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Abstract

Recent examples of biological pattern formation where a pattern changes
qualitatively as the underlying domain grows have given rise to renewed
interest in the reaction-diffusion (Turing) pattern formation model. Sev-
eral authors have now reported studies showing that sequences of patterns
consistent with experimental observations can be generated by the Turing
model with domain growth, demonstrating the tendency for temporally
regular and spatially symmetrical splitting or insertion of concentration
peaks in response to growth of the underlying domain. This has also
been suggested as a mechanism for increased pattern selection reliability.
However, thus far authors have only considered the restricted case where
growth is uniform throughout the domain.

In this paper we generalise our recent results for reaction-diffusion pat-
tern formation on growing domains to consider the effects on pattern for-
mation of growth that is not spatially uniform. The purpose is twofold:
firstly to demonstrate that the addition of weak spatial heterogeneities
does not change the conclusions reached for pattern formation on growing
domains, but secondly that sufficiently strong nonuniformity, for example
where only one part of a larger domain is expanding, can give rise to
sequences of patterns not seen for the uniform case, and gives a further
mechanism for controlling pattern selection. A framework for modelling
is presented in which domain expansion and boundary (apical) growth
are unified in a consistent manner. The results have implications for all
reaction-diffusion type models subject to underlying domain growth.

1. Introduction

Pattern formation in reaction-diffusion systems is the paradigm for models of
spatial self-organisation, and following its proposal by Turing in 1952, the theory

1



Crampin et al.: Nonuniform Domain Growth 2

has found many applications in modelling biological pattern formation. Tradi-
tionally models consider the formation of pattern under the pre-pattern assump-
tion, that spatial pattern is initially established in the concentration of some
chemical (or morphogen) and only subsequently, and on a longer timescale, are
these patterns interpreted for cellular differentiation (as positional information).
Recently several examples of biological pattern formation have been described
where an observed pattern changes qualitatively as the underlying domain grows,
suggesting that the pattern formation process in these examples is commensurate
with growth of the domain which is being patterned.

Turing (1952) proposed that pattern formation during morphogenesis might
arise through an instability in systems of reacting chemicals, driven by diffusion.
A set of two or more chemicals is required to interact in a well defined manner
in order that heterogeneous patterns may arise in their concentrations. Signifi-
cantly, for the spatially homogeneous state to be stable in the absence of diffusion
yet unstable to spatial perturbations of particular wavelengths (diffusion-driven
instability, DDI) disparity is required between the diffusivities of the chemicals.
The pattern forming interaction between two such chemicals has been described
in terms of short range auto-catalytic activation and long range (lateral) inhi-
bition by Gierer and Meinhardt (1972), and in two-species models the chemical
components are referred to as the activator and the inhibitor species. Linear
stability analysis (Murray, 1993) of the homogeneous steady state shows that
the inhibitory chemical must have larger diffusivity than the self-activating one.

Renewed impetus was recently provided by Kondo and Asai (1995), who sug-
gested that a reaction-diffusion mechanism could be responsible for the dynamic
changes in pigmentation patterns of the marine angelfish Pomacanthus. Unlike
mammalian coat markings, the pattern in the skin of these fish changes dynami-
cally during growth of the animal, rather than simply enlarging in proportion to
the body size. Juvenile P. imperator display concentric stripes and P. semicir-
culatus have a regular array of vertical stripes which increase in number during
growth. Juvenile P. semicirculatus of less than 2cm in length display three ver-
tical stripes which separate until the length of the fish is approximately 4cm, at
which point new stripes appear between the original ones. Similarly at around
8-9cm in length new stripes again appear between the existing ones. In this
manner the pattern changes by insertion of new stripes as the animal roughly
doubles in length, to preserve the wavelength of the pattern. In P. imperator
this behaviour is maintained in the adult fish, where horizontal stripes maintain
an average spacing. This dynamic regulation of pattern is quite unlike the static
pattern selection problem classically studied for the reaction-diffusion system.

The numerical computations of Kondo and Asai (1995), subsequently con-
firmed and extended by Painter et al. (1999), show that this sequence of patterns
is reproduced by reaction-diffusion schemes on growing domains, with the pat-
tern wavelength conserved when the domain length is doubled, called frequency-
doubling (FD, equivalent to mode-doubling on the dimensional domain). Tran-
sitions between patterns arise through one of two mechanisms, insertion (as for
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the fish) or splitting of activator peaks, and in special circumstances these mech-
anisms operate together (frequency-tripling, see Crampin et al., 2001). Patterns
.evolving on the growing domain follow a sequence which depends on the ini-
tial pattern to form, but is otherwise insensitive to initial conditions, and hence
it has been suggested that this is a mechanism for reliable pattern generation
(Crampin et al., 1999).

Domain expansion has previously been considered in reaction-diffusion models
for the branching morphology of growing Micrasterias (Lacalli, 1981) and for the
emergence of tooth primordia in the alligator (Kulesa et al., 1996). Here exper-
imental evidence suggests that the spatial positioning and order of appearance
of tooth primordia is determined in part by tissue growth throughout the jaw.
Recently it has been suggested that reaction-diffusion pre-patterns may be im-
portant in the growth and development of solid tumours (Chaplain et al., 2001),
and in ligament patterning in certain bivalves (Madzvamuse et al., 2001).

Biologically there may be many underlying reasons for nonuniformity in do-
main growth. For example, signalling cues which determine the local growth
rates (such as growth factors, or other chemicals) may not be uniformly dis-
tributed throughout the tissue. In such cases the local strain rate will depend on
position (as well as time). Also, it is biologically plausible that the reacting and
diffusing chemicals may themselves be responsible for the local determination of
the growth, so that the local expansion rate is a function of their concentrations,
a situation we call reactant-controlled growth. One further scenario which can
be studied is that of apical growth, for example in developing shells (Meinhardt,
1995) and at the apical meristem in plants, where patterning occurs behind an
outgrowing region at the boundary of the domain.

In this paper we investigate the formation of pattern sequences in the Tur-
ing reaction-diffusion model under such nonuniform conditions. In particular we
would like to know whether introducing weak nonuniformity (where there is
slow quantitative change in the growth across the domain) disrupts the regular
frequency-doubling sequence, or whether the sequence is robust to such changes.
Furthermore, we are interested in whether suitably chosen and sufficiently strong
nonuniformity (such that one section of the domain is growing in a quite differ-
ent manner or rate to another part) can produce reliable sequences other than
frequency-doubling. In the following section we present the modelling framework,
which is then used in the subsequent sections to illustrate pattern selection under
uniform, apical and finally nonuniform growth conditions.

2. Model Derivation

The evolution equations for the reaction-diffusion processes on a growing do-
main are readily obtained from consideration of mass conservation. Rather than
considering one particular case, we present a general framework which will allow
subsequent inclusion of the detailed properties of any specific tissue. Conse-
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quently the derivation of the governing equation is considered as a problem in
kinematics, and no constitutive equations are proposed.

Specifically, we assume that the domain undergoes deformation and expansion
with no accompanying change in density (incompressibility condition). Growth
consists of local directional volume expansion resulting in the transport of ma-
terial. In what follows we will consider only planar domains, however, it is clear
that domain curvature, both stationary and changing in time, are potentially
important influences on pattern formation, in particular in the biological con-
text.

Reaction diffusion systems of the type studied for pattern formation generally
exclude cross-diffusion, and are coupled only in the kinetic terms. Hence we may
consider the kinematics for a single substance with straightforward generalisation
to a system of interacting chemicals. Growth of the domain x € Q(t) with
boundary 9€2(t) generates a flow a(x, t). Application of the Reynolds Transport
Theorem to the equation of mass conservation for a substance C' which diffuses
with constant-density diffusivity D, and undergoes reaction at rate R gives

% +V-(ac) = D,V + R(c,x, 1) (1)
where c(x, t) is the concentration at position x and time ¢. The coupling to other
substances, which may also diffuse, is through the reaction term R(c,x,t). The
time varying domain introduces two new terms to the standard reaction-diffusion
equation: transport of material around the domain at a rate determined by the
flow, a - V¢, and the diluting (concentrating) effect of local volume increase

(decrease), cV - a.

2.1. Nondimensionalisation

The Turing instability requires the interaction of (at least) two substances, (u, v),
giving a system of equations of the above form coupled through the kinetic terms
f(u,v) and g(u,v). Before nondimensionalising, the system is standardised by
ordering the variables in terms of decreasing diffusivity such that D, > D, and
the activating species is labelled as v. Introducing nondimensional variables for
concentration, position and time leads to the nondimensional system

%+ V@) =Vt f(u,0) e
% +V-(av) = %V% + g(u, ) (3)

where d = D, /D, < 1is the ratio of diffusivities, v = wL?/D, is a dimensionless
parameter which represents the ratio of diffusive Tp to kinetic Tx relaxation
times, Tp = L?/D, and Ty = 1/w, L is a length scale (the initial domain
length in the one-dimensional case) and w is a reaction rate. Typically, no-flux
conditions are imposed on the domain boundary

Vu=Vv=0 on xe&o(). (4)
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2.2. Determining the Flow

The flow a may be specified directly for certain simple cases. However, in general
a(x,t) will be determined by an extended system of constitutive equations de-
scribing the properties of the tissue. We will assume that growth properties are
determined locally due to factors that will not be explicitly modelled, but which
might include the effects of growth factors and cellular or sub-cellular structures
giving rise to mechanical anisotropy, influencing the direction of growth. Such
properties will be specified on an initial position X and subsequently follow the
flow due to tissue growth. Lagrangian coordinates, (X, t), are therefore a very
natural system in which to work. Tissue movement is described in terms of the
trajectories I' of elemental tissue volumes

x =T(X,t) = (T'1(X, ), [2(X, ), T5(X, 1)). (5)

Solid body translations and rotations of the domain leave the pattern gen-
erated by reaction and diffusion within the tissue unaffected. The coordinates
for the domain are chosen such that there is a reference point which is initially
at the origin of the coordinate system and which remains at the origin during
the subsequent flow. Some general conditions must then be observed for the
components of I'. From the definition of I', the initial condition is

I'(X,0) = X. (6)

In the absence of solid body translations we also have the boundary condition
I'(X.,,t) = X, for reference point X,, and choosing the coordinate system such
that the point of reference is the origin, X, = 0, leads us to require

I'(0,t) = 0. (7)

The deformation of the tissue due to growth in N-dimensions is described by
the N x N rate of deformation tensor L;; where the components are determined
by local tissue properties. The antisymmetric part of this tensor is associated
with rigid body rotation and so we assume that L;; is symmetric, describing
the tissue strain rate. Off diagonal elements of L;; correspond to the shear rate
between axes z; and z; with no accompanying volume change. On-diagonal com-
ponents give the rate of extension along each axis and the trace

Y Lij=V-a=8(X,t) (8)

i=j

gives the rate of volume expansion, thus for domain growth we must have S(X,t) >
0 (and hence ¢V - a is a dilution term). L;;(X, ) is related to coordinates (X, t)
via
0°T; or;
N N el §
99X, 2; e (©)
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from which in general we can calculate I'(X, t) and thus the flow, a, due to the
domain growth.

In the following sections we consider several specific cases, where we assume
the form of the components of L;; and from them derive the trajectories, I, and
the flow, a. Firstly we consider the general form taken for the evolution equation
for one spatial dimension.

2.3. One-dimensional Growth

In this paper we will present results in one spatial dimension. Specification of the
local growth characteristics reduces to specifying the sole component of the ten-
sor, strain rate Ly; = S(X,t). The trajectories, found by integrating equation (9)
with 1, j, k = 1 using conditions (6) and (7), are

I(X,t) = /OX [exp /..tS(z,T) d'r] dz (10)

and the flow a(X,t) = 0I'/dt. To isolate the effects of transport within the do-
main and to facilitate comparison of results, we transform the spatial coordinate
to the unit interval using the uniform spatial scaling £ = z/r(t) € [0, 1], where

r(t) =T(1,%) (11)

is the nondimensional domain length, and the transformed evolution equation is

s = %Ueﬁx(&t) ue + flu,v) — S(E ) u (12)
N %UEE (€8 ve + 9(u,v) — S(E,8)v (13)

with () =% (r(t))2 and

1 ...
x(&t) = @(Er(t) —a(¢,t)) (14)
where 7 represents the time derivative of r.

2.4. Timescales: Slow Domain Growth
Domain growth introduces a new timescale to the problem through the rate of
volume expansion. We denote this explicitly writing

IS(X, )l ~ p. (15)

The effect of growth on pattern formation is expected to depend on the relative
magnitudes of the timescales for domain growth and pattern formation. Having
nondimensionalised time using the kinetic relaxation time Ty, spatial pattern is
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established on a timescale of (1), and hence 1/p measures the time for domain
growth relative to pattern formation. For biological systems we suggest that
reaction and diffusion processes will operate on a much faster timescale than the
cellular machinery involved in tissue growth, and thus the relevant regime is one
in which

0<p<kl. (16)

In this case the dilution term is small compared to any O(1) linear terms in the
reaction kinetic functions.

2.5. Reaction Schemes

Two different reaction schemes which illustrate the two mechanisms for pattern
transition: splitting (Schnakenberg kinetics) and insertion (Gierer-Meinhardt ki-
netics) of activator peaks, are presented briefly below. These mechanisms for
pattern transitions have been investigated in a class of reaction-diffusion sys-
tems by Crampin et al. (2001), wherein a third mechanism is also described for
which splitting and insertion occur simultaneously.

Schnakenberg (1979) proposed a hypothetical series of trimolecular autocat-
alytic reactions, for which the nondimensionalised concentrations of self-activating,
v, and self-inhibiting, u, species give the kinetic scheme

flu,v) =b—w?, g(u,v) = a +uv? —v. (17)

Gierer and Meinhardt (1972) presented a model for pattern formation to explain
the regenerative properties of hydra observed in various transplantation experi-
ments. The kinetics are based on biologically plausible arguments and functions
were chosen to reproduce the experimentally observed behaviour. The scheme
considers autocatalytic activation of chemical v and self-inhibition of # and can
be written as

flu,v) = v* —u, g(u,v) = 1;—2 —kv+6. (18)

We note that equation (17) is actually a special case of one of the several different
reaction schemes presented in the paper by Gierer and Meinhardt (1972).

3. Uniform Domain Growth

Before considering the effects of a strain rate that varies with position we review
results for the simple case when the strain rate S(t) is uniform across the domain.
The trajectories are

T'(X,t) = X exp -/t S(r)dr = Xr(t) (19)
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and so in this case £ = X and, with a = X7, the convection terms in equa-
tions (12-13) vanish under the uniform spatial scaling, x = 0, as would be
expected for uniform growth. Below we present solutions for constant strain rate
S = p (see Crampin et al., 1999, for results with time-dependent strain rate).
In this case the evolution equations are classical reaction-diffusion modified by a
constant dilution term and time-dependent diffusivity. The two generic solution
behaviours, spatial frequency-doubling via splitting and insertion of new peaks
in the activator solution, are illustrated in figure 1. Note that the insertion of
peaks here is consistent with the description of Kondo and Asai (1995) for the
growing angelfish.

[Figure 1 about here.]

In the case of general nonuniform domain growth, I'( X, ¢) is a non-separable
function of X and ¢: the convection term is not removed under a uniform trans-
formation and may therefore influence pattern formation in the system. In order
to investigate pattern formation under non-uniform domain growth we must
consider specific examples. In section 5 we consider the one-dimensional prob-
lem comprising two sub-domains each with uniform but different growth rates,
the piecewise uniform case, to gain some insight into the complexities of pattern
sequence generation under more general growth functions. First we look at the
case where growth is restricted to a region at the extending tip of the domain.

4. Apical Growth

In many developmental systems tissue growth is restricted to a region located
towards a tip or boundary (at least, growth in this region is much faster than
elsewhere). Pattern formation takes place behind this advancing boundary. Ex-
amples of such apical growth include the vertebrate limb bud, where rapid cell
proliferation is maintained in the progress zone, a region of undifferentiated mes-
enchyme beneath a bounding ridge (the apical ectodermal ridge) at the tip of the
limb bud. The progress zone is thought to be maintained by signals produced
in specialized regions of the tissue (from the apical ectodermal ridge and the
zone of polarizing activity, a region at the posterior margin of the limb bud),
and the rapid proliferation remains localised close to the border of the limb bud
during outgrowth. Similarly, in plants, growth typically occurs at the apex of
an outgrowing shoot (at the shoot apical meristem), from which organs such as
leaves and flower buds originate.

For a proliferating region that retains a constant cell population the rate of
outgrowth will be determined by the proliferation rate and the cell population
size of that region. We model this by assuming strain rate Sip(t) in the prolif-
erating region maintained at width 4, and zero growth elsewhere, hence

0 0<z<r(t)—4

5(z,t) = { S,  r()—s<z<r() (20)
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Integrating, and transforming uniformly we find that the flow

_{o 0<€<1-5/r()
66 = { (€-Dr@) +8)Se®),  1-orp<é<i Y
where r(f) =140 fot Stip(T)dT is the dimensionless domain length.

In the limit that the proliferating region is much smaller than the remainder of
the domain, the system can be reduced to a moving boundary problem. Formally
this can be shown by choosing ||S|| ~ 1/6 as § — 0. Then the flow is zero
everywhere (the proliferating region is vanishingly small), however, the domain
length r(t) ~ O(1) and increases with time. In this limit the scaled reaction-
diffusion system becomes

1 7(t)

Uy = W)-u,gg + 5‘@115 + f(u, 'U) (22)
v = ’Y—é;v& + E%vf + g(u,v) (23)

Solution behaviour for constant proliferation rate, Sy, = p < 1, is shown for
both splitting and insertion in figure 2.

[Figure 2 about here.]

Meinhardt et al. (1998) considered a similar model in two spatial dimensions
for the generation of the arrangements of leaves found on plant stems (phyl-
lotaxis). In computer simulations the growing plant stem is idealised as a cylin-
drical domain with the addition of cells parallel to the axis of the cylinder. Vari-
ous of the commonly observed morphologies for leaf primordia may be generated
by varying the diffusion constants and the growth rate p. A similar model has
also been developed for the pigmentation patterns of some sea shells, which also
grow from a narrow region near the leading edge of the shell (Meinhardt, 1995).
Here we have shown how such moving boundary models can be incorporated
into the general framework, as a special case of nonuniform domain growth.

5. Nonuniform Domain Growth

To investigate in greater depth the role of nonuniformity in the domain growth
we firstly consider a simplified scenario in which a one-dimensional domain com-
prises two sub-domains, each undergoing slow uniform domain growth but with
different strain rates. This problem is studied in detail with the aim of gain-
ing insight into the possibilities and complexities of pattern sequences generated
under more general nonuniform growth conditions.

We define S(X,t) on the two sub-domains

S1(t), 0<X<0O

so={ 50 6Tk @)
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where © is the dimensionless initial position of the interface between the two
sub-domains. Trajectories are calculated from equation (10)

[ Xn(2), 0<X<®©
L(X,1) = { O(r(t) —ra(t) + Xrat), ©<X<1 (25)
where r;(t) = exp f; S;(7)dr, from which we can calculate the flow directly. The
latter, when scaled, is given by

1), 0< €< 6)/r(t)
a(é,t) = m P T o ; (26)
o) (E _ —) +E2r), 00/ <E<1

Due to the growth of the left-hand sub-domain (7 = 1) there is a moving interface
between the sub-domains §(t) = ©r;(t) and the total domain length is given by

r(t) = Ori(t) + (1 — 6) ra(2). (27)

The advective terms in the equations arise despite the uniformity of growth for
each sub-domain because of the choice of spatial transformation, also giving rise
to the internal moving boundary.

Below we present results for constant strain rate in each sub-domain, S; =
pi € 1fori=1,2. Then a ~ O(p) and 7(t) ~ O(p), and given that r(t) > 1
while € € [0, 1] we also find that x ~ O(p) or smaller, so that the advection com-
ponent is small. Numerical solutions were computed by discretising the domain
to deal with the internal boundary and then integrating the resulting system of
coupled ordinary differential equations forward in time, as described in the Ap-
pendix. Continuity of flux at the interface permits communication between the
two regions. Pattern formation on each sub-domain will influence the solution
behaviour on the other and so we expect that the pattern sequence may differ
from the case of uniform growth across the whole domain. In the figures the
location of the interface between the uniformly growing sub-domains is shown
by the dashed line.

[Figure 3 about here.]

Comparison with the pattern formed under uniform growth, figure 1(b), shows
that piecewise uniform growth at relatively high strain rate generates asymmetry
in peak splitting (figure 3). This is similar to the asymmetries observed for high
strain rates for uniform domain growth reported in Crampin et al. (1999). This
represents a smooth modulation of the frequency-doubling sequence. Each peak
still undergoes splitting. For lower strain rates peaks occasionally fail to split,
even when the strain rates for the two sub-domains are very close (figure 4).

[Figure 4 about here.]
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This defect in the peak splitting is reminiscent of the breakdown of the frequency
doubling sequence at very low uniform strain rates (Crampin et al., 1999), how-
ever, introduction of a continuous strain rate function S(X,t) (below) suggests
that this is an effect of the discontinuity in the piecewise constant strain rate.

When only one sub-domain is growing, similar to apical growth, there is a
strong tendency for peak splitting to be restricted to the growing region (fig-
ure 5(a)).

[Figure 5 about here.]

Here any tissue originating from the growing sub-domain continues to expand,
in contrast to the apical problem in which growth is restricted to a region of
predetermined size. If the initial domain size is increased so that activator peaks
form simultaneously on the growing and non-growing sub-domains (figure 5(b)),
different sequences can be generated. In this example, two peaks transform to
three via splitting on the growing sub-domain, and subsequently six peaks are
formed when the peak closest to the interface splits. However, the tendency
for peaks only to split on the growing part is sustained. At lower strain rate
this differentiation between growing and non-growing regions appears even more
distinct (figure 6). Figure 6(a) has model parameters identical to figure 5(b) but
with reduced strain rate.

[Figure 6 about here.]

These results are corroborated by solving the equations for nonuniform domain
growth taking the tanh function to approximate the discontinuous step in strain
rate

s @20 [ (20)]

which tends to a step-function between p; and p; centred on X = ©, as ¢ —+ 0.
Numerical solutions for this strain rate function are computed by writing the
evolution equations in Lagrangian form (see Appendix). For high values of the
strain rate, i.e p; ~ 0.01, there is little difference between the solutions for strain
rate given by equation (28) and for piecewise uniform strain rate, even when the
change is very gradual (¢ ~ 1). As the strain rate is decreased, the piecewise
uniform growth results are recovered as ¢ — 0. Figure 7 shows activator solutions
with p; and p, the same as in figure 4(a) for decreasing e.

[Figure 7 about here.]

Whereas regular peak splitting is seen for larger ¢, certain peaks fail to split as
¢ decreases and S(X,t) becomes increasingly step-like.
Results of simulations with larger initial domain size are presented in figure 8.

[Figure 8 about here.]
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Here py = 0 and as € — 0 the left hand part of the domain is not growing. The
same behaviour as for the piecewise uniform case is seen in the limit (only when
€ =~ 01is S close to zero in the left hand side of the domain), and for each solution
the transition from two to three peaks is observed as only the peak in the region
of faster domain growth splits. These results indicate that the transition from
two activator peaks to three on the growing domain is not strongly dependent
on the exact nonuniformity.

6. Reactant-Controlled Growth

Several models have been proposed in the literature for which domain growth
is determined by reaction-diffusion variables. Dillon and Othmer (1999) study
pattern formation in the growing limb bud, modelled as an incompressible fluid
with a distributed source term which is a function of the local chemical composi-
tion. In their model there are two chemical components which react and diffuse
through the growing fluid region, however, their system is not of Turing-type
and only simple gradients in the chemicals are formed. Modelling the morpho-
genesis of green algae, Harrison and Koldf (1988) and Holloway and Harrison
(1999) couple a Turing mechanism to domain growth. Their study is extended to
two- and three-dimensional domains (Harrison et al., 2001). However, they also
include a feedback mechanism to the kinetics such that the diffusion-driven in-
stability operates only within history-dependent boundaries separated by ‘inert’
regions for which there is no pattern formation.

The coupling of domain growth to the chemical kinetics provides a feedback
between the pattern formation process and the mechanism that generates se-
quences of patterns. As an example, we consider a model for which domain
growth is controlled by ‘growth factor’ v, the self-activating component. Rather
than model a specific biochemical pathway, we will assume functional forms for
the uptake of the growth factor, A(v), and the response function which deter-
mines the local growth, S{v). If uptake of v is limited by receptor saturation
then we expect the relationship to be sigmoidal. A similar problem arises in
the biological chemostat (continuously-stirred tank reactor, CSTR, see for ex-
ample Smith and Waltman (1995)) in which nutrient is supplied to a well-mixed
tank containing a micro-organism population (with possibly several interacting
species). The empirical relationship observed between population growth and
nutrient consumption is sigmoidal (Monod, 1942). Therefore in the absence of
other detailed information, we take

AW =, SE) = (29)

where the growth response is on a slow timescale, p < 1. The assumption that
tissue density remains constant (incompressibility) implies that the result of
tissue growth, increased cell size or proliferation, is expansion of the domain,
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and the evolution equation is

1

e = —stee + X(68) ve + £(u,0) - s (30)
d

o= ke X(E ) e+ 9(u0) “’;*T‘;“)” (31)

where 7 and x are defined as above (equation (14)). Numerical solutions pre-
sented in figure 9 were computed by casting the equations in Lagrangian form
(see Appendix), for which explicit calculation of the kinematic flow in the domain
is not required. The strain rate S is plotted as a function of time and scaled space
in figure 9(b), where those parts of the domain which are growing are shaded
dark, and is seen to correspond closely to the evolving activator profile.

[Figure 9 about here.]

The regular doubling of the number of peaks on the domain is unsurprising in
light of the results described above as S has no discontinuities and is significantly
greater than zero in positions that coincide with the location of the peaks. The
trajectories of particles embedded in the domain (flow lines), uniformly scaled
to the unit interval, I'(X,t)/T'(1,t) for different values of the initial position X,
are plotted in figure 10 in which the relative expansion of different regions of the
domain can be seen.

[Figure 10 about here.]

7. Discussion

For those cases above for which only Schnakenberg results are shown, analogous
results obtain for insertion in Gierer Meinhardt kinetics. There is no signifi-
cant effect on pattern amplitude or wavelength from the spatial dependence of
terms in the equation for nonuniform growth. For slow domain growth the ad-
vective term is correspondingly small, and peaks in the activator concentration
reorganise continuously to maintain separation which is roughly independent of
position. In figures 3 and 5 the asymmetry in the pattern is due to the relatively
high value of p. Here peaks do not reach their stationary positions during separa-
tion subsequent to splitting, before the domain is sufficiently large for the peaks
to undergo the next transition. For slower domain growth (figures 4 and 6) the
nonuniformity of the domain growth is reflected in the failure of some peaks to
split, giving an asymmetric sequence of patterns.

Nonuniformity in the domain growth introduces terms with explicit spatial
dependence into the evolution equation. In its original formulation, and in most
subsequent development, the theory of pattern formation in reaction-diffusion
equations assumes homogeneity in parameters throughout the domain, for the
good reason that DDI generates inhomogeneity where before there was none.
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Indeed, this is the source of much of the theoretical interest in such pattern
forming instabilities. One exception is the analytical study of a reaction term
with explicit space-dependence by Auchmuty and Nicolis (1975) (see also the
numerical simulations of Herschkowitz-Kaufman, 1975). Also, the recent interest
in the modelling of chemical pattern formation in gel reactors leads to the study
of spatial gradients in certain reaction terms. In the Gel Strip reactor the feed of
the reactants, held at fixed concentrations at the boundaries, establishes steady
gradients across the domain of pattern formation. Theoretical studies prior to
the experimental realisation of Turing patterns in gel reactors are given by Dewel
and Borckmans (1989) and modelling of the structures experimentally observed
in these ramped systems is presented by Borckmans et al. (1992) and Dulos et al.
(1996).

In several applications of the theory to problems in biological pattern forma-
tion, authors have considered some underlying spatial dependence. For example,
Gierer and Meinhardt (1972) include a shallow source gradient in their model for
morphogenesis and regeneration in Hydra to orient patterns (by removing de-
generacy in the spatial modes). Benson and co-authors have demonstrated that
inhomogeneous reaction-diffusion equations may generate patterns with contin-
uously varying amplitude (Maini et al., 1992) (see also May et al., 1999) and
wavelength (Benson et al., 1993) when one or both diffusion parameters are
varying in space. In our equations for nonuniform domain growth the spatially-
dependent terms are small, due to the small parameter arising from the different
timescales, and so we do not expect strong influence on the amplitude or wave-
length of patterns generated by the model.

We now reassess the two questions that were posed at the beginning. We have
shown that for small spatial perturbation, which we interpret as gentle gradi-
ents in the spatial dependence, we recover FD-type sequences (at least for the
low modes that we have monitored). For more strongly nonuniform growth (for
steeper change in S) at high p we have observed asymmetry, as for the uniform
case, and for lower p selected peaks fail to undergo transitions, akin to the failure
of FD for uniform linear growth. For highly nonuniform domain growth, and in
particular when one region of the domain is not growing, other sequences may
be formed by the failure of peak splitting (or insertion) at particular locations,
specifically for those peaks on the stationary part. This mechanism also appears
to some degree robust, suggesting that it may be possible to choose the nonuni-
formity such that a specific pattern is selected during domain growth (as part of
an evolving sequence) and furthermore, that the same pattern will be selected
for some amount of variation of the nonuniformity.

Clearly for a thorough investigation of the potential for pattern selection on
growing domains and its relation to biological settings, results in two spatial
dimensions, and on curved surfaces are required. Varea et al. (1999) have con-
sidered pattern formation on spherical surfaces while Chaplain et al. (2001)
investigate patterns on the radially growing sphere. Liaw et al. (2001) show that
the patterns exhibited by a Turing reaction-diffusion system on a fixed portion
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of a sphere resemble closely those observed on lady beetles (ladybirds). More-
over, their preliminary study suggests that curvature does not alter significantly
the results for the case of planar domains. Clearly the formalism that we have
described can be adapted to encompass these and other geometries. Indeed, this
has been done in parallel to the work presented here (Plaza et al., 2001).

It also remains to be seen as to whether the behaviour we have described is par-
ticular to reaction-diffusion systems or is generic to all global pattern generation
mechanisms (where the pattern forming dynamical system acts globally across
the whole domain), such as chemotaxis and cell motility (mechano-chemical)
models. From a mathematical viewpoint it has been shown that models which
differ widely in their physical interpretation may nevertheless exhibit very sim-
ilar behaviour, suggesting that predictions can be made that are mechanism-
independent (Oster and Murray, 1989). In terms of the phenomenology of pat-
terns generated on fixed domains, such mechanisms are difficult to distinguish,
all having a range of destabilising modes which present the same pattern selec-
tion issues and similar robustness problems, leading to model predictions that
are independent of the detailed underlying biology. If such models are found to
differ under domain growth then the predicted behaviour on the growing do-
main will provide a useful means to distinguish between them experimentally,
when trying to identify which biological pattern formation events might arise
as a consequence of a reaction-diffusion mechanism, and where it may be more
prudent to seek alternative explanation. Whether these other models exhibit
qualitatively different behaviour in response to domain growth is the subject of
current investigation.

Appendix
Numerical Solution for Piecewise Uniform Growth

Reactant concentrations u(¢,t) and v(€,%) and their fluxes are continuous at
the moving internal boundary £ = 6(t)/r(t) between the two sub-domains. The
effective diffusion coefficients are functions of time through «y(¢) but are inde-
pendent of £, thus continuity of flux requires that the first spatial derivatives are
continuous across the internal boundary. The spatial interval is discretised with
a uniform mesh, writing U;(t) =~ u(&;,t) as the approximate values of the solu-
tion u(£,1) at the mesh points &, i = 1,2,... , N, and similarly V;(t) =~ v(&, ).
The first spatial derivative is approximated using standard central differences.
Central differences are also taken for the second spatial derivative within the two
sub-domains, however, the formula will not be valid across the internal boundary.
We adopt the strategy often used to deal with curved boundaries (see for exam-
ple Morton and Mayers, 1994) and introduce an extra mesh point, & = 6(t)/r(t)
at the internal boundary. When §; < & < &;4+1 we linearly interpolate to find an
approximation, Uy, to the solution at position &

Ug ~ (1 - A+) Ui + )\+Ui+1 (32)
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where A, = (& — &)/h for mesh spacing h. The central differences formula for
the second derivative is modified by foreshortening the range in the direction of
the internal boundary
Bzu] 2
- N———IJ, —2U5+Ui_ : 33
5], ~ e d (%)
Similar expressions are derived for &;_; < & < &, with A_ = (& — &)/h. With

these formulae the system of ordinary differential equations in U; and V; is inte-
grated forwards in time using Gear’s method.

Lagrangian Formulation for Nonuniform and Reactant Controlled Growth

If, for strain rate S, an explicit inversion of I'(X,t) is not readily found then
it is easier to compute numerical solutions to the Lagrangian problem. Explicit
calculation of the kinematic velocity is then not required during the computation.
Writing variables as functions of initial position X and time t the evolution
equation becomes

1 1
¢ =D, Ty [Ecx]x + R(c) — S(X,t)c (34)

with initial and boundary conditions for ¢(X,t) and I'(X, t)

(X, 0) = eo(X), cx(0,t) = cx(1,t) =0 (35)
T(X,0) = X, I(0,¢) = 0. (36)

The transformation to Lagrangian coordinates can naturally also be made in
higher spatial dimensions. These equations can be written as a system of first
order partial differential equations in the variables (u,ux,v,vx, I, I'x). Numeri-
cal solutions are found by discretising the first order system using the Keller box
scheme (Morton and Mayers, 1994), implemented in the NAG library routine
DO3PEF. Solutions at equally spaced £ or z are calculated by interpolating from
the solutions at equally spaced X, for example using routine COSAZF to invert I’
and EO1BFF to interpolate.

To recover the form of the pattern on the uniformly scaled domain (£, ) the so-
lution is translated with the scaled trajectories I'( X, t) /T'(1, £). The computation
proceeds on a grid which is equally spaced in X, while patterns are approximately
equally spaced in €. During growth of the domain, any particular interval in X
may expand to become a large interval in £. Hence in order to achieve reliable
results a large number of grid points is required. This is the trade-off against
the computational effort saved in not inverting I" at each step of the calculation.
For the simulations presented above, we repeated the computations doubling the
number of grid points to ensure that the simulation had converged.
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(a) (b)

Figure 1: Patterns in the activator v(z,t) obtained on the uniformly growing domain. For
domain expansion the patterns change regularly through frequency (or ‘mode’) doubling be-
haviour: (a) Gierer-Meinhardt kinetics, where f(u,v) = v2 —u and g(u,v) = v?/u—0.50+0.1,
showing regular insertion of new activator peaks and (b) Schnakenberg kinetics, where
f(u,v) = 0.9—wv? and g(u,v) = 0.1+uv? — v, showing peak splitting. In both cases d = 0.025,
7 = 1.0 and § = p = 0.01. Numerical solutions are computed using NAG library routine
DO3PCEF. Gray-scale is from low (black) to high (white) concentration.
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() (b)

Figure 2: Patterns in the activator chemical obtained under apical growth for (a) Gierer-
Meinhardt kinetics showing insertion of new activator peaks near the moving boundary and
(b) Schnakenberg kinetics showing splitting of the activator peak proximal to the region of
outgrowth. Kinetic functions and parameters as for figure 1 with § S, = 0.01, ie. 7(t) =
1+ 0.01t. Gray-scale is from low (black) to high (white) concentration.
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Figure 3: Asymmetric peak splitting for piecewise uniform domain growth, with Schnakenberg
kinetics. Numerical solutions v(£,t) are shown for (a) piecewise uniform domain growth with
p1 = 0.01, p; = 0.02 and v = 1 and (b) uniform domain growth with p = 0.017 and v =1
giving (approximately) the same dimensional domain length at time ¢ = 200. Shading is 0
(white) to 4 (black). In this and subsequent figures the initial conditions were chosen such
that a right-hand boundary peak is first generated. Further numerical simulations (data not
shown) demonstrate that the pattern sequence and asymmetry are the same for an initial peak
located on the left-hand boundary. For ease of comparison the faster-growing sub-domain is
on the right hand side.
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(a) (b)

Figure 4: Missing peaks for piecewise uniform domain growth. We plot numerical solutions for
the activator v(£, ) for (a) piecewise uniform domain growth with p; = 0.001, p = 0.0011 and
v =1 and (b) uniform domain growth with p = 0.00105 and ~ = 1 giving (approximately)
the same dimensional domain length at time ¢ = 3500. Other remarks as for figure 3.
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(a) (b)

Figure 5: Pattern sequences generated from larger initial domains. We show the activator
v(€, t) for piecewise uniform domain growth with p; = 0.0, p2 = 0.02 and (a) o = 1.0 so that
the initial mode m = 1 and (b) with ~y = 20.0 where the initial pattern is mode m = 4. Other
remarks as for figure 3.
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(a) (b)

Figure 6: Pattern sequences generated from larger initial domains. Numerical solutions for
activator v(£,t) are shown for piecewise uniform domain growth with gy = 0.0, pz = 0.001 and
(a) ¥0 = 20.0 so that the initial mode to grow is mode m = 4 and {b) vy = 80.0 where the
initial pattern is m = 8. Other remarks as for figure 3.
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Figure 7: Pattern formation with nonuniform domain growth: as € is reduced solutions re-
semble the piecewise uniform case shown in figure 4(a). Here we plot numerical solutions for
the activator v(£,t) with the tanh function for the domain growth and p; = 0.001, p; = 0.0011
and © = 0.5. The initial domain length v = 1 and we plot solutions for (a) ¢ = 0.1, (b)
g = 0.01 and (c) € = 0.001 giving successively better approximations to the piecewise uniform
case.
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Figure 8: Pattern formation under nonuniform domain growth for larger initial domains.
Numerical solutions are shown for the activator v(£,¢) with the tanh function for the domain
growth and p; =0, p2 = 0.001 and © = 0.5. The initial domain length is y9 = 20 and we plot
(a) e=0.1, (b) £ =0.01 and (c) e = 0.001.
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Figure 9: Pattern formation with reactant-controlled domain growth. We plot (a) the activator
(the ‘growth factor’) solution on the scaled domain and (b) the local strain rate (rate of
volumetric change), for Schnakenberg kinetics and with 9 = 1, d = 0.01, p = 0.005, k =1
and m = 1. We have taken o = 0 although we have found no qualitative change to the
results for small non-zero a. The numerical mesh has 1000 space points and no change to
the solution is found by halving the mesh size. Numerical solutions were also computed with
sigmoidal response functions for higher cooperativity, m > 1, and for other values of k, giving
qualitatively similar results.
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Figure 10: Flow lines, I'( X, t)/T'(1, £), for reactant-controlled domain growth. The lines repre-
sent the trajectories of particles initially separated at regular intervals in X. For clarity twice
as many points are taken in the second half as in the first half of the interval X € [0,1).
Parameters and other details as in figure 9.



