Convergence in capacity

Urban Cegrell

1. Introduction

Th purpose of this paper is to study convergence of Monge-Ampère measures associated to sequences of plurisubharmonic functions defined on a hyperconvex subdomain Ω of \mathbb{C}^n .

The concept of convergence in capacity was introduced in [X], where it was proved that for any uniformly bounded sequence φ_j of plurisubharmonic functions that converges in \mathbb{C}^n -capacity we have that $(dd^c\varphi_j)^n$ converges weak* to $(dd^c\varphi_j)^n$, $j \to +\infty$.

We generalize this result:

Theorem 1.1. Assume $\mathcal{F} \ni u_0 \leq u_j \in \mathcal{F}$ and that u_j converges to u in \mathbb{C}^n -capacity. Then $(dd^c u_j)^n$ converges weak* to $(dd^c u)^n$, $j \to +\infty$.

We first recall some definitions. See [C1] and [C2] for details.

The class \mathcal{F} consists of all plurisubharmonic functions φ on Ω such that there is a sequence $\varphi_j \in \mathcal{E}_0, \varphi_j \searrow \varphi, j \to +\infty$ and $\sup_i \int_{\Omega} (dd^c \varphi_j)^n < +\infty$,

where \mathcal{E}_0 is the class of bounded plurisubharmonic functions ψ such that $\lim_{z \to \xi} \psi(z) = 0, \forall \xi \in \partial \Omega$ and $\int_{\Omega} (dd^c \psi)^n < +\infty$.

The following definition was introduced in [X]: A sequence $\varphi_j \in \mathcal{F}$ converges to φ in \mathbb{C}^n -capacity if

$$\operatorname{cap}(\{z\in k: |\varphi-\varphi_j|>\delta\})\to 0,\ j\to +\infty\quad\forall\ k\subset\subset\Omega,\ \forall\ \delta>0.$$

For $\omega\subset\subset\Omega$, $\operatorname{cap}(\omega)=\int\limits_{\Omega}(dd^ch_\omega^*)^n$ where h_ω^* is the smallest upper semicontinuous majorant of $h_\omega(z)=$

$$\sup\{\varphi(z); \varphi \in \xi_0; \varphi|_{\omega} \le -1\}.$$

Finally, we write $u_j \leadsto u$, $j \to +\infty$ if u_j converges weak* to $u, j \to +\infty$.

2. Proofs

Lemma 2.1. Suppose μ is a positive measure on Ω which vanishes on all pluripolar sets and $\mu(\Omega) < +\infty$. If $u_0, u_j \in \mathcal{F}$, $u_0 \leq u_j \rightsquigarrow u$, $j \to +\infty$ and if $\int u_0 d\mu > -\infty$, then $\lim_{j \to +\infty} \int u_j d\mu = \int u d\mu$.

Proof. Denote by dV the Lebesgue measure and choose $\tilde{u}_j \in \mathcal{E}_0 \cap C(\tilde{\Omega}), \ \tilde{u}_j \geq u_j$ such that $\int\limits_{\Omega} (\tilde{u}_j - u_j) (d\mu + dV) < \frac{1}{j}$. Then $\tilde{u} \leadsto u$, $\lim\limits_{j \to +\infty} \int u_j d\mu - \int \tilde{u}_j d\mu = 0$ so it is enough to prove that

$$\lim_{j\to+\infty}\int \tilde{u}_j d\mu = \int u d\mu.$$

Thus we can assume $u_i \in \mathcal{E}_0 \cap C(\bar{\Omega})$.

By Theorem 6.3 in [C1] there is a $\psi \in \mathcal{E}_0$, $f \in L^1((dd^c\psi)^n)$ with

$$\mu = f(dd^c\psi)^n$$

so by lemma 5:2 in [C1], for every $p < +\infty$,

$$\lim_{j \to +\infty} \int u_j d\mu_p = \int u d\mu_p$$

there $\mu_p = \min(f, p) (dd^c \psi)^n$

Now

$$\lim_{j \to +\infty} \int u_j d\mu = \lim_{j \to +\infty} \int u_j d\mu_p +$$

$$+ \lim_{j \to +\infty} \int u_j (f - \min(f, p)) (dd^c \psi)^n \ge$$

$$\ge \int u d\mu_p + \int u_0 (f - \min(f, p)) d\mu$$

$$\to \int u d\mu, \ p \to +\infty$$

by monotone convergence. On the other hand, by Fatous lemma,

$$\overline{\lim}_{j\to+\infty}\int u_jd\mu\leq\int ud\mu$$

which gives the desired conclusion.

Proof. Proof of the theorem.

We prove that

$$\lim_{j\to +\infty} \int h(dd^c u_j)^n = \int h(dd^c u)^n, \ \forall \ h\in \mathcal{E}_0,$$

which is enough by Lemma 3:1 in [C1].

Suppose $\omega_1, \omega_2, \ldots, \omega_{n-1} \in \mathcal{F}$, $h \in \mathcal{E}_0$. It follows from the assumption that $u_j \rightsquigarrow u$, $j \to +\infty$ so $\lim_j \int \omega_1 \ dd^c u_j \wedge dd^c \omega_2 \wedge \cdots \wedge dd^c h = \int \omega_1 dd^c u \wedge \cdots \wedge dd^c h$ by the lemma.

Suppose now that

$$\lim_{j} \int \omega_{1} (dd^{c}u_{j})^{p} \wedge dd^{c}\omega_{p+1} \wedge \cdots \wedge dd^{c}h = \int \omega_{1} (dd^{c}u)^{p} \wedge \cdots \wedge dd^{c}h.$$
for $1 \leq q \leq p \leq n-2$. We claim
$$\lim_{j} \int \omega_{1} (dd^{c}u_{j})^{p+1} \wedge dd^{c}\omega_{p+2} \wedge \cdots \wedge dd^{c}\omega_{n-1} \wedge dd^{c}h =$$

$$= \int \omega_{1} (dd^{c}u)^{p+1} \wedge dd^{c}\omega_{p+2} \wedge \cdots \wedge dd^{c}\omega_{n-1} \wedge dd^{c}h.$$

Given $\varepsilon > 0$ choose $k \subset\subset \Omega$ such that $\{z \in \Omega; h < -\varepsilon\} \subset k$ and then a subsequence u_{j_t} such that

$$\int\limits_{\Omega} \left(dd^c \sum_{t=1}^{\infty} h^*_{\{z \in k; |u-u_{j_t}| > \varepsilon\}} \right)^n < 1$$

and denote by

$$h_N = \max\bigg(\sum_{t=N}^{\infty} h^*_{\{z \in k; |u-u_{j_t}| > \varepsilon\}}, -1\bigg).$$

Then $h_N \to 0, N \to +\infty$ outside a pluripolar set and

$$\int \omega_{1}(dd^{c}u_{j_{k}})^{p+1} \wedge \cdots \wedge dd^{c}h - \int_{\Gamma} \omega_{1}(dd^{c}u_{j_{k}})^{p}dd^{c}u \wedge \cdots \wedge dd^{c}h =$$

$$= \int (u_{j_{k}} - u)(dd^{c}u_{j_{k}})^{p} \wedge dd^{c}\omega_{1} \wedge \cdots \wedge dd^{c}h =$$

$$= \int -h_{N}(u_{j_{k}} - u)(dd^{c}u_{j_{k}})^{p} \wedge dd^{c}\omega_{1} \wedge \cdots \wedge dd^{c}h +$$

$$+ \int (1 + h_{N})(u_{j_{k}} - u)(dd^{c}u_{j_{k}})^{p} \wedge dd^{c}\omega_{1} \wedge \cdots \wedge dd^{c}(h - h_{\varepsilon}) +$$

$$+ \int (1 + h_{N})(u_{j_{k}} - u)(dd^{c}u_{j_{k}})^{p} \wedge dd^{c}\omega_{1} \wedge \cdots \wedge dd^{c}h_{\varepsilon} = I_{j_{k}} + II_{j_{k}} + III_{j_{k}}.$$

where $h_{\varepsilon} = \max(h, -\varepsilon)$.

Thus

$$\begin{aligned} |I_{j_k}| &\leq 2 \int (-h_N)(-u_0)(dd^c u_{j_k})^p \wedge \dots \wedge dd^c h \leq \\ &\leq \int \left[-u_0 + \max(u_{0_1} - R) \right] (dd^c u_{j_k})^p \wedge \dots \wedge dd^c h + \\ &+ R \int -h_N (dd^c u_{j_k})^p \wedge \dots \wedge dd^c h \\ &\to \int \left[-u_0 + \max(u_0, -R) \right] (dd^c u)^p \wedge \dots \wedge dd^c h + \\ &+ R \int (-h_N)(dd^c u)^p \wedge \dots \wedge dd^c h, \ j_k \to +\infty. \end{aligned}$$

Now, the first term on the right hand side is small if R is large, the second is small if N is even larger.

$$|III_{j_k}| \leq \int -u_0 (dd^c u_{j_k})^p \wedge dd^c \omega_1 \wedge \dots \wedge dd^c h_{\varepsilon} \leq$$

$$\leq \int -u_0 (dd^c u_0)^p \wedge dd^c \omega_1 \wedge \dots \wedge dd^c h_{\varepsilon} \leq$$

$$\leq \int -h_{\varepsilon} (dd^c u_0)^{p+1} \wedge dd^c \omega_1 \wedge \dots \wedge dd^c \omega_{n-1} \leq$$

$$\varepsilon \int (dd^c u_0)^{p+1} \wedge dd^c \omega_1 \dots \wedge dd^c \omega_{n-1}$$

so it remains to estimate

$$|II_{j_k}| \leq 2\varepsilon \bigg(\int (dd^c u_{j_k})^p \wedge dd^c \omega_1 \cdots \wedge dd^c (h + h_{\varepsilon}) \bigg) \leq$$

$$\leq 4\varepsilon \int (dd^c u_0)^p \wedge dd^c \omega_1 \cdots \wedge dd^c h.$$

which proves the claim.

Using the claim and repeating the chain of inequalities above, we conclude that

$$\int h(dd^{c}u_{j_{k}})^{n} - \int h(dd^{c}u)^{n} =$$

$$\int (u_{j_{k}} - u)(dd^{c}u_{j_{k}})^{n-1} \wedge h +$$

$$\int u(dd^{c}u_{j_{k}})^{n-1} \wedge h - \int u(dd^{c}u)^{n-1} \wedge h \to 0, j_{k} \to +\infty.$$

This proves the theorem, since we have proved that every subsequence of u_j contains a subsequence u_{j_t} such that $(dd^c u_{j_t})^n$ converges weak* to $(dd^c u)^n$, $t \to +\infty$.

References

[C1] Cegrell, U., Pluricomplex energy. Acta Math. 180:2, 187-217.

[C2] Cegrell, U., The general definition of the complex Monge-Ampère operator. Manuscript, Umeå and Sundsvall, 2001.

[X] Xing, Y., Continuity of the complex Monge-Ampère operator. Proc. AMS., 124:2 (1996), 457-467.