SCHAUDER ESTIMATES FOR FULLY NONLINEAR
ELLIPTIC DIFFERENCE OPERATORS
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ABSTRACT. In this paper we are concerned with discrete Schauder
estimates for solution of fully nonlinear elliptic difference equa-
tions. QOur estimates are discrete versions of second derivative
Holder estimates of Evans, Krylov, and Safonov for fully non-
linear elliptic partial differential equations. They extend previous
results of Holtby for the special case of functions of pure second
order differences on cubic meshes. As with Holtby’s work, the fun-
damental ingredients are the pointwise estimates of Kuo-Trudinger
for linear difference schemes on general meshes.

1. INTRODUCTION

In this paper, we derive Schauder estimates for solutions of fully
nonlinear elliptic difference equations. Letting E denote a mesh, which
is a discrete subset of n-dimensional Euclidean space R", and u : E —
R, a mesh function, we consider nonlinear difference equations of the
form

Flu] := F(z, Lu(z)) = 0, (1.1)

where F : ExRX — Rand L = (Ly, ..., Lg), is a system of linear
difference operators given by

Liu(z) = Y aj(z,y)(u(z +y) — u(z)) (1.2)
z+y€E
with coefficients, a; : EXE —+ R, j =1, ---, K, having finite support
in y, for each x € E. The operators L; are assumed to be monotone,
that is

aj(z,y) > 0, (1.3)

1991 Mathematics Subject Classification. Primary 65N12, 35J15, 39A70; Sec-
ondary 65N40, 35B05, 39A10.
tresearch supported by Taiwan National Science Council under Grant No.
NSC89-2115-M-005-003.
tresearch supported by Australian Research Council Grant.
1



2 HUNG-JU KUO' AND NEIL S. TRUDINGER*

for all z, z 4+ y € E, and balanced, that is

> ai(z,y)y =0 (1.4)
for all z, z+y € E. Conditions (??) and (??) mean that L; corresponds
to a pure second order degenerate elliptic partial differential operator
£; given by (refer to [?])

1
’Q‘JU(I) = - Z Za’j(m: y)yryst,Su(z)' (15)
2 rtycE 1.8
Concerning the function F', we will assume that F' is H6lder continuous

with respect to z € E and concave with respect to ¢ = L € RX,
satisfying structure conditions

A< Fy(z,q) <A (1.6)

|F(z,q) — F(z9)| < p(l+|g))|z — 2| (1.7)

for all z € E, g € RX and fixed positive constants A, A, p and . In this
paper we will assume that the operators L, ---, Lx have constant

coefficients, that is a(z,y) = a(y) for all z,z +y € E and F is an
additive group. Accordingly, we can write L; in the form

Liuw(z) = 3 a;(y)(u(z +y) — u(2)). (1.8)

yeE

The difference operator F' will correspond to a degenerate elliptic dif-
ferential operator ¥ given by

Flu] = F(z, Lu(z)) (1.9)
= G(z, D*u(x))

where £ = (£,, -+, £x) and G is concave with respect to D%y and
Holder continuous with respect to z. We will impose non-degeneracy
conditions on F' by requiring that the sum,

K.
L=Y1IL (1.10)
Jj=1

satisfies the non-degeneracy conditions invoked by us in our treatment
of local pointwise estimates for linear difference operators on general
meshes in [?], [?]. Namely, setting

K
a =) aj, (1.11)
j=1
we define a finite set Z C R" by
Z = {az.y)y|y e E}. (1.12)
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Note that the condition Ehat L is balanced implies that Z is centered
at the origin, 0. Letting Z denote the convex hull of Z, we then assume
that there exists a ball, of center 0 and radius p, B, satisfying

B,CZ. (1.13)

Next, following [?], we need to assume the mesh points are effectively
linked through the operator L. That is, we assume for any two points
z,z € F, there exist points 2o = z, 21, Z3, - -+, p = z in E such that

a(a:,-+1 — Z‘i) Z Ao, 1= 0, ety £ — 1, (114)
for some positive constant A, with the number £ = £(z, z) uniformly
bounded by the distance between z and z, that is
bo|lz — 2|

h, ?
where /; is a positive constant and & is the minimum mesh width at =
given by

lz,2) < (1.15)

h = Jnin, |z — 2| (1.16)

,Din ||
To illustrate our conditions, we describe the particular example treated
by Holtby in [?]. Here the mesh E is the cubic mesh of width A in R",

that is

E = {h(ml, e omy) ER* M €Z,i=1, -0 n},

(1.17)
and the operators L;, ---, Lx are the second order difference quo-
tients, JJ?, j=1,---,n, in the coordinate directions e;, -+, e,, that
is

1
Su(z) = ﬁ{u(:c+2hej) — 2u(z + he;) + u(:r)}

(1.18)

Jj=1, -+, n. The operator L is the discrete Laplacian, given by
Lu(z) = Y 6lu(z). (1.19)
j=1

Clearly, p=£,0 =1, {, = /1.

The plan of this paper is as follows. In the next section, we establish
interior Schauder estimates for second order differences of solutions of
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equation (??) where F' is independent of the z variables, that is the
“frozen case”. Our main tool here is our discrete weak Harnack in-
equality in {?], [?], and our overall approach is based on that presented
for the continuous case in the monograph [?]. In the last section, we
derive the general Schauder estimates, Theorem ?7, utilizing the per-
turbation approach developed by Safonov [?], [?] for the continuous
case.

Finally we acknowledge the hospitality of the Isaac Newton Institute
in Cambridge, UK, where these investigations were completed during
the programme on Nonlinear Partial Differential Equations in the first
half of 2001.

2. THE FROZEN CASE

In this section, we consider the equation (??), frozen at a mesh point
Tg, that is

where Fy : RX — Ris given by Fy(q) = F(zo,q)and L = (Ly, - -+ , Lg)
is given by (??). By Schmidt [?], the mesh FE is a lattice, that is there
exist linear independent vectors (;, -, {, € R” such that

E = {(m1<17 m2C2:"'1mnCn)|mi€Za i=1""7n}'
(2.2)

The simplest case of a lattice mesh is the cubic mesh (??). Note that
h = min |¢;| and from (?7?) and (??) we can estimate p from below by

Cl Cn ]
p>Chdet |=—, -, =—|Agh, (2.3
Gl Tl )
where Cj is a positive constant depending on n. Setting
Y = {ye E—{0} |ay) >0}, (2.4)
we define the maximum mesh width of F, with respect to L, by
hi= max {lyl]a(z,y) >0} (2.5)
= max |y

yeY
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Hélder estimates for L

We now proceed from equation (7?) to derive Holder estimates for
Lu, following the method in [?], [?]. More generally, we can consider
an equation of the form

Fo(Lu) = ¢ (2.6)

where 1) is a given mesh function. By the concavity of Fp, we have for
yey,

Yz +y) ~ ¥(z) = FO(EU(QSH/)) ~ Fo(Lu(z)) (2.7)

< Z OFy (Lu(m )(Lju(x +y) — Lju(:r:))
Hence, letting A;(z) = a—F‘l(Lu(m)) foreach j=1,..-, K, we have
Liv(a) = 3 a;) (= +4) — v()) (2.8)

IN
Mw

Xi(z) (Z ai(y) (Lju(z +y) — Lju(m)))

yeYy

L)
il
~

Ai(z)Li(Lju)(z)

Fix 7 and let v = L iu, ¢ = L;9 to get, from (?7), the linear inequality

EMN

Ly = Z )\iLi’U 2 ¢ . (29)
i=1
We now invoke the discrete weak Harnack inequality [?]. Let L be any
linear operator of the form,

Lu(z) = Y a(z,y)(u(z+y) — u(z)) (2.10)
z+y€eEE

which is balanced, monotone and satisfies the non-degeneracy condi-
tions (7?), (?7?), (?7). Letting Bgr(z) denote the ball of center z and
radius R in R™ and Eg(z) = Bg(z) N E the corresponding mesh ball,
we assume that u is a non-negative mesh function, satisfying the dif-
ference inequality, Lu < f, in Eg = Fg(2), for some mesh function f.
The weak Harnack inequality asserts the existence of a constant p > 0,
depending on n, h/h, ay/ph, @/)\g, where

a =D ey, @=) a@) (2.11)
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such that for any 7 < 1 and (1 —7) < #/R

n 1/p n\ 1/n
i P min u
{EZT;E (R) ! } sC {ETR o (EZR ) } (2.12)

where C is a constant, depending additionally on 7. Returning to (?7?),
we set for o < 1,

S
p

M, = sup v, m, = _inf v,
Eo r(z0) Eq r(20)

and apply (?7) to the function M; — v, thereby obtaining
B\" /p
»
(0 )
Bp | P
<cfu - u 42

E:r
n) l/n}
P n;ER}

where p depends on n, h/h, £y, a9/hp,8/Xo, A and A, C depends addi-
tionally on 7, and

¢

50{1£}£(M1—v) + R(E

1/n
” f “n;ER = (Z |f|n)
Ep

Following [?], to conclude a Holder estimate for v from (?7), we need a
corresponding inequality for —v, which we obtain by considering (?7?)
as a functional relationship between L;u, j =1, ---, K. In fact, using
the concavity of Fy again, we have for any z, z € Efp,

> () (Lin(z) - Liu@)) < 9(2) - 9(@).  (219)

Now setting

M, = supLu, My, = %nf Lyu,
E;r aR
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we obtain, by summing (??), from 7 =1 to K,

{(%) > [i (M~ L,-u)]p}l/p

E.r Li=1

<C {Z (M - M) + Rﬁj

=1

Ly
P)

} . (2.15)
n;Er

where C depends on K, as well as the quantities in (?7?). Using (?7?)
in (??), we obtain the complementary inequality,

{(%)n% [fj (10 mu)r}w

i=1
L

< o{z (M — M) +Rg; ;

=1

+ R'7|1/1|,,,ER} , (2.16)

n;Egr
where 0 < v <1 and, for any Q2 C F,
[$(@) ~ ()|

Wha = saen | — 2]

Writing,

K K

w(TR) = §1 os¢ Liu = ; (M.r,; - mﬂ;)
we then obtain, by adding (??) and (?7),
” || Ly
w(rR) < xw(R) + R'[Ylyex + R
=1l P llues  (2.17)

where x, depends on n,h/h, £y, a0/hp, 8/, N\, A, K and 7. We then
conclude, from Lemma 8.23 [?], the Holder estimate, for any 7,0 <
T<I1,

5 5 I
oscL,u < C1™ oscLiu + R'[Y], g, + RH—
i=1 rR i=1 R i P lin,zx §2.18)

where o (< 7) and C are positive constants, depending on n, A/h, £y, ag/hp,
Zi/)\o, A,A and K.

To pass from the estimate (??) to a Schauder estimate, that is a
Holder estimate for second difference quotients of u, we apply the
Schauder estimates of Thomeé [?] to the sum (??). Because F is a
lattice, we can transform coordinates so that F is mapped to the cubic
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mesh Z", through the matrix 7! where T = [(1, ---, (). We may
then express the Thomeé estimates in terms of our original mesh E by
defining the forward differences

ulz + ;) — ulz
diu(z) = ( CK)' () (2.19)
and for any multi-index 8= (8, -+, Bn), i = 0,i=1,---, n,
SBu(x) =621 68 ... | Pru(z). (2.20)

The right hand side of the estimate (??) can be expressed in terms of
the operator ¢ through the following lemma, whose proof we defer until
the end of this section.

Lemma 2.1. Let L be a balanced monotone operator of the form (7?)
on the lattice mesh E, with

Y=Ym={y€E—{0}‘a(:1:,y)>0}. (2.21)
Denote by Y the smallest parallelogram (with azes parallelto ¢y, -+, ()
containing Y. Then we can write
L'U,(LL') = Z Z c,gj(y)&,-éju(m +y) (222)
4,5=1 ey

where the coefficients c;; satisfy bounds,

’—i n
Zlcﬁi < Cag (ﬁ) : (2.23)
where C is a constant depending only on n.

Next to relate the ellipticity condition of Thomée [?] to our non-
degeneracy condition, we see that the characteristic polynomial of any
monotone balanced operator L in (77) is given by

() = p(6,3) = X a(z,y) (7Y - 1), (18] <),

yey (2.24)
Hence, using the balance condition,
2
|p(9)| > CY alz,y)(y-0) (2.25)
yey

2
Qo
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by inequality (4.10) in [?], where C is a positive constant. We then
conclude from (7?),

osc 8%u < Cr° { sup oscé’u + R” [—1—/)—] + R Hh52¢,|
E-r [B]=2 Er ph’ v.Er 26)
where
B = (B, -, Bn) €LY (the set of non-negative integers)
and

1Bl =B+ -+ + B = 2.
By interpolation [?],

oscd’u < CT° Lmaxu + R v +R ||h62¢||
R R* Br ph 7.Er e *(k.27)

where constants C and o depend on the same quantities as in (77?).

Proof of Lemma 77

Lemma 77?7 will follow from a multi-dimensional Taylor formula. To
obtain this, we write

n
y =y mi,
i=1
and assume initially that z =0 and m; > 0,7 =1, --- , n. Expanding,
as in the one dimensional case, [?], [?], we have
’U.('y) = (’U, + m1|C1!(51u)(0, Ya, -, yn)
my—2
+ ) (my =k = 1)|GP6i8iu(kCy, Yo, o, Ya) (2.28)
k=0

Expanding the first terms on the right hand side in the ¢, direction,
we then obtain

U(y) = (u + mllCII(slu + m2|<2|62u)(01 07 Yz, =y yn) (229)
m1—2
+ Z (my — k = D)|GP6161u(kC, v, -, Yn)
m2—2

+ Z [(m2 e 1)|C2!25252U +m2|C1| |C2|5152U] (0 kG2, Y3, -0 s '.Un)
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Continuing this process, we end up with
u(y) — w(0) (2.30)

= Y mil¢:|d:u(0)
i=1

mi1—2

+ Z (ml —k- ]-)ECllledlu(kCl, Y2, yn)
k=0

n—1

i=1

+ Z [(mn -k - l)ICnlzdndnu + mz|<z| |<ni6i6nu] (0) 0) Tt kc'n)

For general m;, we replace (; by —¢; and m; by |m;| in the above formula
whenever m; < 0, to obtain,

u(y) — u(0) = Y |mil [u(ﬂﬂ + ( sign m;) Ci) - U(O)]
i=1
+ second order differences. (2.31)

By the balance condition,
Y- a(y) mi(y) = 0,
yeY

that is

Z a(y)|mi| = Z a(y)|mil

m;>0 m;<0
and hence we obtain, from (??) and (?7),
Lu(0) = Y a(y)(u(y) - u(0)) (2:32)
yeyYy
= Z cijbidju(y)
yG?
as required. The case of general z € F, follows immediately by trans-
lation.

3. THE GENERAL CASE

We pass from the frozen to the general case though a method em-
ployed by Safonov [?], [?] for fully nonlinear partial differential equa-
tions, which was already extended to difference equations by Holtby
in [?], [?]. As remarked earlier, our equations are more general than
those considered by Holtby and overall our approach in simpler. We
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begin by considering equation (??) in a mesh ball Ep = Eg(z), R >
Oand zp € E, under the hypotheses (7?), (?7), (?7), (??), (?7) and
(??). The interior E% and boundary EY of E, with respect to the
difference operator F' under our hypotheses, are given by

E§={x€ER|x+YCER},
E} = Egr — E3,

where Y is given by (??). Letting P denote a polynomial of degree
two, we consider the “frozen” Dirichlet problem,

F[v] :== F(zo,Llv+LP)=0 in E%, (3.1)
v=u—P onE%,

where u is the given solution of equation (??) in Eg. The existence of a
unique solution v of (?7) may be shown from the method of continuity
and the discrete maximum principle [?], [?], [?], as in [?]. Observing
that LP is a constant vector, we apply the interior estimate (??), with

¥ = 0, to obtain, for any r < R — h,

,'.C!

R2+a

where C and « are as in (??). At this point, it is convenient to specify
P = P, so that 0% Py(xo) = 6Pu(z,) for B < 2. It follows that

F(zo, LPy(zo)) = 0 (3.3)

osc 6%v < C max |v|, (3.2)
E, En

Hence we can write equation (?7) in the form,

> 2—(0) Liv = 0 (3.4

for some ¢ lying between Lv and E(v + P). By the maximum principle,
we then have

max |v| < max |v| (3.5)
Er BY
< max |u — Py |
Eh
< CR* [6%u]
7:Er
for any 0 < v < 1 by the discrete Taylor formula (??), and our choice
of Py, (Note that the first order difference in (??) for negative m; can
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be controlled through second order differences). Taking v < o and
substituting (??) into (??) we then obtain

2 2
T '70E§06 v < C( ) [6 ]7;En (3.6)
Next by combining equations (??) and (??), we have
X OF - .
Za (O) Li(u —v — By)| < | F(z, Lu) — F(go, Lu)| o

< ,u(l + lEuDR’

in Eg, by (?7), where ¢ lies between Lu and L(v + Py). Applying the
discrete maximum principle (see [?], [?], [?]), we thus obtain

|lu—v— PR| < CR*(1 + max|Lul) (3.8)

in the mesh ball Fx. Consequently, letting p denote the set of second
degree polynomials, we obtain from (?7?), (??) and (??) with appropri-
ate choice of polynomial p,

—2— : _
T Il)gg max|u — p| (3.9)

—2—7 - — —
<r {zl)relgmfi.x“) p|+max|u Py v‘}

<o {(R) Il + ()7 (o))

with constant C' depending on n, A/\, u/A, h/h, ag/ph, /Mo, & and K.
To get an interior Schauder estimate from (77?), we let Q be a subset
of E, 2o € Q° and choose 7 = R with R < Ry = dist(zo, ). We
thus obtain

727 inf max ju—p| < C { *[6%u] ymy + €@ (1 + max|52u|) :
PEP E. Egr (3 )

Defining the interior Holder semi-norms,

[0 = max(d)” [ulye

QCca
* _ nk | <8
[vlin = max (@) [0%u] (3.11)
|B|=k
* nk+y [ o8
[ulkva aaxy ax (d) [‘5 u]
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where d' = dist(€)', %), we may rewrite (?77) as,

PN i <
(E) ZI,IC_IPII}E%XIU —rl <

C{e* Mulsya + €@ (RS + Rilulsa)}. (312)

Note that (??) will also hold for n > €Ry As in the continuous case,
([2], [?], [?]) the interior k, -y semi-norms in (??) are equivalent to the
corresponding L*°-Campanato semi-norms, whence we infer from (?7?),

[ a < C{e Ml 0 + €@ (@Y + d[uljg) } -

(3.13)

where d =diam 2. By choosing ¢ sufficiently small and using the in-
terpolation inequalities [?], [?], (as in the continuous case [?], [?]), we
finally arrive at the interior Schauder estimates,

2

lullspe = D lulke + [0 (3.14)
k=0

<C (|U|0;n + (diam Q)zH) ,

where C depends on n, A/A, p/A, h/h, ag/ph, @/, £o,7v and K.

Accordingly we have the following theorem.

Theorem 3.1. Let E be a laltice mesh in R™ and suppose u is a
solution of the difference equation (??) in a bounded subset Q of E.
Assume that F satisfies the structural conditions, (77), (?7), (?7),
(77), (?7), (?7). Then there ezists a constant o > 0, depending on
n, AJA, B/h,ao/ph, £y, @/No such that if v < o then

” u ”;,'y;ﬂ < C: (315)
where C' depends additionally on p/), v, |u|o and diam Q.

In a sequel paper, we will consider the extension of Theorem ?? to
general meshes. The main difficulties here are that we cannot have
constant operators L nor define the iterated difference operators 8¢ on
mesh functions



14 HUNG-JU KUO' AND NEIL S. TRUDINGER?

REFERENCES

[1] L.C.Evans, Classical solutions of fully nonlinear, convez, second-order elliptic
equations, Comm. Pure Appl. Math., 35(1982), 333-363.

[2] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second
order, 2nd edition, Springer Verlag, 1983.

[3] D.W.Holtby, High-order estimates for fully nonlinear difference equation, PgD
thesis, Australian National University, 1996.

[4] ., Higher-order estimates for fully nonlinear difference equations I, Proc.
Edinb. Math. Soc. 43(2000), 485-510.
[6] ——, Higher-order estimates for fully nonlinear difference equations II, Proc.

Edinb. Math. Soc. 44(2001), 87-102.

[6] N.V.Krylov, Boundedly inhomogeneous elliptic and parabolic equations, Eng-
lish translation : Math. USSR Izv., 20(1983), 459-492.

[71 T.Kunkle, A multivariate interpolant with nth derivative not much larger than
necessary, PhD thesis, University of Wisconsin, Madison, 1991.

[8]

, Largrange interpolation on a lattice : bounding derivatives by divided
difference, J. Approx. Theory 71(1992), 94-103.

[9] H.J.Kuo and N. S. Trudinger, Linear elliptic difference inequalities with ran-

dom coefficients, Math. Comp. 55(1990), 37-53.

[10] ——, Discrete methods for fully nonlinear elliptic equations, SIAM J. Numer.
Anal. 29(1992), 123-135.
[11] ——, On the discrete mazimum principle for parabolic difference operators,

RAIRO Modél. Math. Anal. Numér., 27(1993), 719-737.

, Local estimates for parabolic difference operators, J. Differential Equa-
tions, 122(1995), 398-413.

[13] ——, Positive difference operators on general meshes, Duke Math. J. 83(1996),
415-433.

[14] ., Mazimum principles for difference operators, Topics in Partial Differ-
ential Equations & Applications: Collected papers in Honor of Carlo Pucci,
Lecture Notes in Pure and Applied Mathematics Series/177, 209-219, Marcel
Dekker, Inc. 1996.

[12]

[15] ——, Ewolving monotone difference operators on general space-time meshes,
Duke Mathematical Journal, Vol. 91, (1998), 587-607.
[16] —, A note on the discrete Aleksandrov-Bakelman mazimum principle, Tai-

wan Journals of Mathematics, 4(2000), 55-67.

[17] M.V. Safonov, On the classical solution of nonlinear elliptic equations of second
order, Izv. Akad. Nauk SSSR, Ser. Mat. 52(1988), 1272-1287. (Engish transl.:
Math. USSR Izvestiya) 33(1989), 597-612.

[18] M.V.Safonov, Nonlinear elliptic equations of second order, Lecture
Notes Univ. di Firenze, 1991.

[19] W.M. Schmidt, Diophantine Approzimations and Diophantine Equations, Lec-
ture Notes in Math. 1467, Springer Verlag.

[20] V. Thomeée, Discrete interior Schauder estimates for elliptic difference opera-
tors, SIAM J. Numer. Anal. 5 (1968), 626-645.

[21] N.S. Trudinger, Local estimates for subsolutions and supersolutions of general
second order elliptic quasilinear equations. Invent. Math. 61(1980), 67-79.

, Regularity of solutions of fully nonlinear elliptic equations, Bollettino

UMI(6) 3-A (1984), 421-430.

[22]




SCHAUDER ESTIMATES FOR FULLY NONLINEAR ELLIPTIC 15

[23] —, Lectures on nonlinear elliptic equations of second order, Lectures in
Mathematical Sciences, 9, Univ. Tokyo, 1995.

DEPARTMENT OF APPLIED MATHEMATICS, NATIONAL CHUNG-HSING UNIVER-
SITY, TAICHUNG 402, TAIWAN.
E-mail address: kuohj@nchu.edu.tw

CENTRE FOR MATHEMATICS AND ITS APPLICATIONS, AUSTRALIAN NATIONAL
UNIVERSITY, CANBERRA, ACT 0200, AUSTRALIA.
E-mail address: neil.trudinger@anu.edu.au



