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Abstract

The behaviour of magnetic field in the stretch~fold-shear (SFS) dynamo map is
considered for zero magnetic diffusion. It is shown by a mixture of analytical and
numerical approaches that the SF'S map is a perfect dynamo: for sufficiently large
shear, the adjoint operator has smooth, growing eigenfunctions and so smooth flux
averages grow exponentially with time for zero diffusion.

In the paper first a number of numerical discretisations are presented that give dif-
fering results for growth rates, and indicate the need to develop systematic theory.
Then magnetic fields that are only required to be square integrable are consid-
ered, and the spectral properties of the SFS dynamo operator and its adjoint are
discussed, as operators in L2. Adjoint eigenfunctions are typically not smooth, how-
ever. To obtain smooth, growing adjoint eigenfunctions attention is restricted to a
subset of magnetic fields that are analytic in a disc in the complex plane. Restricted
to this subset and using a supremum norm, the SFS adjoint operator is compact and
this allows a numerical treatment of eigenvalues and eigenfunctions with system-
atic error estimates. These estimates show that for sufficiently large shear there are
smooth growing adjoint eigenfunctions and so perfect dynamo action is established.

Key words: Magnetic field, dynamo, hyperbolic map, mixing, baker’s map.

1 Introduction

In dynamo theory we are interested in the growth of magnetic fields when
they are transported by a fluid flow, as described by the induction equation

8B =V x (ux B)+eV?B, (1.1)

where B is the magnetic field, u is the fluid flow, and the diffusivity ¢ is the
inverse of a dimensionless parameter, the magnetic Reynolds number (e.g.,
[27]). We shall be concerned only with kinematic theory, in which the fluid
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flow u is prescribed. At long times the exponential growth rate of magnetic
energy will be 2v(¢) starting from a general initial condition; y(¢) is the (real)
dynamo growth rate.

In the case of an ideal fluid € = 0, and the induction equation merely represents
frozen transport of the magnetic field in the flow. Starting from a general initial
condition the field becomes ever finer scaled and increasingly complicated. If
the flow u is of any complexity, for example being chaotic, or steady with
hyperbolic stagnation points, then the magnetic energy increases exponentially
when there is zero diffusion, v(0) > 0 [35]. If weak diffusion 0 < ¢ < 11is
now introduced, because of the process of fine-scaling, its effects can be very
subtle. For example it is known that if the flow takes too simple a form, for
example lying wholly in parallel planes, then any finite diffusion causes the
field ultimately to decay, with y(¢) < 0 for any € > 0, no matter how complex
the flow in each parallel plane [13,36]. This highlights the fact that y(e) is
generally discontinuous at £ = 0. The singular nature of the limit ¢ — 0 is of
course also suggested by the form of the induction equation (1.1) above.

The existence of kinematic dynamos, flows w which amplify magnetic fields
for some ¢ and initial condition, is now not in doubt, but there are many
open questions about their behaviour in the astrophysically important limit
e — 0. Of particular interest are ‘fast dynamos’ in which the growth rate
v(g) of magnetic energy remains positive and of order unity in this limit (see
e.g., [12,37]). Such dynamos rely on the flow u to stretch and fold magnetic
field in such a way that field growth is robust to the effects of weak diffusion.
It is known that for a fast dynamo in a smooth flow u, it is necessary that
the flow have positive topological entropy, and this gives an upper bound
on the limiting growth rate as ¢ — 0. This was conjectured by Finn & Ott
[14], and proved by Klapper & Young [23]. Very little otherwise is known
analytically about the existence of fast dynamos in smooth flows, although Dr.
Oleg Kozlovsky (personal communication) has recently proved results about
a three-dimensional flow with a ‘pretzel’ structure.

On the other hand there is good computational evidence for fast dynamos in a
number of smooth flows, in particular taking the convenient form u(z,y,t) =
(ug, Uy, Uz), that is flows that are two-dimensional, depending on two coor-
dinates, but not confined to a plane [16,30]. Study of these and similar flows
suggests that field amplification is through the ‘stretch—fold—shear’ mechanism
[7,8,15]. The idea is that field lines in the plane become stretched and folded
through the u, and u, components of the flow (for example through tendrils
of field formed at a broken heteroclinic connection). This planar flow alone
could not give dynamo action [13,36], as it creates bands of field of opposing
sign which are vulnerable to diffusive cancellation. The second process which
acts to reduce cancellations is a shear of the field in the z-direction, through
the u, flow component. If the magnetic field depends on z then motion in z
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Fig. 1. The stretch-fold—shear map. (a) Magnetic field depending on z is stretched
and folded with a baker’s map in the (z,y)-plane to give (b). In (c) the field orien-
tation is shown in the (z,z)-plane, which after the shear operation gives (d). The
effect of the stretch—fold—-shear operations from (a) to (d) is to double the magnitude
of field vectors and partially bring like-signed field together.

can now bring like-signed field together.

This constitutes the stretch—fold—shear (SFS) mechanism, and to illustrate and
study it further Bayly & Childress [7] introduce a simplified version known
as the stretch—fold-shear (SFS) map. This is illustrated in figure 1, and we
shall define it in section 2 below. In going from a smooth flow u to a map,
we note that magnetic field is moved in the obvious way, using the tangent
map, and that diffusion may be employed by integrating the field against a
heat kernel between mappings. This model is much simplified compared to a
general flow u, because the chaotic stretching is now based on a hyperbolic,
baker’s map. However it is still difficult to deal with analytically because of
the complicated oscillations that arise in the magnetic field after only a few
iterations. Diffusion will have a strong effect because of the rapid variation in
the magnetic field, but there may also be additional effects because the SFS
map is discontinuous.

In this paper, which we label I, and a companion paper II [18] our aim is
to establish results about the behaviour of magnetic fields in the SF'S model
depicted in figure 1. A third, paper [19] will consider the evolution of passive
scalars. In order to navigate our way through papers I and II, it is worth at
this point giving a few precise definitions.



1.1 Definitions

We have in mind applying a map M. Under this map a magnetic field b evolves
under the operator T, for diffusivity € > 0. After n time units the magnetic
field is 7"b and we may define the dynamo growth rate by

v(¢) = sup limsupn~" log || T7b]|. (1.2)
b n—co

Here we are using an L? norm in the space under consideration

i =@, (f.0) = [T@)e()dz, (13)

to measure magnetic energy and the supremum above may be taken over all
initial conditions having finite energy. The.map is a dynamo if y(¢) > 0 for
some € > 0.

If we take the ideal limit € — 0 we may define the fast dynamo growth rate by
Yo = lireri}iglf v(e) (1.4)

which is generally not equal to (0), as discussed above. The map is a fast
dynamo if 79 > 0. One problem is to show that a given map M is a fast
dynamo. Another problem is to relate the exponent 7, to properties of the
map M and the evolution of magnetic field with zero diffusion € = 0. This
involves quantifying the rapid fluctuation in sign of field in T§'b for large n.
Since averaging is superficially similar to diffusion [6,8,14] one may study the
perfect dynamo growth rate

T = sup sup limsupn~"log |(c, Tg'b)|, (1.5)
c b n—oo

that is, consider the growth rate of a fixed average or projection of the magnetic
field as it evolves. We then take the supremum over initial conditions and
projections that are smooth functions b, ¢ € C* [8]. If I" > 0 then we say that
the map is a perfect dynamo and exhibits fluz growth.

One may then make conjectures about the relation of I' and ~o: the strongest
would be that the two growth rates are equal under certain circumstances
(see [6,8,10,12,14]). We shall discuss these more fully in the introduction to
paper II. Before leaving this section we note that the supremum over smooth
functions in (1.5) above is not the only possibility. In [14] it is argued that the
growth rates of flux through general surfaces should be measured, and there is
numerical evidence that with this definition I’ = 7, in a number of physically
reasonable flows (chapter 2 of [12]). This would correspond to allowing ¢ in
the above definition to be certain distributions. Also one might replace a strict



supremum by a notion of the flux through ‘generic’ surfaces, in some sense
[14]. However at present there is a lack of mathematical results to guide us.

1.2 Structure of the paper

Our aim in this paper and II is to investigate y(€), Yo and I" and their rela-
tionships for SFS and related dynamo models. The two papers have distinct
flavours. We consider first this paper, paper I, which builds on the studies
[10,12].

Here we consider only the case of zero diffusion, ¢ = 0, and we set T' = Tp
for succintness. Our principal aim is to show that the SFS model is a per-
fect dynamo. We note that since (¢, Tb) = (T*c,b) where T" is the adjoint
operator in L?, instead of investigating 7™b in (1.5) we may equally well con-
sider T*"c. The adjoint operator T* tends to smooth out small-scale structure,
unlike the direct operator T, and so is much easier to handle [8]. In this pa-
per, using a mixture of analytical and numerical methods, we exhibit smooth
growing eigenfunctions of the adjoint operator 7™ for large enough shear and
so establish perfect dynamo action.

The paper is structured as follows. In section 2 we define the SFS map M and
the operators T and T™*. The operator 7* may be discretised in a number of
plausible ways, but these give rather differing numerical results for eigenvalues
(see section 3). This highlights the need for a firm theoretical basis for any
numerical method adopted. In section 4 we summarise basic results about SF'S
and give some exact solutions. We then study T and 7™ as operators in L?
and their spectra in section 5. In view of the definition of a perfect dynamo
above we are particularly interested in how smooth are any eigenfunctions that
may exist. We find that the operators have a large spectrum, in particular 7™
has a whole disc of point spectrum. However when we attempt to construct
eigenfunctions explicitly, we find that generally they are not smooth and so
do not provide information about the perfect dynamo growth rate I' defined
above.

To establish that ' > 0 and so that SFS is a perfect dynamo, we need to
obtain smooth eigenfunctions of T' or T*, but these are like needles in the
I? haystack. We therefore restrict our attention to a subset of L?, namely
functions that are not only smooth, but in addition are analytic in a disc
on the complex plane, and we use a supremum norm (section 6). We denote
T* restricted to this space by S, and seek eigenfunctions of S. This gives an
operator with the useful property of compactness and this allows us to focus
on its point spectrum, simply eigenvalues and eigenfunctions. This important
simplification has been exploited elsewhere in dynamical systems theory (e.g.,



[26,29]).

We may then study a discrete approximation Sy to S, and use perturbation
theory (section 7) to bound errors in these approximations. We thus obtain
smooth growing eigenfunctions of S and so of T*, which allows to establish
flux growth or perfect dynamo action in the SFS model by virtue of definition
(1.5). In section 8 we discuss subsidiary issues, including growth rates for large
shears and nonlinear shears. Section 9 gives concluding discussion.

Whereas in this paper the emphasis is on € = 0, in paper II we introduce
diffusion & > 0; our aim is to compute y(¢) and the fast dynamo growth rate
7o for varying boundary conditions, and to understand how -y, relates to I'.
Does perfect dynamo action I' > 0 imply fast dynamo action o > 07 Are the
two growth rates generally equal? Can we take a smooth eigenfunction of T* for
£ = 0 and use perturbation theory to obtain an approximate eigenfunction of
T for 0 < € < 17 In paper II we will use standard asymptotic approximations,
but without rigorous justification. Rather, our aim there is to piece together a
picture of how perfect dynamo action and weak diffusion interact, supported
by numerical simulations.

Finally we mention that there are some related models for which some rigorous
results are known. Childress [11] has shown fast dynamo action in a map
similar to SFS but with many folds, while in [17] results are obtained for
a model based on a pseudo-Anosov map with shear in the limit of strong
stretching. Much is also known about generalised baker’s maps [14].

2 The stretch—fold—shear map
2.1 Definition of the SF'S map M and operator T

The SFS map M is shown in figure 1. Its domain is given by (z,y) € [-1, 1)
and z € R, and is the composition of two basic operations M = Mgy Msp. The
first is a folded baker’s map

(z—1),1+2y,2) (y<0),
(1—%),1—2’!;,2) (yZO),

(
(

and the second is shear in the z-direction

(2.1)

[T T

Msp(z,y,2) = {

MSh(xiy’ Z) = (x,y,z—i—ax), (22)

where « is the shear parameter.



Now magnetic field is mapped, frozen under M. Since Msr doubles the y-
components and z-gradients of field and halves the z-components and y-
gradients, we need only consider fields of the simplified form

B(z,y, z) = €**(b(z)§ + bs(z)2) + complex conjugate, (2.3)

where k is a wavenumber in the z-direction and b and b are complex fields. We
may also take k = 1 without loss of generality, since only the combination ak
arises for € = 0. The maps Mgr and Mg, induce maps of the field component
b by the operators

) 2b(1 + 2x) (z <0),
Tewb(z) = {—Zb(l _o)  (220), (24
TShb(x) = e""””b(m), (25)

while the b3 component need not be considered; it is not stretched and is
slaved to the b component (being generated only during the shear process).
The magnetic field is transported in (2.4) according to the tent map in z,

7(z) = min(1 + 2z,1 — 2z), (2.6)
which is the z-component of Mgy and is continuous at z = 0.

We may then define the SFS operator T' = Ty = TsuIsr on magnetic fields.
This is the main operator we shall study in this paper and it is given by

2e~=p(1 + 2z) (z <0),

—2¢~t=h(1—2z)  (z >0). @7

Th(z) = {

The order of operations is not important, and occasionally it is useful to reverse
the order, and set T' = TgpTgp.

When we employ non-zero diffusion & in paper II, we will apply a third step,
of diffusion for a unit time with appropriate boundary conditions at z = +1.
This gives the diffusive dynamo operator T, = H.T'. Note that earlier studies
of SFS worked on the interval [0,1] for z and y whereas we will find [-1,1]
more convenient. Also our parameter o corresponds to what was mka or Ta
in previous studies [7,8]. We consider only o > 0 without loss of generality.

2.2 Definition of the adjoint operator T

The operator T' contracts the scale of variation of magnetic field in the z-
direction as T is iterated on some initial condition b. Together with the phase



shifts from the shear in (2.7) this leads to a complicated field 7™b for large n.
For perfect dynamo action we are seeking growth in

®, = (¢, T"b) = (T*"c,b) (2.8)

for some smooth fields b, ¢, as n increases. Here (:,-) is the inner product
defined back in (1.3) with the integral taken from —1 to 1. If ¢ is chosen so
that (c,1) = 1, then (c,T™b) is a projection of T"b; we will loosely refer to
(c,-) as a projection without insisting on this condition. Note that the case
¢ = 1 gives the total flux of b through [—1,1]. From (2.8) we can either seek
growth in 7™b or in 7*"c where T* is the adjoint operator given by

T*c(z) = ei“%(‘“_l)c(%(a: — 1)) — 211 De((1 - ). (2.9)
This is the composition of two operators T* = TgpTg, with
Theo(@) = c(b(z — 1)) — c(}(1 - =), Tncle) = T'c(z) = €*c(a). (2.10)

The adjoint operator 7™ is attractive for analysis because Tgp halves gradi-
ents in the z direction, unlike Tsp. One may expect that eigenfunctions exist
in which this stretching out of structure is in balance with its introduction
through multiplication by €*® in Tg,. It is thus expected that 7" should have
some smooth eigenfunctions, and this should facilitate analysis [8]. If a smooth
eigenfunction exists that grows under iteration of T*, then we have shown that
SFS is a perfect dynamo by the definition (1.5).

There are other models closely related to SFS. We can change the baker’s
map from a folded baker’s map to a stacked baker’s map, which we define and
discuss briefly in appendix A. This model is less physically realistic and less
interesting than SFS, but is used in paper II for comparison with SFS when
diffusion is introduced. In a similar vein we note that the shear operation may
be generalised, replacing az by f(z) in (2.2) and so replacing Tsn by

Tsnb(z) = e~ @p(z). (2.11)

We shall comment below on more general shears, and here only note that
taking f(z) = « sign(z) gives the stretch—fold-slide map studied in [12,21,22].

3 Computing growth rates

We have argued above that 7* should have some smooth eigenfunctions, and
this suggests that it should be easy to obtain robust growth rates numerically.
It turns out however that the results depend rather sensitively on the numerical
procedure adopted.



Fig. 2. (a,b,c). Computations of eigenvalues A using different discretisations of 7™.
Absolute values || are plotted against o using discretisations with matrices of size
1282 (solid) and 642 (dotted) to give an indication of convergence. The methods
used are (a) power series, (b) Fourier series, and (c) sine series. Only the 30 largest
values of |A| are shown; the resoution in ¢ is 0.01.

We give a number of possible methods below. In each case we express ¢ as a
sum of basis functions with complex coefficients ¢,. If T*c = d then we may
compute the matrix elements A,,, so that

dn =Y, AmnCn. (3.1)

n=0

Truncating the infinite matrix by restricting the ranges of m and n leads to a
finite eigenvalue problem that may be tackled numerically to obtain eigenval-
ues X and eigenfunctions c(z), which we order in terms of decreasing |A|.



Fig. 3. (a,b,c). Computations of eigenvalues A using different discretisations of T*. As
in figure 2, but using (a) piecewise constant, (b) piecewise linear, and (c). piecewise
cubic.

Figures 2 and 3 show the result of using six different discretisations, listed
in the figure captions and detailed below. In each case the solid lines show
the results when the matrix A,,, is truncated to 1282 while the dotted lines
show a truncation of 642. Only the 30 eigenvalues with the largest values of
|A| are shown. There is a wide range of results, even though in each individual
case the results appear to be converging as the resolution is increased from
64 to 128, although poorly in 3(a). All discretisations except 3(a) also agree
when |\| > 1.3. This is encouraging as an eigenvalue |[A| > 1 corresponds to
perfect dynamo action provided the corresponding eigenfunction is smooth.
The results for these larger values of A\ agree with those elsewhere in the
literature [7,8]. Of the figures 2(a) has the edge on aesthetic grounds and 3(a)
certainly is the least pleasant. Figures 3(b) and 3(c) appear to be converging
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Fig. 4. Bigenfunctions c¢;(z) of the SFS adjoint operator plotted against z in the
range —1 < £ < 1, computed using the power series discretisation. Eigenfunctions
with (a) j = 0 and (b) j = 1 are shown for a = 2. In (c-i) j = 0 to j = 6 are shown
for & = 10. The real part is shown solid, and the imaginary part dotted. The top
row is (a,b,c), middle (d,e,f) and bottom (g,h,i).

to 2(a) except for a belt of ‘noise’ for small {A|. On the other hand 2(a) and
3(b,c) have a straight line |A| = 1 which is not seen in 2(b,c) or 3(a).

Clearly we need some theory to determine which figure gives sensible results
and this will be developed in sections 6 and 7. It will turn out that the power
series discretisation yielding figure 2(a) can be put on a firm basis, and these
branches correspond to eigenvalues of T* with eigenfunctions that are smooth,
and indeed entire as functions of a complex variable. The growing eigenfunc-
tions for oo = 2 and 10 are shown for this discretisation in figure 4. We will
also be able to put error bounds on the numerical computations in figure 2(a):
we will thus establish the presence of growing smooth eigenfunctions of T,
and so perfect dynamo action. '

The two discretisations based on piecewise linear (e) and piecewise cubic (f)

functions are converging to 2(a) as the resolution is increased. We now list
briefly the six discretisations used in figures 2 and 3.
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3.1 Figure 2(a): power series approzimation.

Set

c(z) = i cnz™; (3.2)

n=0

the matrix elements become

o 2-n(—1)™n! 0\ iaj2_qywip _ gl
hn= % p!(m—p)!(n—m+p)!(2) e (ayer = ¢

p=max(m—n,0)

(3.3)
These matrices are truncated and eigenvalues extracted numerically using

NAG library routines, shown in figure 2(a). Some eigenfunctions are shown in
figure 4.

3.2 Figure 2(b): Fourier series approzimation.

Put
c(z) = i Ca€™"; (3.4)
then
A = €75 F(0,/2 — mar + nmr/2) — e's(@tmm F(_q /2 — ma — nm/2),
(3.5)
with
F(s) = s 'sins. (3.6)

3.8 Figure 2(c): sine series approzimation.

In this approximation we temporarily exchange stretch—fold and shear oper-
ations to define T* = T, T3 This operator annihilates even functions. In
seeking eigenvalues ) # 0 we may project to odd functions and, using obvious
notation, find eigenvalues of PogqT™ (since if PogaT*Coad = ACoda and A #0
then ¢ = Codd + Ceven is an eigenfunction of T where Ceven = A1 PyenT ™ Coaa
(p. 266 of [12]).
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We then represent ¢ by a sine series

c(x) = i cn sin(nrz), (3.7)

n=1
for which

A = —e~ " 2F(q + mm + nw/2) + e "2 F (o — mm + nw /2)
+ein1r/2F(a +mnr — n7r/2) _ eimr/ZF(a —mr— nﬂ-/2)_ (3.8)

3.4 Figure 8(a,b,c): spatial discretisations.

The above discretisations in figure 2(a,b,c) involve a series expansion of a
global nature for the function ¢(z). An alternative is to employ an expansion
allowing more local freedom by dividing [—1,1] into a set of subintervals,
and letting the function c¢(z) on each interval to be, for example, in figure
3(a) constant, (b) linear or (c) cubic. Here we set up a framework for such
approximations. We return to consider the operator T' acting on a magnetic
field. Let M be an integer divisible by 4 and é = 1/M. We break the interval
[-1,1] into M intervals I; indexed by j with —M/2 < j < M/2 — 1. The
jth strip is given by I; = [2j6,2(j + 1)é] and has midpoint (27 + 1)5. We
will let b;(z) give the field in strip j, but rescaled so that = runs over -1,1],
specifically

bi(z) =b((2j +1+2)0) (z€[-1,1]), (3.9)
and conversely
b(z) =bj(z/6 —2j—1) (z € ). (3.10)
We refer to this set of functions b = {b;} as a magnetic field discretisation.

The basic operators Tgr and g, become

2bM/2+2j(1 + 2‘7;) (.7 < 07 z < 0)’

~ 2 ir1(—1 ]

TSFbj(m) — bM/2+2J+1( + 2x) (-7 < 0,$ > 0)7 (311)
_2bM/2—2j—-1(_1 - 2$) (] 2 0, < 0),
—QbM/g_gj_z(l — 2.’1)) (] >0,z> 0),

Tonbj(z) = e~ @1+, () (3.12)

and may be combined to give T.

We define an adjoint set of functions & = {¢;}, discretised from c(z) as above,

13



and the corresponding inner product is
. 1
@@:qug@m@ma (3.13)
~ /-

In terms of these functions

Tici(z) = ci—(—M+2j)(%(x —-1)) - C%(M-2j-4)(%(—$ +1)) (j even),
SF = :
! C%(—M+2j—2)(%($ +1)) - c%(M—Zj—2)(%(_x - 1)) (J odd),
(3.14)

while T3, = T

We will spare the reader the details, but the idea is now to expand each
function ¢; as a power series with N terms on the interval [-1,1]. We apply
T* = T&:T%, and truncate the each of the resulting set of functions as power
series with N terms. This gives a matrix of size (M N)? with a block structure.
Each block has entries similar to those in (3.3) above (but with sign differ-
ences), while the indices in (3.14) shuffle the blocks. The results for N =1, 2
and 4 are shown in figure 3(a,b,c) respectively for MN = 128 (solid) and 64
(dashed).

4 Elementary properties of T*

In this short section we consider ‘well-behaved’ eigenfunctions of T*, point
out some elementary properties and give some exact solutions. Often explicit
calculations are possible when a = 0, there is no shear in the problem and
we have only the stretch—fold operation, with T' = Tsp (2.4) and T* = TIgp
(2.10). However this case is of limited interest since perfect dynamo action is
impossible (see section 4.3) and with diffusion all fields decay (see paper II).

4.1 Ezact eigenfunctions
First note that if ¢(z) is an eigenfunction of T*, T*c = Ac, then directly from
(2.9) we obtain [12,28]

c1)=0 (A#0), (4.1)
e(-1)=0  (A#0,e7). (4.2)

This is confirmed by the numerical eigenfunctions plotted in figure 4; all satisfy
(4.1). They all satisfy (4.2), except for figure 4(b,i), which have A = e~**. We

14



know this since there is an exact solution to T*c = Ac with
c(z) = @) — ¢~ = 2isina(z — 1), A= g (4.3)

(noted by B.J. Bayly, personal communication, and [28]). This solution branch
with |A| = 1 is only picked up by the power series and spatial discretisations in
figure 2(a) and 3(b,c), confirming that the other discretisations are at the very
best, incomplete. This eigenfunction is intriguing as it is of marginal stability
|A\| = 1. It appears that there may be a similar mode present for other more
general phase shifts; see section 8.2.

This eigenfunction (4.3) satisfies (4.1). Condition (4.2) is not applicable, but
happens to be satisfied when o = nw/2 and this is where branch crossings
appear to occur in figure 2(a). We do not have an analytical description of the
mode crossings (for an approximate theory, see [28]). However our numerical
study of eigenfunctions (for the power series approximation) indicates that
the two eigenvalues become coincident (in the complex plane) when o = nm/2
and so do the corresponding eigenfunctions. This suggests that the operator -
has a Jordan normal form block (2 ) in the A = e™** eigenspace at this point.
Note that the coincidence of two eigenvalues of a general complex matrix is an
event of co-dimension two, whereas we are varying a single parameter .. Thus
these repeated mode crossings at o = nr/2 probably have some mathematical
significance that we have not elucidated.

Equation (4.3) gives the only smooth eigenfunction we know analytically for
general . However for & = 0 there are eigenfunctions taking a polynomial
form

c(z)=z-1, A=1, (4.4a)
a(r)=2-32 -z +3, A=1 (4.4b)
co(z) = 2° — 5a* — Lo + 302% + [z — 25, A= L. (4.4c)

The first of these is also the limit of (4.3) as @ — 0. These are most easily
obtained by noting that for @ = 0 if Tc = Ac then T¢" = 4\c", so the
eigenfunction ¢, () may be obtained by integrating ¢, () twice and applying
the two conditions (4.1, 4.2).

4.2 Discontinuous eigenfunctions of T*

It is also possible to construct discontinuous eigenfunctions of 7. First con-
sider an eigenfunction with a finite number ¢ of discontinuities at points
T1,T3,. .. T4 in the interior of [—1, 1]. Plainly these points must be permuted
under the tent map 7 (2.6) (otherwise their number would reduce under T7*)
and so must constitute a union of periodic orbits of 7. Arguing similarly, in

15



(2.9) the discontinuity at z, in T*c must come from just one of the two terms
on the right-hand side, not both. Thus, using [];, to denote the jump in a
quantity across a discontinuity, we have

(T c(2)]e, = Mo(@)]en = €FEVe(3(z — 1))z, or €3 e(3(1 ~ 2))]an.
(4.5)

Hence the absolute value of the jump is a constant around a periodic orbit
and it is clear that any such eigenfunction must have || = 1.

As an example, if ¢ = 1, the discontinuity must lie at the fixed point z, =1 /3
and so we obtain \ = €i*/3. If ¢ = 2 the discontinuities must lie on the period-
2 orbit {—1%,2} and A% = €¥*/5. One may give a similar discussion if the
discontinuity occurs only in a derivative; if the eigenfunction is CT! but has
finitely many discontinuities in its rth derivative ¢ then |A| = 27". The above
describes such eigenfunctions, if they exist. Examples may be constructed for
a = 0, for example,

)1 z <1/3, _
c(z) = {0 2> 1/3, A=1, (4.6)
c@)={1+$ z<1/3,

4.7
2-2z z>1/3, (4.7)

[

Numerically it appears that solution branches extend out from o = 0 to give
discontinuous eigenfunctions for any «; see figure 8 in section 8.3 below.

4.8 Decay fora=0

In this section we show that SFS is not a perfect dynamo for a = 0 [12].
A proof of this obvious result is worthwhile as this is a test case for theory
below, especially as we shall obtain growing eigenfunctions of 7* for & = 0 in
L2 below! Here we show that for any smooth b and ¢, (¢, T"b) is bounded and
so the perfect dynamo growth rate I' defined in (1.5) cannot be positive. We
define a potential a for b by

= [ b(z) dz. 48

a(z) = [ be)do (438)

When T is applied to b, the potential is mapped as a passive scalar, by
Tscalara(w) = a(T("L'))a (4'9)

where the tent map 7 is defined in (2.6).
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Consider a sequence of iterates b, = T™b with corresponding potentials an =
" lar@- Plainly the functions a, are all bounded by the range of the initial
condition a. Hence

(e, T™) = (T*"¢,b) = (¢, ba) = (¢, ap) = —(¢, am) + [c(@)an(2)]2;  (4.10)

(using integration by parts) and the right-hand side is plainly bounded, inde-
pendent of n, as required. Note that this argument only needs c to be C?, not
smooth.

Also, if we use a piecewise constant function ¢ to measure the flux through
a given interval J = [z, 1] C [—1,1], with ¢ = 1 inside J and zero outside,
then we have

(¢, T"b) = (¢, al) = an(z1) — an(Zo) = a(7"(z1)) — a(7"(z0))- (4.11)

This quantity cannot grow for bounded initial a, and so the flux through an
interval cannot grow in the case @ = 0. The behaviour of this projection
depends sensitively on the endpoints as the map 7 is chaotic. Except in this
special case of @ = 0, it is not at all clear how to study the flux through
intervals in the SFS map (see [14] and discussion in section 1.1 above).

5 Properties of T and T* in L?

In this section we consider spectral properties of the SFS operator 7' and its
adjoint T* acting on L?, the space of square-integrable functions. Our aim is
to understand their spectra, and ascertain when eigenfunctions exist and how
smooth they are. We will find that T* has many eigenfunctions, but these
are not smooth, and so do not enable us to prove perfect dynamo action.
Note that we have defined the growth rate y(g) in (1.2) using energy and so
this naturally has an L? setting. In paper II we will consider the effects of
diffusion and how the L? spectrum with diffusion relates to that in paper I
for € = 0. Related results for spectra in Anosov flows and maps may be found
in [24,25,35]. In this section we use ||b|| = (b,b)'/? as the L? norm and recall
that the inner product defined makes L? a Hilbert space; we use L to denote
the orthogonal complement of a linear subspace. We have used as sources on
linear functional analysis [9,20].
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5.1 Spectra of T and T*

We begin by noting the kernels and images of T and 77,
KerT = (ImT*)* = {0}, KerT* = (ImT)* = {b: **b(z) is even}. (5.1)
Thus A = 0 is an eigenvalue of T* with infinite degeneracy.
Recall that the spectrum of a general operator A is defined by
o(A) = {\ € C: A\I — A is not invertible}, (5.2)

where invertibility includes the requirement that the inverse be bounded as an
operator in L?. The spectrum may be broken up into several components. For
X in the point spectrum o,(A) there are eigenvectors of A, Ker(AI — A) # (0).
For ) in the approzimate spectrum ga5(A), AI — A is not bounded below, i.e.,
there does not exist € > 0 for which ||(AI — A)b|| > ||b]| for every b in L?.
Finally for A in the compression spectrum Gcom(A), Im(Al — A) is not dense
in L?. We have

0p(A) C 0sp(4), o(A) = Tap(A) U Teom(4)- (5.3)

For A € 0,,(A), there exists an approzimate eigenfunction, a sequence by)
with

oy |l =1, (AL = T)by|| +0 as n—o0 (5.4)

For A € Ueom(A) the set In(AI — A) is a closed subspace of L?, whose orthog-
onal complement, equal to Ker(AI — A*), is non-zero. It follows that

Ocom(A) = conjop(AY), (5.5)

where ‘conj’ denotes complex conjugation of a set. It is usual also to define
residual spectrum o; = gcom \ 0p and continuous spectrum by 0. = 0\ (Gcom U
op) s0 that 0 = o, Uoc U o; as a disjoint union. However we shall not make
use of this as it is difficult to characterise o, precisely in our models.

The SFS operator T has the important property that T/2 is an isometry,
||| = 2||b]|. This has the immediate consequence that 7(0) = 2 from (1.2).
Also ||T|| = ||T*|| = 2 and so o(T") = conjo(T™) is a closed non-empty subset
of the closed disc

A={\:]A <2} (5.6)
Another consequence of T/2 being an isometry is that the approximate spec-

trum o,, C 8A, the circle [A| = 2. This follows by noting that [(AL =T)b|| >
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(IA| = 2)||b]| and supposing there exists an approximate eigenfunction (5.4);
this is only possible if [A| = 2.

We also know that 0 € o,(T*) = conjoem(T) by (5.1) and we have the
general result that the boundary of the spectrum 90 (T") C o5p(T). It follows
that o,p(T) must be non-empty and in fact must be the whole of dA. We
deduce that

0(T) = 05p(T) Uocom(T) = A,  05p(T) = A, (5.7)
For T* we have
o(T*) = 0p(T*) = A, 0p(T*) D Int A, (5.8)

where ‘Int’ denotes the interior of a set. These results tell us much about the
spectra of T and T*. In particular 7* has many eigenfunctions: any A with
|A] < 2 is an eigenvalue! However smoothness is the primary consideration for
perfect dynamo action, and we do not know how smooth these eigenfunctions
are; this we consider next.!

Another useful property of the SFS model is that T*T" = 4] and so T* has a
right inverse R = 7' [12]. This means that if b is an eigenfunction of T' with,
necessarily, |A| = 2, we have Tb = Ab, and applying T™* gives T*b = 4b/ A =
2b. Any eigenfunction of 7' with eigenvalue X is an eigenfunction of T* with
eigenvalue X, and so

op(T") C conj o, (T™). (5.9)

Similarly if 7' has an approximate eigenfunction (5.4) with (Al — T)bmy =
d(my — 0 and necessarily |A| = 2, then since (I — T*)bgmy = —T*dmy/ A — 0,
this equally provides an approximate eigenfunction for 7. This also implies
that g.,(T) C conj osp(T*), but we already know this.

The remaining issue is whether any points in op(T') or op(T™) lie on the circle
8A. We can show that they do not for o = 0, and so 0p(T') is empty in this
case. To prove this expand a possible eigenfunction as a series using the basis
sin(inm(z + 1)) or a Haar basis (e.g., [9,33]). On such a basis T doubles the
wavenumber 7 and one can deduce that all the expansion coeflicients are zero.
We omit the details here (see section 9.5.3 of [12], paper II).

We cannot prove anything for general values of a; however the related models
stretch-stack—fold (appendix A) and stretch—fold—slide [21,22] do have eigen-
functions of T for selected values of the shear . Whether eigenfunctions of

1 Note that sections 9.5.2 and 9.6.1 of [12] are incomplete here: these discuss smooth
eigenfunctions analogous to those we consider in section 6 below, but not the rest
of the L? spectrum.
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T can exist or not appears to depend sensitively on the form of the phase
function f(z) used (see (2.11)) and in appendix B we show that for SFS with
generic phase function f, the operator T' has no continuous eigenfunctions.
We also note that it is sometimes possible to interpret eigenfunctions of T in
terms of distributions [12,28], but we do not pursue this line here.

5.2 Shift operators and eigenfunctions

In this section and the next we flesh out the above results on the spectrum of
T and T* by actually constructing eigenfunctions and approximate eigenfunc-
tions, to better understand their properties. Now the operator T is analogous
to a ‘shift’ operator moving fields into smaller scales by the stretch—fold opera-
tion. On the other hand T* shifts structure into large scales. This analogy will
be made more precise below but for the present consider simply the operators
on sequences in [2 given by

Tr(ao, a,0q9,.. ) = 2(0,(1,0, al, .- ), T:((Lo, ai, as, .- ) = 2(01, Qag,as, . . . ),
(5.10)

(twice) right and left shift operators respectively. Note that T'T; = 41 and so
T* has a right inverse 3T;. For this standard example (e.g., p- 173 of [9]) we
have

o(T;) =o(T}) = A, o0xp(T) =94, ow(T7) = 4, (5.11)
Ocom(Tt) = 0p(TF) = Int A,  0p(T) = Teom(T7) = 0. (5.12)

Indeed, given any eigenvalue A of T with [A| < 2, the corresponding eigen-
function is given by

c=(1,2/2,X2/4,)%/8,...). (5.13)

Also, given any approximate eigenvalue A of T, with |A| = 2, we may define a
sequence of functions b, by

by = 0~ Y2(1,2/0,4/X,..., 27 /A"40,0,..). (5.14)
Here

”b(ﬂ)“ =1, ”()‘I - Tr)b(n)“2 = 8/” — 0, (515)

as n — o0o. This explicit construction confirms that A is an approximate
eigenvalue of T;. This sequence also provides an approximate eigenfunction of
T* with eigenvalue , analogous to discussion below (5.9).
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5.8 Eigenfunctions for the SFS model

Returning now to the SFS adjoint operator 7* we may construct eigenfunc-
tions in & similar way. Recall that T* has a right inverse R = T analogous
to the situation for the shift maps in (5.10) above, and we can use the above
constructions. First we construct an eigenfunction of T*. Given any eigenvalue
with A, |A] < 2 and an initial field ¢, € Ker T* we define the eigenfunction by

(o o)
= Y A "R (5.16)
n=0
This converges since |R|| = 1. This construction applies for any c, and we

can choose |A| > 1 to obtain a growing eigenfunction of 7™. This appears
to contradict the discussion for & = 0 in section 4.3, in which we showed
that no growth could occur in (T*"c, b); see (4.10). However there we required
that ¢ be C, whereas here this is not guaranteed. We need to investigate the
smoothness of an eigenfunction in more detail.

Plainly the eigenfunction (5.16) will not generally be continuous, let alone
smooth, because of the piecewise definition of Tgr in (2.4). However if the
initial field ¢, is chosen to be continuous and satisfy co(—1) = co(1) = 0 then
R"c, is continuous for all n. If we use a supremum norm, ||R||, = 5 and the
series converges uniformly to a continuous eigenfunction c.

We can go further than this and choose a smooth initial field ¢ such that
all even derivatives cgr) (z), r = 0,2,... vanish at z = £1. For this class of
initial conditions R™c remains smooth for all n and we can obtain for the nth
derivative

1B 22( ) ormgm (| (5.17)

m=0
This has the general structure
I(Re)™ ||oo < 271 [|c]|o0 + lower order derivatives of c, (5.18)
and from this it may be checked that
I(B) Moo = O(2")") (0 —> 00) (5.19)

(cf. [8]). Thus if |A| < 2'~" the rth derivative converges uniformly in the sum
(5.16) and the eigenfunction ¢ so constructed is C".

Thus to summarise, we can easily construct a continous eigenfunction c of 7™
for any |A| < 2, but if we impose differentiability we have to restrict to decaying
modes |A| < 1 in our construction. This is in accord with our discussion about
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the lack of amplification of (c,7"b) for a C* function ¢ and a = 0 in section
(4.3) above. As we impose additional good behaviour the values of |A[ are
further restricted. For smooth, that is C*, eigenfunctions we are left with
A = 0, when there are plenty in the kernel of T* (5.1). Of course this is not to
say that there do not exist smooth eigenfunctions with A # 0, indeed we shall
find these for certain values of A and « below, only that the above explicit
construction does not help us.

We may also construct approximate eigenfunctions (5.4) for T and T™ following
the construction (5.14) for the right shift operator. For any A with |A| = 2 we
define a sequence of functions

n—1
by = n/2 z_jo A"™T™b (o, (5.20)

where for each n, we are free to choose the initial field b(yo(x). Suppose we
choose this initial field to have ||b)of| = 1 and to be localised, with support in a
small neighbouhood of z = 0. Then Tb,)o has field localised in neighbourhood
of z = +1 and T?bny in neighbourhoods of z = +1,42, and so forth. For
each n we can thus choose b(n)o so that the supports of iterates do not overlap,

(Tmb(n)o,pr(n)o) =0 0<m<p< n). (5.21)
It is then easy to check that
Pl =1, [\ = T)bll? =8/, (5.22)

analogously to (5.15).

5.4 Lack of compactness in L? and normality

In order to make progress in finding smooth growing eigenfunctions, we will
shortly restrict our attention to a smaller function space B C L2, In this
space the restricted operator S = T™|s is compact and so has a discrete, point
spectrum only. The operators T and T* are not compact in L? (cf. [12]). To
show this for 7" we exhibit a bounded sequence b, for which the image sequence
Tb,, has no convergent subsequence. Set

by = sininm(z +1), Tby =2 **sinna(z + 1), (5.23)

for which || Th, — Thy|| = 2v/2 for n # m. The lack of compactness of T is
then a standard result (p. 159 of [20]).

Finally note that
(T*T — TT")c(x) = 2¢(z) + 267 %¢(—x) (5.24)
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and so T is not normal in general, only on the subspace of functions for which
e*®c(z) is odd, that is, Im T from (5.1).

6 Restriction to a space of analytic functions, B

In the last section we gave a discussion of spectra of the direct stretch—fold-
shear operator T and its adjoint 7* acting in L?. We explicitly constructed
continuous growing eigenfunctions of the adjoint operator T* for any a, but
this does not show perfect dynamo action because the eigenfunctions lack the
required smoothness properties. The case o = 0 highlights this: we showed in
section 4.3 that (¢, T™b) does not grow for any smooth c and b.

We are aiming to demonstrate perfect dynamo action, and we argued below
(2.10) that because of the action of T* (2.9) in stretching out structure, there
should exist smooth eigenfunctions. But we have been unable to find them,
except in a few cases (4.3,4.4) of marginal importance. What has gone wrong?
Rather than yield smooth eigenfunctions, our explicit construction has given
us eigenfunctions with structure on all scales; if one applies T™ structure simply
passes up one scale.

From the dynamo point of view, these eigenfunctions with structure on all
scales will not be robust to diffusion, which will strongly damp small scales.
The effect of introducing weak diffusion 0 < & < 1 will in fact cause the spec-
trum of T to collapse to a discrete set (see paper II). This need for robustness
to diffusion is the reason for the requirement of smoothness in the definition of
a perfect dynamo (section 1.1). The problem in finding smooth eigenfunctions
‘is that the space L? is too large for our purposes, and it is better to work
in a more restricted space where smoothness is guaranteed. A result of [8] is
relevant here: it is shown that starting with smooth initial conditions a field
growing under 7%, when normalised has all derivatives bounded. Thus starting
from smooth initial conditions, one cannot realise individual members of the
large family of eigenfunctions we have constructed. Only a smaller set with
good smoothness properties is likely to be relevant.

In this section we begin to seek smooth eigenfunctions of 7. Our approach
is to restrict the space of functions in which we work to a subset B of L?
consisting of functions c(z) that are analytic in a disc containing [—1,1]. All
functions in this subset are smooth, and although we cannot guarantee finding
all smooth growing eigenfunctions, it is sufficient to find some in B to show that
SFS is a perfect dynamo. We again use [9,20] as references. These techniques
are well known in the dynamical systems literature; see, for example, [26,29].
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6.1 Definition of B and the operator S

We fix a parameter r > 1 and let B be the space of complex functions analytic
in the open disc D = {2 : |2| < r} and continuous in the closed disc D, under
the supremum norm,

el = sup ez 6.)

We take ||-|| to be this norm from now on, rather than the earlier L? norm.
B is a Banach space as it is complete: a Cauchy sequence c(,) of continuous
functions in B must converge uniformly to a continuous function ¢ (as D is
compact). Since ¢, for each n satisfies Cauchy’s integral formula, so must
¢, and differentiating this formula establishes that c(z) is analytic in D, as
required.

Functions in B are automatically smooth on [—1,1] and so lie in L?. We will
therefore restrict T* to B and consider the spectrum of the resulting operator;
we call this operator § = T*| (note we place no star on S), as it acts on a
different space from T* and so has different properties. We define the operators
Ssr = Te|s and Sgy = Td,|s in the same way from (2.10).

We have S(B) C B and S is a bounded operator on B. To show this first define

Sie(z) = c(3(z = 1)), Sre(2) = el3(1 = 2)); - (6.2)
Sac(z) = €/%c(z), Ssc(z) = e7**/%c(z), Ssnc(z) = €**c(2), (6.3)

so that
S = e 2/28,8, — &%28,8, = (S1 — S2)Ssh. (6.4)

Now suppose ¢ € B. Then c is analytic in D and so Sic and Spc are analytic
in the disc |z — 1| < 2r, which contains D given that r > 1. It is then clear
that Sc € B. We also have

1Sl = 182l =1, [1Sall = [1Sell = €72, |ISsull = €, (6.5)
(with equality if applied to a constant function) and thus

1S 2772 (6.6)
6.2 Compactness of S

The fact that S is ‘analyticity improving’, mapping a function analytic in D
to a function analytic in a larger disc, has the important implication that the
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operator S is compact; if ¢ is a bounded sequence of functions in B then
the sequence Sc(y) has a convergent subsequence. We give the proof below for
completeness, using [9,26].

It is sufficient to show that the operators S; and S, are compact, since the
composition of a bounded operator and a compact operator is compact. We
consider only S; and let B be the unit ball in B: S; is compact if S1B is
compact. By the Arzeld—Ascoli theorem it is sufficient to check that 5B is
bounded (which it is as S; is bounded) and equicontinuous. Sy B is equicon-
tinuous, if given any z € D and ¢, there is neighbourhood U, C D of z such
that for all z; € U, and ¢ € B, we have |Sic(2) — Sic(z1)| < e.

To show that S;B is equicontinuous, let z € D and ¢ € B. We may use
Cauchy’s integral formula, as (z — 1)/2 lies inside D,

S1¢(2) ! 7|{w|=r ZUTC(w)_ dw. (6.7)

= omi Iz—1)
Thus applying this also for z; € D,

c(w)3(z — 1)

i foier =TG- D)@~ 1= D)

S1¢(2) — Sic(z) = dw. (6.8)

Now |1(z —1)] < L(r+1) as |2| < r and s0 jw — 3(z = 1)| 2 5(r — 1) (as
|w| = r). This yields

|S1¢(2) — Src(z)] < llell |z — 2] 2r(r = 1)7% (6.9)

This bound is enough to establish equicontinuity of S;B and so compactness
of S.

The fact that S is compact is a key simplification; we recall that the original
operator T* on L? does not have this property (section 5.4). Since S is compact,
it has only point spectrum, o(S) = 0,(S), and this is a countable set with no
accumulation point different from zero. Each point A in the spectrum is an
eigenvalue of S with finite multiplicity; this also corresponds to an eigenvalue
of the original operator T* on L? with a smooth eigenfunction.

We cannot say a great deal more about general eigenfunctions and we need
to approximate S to find these, as we discuss in the next section. Examples
of such eigenfunctions are (4.3,4.4). Here we only note that any eigenfunction
¢ of S with non-zero eigenvalue A must be entire. For ¢ is analytic in |2| < r,
and so Sc is analytic in |2 — 1| < 2r which includes the disc |z| < 2r — 1.
Generally S™c is analytic in the disc |z| < 1+ 2%(r —1). But ¢ = A™"S"¢ and
the result follows. This result is important as it indicates that any choice of
r > 1 would yield the same eigenfunctions and eigenvalues; 7 is a parameter at
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our disposal. In fact we could use any neighbourhood of [-1,1] C C to define
B, rather than a disc. Also the above discussion goes through for a general
phase function f (see (2.11)) provided that f is itself in B, when or is replaced
by ||f]] in the above estimates.

6.3 The adjoint space B*

It is useful also to consider the adjoint S* of S and how it acts. This will
become important in paper II, when we will study weak diffusion using per-
turbation theory and will need adjoint eigenfunctions to implement solvability
conditions. At first sight, as S arose from restricting 7* to B C L?, this sug-
gests we must reconsider 7' itself. However this is not the case; S* bears little
immediate relationship to 7. We follow [29] here.

First consider again the space B which has a basis of unit vectors,
z". (6.10)

If we expand a complex function ¢ € B as a Taylor series 2

c(z) = i cn 2", (6.11)

n=0

then we have

r*leal < llelf < 30 el (6.12)

n=0

The left-hand side is obtained by Cauchy’s integral formula, the right-hand
side from (6.1). We note that we cannot easily specify ||c|| in terms of the
coefficients ¢,, nor which sequences of coefficients {cn} correspond to functions
c in B. Equation (6.12) is the best we can do, and even here it may be possible
for the right-hand side to be infinite and so give no information on ||c||. Note
however that eigenfunctions of S are entire, the coefficients in (6.11) thus go
rapidly to zero, and so (6.12) will give us useful information.

We then consider the adjoint space B*, that is the space of bounded linear
forms B — C. If b is a form in B* then we write (b, ¢) for its action on ¢; note
that (-,-) is bilinear, unlike the original L? inner product (1.3). The norm in

2 Note that this Taylor series need not converge on the boundary of D; however
it will converge on any closed disc inside D and knowledge of the coefficients ¢, is
sufficient completely to specify a given function ¢ € B.
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B* is given by

[bll = sup [{b,c)l. (6.13)
ceB, lll=1

The adjoint basis to e, is €}, with

(e),c) = L?g ~ c(z) dz. (6.14)

2ni Jop zntl

A general form b in B* may be written as a sum of these basis vectors. With
some abuse of notation we may identify a basis form with a function

er(z) =rtz "t (6.15)

n

and identify a general form b with a function
b(z) =Y bpz ™™, (6.16)
n=0
which acts on ¢ € B via

(b, c) = L j{av b(z)c(z)dz = i bnCn.- (6.17)

2 =

Plainly

cQ
r bl < (11 € 3 7ol (6.18)
n=0
Thus the function b(z) in (6.16) identified with a general form b, vanishes at
infinity and is analytic in D* = C*\D, where C* = CU {oo} is the extended
complex plane. Again, however, we cannot precisely specify ||b]| in terms of
{b,}, and the right-hand side of (6.18) may be infinite and so give no infor-
mation.

Note that we have not included r in the definition of the series (6.16) and
(6.11) for b and c. It is convenient not to do this, as the actual eigenfunctions
we find do not depend on the choice of 7. We also note in passing that if we
have an operator such as S, on B with matrix elements Ay, = (z7™1,82") =
r~™(e*  Se,) (as we use in (3.3)) then the norm of S is bounded by

IS < 3 (et Seadl =Y 7™ " Amal- (6.19)

m,n

We will use this bound below. The matrix elements Ay, for the adjoint SFS
operator S are given back in equation (3.3) and fall off geometrically as either
n or m is increased; it may be shown that

™ Amn| < 207/ (T +1
- 2r

’ | <26 (7)™ (620
m—n < ar . .
) o 77 | Amn < de (27' — 1)  (6:20)
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see similar calculations in sections 7.3 and 7.4 below. It is this geometrical
fall-off in matrix coefficients [3,29] that will allow us to approximate S by a
finite matrix below. It is also why zeta function methods work in obtaining
growth rates using periodic orbit sums in SFS and similar fast dynamo models

[1-5,29].
6.4 The adjoint operator S*

Now we have defined the adjoint space B*, we can obtain the adjoint operator
S* to S, defined using (6.17) by

* 1 tas(z— ias(l—-z
(57b,¢) = (b, S¢) = 5 jé H(a)[e =8 Ve(G(z— 1)) e H0-2)o(L(1 — 2))] dz,
(6.21)
so that, changing variables in the integration,
(2m3){S*b,c) = ?{ 2b(1 + 2z)e***c(z) dz + 2b(1 — 22)e***c(z) dz.
|[1+42z|=r |1-2z|=r
(6.22)

Now ¢(z) is analytic inside D, that is inside |z| = r, while b(1 +22) is analytic
outside the circle |1 + 2z| = r, which lies inside D. We can therefore distort
the contour in the first integral (and similarly the second) back to D to give

(5%, ) = ﬁ § 26 b1 +22) +5(1 - 2ela)dz. (623)

This gives S*b in the form of an integral, and we wish to identify this with a
complex function of the form (6.16). To do this we project out all positive or
zero powers to leave

5*b(2) = P (26°*[b(1 + 22) + b(1 — 22)]), (6.24)
where Pg+ denotes this projection.

Like the operator S, the adjoint operator S* is analyticity improving. Suppose
b € B* and so b(z) is analytic in D*. Put

$1(z) =142z, ¢o(2) =1-2z (6.25)

Then b(¢1(2)) is analytic in |¢1(2)| > r or {z+ 1/2] > r/2. Similarly b(¢2(2))
is analytic in |z — 1/2| > r/2. So S*b is analytic in the intersection of these
two regions, i.e., outside both of these circles. Similarly S*"b is analytic in

2r—1

{oc}U N {z:12"(z+1)—2m~1| > }. (6.26)

m=0
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For an eigenfunction with non-zero eigenvalue, b = A~"S5*"b for any n, and so
taking the limit n — oo, is analytic in

Cc\[-1,1]. (6.27)

Generally eigenfunctions of S* will be singular in this interval, and in the
power series representation (6.16) the coefficients b, need not tend to zero.

We do not have much more information about S* and its eigenfunctions. We
do not know of an explicit form for the adjoint eigenfunction corresponding
to (4.3), but corresponding to direct eigenfunctions c; in (4.4) we have adjoint
eigenfunctions b; with

bi(z) = (z=1)" 41— (z+1)7¥FL, A=2"¥  (a=0). (6.28)

These satisfy (b, cx) = 2j!0;x. The functions b; have poles at the endpoints
of [—1,1]; related generalised eigenfunctions of T have been constructed with
delta functions at these end points [12,28]. Whether other eigenfunctions of 5*
may be related to generalised eigenfunctions of T remains an open question.

7Y Perturbation theory for S in B

We have set up a suitable framework in which to discuss S and S*. They
are compact operators and so we need only seek isolated eigenvalues with
finite multiplicity. To do this we will use perturbation theory. The aim is
to approximate S by a finite rank operator Sy whose eigenvalues may be
computed numerically. Here N is an integer giving the level of truncation,
and we may set S = Sy + S’. For us it makes sense to truncate power series
to polynomials of degree N — 1.

7.1 Resolvents and pseudospectra

Before defining Sy we discuss approximations in general. Given a bounded
operator A we may define the resolvent operator of A by Ra(¢) = (¢(I—A4)71,
where ( ranges over the complex plane. R4(¢) is defined and bounded except
when ¢ lies in the spectrum o(A). The basic result we need (p. 208 of {20]) is
that if B is another bounded operator with norm y, the spectrum of A + B
lies in the set defined by

Au(A) = {¢ IRa(Ol 2 07"} (7.1)

This set is known as the p-pseudospectrum of A [34]; it contains o(A) and
generally has a number of components in the complex plane. In our case S

29



and Sy are compact operators, and the spectrum contains only of eigenval-
ues (accumulating nowhere except perhaps at zero) which move continuously
under perturbation (see p. 213 of [20]). We suppose that

IS/ -0 as N — oo, (7.2)
which we will verify below.

Consider first the case A = S. Given a non-zero eigenvalue of S, for sufficiently
small p this will be the only eigenvalue lying in a certain component of A,(S).
We take N sufficiently large that ||| < p. If we then take B = —t5’ and
increase ¢ from 0 to 1 it is clear that Sy = S — S’ will also have an eigenvalue
in A,. Thus any given non-zero eigenvalue of S will be increasingly well ap-
proximated by an eigenvalue of Sy as N — oco. To check that our numerical
results for a given eigenvalue converge correctly in this limit, we need only
verify (7.2).

We can go further though, and use pseudo-spectra to place error bounds on
numerical calculations. We now set A = Sy and B = tS’ and increase ¢
from 0 to 1: if Sy has an eigenvalue X lying in a component of A, (Sy) with
g = |||, then S must have an eigenvalue in the same component. We shall
use this below in section 7.5 to give graphical error bounds on eigenvalues
found numerically.

7.2 Definition of Sy

We now define the truncated, finite rank operator Sy. In view of the definition
of B the natural procedure is to project a function c(z) on its terms up to 2N-1
in its Taylor series. We define a projection P to do this. It may be given by

©0 N-1 N-—-1
Pc(z) =P Zocnz" = z—:o Cn?" = Zo(e;, c)en(2), (7.3)

or equivalently,

— (z/w w)N
Pc(z) = 5:; fc:ml_'c%)i c(w)dw, (I —P)c(z)= 5;% fav(—fu% c(wzjzz)

We set Sy = PS which maps B to the subspace By of polynomials of order
N — 1. To seek an eigenfunction ¢ of Sy with non-zero eigenvalue A, we need
only consider ¢ € By, in which case we are left with obtaining eigenvalues of
the finite N by N matrix with entries A, defined in (3.3). Eigenfunctions and
eigenvalues may now be found numerically. Eigenvalues are shown in figure
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2(a) for N = 128 (solid) and N = 64 (dotted), while figure 4 shows leading
eigenfunctions as functions of real z for @ = 2 and o = 10. These are obtained
from the right eigenvectors of A, and using (6.11) to reconstruct a polynomial
in By. Left eigenvectors give approximate adjoint eigenfunctions which may
be identified with complex functions using (6.16), but it is not particularly
illuminating to plot these.

7.8 Estimates of ||5'|

As discussed above we need to check that ||S’|| tends to zero as N — oo,
where ' = (I — P)S. Recall the breaking up of the operator S = (51 — S2)Ssu
defined in (6.2-6.4) above; we focus on the first term S1Ssp as inclusion of the
second term gives only an overall factor 2. First consider

1 1 (/w)?
I-P = —]{ Lw— : :
( )S1¢(2) 53 Poo w2 c(z3(w—1))dw (7.5)
Now we may push the contour out to |w — 1| = 2r and note that |z/w| <
r/(2r —1) and |w — 2| > r — 1 since |z| < r. These inequalities give

w-psi< 2 () = R0, (76)

Since ||Ssn|| < €*" we are left with

|I57]] < 2F1(N)e™. (7.7)

For any given values of « and r, {|$’|| = 0 as N — oo and so the convergence
of eigenvalues using the power series approximation (with results in figure
2(a)) is guaranteed, following the discussion in section 7.1. The geometrical
reduction in norm is in accord with [29] and is a result of the hyperbolic
stretching in the baker’s map. Note that our estimates become poorer as the
shear parameter « is increased. Also they depend on r, which is a parameter
still at our disposal.

7.4  Error estimates for eigenvalues of S

We have established the convergence of the power series discretisation of the
SFS adjoint operator S defined in the space B. We wish to go further than this
and establish error bounds on the eigenvalues found numerically for Sy with
given values of N. There are two reasons for this. The first is to demonstrate
convincingly that there is perfect dynamo action in the SFS model for given
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values of c.. This is worthwhile as little is known about perfect dynamo action,
and SFS is the key model to study and generalise. Having said this we still rely
on numerical computations and present error bounds graphically. The point
is that the calculations will now involve finite values of N, rather than what
we have so far, which is only the somewhat nebulous property of convergence
in the limit N — oo.

Secondly we wish to establish error bounds to ensure that we understand the
SFS model mathematically in as much depth as possible. It is not obvious at
the outset that we can successfully establish error bounds. We know that for
any given values of o and r there will be eigenvalues of S in the connected
components of the pseudospectrum (7.1) of Sy with u = ||S’,

Av=A,={¢: RN Z st (By=Rsyn=|51). (7.8)

The problem is: how do we estimate ||S'|| and ||Rn(¢)]|? Below we will be
able to give only upper bounds G(IN) (7.21) on ||S’||, and Hy(¢) (7.24) on
|Rx(¢)]]- So we will be able only to plot the sets

Ly ={¢: Hy(¢) > G(N)™'} D An. (7.9)

It is possible that these bigger sets may not give any useful bounds on the
location of eigenvalues in C. If this is the case then we will not mathematically
have established a tight enough grip on perfect dynamo action in the SFS
model.

To establish error bounds it is convenient to redefine Sy, and we take
Sy =PSP, S'=8-PSP. (7.10)

Sy is totally defined by the square N x N matrix with entries Amn in (3.3), and
has the same eigenfunctions as the Sy defined earlier in section 7.2 (although
eigenfunctions of the two operators S3 differ). We may write equally well

S'=(I - P)S+PS(I—-P), (7.11)
S'=(I-P)SP+S5(I—-P). (7.12)

We again need to find ||S'|| with this new definition of S'. We recall the
decomposition of the operator S defined in (6.4) above. Consider

S51(I — P)e(2) = % (1(;__ 1()z/2—wi) c(w) dw. (7.13)

Since |z| < r we have |(z —1)/2w| < (r+1)/2r and |w~ 3(2—1)| > r-1),

[
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and so we obtain

I5:1- Pl < -2 (S52) = Rv) (7.14)

Noting that ||P|| < N. from (7.3) and recalling (6.4), (6.5) and (7.6), we have
from (7.11)

187l < 2[{(Z — P)S1Ssull + 2[|PS35:(1 — P (7.15)
< 2||(T — P)SulllISsull + 21| PIlISsll[1S52(F = P)| (7.16)
< 2F,(N)e™ + 2N Fy(N)e*/? = G1(N), (7.17)

or alternatively using (7.12),

19|l < 2|I(Z — P)S1SsuP|| +2[|1SsS1(1 — P)| (7.18)
<2l - P)SilllSsulll Pl + 211 S5[[[[S2( — P)i (7.19)
< 2NF;(N)e® + 2F,(N)e®/? = Go(N). (7.20)

We finally set

G(N) = min(G:1(N), G2(N)) (7.21)
as the tightest estimate of the norm of 5.
We now need an estimate for the norm of Ry(¢) = {((I — Sn)~". We have the

matrix entries Apmy in (3.3) for Sy : B — By. We restrict Sy to the subspace
By C B, and on this space compute its resolvent by

Rn(¢) = ((In = Sw) 7, (7.22)

where Iy = P is the identity on By. We then extend Rn(¢) to the rest of B

by defining it to be zero on z*, n > N. Then it may be seen that the resolvent
Ry of Sy on the full space B is given by

Rn(Q)c= Ryc+ ¢ Y1 - P)c= (By — (' In)c+ ¢ e, (7.23)

whence
IRN (O < 1Ry = ¢ il + IS (7.24)
Now to use this result, we can apply the upper bound (6.19) to || Ry — ¢ Inl|

to give as an upper bound on ||[Ry(¢)||, which we will call Hy(¢). This we can
compute numerically as detailed next.
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Fig. 5. Eigenvalues in the complex plane. Contour lines for log! ~(n) as a function
of ¢ are plotted in the complex plane for (a) (top left) o = 2, r =2, N = 44 and
(b) (top right) @ = 10, r = 2 and N = 116. (c,d) show magnified regions of case
(b). In each case doited lines show regions in which /;, <1 and solid lines {, > 1; in
the solid islands, eigenvalues are localised. The unit circle is also plotted in (a,b).

7.5 Numerical results and contour plots

We now have all the tools we need to isolate eigenvalues in the complex plane
and to give error estimates, by means of contour plots. We set

In(¢) = Hn(()G(N), (7.25)

so that the set Ly is given by Iy(¢) > 1. We take r = 2, as we have found
little advantage in adjusting this parameter, and some given value of N. It
is then straightforward to compute G(N) from (7.21). To calculate Hx(() we
first set up the N x N matrix with entries Apmy defined in (3.3). This gives
Sy and we may use a NAG matrix inversion routine to calculate RN(C ) from
(7.22). We then use (7.24) together with (6.19) to compute numerically the
upper bound Hy(¢) on ||Rx(¢)|l- This is done for each value of ¢ on a grid,
and the results are shown as contour plots.

We have taken some illustrative values. Figure 5(a) shows a contour plot of
logln(¢) for r = 2, & = 2 and N = 44; in this case G(N) = Ga(N) =
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5.3%x107%. The distance between contours is %, and positive or zero contours are
shown solid, negative contours dotted. Thus regions of the set Ly are indicated
by the solid contours. The leading eigenvalues of the approximate operator SN
in this case are given by Ay = —0.048 — i1.135, A; = —0.416 — 10.909 and the
corresponding eigenfunctions are shown in figure 4(a,b). It may be seen that
there are islands of Ly containing these values, and so the full operator S
has an eigenvalue in these islands. In particular we note that the component
containing the leading eigenvalue ) is localised outside the unit circle; thus
we conclude that there is an eigenvalue of S outside the unit circle, and so
perfect dynamo action in the SFS model with o = 2. The second eigenvalue
X is simply the exact solution (4.3).

As another example figure 5(b) shows a similar contour plot for r =2, a = 10
and N = 116, for which G(N) = Go(N) = 2.3 x 107°. The leading eigenvalues
of the approximate operator Sy are Ag = 0.528 + i1.335, A, = 1.410 +40.107,
Ay = —1.355 — 40.390, As = 1.053 —40.932, A, = —0.761 — i1.047, As =
—1.065 + 10.266 and Ag = —0.839 + i0.544. The corresponding eigenfunctions
are shown in figure 4(c-k). The eigenvalues Ag to A4 lie in distinct components
of Ly lying outside the unit circle; enlargements of figure 5(b) are shown in
figure 5(c, d) to confirm this for Ao and A;. The corresponding eigenvalues of
S are localised outside the unit circle, corresponding to perfect fast dynamo
action with (at least) five modes destabilised. The eigenvalue As lies outside
the unit circle, but the shape of the set Ly shown in figure 5(b) is such that
we cannot isolate a corresponding eigenvalue of S outside the unit circle, at
least for this value of N. The eigenvalue )¢ is the exact solution (4.3).

We find that eigenvalues and estimates of Hy(¢) obtained numerically appear
to be relatively insensitive to N as N increases, whereas the term G(N) de-
creases geometrically, and it is this that serves to give rapidly decreasing error
bounds as N is increased.

8 Miscellaneous topics
8.1 Results for large shears

We recall that figure 2(a) shows results for 0 < o < 10 using the power series
truncation, which we have justified mathematically. It is interesting to see
what occurs for larger values of . Using resolutions of 128% we can increase
« to about 20 using the power series discretisation. However using the sine
series discretisation (see figure 2(c)) we can increase a to about 40. Now while
the sine series discretisation is poor for |A| < 1 it agrees extremely well with
the power series discretisation for larger A.
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Fig. 6. Computations of eigenvalues A of S. Absolute values |A| are plotted against «
using the sine series discretisation (solid) and the power series discretisation (dotted)
using matrices of size 128 x 128 (solid). (b) shows an enlargement of (a). Only the
first thirty eigenvalues, ordered in modulus, are plotted and the resolution in « is
0.01.

In figure 6 we therefore show the power series discretisation (dotted) for 0 <
a < 20 and the sine series discretisation (solid) for 0 < a < 40. Figure 6(b)
shows an enlargement of 6(a). In this enlargement the two numerical methods
give the same results for 0 < o < 20, and so the sine series results for larger o
are likely to be correct even though we have no formal justification for this. On
this assumption, we see that the individual branches appear to asymptote to
a value of v/2, in agreement with random-phase arguments of [22,28]. However
the peaks appear to exceed this value as o is increased, and it appears that
the perfect dynamo growth rate is greater than this value for any a > 5, say.

8.2 Conjugacy

In this section we consider the SFS model but with a general phase function
f as in (2.11), rather than linear f as we have considered so far. We explore
briefly how eigenvalues depend on the form of f, working with S and taking
f €eB.

First we note that two distinct phase functions f and h may be related so as
to give precisely the same eigenvalues; we refer to these as conjugate phase
functions. Suppose we have a phase function f for which Sy has an eigenfunc-
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tion ¢, Syc = Ac, where we make the role of f explicit by means of a subscript.
This can be written in the form

Ac(l + 2z) = e @ ¢(z) — e ¢(—z). (8.1)
If we replace
c(1+2z) = e ¥@d(1+2z), A=e"p, (8.2)

where g(z) is an even function and 1 a constant, then we find that d is an
eigenfunction of S}, eigenvalue y, where

h(z) = —g(z) + f(2) + 9(5(z = 1)) = ¥. (8.3)

The eigenvalues will be unchanged in modulus, |A| = || under this change of
phase function, or conjugacy of SF'S models.

We can use this transformation to simplify phase functions. For example, a
quadratic phase shift is equivalent to a linear phase shift, via,

f(z) =0z +pz?, g(z) =4B*/3, ¥ =P/3, h(z)=(a—26/3)z. (84)

Clearly such conjugacy may be used to eliminate all even powers in a polyno-
mial form of f.

In fact any f in B (for large enough r) is conjugate to a phase function which
is 0dd. Let f = feven + foad and set ¢ = feven and ¥ = fo, the constant term
in f. The new phase function A is given by (8.3) above and, using obvious
notation, satisfies

heven(x) = Peven(feven(%(z - 1)) - .fO): (85)
hoad (%) = fodd(Z) + Podd(feven (3(x — 1)) — fo)- (8.6)

It may then be verified that
”heven” < C”feven”’ ”hodd“ < ”fodd“ +C||feven”a (8-7)

with C = (r +1)?/(4r* — (r + 1)?), and so for large enough r (r > 1+ V2),
the even part Aeven has smaller norm than feen. Iterating this process leads
to convergence to a phase function in B which is odd and conjugate to the
original f.

So we may consider just odd phase functions. These can give different results
from linear shear. Consider the case when f(z) = az? for an integer g. Writing
S = SgrSsy as usual, the non-zero matrix elements Ay, and By, in the power
series representation for Sgr and Sg, are

n!

Apn = (=1)mtHi2ln (n > m,n odd) (8.8)

m!(n — m)!
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Fig. 7. Computations of eigenvalues A for the phase function f (z) = az® using
170 x 170 matrices.
(this is simply (3.3) with a = 0) and

B = (—ia)? /p! (m=n+pgp=0,1,2,...). (8.9)

These two matrices were multiplied together numerically and eigenvalues ob-
tained. The cases ¢ = 1 and ¢ = 2 (not shown) confirm earlier results and
the above discussion. Results for ¢ = 3 are given in figure 7. We observe that
the picture does differ from the linear shear (back in figure 2(a)) and there is
perfect dynamo action for o« 2 4. Note that there is still a neutral mode with
|\l = 1, suggesting that this may be a feature for general phase shifts f.

8.8 Spatial discretisations

In this section we revisit briefly the spatial discretisations mentioned in section
3.4, for which growth rates are shown in figure 3. Recall that the interval [-1, 1]
is divided into M equal subintervals, and a power series representation with
N terms is used in each. This approach can be justified as we did in sections
6 and 7 above and convergence may be shown as N — oo for fixed M. We
just sketch the details here.

We have an adjoint eigenfunction given by ¢ = {¢;}. We demand that each
¢; € B so that ¢ lies in a Banach space B = BM with norm ||&] = max;||c;||.
The operator T* again becomes S and is a bounded, compact operator on B.
Again it is possible to project each ¢; to a polynomial of IV terms to obtain an
approximate operator Sy and the eigenvalues will converge as N is increased.

However it is important to note that this piecewise discretisation & = {c;(z)},
when reconstructed to give c(z) (cf. (3.9,3.10)) allows eigenfunctions c(z) with
discontinuities, which are not in B, but are in L?. From section 4.2 such dis-
continuities can only occur at periodic orbits of the underlying tent map, and
so depend on the spatial grid, that is the value of M chosen.

To illustrate this figure 8 shows leading adjoint eigenfunctions reconstructed
for « = 25, M = 48 and N = 2. In figure 8(a,b,d) we recover smooth
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Fig. 7. Computations of eigenvalues A for the phase function f(z) = az® using

170 x 170 matrices.
(this is simply (3.3) with & = 0) and

Ban = (—i@)?/p!  (m=n+pg,p=0,1,2,...). (8.9)

These two matrices were multiplied together numerically and eigenvalues ob-
tained. The cases ¢ = 1 and ¢ = 2 (not shown) confirm earlier results and
the above discussion. Results for ¢ = 3 are given in figure 7. We observe that
the picture does differ from the linear shear (back in figure 2(a)) and there is
perfect dynamo action for o 2> 4. Note that there is still a neutral mode with
IA] = 1, suggesting that this may be a feature for general phase shifts f.

8.8 Spatial discretisations

In this section we revisit briefly the spatial discretisations mentioned in section
3.4, for which growth rates are shown in figure 3. Recall that the interval [—1,1]
is divided into M equal subintervals, and a power series representation with
N terms is used in each. This approach can be justified as we did in sections
6 and 7 above and convergence may be shown as N — oo for fixed M. We
just sketch the details here.

We have an adjoint eigenfunction given by é = {c;}. We demand that each
cj € B so that ¢ lies in a Banach space B = BM with norm ||&|| = max;]|c;].
The operator T* again becomes S and is a bounded, compact operator on B.
Again it is possible to project each ¢; to a polynomial of N terms to obtain an
approximate operator Sy and the eigenvalues will converge as N is increased.

However it is important to note that this piecewise discretisation & = {c;(z)},
when reconstructed to give ¢(z) (cf. (3.9,3.10)) allows eigenfunctions c(z) with
discontinuities, which are not in B, but are in L?. From section 4.2 such dis-
continuities can only occur at periodic orbits of the underlying tent map, and
so depend on the spatial grid, that is the value of M chosen.

To illustrate this figure 8 shows leading adjoint eigenfunctions reconstructed
for « = 2.5, M = 48 and N = 2. In figure 8(a,b,d) we recover smooth
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Fig. 8. Adjoint eigenfunctions based on a piecewise linear spatial discretisation plot-
ted as in figure 3, with M = 48, N = 2 and o = 2.5. The top row is (a,b,c) and
bottom (d,e,f).

eigenfunctions. However 8(c) shows an eigenfunction with a discontinuity at
the fixed point 1 and |A| = 1, and in 8(e) there is a discontinuity in derivative
there. Finally 8(f) is becoming noisy, as are subsequent eigenfunctions, and
these are spurious at this truncation (cf. figure 3(b)). Note that growth rates
in figure 3 appear to show convergence as M — oo for N > 2 but not for
N = 1. It is natural to consider convergence in this limit of refining a spatial
grid and it appears that the error is O(M =2) for N = 2, but we do not have
any mathematical justification for this behaviour.

8.4 Flux discretisations

Finally we give a further way of discretising the SFS dynamo. Like taking the
adjoint, it turns the contraction of magnetic field structure under the direct
operator T into expansion and smoothing of structure. However it retains some
properties of the direct operator and may be useful for other models.

Consider a magnetic field b(z) and define
1 .
é(s) = / e (z) da. (8.10)

We call this the fluz function of the field. Note that ¢(0) is the total flux in
the field and ¢(s) is the flux in the field after shearing through os.

Now if b(z) is mapped under the direct SFS operator T' (2.7), then @(s) is
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mapped under U with
Ug(s) = e=eD2g(4(s + 1)) — e C+D2g(—3(s + 1)). (8.11)

This holds without any approximation. U tends to stretch out structure in ¢.
If we only wish to know about the subsequent evolution of the total flux #(0)
under iteration of U, it is sufficient to know ¢(s) for s € [—1,1] to determine
U™¢(0). Perhaps unsurprisingly this operator is equivalent to the adjoint T
(2.9): if we relate c(z) = ¢*(—z), then evolution of c under T* and ¢ under U
correspond.

Differences arise when we discretise in space. We can set up a fluz function
discretisation. As in section 3.4 we break [—1,1] into M strips I; and set

1 )
$;(s) =6 /_ e (a) da, (8.12)
50 that ¢(s) = °; e~@¥(2+1) ¢, (s). This set of functions ¢ = {¢;} again obeys

a closed system of equations; under the forward stretch—fold operator Tsp, the
¢; map according to

Usr;i(s) = &0 Gpr012i(5/2) + € G 1rp219541(5/2) (7 <0),
J _eia63/2¢M/2_2j_1(_s/2) _ e—ia&s/2¢M/2_2j_2(_s/2) (.7 Z 0),
(8.13)

and for the shear operator Tgy,

Usndj(s) = e~ 0@ g, (s +1). (8.14)

If we now combine U = Ug,Usr, we have a prescription for evolving the flux
function discretisation, and we only need to know ¢;(s) for —1 < s <1. The
resulting the resulting operator U looks broadly similar to the adjoint operator
T* in (3.14) above, but closer examination reveals it to be different, because
the indices j are mapped differently. In the flux discretisation we have divided
the field into strips and in each strip recorded in é information about how it
responds to shear. When we compute ngbJ we combine the flux from the two
strips which, under the forward SFS map (2.1), are first halved in scale and
then mapped into strip I;. On the other hand the adjoint operator T* doubles
the scale, and then computes ¢;(z) from the two expanded strips that overlie
I;. Thus the flux discretisation retains the behaviour of the direct operator
T in terms of how the strips are mapped (compare the indices in (8.13) and
(3.11)), but within each strip structure as a function of s is stretched out. If
we now truncate ¢;(s) as a power series of N terms, then N =1 corresponds
to only recording the fluxes ¢;(0), N =1 the linear response to shear, and so
forth.
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In fact the matrices one obtains for the flux discretisation operator U with
given N, M are closely related to those for 7™ or S (section 3.4) and numer-
ically the eigenvalues found are identical, so figure 3 may be interpreted as
results for U as well as for §. Thus it appears that to use a flux discretisation,
i.e., work with the forward map T, it is necessary to use more information
than just fluxes ¢(0) (which would give the incorrect results for N = 1 shown
in figure 3(a)). We would need to take N > 2, to obtain results as in figure
3(b) to obtain good results for large M.

We have discussed this discretisation since it offers new approaches to approx-
imating fast dynamos. In particular if one has a hyperbolic two- dimensional
model (e.g., [4,17]) with a contracting and expanding direction, z and y say,
taking the adjoint operator offers no immediate advantage [8] as it simply
exchanges contraction with expansion. Instead one might break up space us-
ing a Markov partition and compute a flux function ¢;(s,y) for each piece,
integrating over only the contracting direction z. The resulting discretisation
would then be expanding in s and y, with advantages for analysis or numerical
computation. However there remain further obstacles. The above discussion of
SFS works only for linear phase functions f(z) = az, and so a general phase
function f(z,y) in a two-dimensional model would need to be approximated
as piecewise linear.

9 Discussion

In this paper we have considered the SFS map with zero diffusion, and studied
the direct operator T' and its adjoint T™. The main result of the paper is
that SF'S has perfect dynamo action: for large enough shear, o > /2, we
have obtained smooth growing adjoint eigenfunctions. The key to our study is
moving from L?, magnetic fields of finite energy, to a smaller space of analytic
magnetic fields, B. In L? the operators T and 7™ are not compact, and in
particular T* has uncountably many eigenfunctions; however these are not
generally smooth. Reducing to the space B builds in smoothness at the outset,
makes the relevant operators compact and allows us to make progress.

Our study has involved a combination of analytical and numerical techniques
to establish growth rates with error bounds, based on manipulating finite ma-
trices. A solely analytical approach, for example to show that perfect dynamo
action is inevitable for sufficiently large c, remains a challenging problem.
One proxmising approach is to use Newton—Raphson iteration and the con-
traction mapping theorem (Dr. Ben Mestel, personal communication). We
also note that perfect dynamo action, as defined in section 1.1, only requires
us to obtain smooth eigenfunctions of T' or T*, whereas we have imposed a
stronger condition of analyticity. This leaves open an obvious question: are
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there smooth eigenfunctions of T or T* that are not analytic?

In terms of future work, there are several different directions to go from here.
The most important is to introduce diffusion and study how perfect dynamo
action relates to fast dynamo action: that is the subject of paper II. Here we
only mention that, once diffusion is introduced, the dynamo operator in L?
becomes compact, and so has a discrete family of eigenfunctions and eigen-
values. It is then natural to develop a perturbation theory, which takes the
smooth eigenfunctions in this paper and computes modified diffusive growth
rates.

Another problem is to extend the above analysis from one dimension to two-
dimensional problems, for example cat or pseudo-Anosov maps with shear
[4,17]. In this case the direct operator T contracts magnetic field in one di-
rection and expands it in another. Taking the adjoint exchanges these two
directions and so offers no obvious simplification (unlike in SFS when a sin-
gle contracting direction is exchanged for a single expanding one). Possible
approaches include using the pinning coordinates of Rugh [29], or the flux
discretisation discussed in section 8.4 abave, to convert just one contracting
direction into an expanding direction. Also the work of Rugh should allow
justification of the zeta function methods used to obtain dynamo growth rates
[3-5,29].

Finally we reiterate that the key to our analysis was to obtain the correct
setting: going from a non-compact operator T in L? with many unpleasant
eigenfunctions, to an operator S on a subset B C L2 for which smoothness
is guaranteed. It is the hyperbolicity of the underlying baker’s map that is
crucial in obtaining compactness (and this is what underlies the study [29]).
For a more realistic, smooth fluid flow, for example pulsed Beltrami waves
[7,8], this hyperbolicity is lost as the stretching becomes non-uniform at the
folds of the map [31,32]. It is far from clear how to restrict the domain of
a general dynamo operator T' or T* in a similar way to obtain a compact
operator. However this seems the most promising approach for proving results
about perfect and fast dynamos in general classes of realistic flows, and so
accounting for the apparent robustness of fast dynamo action as observed
numerically in wide classes of flows.

A Appendix: the stretch—stack—shear map

In this appendix we define a model similar to SFS, but in which we replace
the stretch—fold (SF) operation by a stretch-stack (SSt) operation. This model
is much simplified compared with SFS, and allows more explicit calculations
[4,12]. Tt has been used to model the stretch-twist—fold dynamo [14]. The
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‘stretch-stack’ (SSt) operation acts on magnetic fields by

2b(1 + 2z) (z <0),
Tssib(z) = Al
Ssib() {2b(—1 +2z)  (z>0). (A1)
The adjoint operator is given by
Tasie(z) = c(3(z — 1)) + c(3(z +1)). (A.2)

We may then define a stretch-stack-shear (SStS) operator T' = Ts,Tss; with
adjoint T* = T3, TS, For @ = 0 the operators T and 7™ amplify constant
magnetic field, b = 1, A = 2, and so the SStS model is trivially a perfect
dynamo.

The adjoint operator 7* has an infinite family of eigenfunctions
¢cj(z) = Pj(z)e™® Xj=2"7cosa (A.3)

where P;(z) is a polynomial of degree j. Thus as « varies, we may trace out
smooth branches of eigenvalues. For the direct operator T we know of an
explicit eigenfunction only for particular values of o, namely

b(z) = €°®, A=2¢", a=nm. (A.4)

In view of the way in which T reduces scale we suspect that these are the only
values of @ which allow eigenfunctions of T' in L?. For o = 0 it is straight-
forward to show that T has only the eigenfunction ¢ = 1 with A = 2, by
expanding any eigenfunction in L? as a sum of Fourier modes enre,

B Appendix: Eigenfunctions of T for general phase functions

For SFS the direct operator T has no eigenfunctions in L? for a = 0, and we
have not found any eigenfunctions for o > 0: recall that an eigenfunction of T'
must have || = 2. However the related stretch—fold-stack map (appendix A)
has a smooth eigenfunction (A.4) for certain o values. The same is true of
the stretch—fold—slide model [21,22]. However these represent cases when the
phase shifts are ‘just right’, and are likely to be non-generic. To support this
view let us return to SFS but with a general phase function f(z) (see (2.11)).
We will argue that it is exceptional for such a model to have a continuous
eigenfunction b (and so formalise a similar argument on page 111 of [12]).

Let us take f to be a continuous function on [—1, 1] with the supremum norm,
f € C°. Consider a primitive periodic orbit & = (zo,z1,... , Tm-1) of the
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tent map (2.6). Suppose T has a continuous eigenfunction b with eigenvalue
A, |A| = 2. Evaluating T™b = A™b at x, yields

m—1

2"MA\™ = 1:[() sign(z;) exp(—if(z;)) = @s(x). (B.1)

Provided b does not vanish on this orbit, this gives possible values for the phase
¢ of A = 2¢*. However taking a different primitive periodic orbit y, of period
n will generally give an incompatible set of phases. Let F'(z, y) represent the
set of phase functions f for which the phases on the two orbits agree

F(z,y) = {f: ®;(z) = ™, &;(y) = €™ for some ¢}. (B.2)

For each pair of orbits the set F(x,y) represents a closed subset of C° that
is nowhere dense, having empty interior. For any f in C°\ F(x,y) the eigen-
function b must vanish either on & or on y. By Baire’s category theorem (e.g.,
chapter 5 of [9])

¢\ U Flzy) (B.3)

z,y (z#y)

is dense in C° (and is of the second category). For any function f in the set
(B.3) above, no continuous eigenfunction can exist, as it would be required to
vanish on a dense set of orbits.

Thus ‘near’ to any phase function f there is a phase function for which no
continuous eigenfunctions exist, and in this sense, for ‘generic’ phase functions
f no continuous eigenfunctions are possible. However our argument says noth-
ing about general eigenfunctions in L?, and any results here would be most
interesting.
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