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Abstract

Let Riemannian metrics ¢ and § on M"™ have the same geodesics,
and suppose the eigenvalues of one metric with respect to the other are
different at least at one point. We show that then the first Betti number
bi(M™) is no greater than n, and that if there exists a point where the
eigenvalues of one metric with respect to the other are not all different
then the first Betti number b (M™) is less than n. In particular, if M™
is homeomorphic to the torus 7" then the eigenvalues of one metric with
respect to the other are different at each point. This allows us to classify
such metrics on the torus.

1 Introduction

1.1 Metrics with the same geodesics

Definition 1. Two metrics g and § on M™ are called projectively equivalent, if
they have the same geodesics considered as unparameterised curves. The metrics
g and g are said to be strictly non-proportional at £ € M™, if the eigenvalues of
g with respect to § are all different at x.

Projectively equivalent metrics is a very classical material. In 1865, Beltrami
[1] found the first examples of projectively equivalent metrics and formulated
a problem of finding all pairs of projectively equivalent metrics. Locally, near
the points where the eigenvalues of one metric with respect to the other do not
bifurcate, this problem has been solved by Dini [3] for surfaces and Levi-Civita
[6] for manifolds of arbitrary dimension. Later, projectively equivalent metrics
were considered by Weyl, Eisenhart, E. Cartan, Thomas, Lichnerowicz, Venzi,
Voss, Pogorelov, Mikes, Aminova, Sinjukov, Solodovnikov. They found a lot
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of beautiful tensor properties of projectively equivalent metric, see the review
paper [14] for details.

However, the global behaviour of projectively equivalent metrics is not under-
stood completely. Most known global results on projectively equivalent metrics
require additional strong geometrical assumptions. For example, for Einstein or
(hyper)Kahlerian metrics beautiful results were obtained by Lichnerowicz [7],
Venzi [17], Mikes [14] and Hasegawa and Fujimura [4].

1.2 Results

Theorem 1. Suppose M™ is a connected closed manifold. Let Riemannian
metrics g and § on M™ be projectively equivalent and strictly non-proportional
at least at one point. Then:

1. The first Betti number by(M™) is no greater then n.

2. If in addition there exists a point where the metrics are not strictly non-
proportional then the first Betti number by(M™) is less then n.

The first Betti number b, (T") of the n—torus is precisely n.

Corollary 1. Let Riemannian metrics g and § on T™ be projectively equivalent
and strictly non-proportional at least at one point. Then they are strictly non-
proportional at each point.

As it has been shown in [12], the converse of Corollary 1 is also true:

Theorem 2 ([12]). Let M™ be closed connected. Let g, § on M™ be projec-
tively equivalent. Suppose they are strictly non-proportional at each point of the
manifold. Then the manifold can be covered by the torus.

In Section 5 we use Corollary 1 to to describe (Theorem 7) and, in a certain
sense, to classify (Theorem 8) all projectively equivalent Riemannian metrics on
the torus, which are strictly non-proportional at least at one point. It is the first
classification result on projectively equivalent metrics on closed n—dimensional
manifold. Recall that, for surfaces, in view of two-dimensional version of Theo-
rem 3 proved in [10], the classification of projectively equivalent metrics follows
immediately from the classification of quadratically-integrable geodesic flows
obtained in [2, 5].

In Section 6, we will generalise Corollary 1 for the three-dimensional case:
we will show that the number of different eigenvalues of one metric with respect
to the other is constant for projectively equivalent metrics on the three-torus,
see Theorem 9.

1.3 Methods and ideas of proofs

The new technique that allows us to prove Theorem 1 came from theory of inte-
grable geodesic flows. The connection between projectively equivalent metrics
and integrable geodesic flows is established by the following theorem.



Consider the (1,1)-tensor field L given by the formula
1
i def  (det(g)\ ™,
5 ¥ (Fg) 9 @)

Theorem 3 ([8, 16]). Let Riemannian metrics g, § be projectively equivalent.
For any t € R, consider the (1,1)- tensor field

S % det(L — ¢ 1d) (L — ¢ 1d) ™" (@)

Let us identify the tangent and cotangent bundles of M™ by g. Consider the
standard Poisson structure on T*M™. Then for any ti1,ts, the functions

L, :TM" - R, IL;(£) € ¢(5.(6),¢) (3)

are commauting integrals for the geodesic flow of g.

Remark 1. Although (L —1t Id)_1 13 not defined for t lying in the spectrum of
L, the tensor field S;, and, therefore, the function I, is well-defined for any t.
Moreover, as it will be clear from Section 2, S; is a polynomial (in t) of degree
n — 1 with coefficients being (1,1)-tensor fields.

In Section 2, we will show (Corollary 2) that if the metrics are strictly non-
proportional at one point of a connected complete manifold then it is so at
almost each point.

If the metric are real-analytic, the first statement of Theorem 1 already
follows from [15]:

Theorem 4 (Taimanov, [15]). If a real-analytic closed manifold M™ with a
real-analytic metric satisfies at least one of the conditions:

a) m (M™) is not almost commutative
b) dimH,(M™;Q) > dimM"™,
then the geodesic flow on M™ is not analytically integrable.

The first statement of Theorem 1 follows directly from the second statement
and Theorem 2; for self-containedness, we will prove Theorem 2 in Section 3.

The idea using in the proof of the second statement of Theorem 1 is borrowed
from [15].

We will show that each element of the fundamental group m; (M™) can be
realised on one of a finite number of subsets of M™; each of these subsets has
the first Betti number less than n; then the first homology group H; (M™; Z) is
the unity of a finite number of commutative subgroups of rank less than n; then
the rank of H,(M™; Z) (which is precisely the first Betti number of M™) must
be less than n.

The subsets are given in the terms of the eigenvalues of the tensor (1); in
Section 2 we show that they are globally ordered (Theorem 5) which, together
with classical Levi-Civita’s theorem (Theorem 6), guaranties that the subsets
are well-definite.
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2 The eigenvalues of L

Let g and g be projectively equivalent Riemannian metrics on complete con-
nected M™. Consider the tensor L given by (1). The main goal of this section
is to prove the following theorem: for each point z € M™, denote by

A(z) < A(z) < oo < Ana)
the eigenvalues of L at the point z.
Theorem 5. For anyi € {1,...,n— 1}, for any z,y € M™:
1. Ai(2) < A (m).
2. If Xi(z) < Aiga(z) then Ai(z) < Aiy1(2) for almost every point z € M™.

This theorem has been announced in [12]; for three-dimensional manifolds,
the theorem has been proven in {13].

Corollary 2. If the eigenvalues of L are all different at one point of M™ then
they are all different at almost each point of M™.

Corollary 2 was announced in [9] and proved by a different method in [11].
Proof of Theorem 5: By definition, the tensor L is self-adjoint. Then, for any
€ M™, there exists a basis in T; M™ such that the metric g is given by the ma-
trix diag(1,1,...,1) and the tensor L is given by the matrix diag(A1, Az, ..., An).
Then the tensor (2) reads:
Sy = det(L — tId)(L — tId)(~Y
= diag(P(2), Pa(t), ..., Pu(t)),

where the polynomials P;(t) are given by the formula

Pi(t) ¥ (0 = )2 — )it — Qg1 = £)ene(Anet = 8)(An — 2.

Then, for any fixed £ = (&, &2, ..., €n) € Te M™, the function (3) is the following
polynomial in ¢:
L = &P(t) + GP(t) + ... + & Palt). (4)

Consider the roots of this polynomial. From the proof of Lemma 1, it will be
clear that they are real. We denote them by

t1(z,€) < t2(2,€) < ... S tna(a,§).



Lemma 1.

1. For any £ € T,M"™,
Ai(z) <ti(z,€) < Aiga ().
In particular, if Ai(z) = Aiy1(z) then ti(z, &) = Ai(z) = Aip1(z).

2. If Mi(z) < Aiy1(z) then for any constant T the Lebesgue measure of the

set
V, CTM", V. & {¢ € T.M" : ti(x,€) = 7},

s zero.

Proof of Lemima 1: Evidently, the coefficients of the polynomial I; depend
continuously on the eigenvalues \; and on the components §;. Then it is suffi-
cient to prove the first statement of the lemma assuming that the eigenvalues
X; are all different and that £; are non-zero. For any « # i, we evidently have
Pa()\i) =0. Then

I = ) E&Pa(N) = EP(N).
a=1

Hence Iy, and I,,, have different signs and, therefore, the open interval A Aiga [
contains a root of the polynomial I;. The degree of the polynomial I; equals
n — 1; we have n — 1 disjoint intervals; each of these intervals contains at least
one root so that all roots are real and the ith root lies between A; and X;y;.
The first statement of the lemma. is proved.

Let us prove the second statement of Lemma 1. Suppose A; < Aiy1. Let
first A\; < T < Aj31. Then the set

V, € ¢ € T.M™ : ti(2,€) = 7},

consists of the points £ where the function I.(z, ) def (It (z, £))|4=r is zero; then
it is a quadric in T, M™ = R" and its measure is zero.

Let 7 be one of the endpoints of the interval [A;, Aj11]. Without loss of
generality, we can suppose 7 = ;. Let & be the multiplicity of the eigenvalue
Xi. Then any coefficient P, (t) of the quadratic form (4) has a factor (\; —¢)*1.
Therefore, for any fixed £ € T, M™, the function

= def I;
Ldef___ -t
P u— )Rt

is well-definite and is a polynomial in ¢ so that I, is a nontrivial quadratic form.
Evidently, for any point £ € V., we have I, (€) = 0 so that the set V. is a subset
of a quadric in T, M™ and its measure is zero. Lemma 1 is proved.

The first statement of Theorem 5 follows immediately from the first state-
ment of Lemma 1: let us join the points z,y € M™ by a geodesic

v:R—=>M", 7(0) =z, v(1) =y.



Consider the one-parametric family of integrals I;(z, £) and the roots

t1(2,£) < t2(3,8) < o <tna(a,6).

By Corollary 3, each root ¢; is constant on each orbit (v, ) of the geodesic
flow of g so that
ti(7(0),4(0)) = t:(v(1), ¥(1))-
Using Lemma 1, we obtain

Ai(7(0)) < 1:(7(0),4(0)) and  t(v(1),%(1)) £ Aiga (v(1)).

Therefore, A;(¥(0)) < Ai41(7(1)). The first statement of Theorem 5 is
proved.

Let us prove the second statement of Theorem 5. Suppose A;(z) < Aj+1(z).
Suppose A;(y) = Aiy1(y) for any point y of some subset V C U(4(1)). Then by
the first statement of Theorem 5, the value of ); is a constant (independent of
y € V). Denote this constant by C. Let us prove that A;(z) = A\;jy1(z) = C. Let
us join the point z with every point of V' by all possible geodesics. Consider the
set Vo C T, M™ of the initial velocity vectors (at the point z) of these geodesics.

By the first statement of Lemma 1, for any geodesic ; passing through any
point of V', the value ¢;(1,41) is equal to C. Then, by the second statement of
Lemma 1, the measure of the set V¢ is zero and, therefore, the measure of the
set V is also zero. Theorem 5 is proved.

3 Levi-Civita’s theorem and projectively equiv-
alent metrics that are strictly non-proportional
at each point

A local description of projectively equivalent Riemannian metrics near the points
where the eigenvalues of the tensor L given by (1) do not bifurcate has been
obtained by Levi-Civita [6]. Here we formulate Levi-Civita’s theorem assuming
that the eigenvalues of L are different; then they automatically do not bifurcate.

Theorem 6 (Levi-Civita [6]). Consider two Riemannian metrics on an open
subset U™ C M™. Consider the tensor L given by (1). Suppose the eigenvalues
of L are all different at each point z € U™,

Then the metrics are projectively eguivalent on U™ if and only if for any
point x € U™ there exist coordinates z1,zz,...,Zn in some neighborhood of the
point T such that in these coordinates the metrics have the following model form:

US5mos Md(z:)? + Mad(zs)® +--+ Ind(zn)?, (5)
ds ... = pillid(@1)? + pallad(z2)® + - - + prllnd(zs)?, (6)

where the functions Il; and p; are given by
II; déf ()\i — Al)()\i - /\2) o (/\i - /\i—l)()‘i+1 - )‘i) U (’\'n - '\i)v (7)
def 1 1
i = T
A2 An—1 A



where, for any i, the function A; is a smooth function of the variable z;.

The notations of the eigenvalues of (1) are compatible with the notations
in formulae (5,6,7): in the coordinates z;, ..., Z,, the tensor (1) is given by the
diagonal matrix diag(A1, Az, ..., An).

Proof of Theorem 2. We assume that M™ is closed and connected, that
Riemannian metrics g and § on M™ are projectively equivalent and that they
are strictly non-proportional at each point of M™. Then the eigenvalues A; <
A2 < ... < Ay of the tensor L given by (1) are all different at any point of M™.
Hence, they are everywhere defined smooth functions on M™. Therefore, the
functions II; given by (7) are also smooth on M™. For any i, at each point of
M™, consider the vector v; satisfying the conditions

L’U,‘ = }\ivi
{g(’ui,vi) = IL. (®)

The only freedom we have is the sign of the vector. Then we can globally define
the vector fields v;, i = 1,2, ...,n satisfying (8) on some finite covering M of
M?". In Levi-Civita’s coordinates z1, ..., Z, from Theorem 6, the vector fields v;
are equal to :i:a%‘_; then they commute; by definition they never vanish. Then

M™ must be homeomorphic to the torus 7%. Theorem 2 is proved.

4 Proof of Theorem 1

We assume that M™ is closed connected, that Riemannian metrics g and g on
M™ are projectively equivalent and that they are strictly non-proportional at
least at one point.

If the metrics are strictly non-proportional at each point then by Theorem 2
our manifold M™ is covered by the n—torus, whose first Betti number is precisely
n. Therefore, we have to prove that if there exists a point where the metrics are
not strictly non-proportional then the first Betti number b1 (M™) is less then n.

Consider the tensor L given by (1) and its eigenvalues

A1(z) < Az(z) < ... < Aplz).

By Theorem 5, there exist numbers 7,72, ...,7n—1 € R such that, for any i €
{1,2,...,n — 1} and for any point z of the manifold,

Ai(z) < 7 < Aiga (7).
For any 1 <i < n — 1, consider the following subsets of M™:
Vi EzeMr: M) <nl;

V‘.+ = {:L‘ EM™: )\i+1($) > Ti}-

Some of the sets V™, V.~ can be empty. For example, if \;(z) is constant and
71 = A; then the set V]~ is empty. By assumptions, the eigenvalue A; is a



globally defined continuous function on M™. Therefore, the sets Vit and V-
are open. Below V;= will denote either V;* or V;”. Consider the sets

VEnvEn..nvE,.

There is a finitely many (no greater than 2"~!) of such sets; any of them is
open.
Let us take a point z € M™ where

A1(z) < Az(z) < .o < Ap()-
For any set V;ENV;EN...N VL, containing the point z, we denote by
VENVEN..nvE)),

its connected component containing the point z. Let us show that the first Betti
number of any of the sets (V;E N ViEN...NV:E ), is less then n.

Let us fix one of the sets (V;ENV;EN...NVE,), and denote it by V; V is
not empty. At each point of V, the eigenvalues of L are all different. Then they
are smooth functions on V. Therefore, the functions II; given by (7) are also
smooth on V.

For any %, at each point of V, consider the vector v; satisfying conditions (8).
The only freedom we have is the sign of the vector. Then we can globally define
the vector fields »;, 1 = 1,2,...,n, satisfying conditions (8) on the universal
covering V of V.

We see that in Levi-Civita’s coordinates 1, T, ..., £, from Theorem 6, the
vector fields v; are equal to :I:%. Then the vector fields v; commute and for
any j # i the eigenvalue A; is constant on the integral curves of v;.

We can globally define Levi-Civita’s coordinates on the universal covering V:
Choose an origin Py. Join any point P with Py by a curve. Then the coordinate
z; is equal to the action of the vector field »; along the curve. Evidently, the
definition is independent on the curve.

By definition of the set V, if the universal covering V contains the points
with the coordinates (%1, Z2,...,Z,) and (&1, Z2,...,4,), then it contains the
whole parallelepiped

{(z1,..,Tn) : min(Z;,%;) < z; < max(F;,2;), 1 =1,2,.,n}.

Then the coordinates uniquely define the point, and the universal covering V is
homeomorphic to the band

{(z1,22, ..., 8) ER™: a1 < %1 < fr,02 < %2 < P2, .-, 00 < ZTn < Frn},

where a;, 3; € Ry (so that they can be either real numbers or +00.).

The fundamental group of 71 (V) acts on V. The action preserves the metric
g and the tensor L. Therefore, if vy is an element of the fundamental group then
for each vector field v; either y(v;) = v; or y(v;) = —v;. Consider the subgroup



H C m (V) of the elements that preserve the directions of the vector fields. The
subgroup H has finite index in the fundamental group m (V).

Evidently, in coordinates 1, 22, ..., Zn, the group H acts by parallel transla-
tions. Then the group H is commutative and free; since it has finite index, it is
isomorphic to the free part of the first homology group H;(V; Z) and its rank
is precisely the first Betti number of V. Thus, our goal is to show that the rank
of H is less than n.

Evidently, if either o; or 3; is finite then the group H preserves the coordinate
number i. Consider the numbers 4y, 3, ..., i such that a;; = —o0 and §;; = oo.

The group H is a discrete subgroup of the group (R*, +); then its rank can
be maximum k. If kK < n then the Betti number of V is no greater than & and is
automatically less than n. Let & be equal to n so that the group (R", +) freely
acts on V by parallel translations. Then the the group H is a discrete subgroup
of the group (R",+). If the rank of H is n then the factorspace R"/y is
homeomorphic to the torus and, therefore, is compact; this factorspace naturally
covers V so that V is also compact. Since V is open by definition, it coincides
with the whole manifold M™ so that in each point of M™ the eigenvalues of L
are all different which contradicts the assumptions.

Thus, the first Betti number of any of the sets (VI NV;EN...NnVE,), is
less then n.

Let us now show that each element of the fundamental group w1 (M") can
be realised on one of the sets (V;ENV;EN...nVE ),. By Hopf-Rinow theorem,
any element of the fundamental group can be realised by a geodesic loop 7,
4{0) = (1) = z. We consider this geodesic loop as a curve (7,%) on TM™.
The values of the roots #; of the polynomial I;(-y,¥) are constant on the curve
(7, %) If t;(7,4) # 7 for any i then by Lemma 1 the geodesic loop v already
lies in one of the sets (V;E NViEN...NVE,),. Suppose t;(v,%) = 7 for some
numbers 7. Let us slightly perturb the initial velocity vector 4(0) and consider
a geodesic 7. such that 7.(0) = ¥(0), |¥(0) — ¥(0)] = ¢ << 1 and t;(7e,¥e) # 7
for any i. The geodesic v lies then in one of the sets (V;E N V;EN...NVE,),.
If € is small then the geodesic segment v.(7), 0 < T < 1, lies in a thin regular
neighborhood of the geodesic loop y and the point «,.(1) lies in a small disk
neighborhood of z and we can connect the points -.(1) and = by a segment
in this disk. Then the curve which is made from this segment and from the
geodesic segment 7.(7), 0 < T < 1, represents the same homotopy class as the
geodesic loop - so that any element of the fundamental group can be realized
on one of the sets (V;E NV N...nVE,),.

Finally, the first homology group H;(M™; Z) of M™ is a unity of a finite
number of subgroups; each of these subgroups has rank less than n; then the
first Betti number by (M™) is less than n. Theorem 1 is proved.

5 Projectively equivalent metrics on the torus

Consider R™ with the standard coordinates z1, z3, ..., £,. Consider an n—lattice
G on R™. By an n—lattice we mean the set of the vectors ky vy +kava +...+ kntn,



where vy, ..., v, € R™ are linearly independent vectors and ki, kg, ..., ky, € Z.
Let \;, 2 =1, ..., 7, be smooth functions on R™ satisfying the following three
conditions:

(i) For any i, the function A; depends on the the variable z; only.
(i) 0 < As(z) < Aj(y) for any ¢ < j and for any z,y.

(iii) The functions A; are invariant modulo the lattice so that for any vector
v = (v',v?,...,v") € G, and for any z; € R

iz + vi) = Az;).

Consider the Riemannian metrics gmoger and Grroder On R™ given by the for-
mulae (5,6). By Levi-Civita‘s theorem, the metrics are projectively equivalent;
by definitions, they are invariant modulo the lattice so they generate two pro-
jectively equivalent metrics on the torus R"/g. We will call such metrics model
metrics corresponding to the lattice G and to the functions A;.

Theorem 7. Let Riemannian metrics g and § on the torus T™ be projectively
equivalent and strictly non-proportional at least at one point. Then there exist
an n—lattice G, functions Ay, ..., A, satisfying conditions (i-iii) and a diffeomor-
phism ¢ : T™ — Rn/G such that g = ¢*gmodet; § = ¢" Gmodet, Where gmoder and
Gmoder 0re model metrics with respect to the lattice G and the functions \;.

Thus, any pair of projectively equivalent Riemannian metrics on the n—torus
which are strictly non-proportional at least at one point is given by an n—lattice
G and by functions )\; satisfying conditions (i-iii). The following theorem an-
swers when two of such sets of data define the same pair of metrics:

Theorem 8. Let G and G? be two n—lattices on R™. Suppose the functions
AL, ..., AL satisfy conditions (i-iii) with respect to the lattice G'; suppose the func-
tions A3, ..., A2 satisfy conditions (i-iii) with respect to the lattice G2. Consider
the pairs of model projectively-equivalent metrics g,l,wde,, §,1mde, (which are model
metrics with respect to the lattice G* and the functions X]) and g2,,4e1> 52 0del
(which are model metrics with respect to the lattice G2 and the functions A?).

Then there erists a diffeomorphism ¢ : R"/g1 — R™/g2 such that g}, .., =
* 92 0aer ONE Fhoger = P Giogers f and only if there exists o, ...,an € R and
€1,y €n € {+1,—1} such that the coordinate change

zi—erita;, t1=1,2,..,n,
takes the lattice G* to the lattice G? and the functions A} to the functions 2.

Proof of Theorems 7,8: Let g and § be projectively equivalent Rie-
mannian metrics on the torus 7™. Suppose they are strictly non-proportional
at least at one point of the torus. Then by Corollary 1 they are strictly non-
proportional at each point of the torus. As in Section 3, for any i, at each point
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of the torus, consider a vector v; satisfying conditions (8). The only freedom
we have is the sign of the vector. Then, on the universal covering R™, we can
globally define vector fields v; satisfying (8). As in Section 4, consider the coor-
dinate system on R™ defined as follows: choose an origin Py. Join any point P
with Py by a curve. Then the coordinate z; is equal to the action of the vector
field v; along the curve. Evidently, the definition is independent of the curve,
and the coordinate system is isomorph to the standard one on R".

The fundamental group m;(T™) acts on the universal covering R*. The
action preserves the metrics g, g; therefore, it preserves the coordinate net. Then
the group ;1 (T™) acts by translations and compositions of translations and
reflections. Since the fundamental group 7 (T™) is commutative and isomorphic
to Z™, compositions of translations and reflections can not occur so that the
fundamental group acts by translations. Since the action is co-compact, free
and is a discrete subgroup of the group of all translations, the vectors of such
translations form an n—lattice G. Since the action preserves the metrics, it
must preserve the eigenvalues of the tensor L given by 1. Then the functions
A1 < ... € A, are invariant modulo the lattice G. By Levi-Civita‘s theorem,
for any i the function A; depends on the variable xz; only. The only freedom
we have is in choosing the origin Py of the coordinate system, which gives us
the translation z; — z; + «;, and the freedom in choosing the directions of the
vectors v;, which gives us the changes of the signs of the coordinates. Thus, any
pair of projectively equivalent strictly non-proportional Riemannian metrics on
the torus is model, and two pairs of model metrics are the same if their data
satisfy the conditions in Theorem 8. Theorems 7, 8 are proved.

6 The eigenvalues of L for projectively equiva-
lent metrics on the 3-torus never bifurcate

Theorem 9. Let g and § be projectively equivalent Riemannian metrics on the
three-dimensional torus T®. Then the number of different eigenvalues of the
tensor L given by (1) is constant on the torus.

Proof: Let Riemannian metrics g and § on T be projectively equivalent. By
Corollary 1, if they are strictly non-proportional at least at one point then at
each point of 7 the number of different eigenvalues of L is precisely three and,
therefore, is constant. If the metrics are proportional at each point of 73 then
at each point of 7 the number of different eigenvalues is equal to one and,
therefore, is constant. So, the only case we need to consider is when there exists
a point £ € T2 such that at these point the number of different eigenvalues is
equal to two; our goal is to show that then the number of different eigenvalues
at any other point can not be equal to one.

Actually, this fact has been essentially proved in [13]. But since in the paper
[13] the proof is hidden in the third part of the proof of the main theorem, we
will repeat it here.

11



Let us denote the eigenvalues of L at = € T? by A1(z), A2(z), As(z). By
Theorem 5, without loss of generality we can assume that

A1(z) < Ae(z) = A3(x) = const f 5

for almost each point z € T. Suppose the eigenvalues bifurcate so that there
exists y € T’ such that

M(y) = A2 (y) = A3(y).

Let us show that it is possible only on the sphere $2 or on the Projective Space
RP3. Asin Section 2, at each point z € T3, we can find a basis of the space 7, T
such that in this basis the metric g is given by the diagonal matrix diag(1,1,1)
and the matrix L is given by the diagonal matrix diag(A;(z), A2(z), A3(z)). In
this basis, the polynomial I;(z, £) given by (3) reads

I = (A= 1)°8 + ((z) — ) (A = )(& + &)-

Therefore, for any ¢, the functions

B s = A= 08+ (ule) — (& + )

is an integral for the geodesic flow of g. Substituting ¢ = A we get that the
function

I = (u(z) = N(E + &)

is also an integral

_ By Lemma 1, for any geodesic v passing through the point y we have
Ii(v,%) = 0. Then, for any z € v such that A\;(z) # X the sum (£ + £2)
is zero. Therefore, the velocity vector 4(z) is an eigenvector of L with the
eigenvalue A; (z). Then two geodesics passing through y can transversally inter-
sect only in the points z where A;(z) = A. Then there can be maximum two of
such points and T2 is homeomorphic either to §° or to RP3. The contradiction
shows that if number of eigenvalues of L is equal to two at least at one point of
T3 then it is so at each point. Theorem 9 is proved.
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