verification of the correctness of the summation formula for
low orders in log(g) (up to order 10) via the theory of modular forms [Se].

2. RESIDUE CALCULUS FOR AN ELLIPTIC SELBERG INTEGRAL

Ruijsenaars’ elliptic gamma function is defined by [Ru, FV]

{(rgz7';p, @)oo
T(z;p,q) = FLZ P Qoo 2.1
(zp.9) (%0, 9)oo @D
where
e “
(a;7, @)oo = H (1-ap’q*), with|p|,|g| <1. (2.2)
J k=0

It satisfies the difference equations
T{gz;p,9) = 0(z;p)L(2;p,9), T(pzp.q9) = (%0 (2;p,9) (2.3a)

and the reflection equation

I'(z;p,q)T(z7%;p,9) = _'—_e(z;p)ol(z—l;q)’ (2.3b)
where
0(2;9) = (%,P)oo (2715 P)oo (2.4)

(with (a;0)e0 = (2;P,0)00 = [[5o0(1 - ap’)). By forming quotients of elliptic
gamma, functions, one ends up with elliptic Pochhammer symbols:

0(z:p; Ohm = Féz(‘i I’)’p’ 9 _ H 6(z¢’;p), meN (2.5)

(with 6(z;p;q)o = 1). To ease the notation we will often employ the following
short-hand conventions for multiple products of gamma functions, theta functions
and Pochhammer symbols

I(a1,..., 05D, 9) [Tt _.T(a-;p,9), (2.6a)
8(ar,...,a50) = [lr=10(ar;p), (2.6b)
8(at,.. ., a; 0 Q)m = [1c0(ar;D; D (2.6¢c)
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Main object of study in this section is the following Selberg-type integral built
of elliptic gamma functions. The integrand is of the form

1

Anm(zt) = @mi)” H r-! (2j %k, 224 ,,:»:J lzk,zJ lzk 10, q)
1<]<k<n,
_1.
x H 'r'—l F(t zjatr'zj P, q) (2 7)
-1 ; .
ZJ’ZJ 145 Hr— T’zj H:n=1 tr; D, q)
where z1,...,2, and #i,...,t, denote respectively the integration variables and

parameters of the integral. Our canonical integration domain is over a torus formed
by the n-fold product of the unit circle |z| = 1, with parameters taken inside the
open punctured unit disc 0 < || < 1. The following residue theorem describes
the behavior of the integral with respect to a small deformation of this torus and
the parameter domain. For our purposes it suffices to restrict to the case that
m=2n+3.

Theorem 1 (Residue Formula). Let A, 2n43(2;t) be of the form in Equation
(2.7) and let to be an auwmiliary dependent parameter determined by the balanc-

ing condition ¢~ [[>23%t, = 1. Then, for parameters such that |t1],..., [tx| > 1>
[tnttls-- - [tants| > 0, with generic argument values in the sense that #{a.rg(t,.) a.rg(t" )|
r=0,...,2n+3} =4n+8, and with 0 < ¢ < 1 and 0 < p < min{lt5?], ..., [t71(},
we ha'ue that
dz dzn
An2nt3(z; t) L = (2.8)
cr Zn
e f dzl dzn—c J
> o2 (J)c(J) / o BB z—(l
Jc{L,...,n} 220 s.t. |t,q>‘j|>1 Tnme n—e(J)
jeJ
where
pr(Z A5 8) = kgvs(A) 65(X, 2) Ap_o(),2n+3(2: t),
with
1 t tk:p: q)
kr = e(J c(J H —1
(p;P)os { Narq ) )JkEJ Gt 5,9)
i<k
H1sr5¢2n+3 L(trts,trt; P, q)
X 3
JEHJP(t‘2 ti TIeet t, 17 TI22 4 py 0)
+2 1 25-A
UJ(A) - Je.}"](‘])’\ H t tkq T Ak t t q §— Ak p)
iker O(tits, tet; ' p)
i<k
<11 8(t39°%; p) 2ﬁ3 0(t-ts;p;0)x
s\ 0P o 0latr i pa)a,
and

sinz) = I 0¢7 2t 2t @) 008507 26, 850 20 ).
jeJ
1<k<n—e(J)
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Here ¢(J) denotes the cardinality of J C {1,...,n} and n;(J) counts the position
of 7 in J when the elemenis are ordered from small to large. Furthermore, the
integration contour T represents the unit circle with positive orientation and the
contour Cy denotes a smooth positively oriented Jordan curve around zero such
that (i) every half-line parting from zero intersects Cy just once (i.e. the interior
is star-shaped), (i) C;' = {z € C; | 27! € G} = C; (i.e. the contour re-
spects the symmetry with respect to inversion), (iii) Cy separates the poles in z;
at {t:p'¢" hiyen, ¥ = 1,...,2n + 3, and at {p1g¥" Hi:{s t; e (all in the
interior of Cy) from those related these by inversion (all in the exterior of Cy).

Proof. With the aid of the reflection equation (2.3b) for the elliptic gamma function
the integrand A, ,(z;t) (2.7) can be rewritten as

1 -1 -1 -1,_-1
Bom(zit) = oo [1 6Grm 2z im0 225 )
1<j<kgn
1"—[ 0(2%;p) 6(2; % @) [Treq T(trzi, tr2y 50, 9)
F(zj HZ;I ts, zj_l HT:1 ts; P, Q)

—

=1

From this expression it is manifest that, as a function of z;, the integrand has

poles at {t.p'¢" hven (r = 1,...,m), at {PH1¢" 1T, t; b ven, and at the
points related to these by inversion (as a consequence of the z; — z; ! reflection-
invariance of the integrand). By deforming the integration contour for z; from
C; to T (without destroying the contour’s z; — z; ! symmetry) we cross over the
poles at z; = t,g' (leaving the interior) and at z; = ¢ q~! (entering the interior),
where r = 1,...,n and [ € Nsuch that |t,¢!| > 1. The conditions on the parameters
guarantee that these poles are simple and, furthermore, that the remaining poles lie
outside the symmetric difference of Int(Cy) and Int(T'). A straightforward residue
computation moreover entails the recurrence

Reszn_j=tj+1qxj+1{M{1,...,j}(z;A;t)} = —Reszn_j=tj__:lq-aj+1{p,{l,__,,j}(z;)\;t)}
= pq,..i+13(Z A t). (2.9)

The theorem now follows by subsequent deformation of the cycles of the integral
f An,2n+3(z;t)d7zll ... %ﬂ in the variables zn,...,2; from C¢ to T, upon iterated
application of the Cauchy residue theorem and the residue evaluation (2.9), while
exploiting the permutation-invariance in the variables z1,..., z,. O

Remark 1. The combinatorial factor 2%(7)¢(J)! in the residue formula of Theorem
1 stems from the S, x Z% Weyl-group symmetry of the integral. (Here the group
Sy acts on the variables zi,..., 2, by permutation and the Zgy-action corresponds
to the inversion z; — z; 1.) This combinatorial factor decomposes as the product
of ¢(J)! {the number of ways to order the integration variables of the cycles from
which residues are picked up) and 247 (originating from the z; — 2; ! reflection-
invariance, which implies that each time a residue is picked up the cycle actually
moves over a pasr of poles with opposite residue: one entering and one leaving the

interior of the contour).
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3. INTEGRAL REPRESENTATION FOR VERY-WELL-POISED BALANCED
MuULTIPLE MODULAR HYPERGEOMETRIC SERIES

An important consequence of the residue formula of Theorem 1 is the following
integral representation for a terminating multiple modular hypergeometric series of
Milne-Gustafson type.

Theorem 2 (Integral Representation). Let p, ¢ and t, (r = 1,...,2n 4+ 3) be
parameters in the domain determined by the conditions in Theorem 1 such that
gV < |t;] < ¢! with N; €N for j = 1,...,n. Then, by letting tpy; tend to
tj‘lq‘NJ‘ for 3 =1,...,n, while simultaneously deforming the contour Cy so as to
maintain the conditions (i)-(i) in Theorem 1 satisfied, the residue formula goes
over into the integral representation

. =1 _X;=Ak.
lim Y = ] G(tjtw*““",tjtqu*ﬂ <5 p)
g(tjtk,tjt; ;p)

-1 —N,;
tnpj =ty e osx_,,-szvj 1<j<k<n

Jj=1,....,n i=1l,..,n

0(83¢™;p) _Oltytripia;
x H( 0D g L] e<qt,-t:1;p;q)xj) P

1<_7<'n. 0<r<2n+3
dz1 dzn
= A z;t
tntj —'lirql =Ny 2n n' K / " 2"+3 ) Zn Zn
J—l un
where
. 1 I T(t;tk; P, q)
(PiP)5 (6 D% | <jhen T 5, 9)
2n+3 -
n (1ot Dty 02 5 p, )

X
H L(t52%, b5 Tomt” tro 5  Tomt tri 2y 0)

and to is determined from the balancing relation g—! Hfi‘_fg‘* t.=1.
Proof. Division of the residue formula (2.8) by 2"nlk(1, .. »} and letting ¢,  tend
to tj‘lq_NJ' ,for j =1,...,n, immediately entails the stated integral representation.

Indeed, we have that
KJ

lim — =0
tﬂ+j—otj_1q_Nj K{1,...,n}
i=1,....n
for J ¢ {1,...,n}, due to the pole of the elliptic gamma function at negative inte-
gral powers of g. This implies that, in the limit, we pick up the term corresponding
to J={1,...,n} from the residue formula. a

Remark 2. For n =1 the integral representation (3.1) reduces to

lim Z £ 0(t2¢**; p) 9(t1tr;lp; ) _ (3.2)
taty Lg= £ 0(t1p) 1% O(gtsts ' piq)a
im 1 / H.,sn=1 ['(zt, z_ltr;py q) dz
t2_'tl_lq_N 41”:K: Cy F(zz,z_zazni=1 tv‘yz_l Hf:l tT;pa q) Z ’
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where

e [I7=s Dltrts, trti i, 0)
- . ! a
(2 @)oo (B3 PYoo (¢ 2, t1 [Ty trs t1 L TLos ti P, @)

and to is determined from the balancing relation ¢~ [[>_ot, = 1.

4. A MoDULAR HYPERGEOMETRIC SUMMATION FORMULA

From Ref. [DS2] we have the following conjecture for the evaluation of our elliptic
Selberg integral.

Conjecture (Elliptic Selberg Integral). Let |p|, | and {t,| (withr=1,...,2n+3)
be smaller than 1 such that |pg| < | [[>=+°¢,|. Then we have that

dz dz,
A t)— o — =
n -n,2n+3(z: )z1 Z
2"nl H1§r<s$2n+3 D(trts;p,q)

(4.1)

0 2)5 (@ 0% [ T [ P teipr )

For n = 1 this conjecture reduces to the elliptic beta integral proven by one of

us in [Sp]; for p = 0 and arbitrary n the integral is due to Gustafson [G2, Theorem

4.1]. When combined witk the integral represenation of Theorem 2, the integration

formula (4.1) leads to the following summation formula for a multiple modular
hypergeometric series of Milne-Gustafson type.

Theorem 3 (Modular Milne-Gustafson type Sum). Let |p| < 1 and let g be generic
such that it is not an integral power of p. Then the integration formula (4.1) implies
that

A | 9(titag™ T* 8ty g~ p) (42)
j=1,...n

0(t3¢**; p) B(titr; ps a)x;
11 ( 0(t3;p) GSH )

-1, .
1<j<n r<2n+3 G(qtjt"' P q))\j
=0(ga b7 qa7 7 b7 e g @) Ny 4
I 6(gt;te; p; ) n; 0(atits; s Q) N,
08(qt;tr; s @) N+ Nx

1<j<k<n
6(qt%; p; Q) ;
(gtja=1, qt;b=1, gtjcL, q1+N1+"'+N"‘N:'tj‘la—lb—lc-l;p; a)N;

1<j<n
as a meromorphic identity in the parameters to, ..., tan+a subject to the relations
g 3, =1, (balancing condition),
Nititnyi =1, j=1,...,n, (truncation conditions),

where NJ‘ eN (J= 1,...,n) andaEt2n+1, bEt2n+2, c=1lan43.

Proof. Evaluation of the r.h.s. of integral representation (3.1) by means of the
integration formula (4.1)—upon deformation of the integration contour from T to
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C: (cf. Remark 3 below)—entails the following expression for the value for the
multiple modular hypergeometric series:
lim (Hn+1§r<s§2n+3 L(trts; @) [l1<rescn Tt 't p,9)

H 1<r<n F(t;lts;p, Q)
n41<s<2n+3

—1 -N;
tnpi =ty 4 3

i=1l,..n

X

2n+3

HlS‘I‘Sn ( Hsz ts;p, q) )
I[P -

Hn+1£‘r$2n+3 (tT‘ ! n - ts; P, Q)

This expression simplifies to the product formula on the r.h.s. of the stated summa-
tion formula (4.2) upon conversion to the elliptic Pochhammer symbols (2.5). O

For n =1 the summation formula in (4.2) simplifies to

O(t2g**; (t1tr; 2
Z A e(tl,pp)H 1 P _ (4'3)

g O(gtity i p; q),\
0(atd; p; Q)N [lac,cocs 00ty 't s ps 0N
0(gtr t3 17 15 s pi )N [loa Olataty s i)
with g—t H?-:o t, = 1 and ¢¥t;t; = 1. This » = 1 sum is due to Frenkel and
Turaev [FT]. It constitutes a modular generalization of the celebrated very-well-

poised balanced g®7 sum of Jackson [GR).
For p = 0 and arbitrary n the sum in (4.2) degenerates to the multiple basic

hypergeometric summation

Ai+A =1 _X;—X
2 i=1dAd 1 —titrg ] =ity ¢ (4.4)
7 1-t;t 1—tt ! '
0<A; SN; 1<j<k<n itk 7%k
Jj=1,...,n

< TI (1‘t2 g*N I (titr; @)y )
_ 2 =1,
1<j<n tJ 0<r<2n+3 (qtjt"' 1q)/\j
= (qa—lb—l’qa—lc 17qb_1c_1;q)N1+---+Nn
(gtite; @, (atite; DN,
11
(qtjtk;q)Nj+Nk

x
1<j<k<n
y (qt3; 9)n;
— — — —N;+—1 __—171-1.—1.
\Ziem (gtja=1, qt;b=1, gtje=1, g+ Mt +Nn—Nyglg=1p—1c—1, g) .

(with parameters subject to the relations in Theorem 3). This latter sum boils
down to the multiple very-well-poised balanced g®; summation formula of Denis
and Gustafson [DG, Theorem 4.1].

Remark 3. If we assume that 0 < p,q < 1 and that ¢;,...,t2,+3 are generic such
that #{arg(t,),arg(t;!) | r = 0,...,2n + 3} = 4n + 8 (where %y is determined
from the balancing condition g~ H2"+3 = 1), then we may deform the contour
in the integration formula (4.1) from the unit circle T to any (smooth) positively
oriented Jordan curve Cy C € around zero such that (i} the interior is star shaped
around the origin: every half-line parting from zero intersects Ci just once, (ii)
C;':={z € C| 2% € C} = Ci, and (iii) C; separates the poles in z; at
{t:p'¢" hiyen (r=1,...,2n+3) and {p"1g" 1 [I23 -1} ven (all in the interior
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of Ci) from those related to it by inversion (all in the exterior of C;). Indeed,
the conditions on C; guarantee that one does not cross over poles when deforming
from T to Ci, so the value of the integral remains unchanged. This observation
permits an extension of the parameter domain of (4.1) (assuming the above reality
and genericity conditions) through analytic continuation. Indeed, we can perform
a radial dilation of one or more parameters ¢, from the interior of the unit circle
to the exterior while simultaneously deforming the integration contour Ci so as to
maintain the above conditions (i)-(iii) satisfied.

Remark 4. Let 0 < p,q < 1 and let t3,..., 2,42 be complex parameters such that
0<tr]<lforr=1,...,2n+1 and with top42 = Hf’:{l t-1. Let us furthermore
assume that argument values of £, are generic in the sense that #{arg(¢,), arg(t;'!) |
r=1,...,2n+ 2} = 4n + 4. Then the integration formula (4.1) implies that

-1 -1 -1 -1 _-1,
/ H r (ijk,ZjZk 1zj zkazj Zp Py q)
CF 1<j<k<n

n 2n+1
_ I"tz,t 10,9 d
XH | i Gy lrZ P‘J)ﬁ_‘_ﬁﬁzo, (4.5)

J) _1 1p,q) 21 Zn

where the contour Ct C C is a positively oriented Jordan curve around zero such
that (i) the interior is star shaped around the origin, (ii) C;! == {z € C |z €
Ci} = G, and (iii} the points ¢, (r = 0,...,2n + 1) all lie in the interior of C;.
Indeed, we arrive at the formula in (4.5) from the formula ir (4.1) by deforming
the parameters such that 9,3 tends to H2"+3 t, while simuitaneously performing
a deformation of the integration contour of the type detailed in Remark 3 above.
In the limit at issue the r.h.s. of the integration formula (4.1) tends to zero be-
cause of the pole of factor T'(t5,.., 4 3:{'3 t,; p,q) (appearing in the denominator) at
tanys = Hf’;’;?’ t,. In [DS2] it was shown that, reversely, the conjectural integration
formula (4.1) foliows from the vanishing of tke integral in (4.5). In other words:
the vanishing of the elliptic Selberg integral for parameters on the hypersurface
H2”+2 t, = 1 necessarily extends to the conjectural evaluation formula (4.1) on the

full parameter space.

5. MoDULAR INVARIANCE AND ASYMPTOTICS

We conclude by exhibiting the modular properties of the generalized Milne-
Gustafson type series of Theorem 3. Let us to this end set

p= &, g = &2, (5.1)
with Im(7), Im(o) > 0, and let us recall the Jacobi theta function [WW]
O1(z|T) = 2 i (—1)"p(2'""'1)2/8 sinw(2m + 1)z (5.2a)
m=0
= p/%ie™™ (p;p)eo B(e*%;p) (5.2b)

(where 0(z;p) refers to the theta function of Equation (2.4}). With the aid of the
Jacobi theta function one defines elliptic numbers as [D-O1, D-02, FT]

b1(ozlr) _ w2 (&P " P)oo (5.3)

[z;0,7] = 81(o17) (2,747 D)oo
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The modular symmetries
01 (z|r + 1) = e™/48, (z|7),
01(2| — 1) = —iv/Zire™=" /70, (z|r)
and quasi-periodicity relations
b1z + 1jr) = ~01(alr),
B1(x + 7|7) = —e~ ™72 iy (z|7)

of Jacobi’s theta function [WW] give rise to the following modular transformation
properties of the elliptic numbers [z; 0, 7]:

[g30,7 + 1] = [z, 7],

ot e (B-4a)
e [ | = (~1[z;0,7]
z;0+ 1,7 = (-1)*"{z; 0, 7],

{ o imm S O pemti=sitrsan, (54b)

where in the second pair of identities it is assumed that z is an integer. From the
elliptic numbers it is obvious to construct elliptic shifted factorials

[z;0,7]m = H DS [z +34;0,7], [z;o,7o=1, (5.5a)
91,950, TIm = ]_[T=1[g,;a, Tlm. (5.5b)

We are now in the position to introduce a multiple modular analogue of the
very-well-poised balanced terminating basic hypergeometric ;41 ®; series:

14167 (90, - Gnti—4; 0, T) = z:zﬂﬁmmmﬂ, (5.6a)
02 <Ny
j=1l,..,n
where
) As L A — A
wPior) =[] REeitecetdoM o oq,

(95 + gk, 95 — 9x]

1<j<k<n
« I ( 205+ 2] "7 w)
1ien\ 120] o g gy
and with parameters gg,. .., gant1—a subject to the constraints
Y (- 5)/2 =0, (balancing condition), (5.60)
9j + gntj + N; =0, j=1,...,n, (truncation conditions).

To ease the notation of the modular hypergeometric series, we suppressed here the
explicit dependence of the elliptic numbers [z] = [z; o, 7] on the modular parameters
o,7. For 1 — +ico (Le. p — 0), the series in Equation (5.6a) reduces to a Milne-
Gustafson type very-well-poised multiple basic hypergeometric series associated to
the symplectic Lie group Sp(n, C) (i.e. of Type C) [Mi, G1, DG, LM, ML, K]. For
n = 1 and generic 7 in the upper half-plane (i.e. |p| < 1) the series reduces to the
standard modular hypergeometric series of Refs. [D-O1, D-O2, FT].

The modular symmetries (5.4a), (5.4b) give rise to the following invariance of
the multiple modular hypergeometric series with respect to the action of SLy(Z) on
the modular parameters o, 7. For n = 1 this modular invariance is due to Frenkel
and Turaev [FT].
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Theorem 4 (Modularity). (i). For generic values of the parameters go, . .., ganyi—4a
subject to the balancing and truncation conditions in (5.6¢), the multiple modular
hypergeometric series 1+181(") (5.6a) is invariant with respect to the natural action
of the group SLy(Z) on the modular parameters (o, 7):

(n) o ar+b - (n)
H’lgl (CT . d, —CT T d) l+1£l (O', T), (573)
where a, b, c,d € Z such that ad — be = 1.
(ii). If, in addition, the parameters go, ..., gon+i-4 ore also integer-valued, then
H_IE,(") (o,7) is elliptic in o:
1€ o+ k+mrT) = 1116 (0, 7)  (kym € Z). '~ (5.7b)

Proof. Part (i) follows from the modular symmetries in Equation (5.4a) and the
fact that the difference between the sums of the squares of the arguments of the

elliptic numbers in the numerator and denominator of the terms ;+1ul(")()\; o,7)
(5.6b), which is given by

(S5 0 - (1-5)/2) 300+ 20),
i=1

vanishes as a consequence of the balancing condition in Equation (5.6c). Part (i)
now follows similarly from the quasi-periodicity relations (5.4b) and the observation
that the difference between the sums of the arguments of the elliptic numbers in

the numerator and denominator of the terms ;1 Vl(") (A;0,7), given by
n
23" X (Tt — (1-5)/2- ),
j=1

amounts to —2 E;.;l jA; = 0 mod 2 (upon once more invoking of the balancing
condition). O
After setting ¢, = ¢%, r = 0,...,2n + 3, and picking p, ¢ from Equation (5.1},
the summation formula (4.2) admits recasting as the modular hypergeometric eval-
uation
&5 (go, - ., 2n43;0,7) (5.8)
= [1-9a—901=9a—ge;1 = 96— Ge|Ny - +Nn
H 14 g5 + gk, [1 + g5 + gxlve

X -
1<j<k<n (14 g; + gk|n;+ N
x ].—.[ n [1 + 2gj]NJ‘ ,
1<j<n [1 + Zk:l Ne—Nj— 95— 9a— 96— gc]Nj Hre{a,b,C}[l +g;— gr]
with
ot er=1, (balancing condition),

9+ gnt; + N;j=0, j=1,...,n, (truncation conditions).

Theorem 4 states that the series 1+1£l(") constitutes a Jacobi modular function on
SL2(Z) in the sense of Eichler-Zagier [EZ]. This modular invariance permits us to
independently deduce the asymptotic validity of the evaluation formula (5.8) (and
thus the summation formula (4.2)) for low orders in o.
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Theorem 5 (Asymptotics for ¢ — 0). Let go,...,gan+3 be generic parameters
subject to the balancing and truncation conditions in (5.6¢) with | = 7. Then the
Taylor expansion in o of the difference between both sides of the multiple modular
hypergeometric summation formula (5.8), around the point o = 0, vanishes (at

least) up to the terms of order o0,

Proof. By checking that the difference between the sums of the squares of the
arguments of the elliptic numbers in the numerator and denominator of the r.h.s. of
(5.8) is zero, one checks independently that the r.h.s. is also invariant with respect
to the action of SLy(Z) (cf. the proof of Theorem 4). The modular invariance of
Equation (5.8) implies that the difference between the Lh.s. and r.h.s. has a Taylor
expansion around ¢ = 0 of the form

> em(m)e™™,

m>0

where ¢, (7) is a modular form of weight 2m on SLy(Z) (i.e., ¢ (7) is holomorphic
on the upper haif plane and cm(%%) = (e + d)*™cp(7) for a,b,c,d € Z with
ad — bc = 1). (Notice that only the even terms in o are nonzero because [z;0,7] =
[z; —0,7].) Furthermore, since in the limit Im(7) — +oo both sides of (5.8) are
equal in view of the Denis-Gustafson sum (4.4), we conclude that lim,_, 0 m(7) =
0, i.e. ¢m(7) is a cusp form. Since no nontrivial cusp forms exist with weight below
12 [Se], it follows that the first nonzero term in the above Taylor expansion cannot

appear before degree 12. O
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