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Abstract The remarkable advances in biotechnology over the past two decades have resulted
in the generation of a huge amount of experimental data. It is now recognised that, in many
cases, to extract information from this data requires the development of computational mod-
els. Models can help gain insight on various mechanisms and to be used to process outcomes
of complex biological interactions. To do the latter, models must become increasingly com-
plex and, in many cases, they also become mathematically intractable. With the vast increase
in computing power these models can now be numerically solved and can be made more and
more sophisticated. A number of models can now successfully reproduce detailed observed
biological phenomena and make important testable predictions. This naturally raises the
question of what we mean by understanding a phenomenon by modelling it computationally.
This paper briefly considers some selected examples of how simple mathematical models have
provided deep insights into complicated chemical and biological phenomena and addresses
the issue of what role, if any, mathematics has to play in computational biology.
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1. Introduction

The enormous advances in molecular and cellular biology over the last two decades have led
to an explosion of experimental data in the biomedical sciences. We now have the complete
(or almost complete) mapping of the genome of a number of organisms and we can determine
when in development certain genes are switched on; we can investigate at the molecular level
complex interactions leading to cell differentiation and we can accurately follow the fate of
single cells. However, we have to be careful not to fall into the practices of the nineteenth
century, when biology was steeped in the mode of classification and there was a tremendous
amount of list-making activity. This was recognised by D’Arcy Thompson, in his classic
work “On Growth and Form”, first published in 1917 (see Thompson 1992 for the abridged
version). He had the vision to realise that, although simply cataloging different forms was
an essential data collecting exercise, it was also vitally important to develop theories as to
how certain forms arose. Only then, could one really comprehend the phenomenon under
study.

Of course, the identification of a gene that causes a certain deformity, or affects an ion
channel making an individual susceptible to certain diseases, has huge benefits for medicine.
At the same time, one must recognise that collecting data is, in some sense, only the be-
ginning. Knowing the spatiotemporal dynamics of a certain gene leads to the inevitable
question of why that gene was switched on at that particular time and place. Genes contain
the information to synthesize proteins. It is the physico-chemical interaction of proteins and
cells that lead to, for example, the development of structure and form in the early embryo.
Cell fate can be determined by environmental factors as cells respond to signalling cues.
Therefore, a study at the molecular level alone will not help us to understand how cells



interact. Such interactions are highly nonlinear, may be nonlocal, certainly involve multi-
ple feedback loops and may even incorporate delays. Therefore they must be couched in a
language that is able to compute the results of complex interactions. At the -moment, the
best language we have for carrying out such calculations is mathematics. Mathematics has
been extremely successful in helping us to understand physics. It is now becoming clear that
mathematics, and computation, have a similar role to play in the life sciences.

Mathematics can play a number of important roles in making sense of complex phenom-
ena. For example, in a phenomenon in which the microscopic elements are known in detail,
the integration of interactions at this level to yield the observed macroscopic behaviour can
be understood by capturing the essence of the whole process through focussing on the key
elements, which form a small subset of the full microscopic system. Two examples of this are
given in Section 2. Mathematical analysis can show that several microscopic representations
can give rise to the same macroscopic behaviour (see Section 3), and that the behaviour
at the macroscopic level may be greater than the sum of the individual microscopic parts
(Section 4).

2.1 Belousov-Zhabotinskii reaction

The phenomenon of temporal oscillations in chemical systems was first observed by Belousov
in 1951 in the reaction now known as the Belousov-Zhabotinskii (BZ) reaction (for details see
Field and Berger 1985). The classical BZ reaction consists of the oxidation by bromate ion
in an acidic medium catalysed by metal ion oxidants, for example, the oxidation of malonic
acid, in an acid medium, by bromate ions, BrOj, and catalysed by cerium, which has two
states Ce®t and Ce**. With other metal ion catalysts and appropriate dyes, the reaction can
be followed by observing changes in colour. This system is capable of producing a spectacular
array of spatiotemporal dynamics, including two-dimensional target patterns and outwardly
rotating spiral waves, three-dimensional scroll waves and, most recently, two-dimensional
inwardly rotating spirals (Vanag and Epstein, 2001). All the steps in this reaction are still
not fully determined and understood and, to date, there are of the order of about 80 reaction
steps known. Detailed mathematical models have been written down for this reaction (see,
for example, Field et al 1972) consisting of several coupled nonlinear ordinary differential
equations. Remarkably, a vast range of the dynamics of the full reaction can be understood
by a simplified model consisting of only three, coupled, nonlinear differential equations,
which can be further reduced to two equations. The reduction arises due to a mixture of
caricaturizing certain complex interactions and using the fact that a number of reactions
operate on different time scales, so that one can use a quasi-steady-state approach to reduce
some differential equations to simpler algebraic equations, allowing for the elimination of
certain variables.

A phase-plane analysis of the simplifed model leads to an understanding of the essence
of the pattern generator within the BZ reaction, namely the relaxation oscillator. This relies
on the presence of a slow variable and a fast variable with certain characteristic dynamics
(see, for example, Murray 1993). The introduction of diffusion into this model, leading to a
system of coupled partial differential equations, allows for the model to capture a bewildering
array of the spatiotemporal phenomena observed experimentally, such as propagating fronts,
spiral waves, target patterns and toroidal scrolls.

These reduced models have proved to be an invaluable tool for the understanding of the



essential mechanisms underlying the patterning processes in the BZ reaction in the way that
the study of a detailed computational model would have been impossible. With over 80
reactions and a myriad parameters (many unknown), the number of simulations required to
carry out a full study would be astronomical.

2.2 Models for electrical activity

The problem of how a nerve impulse travels along an axon is central to the understanding
of neural communication. The Hodgkin-Huxley model for electrical firing in the axon of the
giant squid (see, for example, Cronin 1987) was a triumph of mathematical modelling in
physiology and they later received the Nobel prize for their work. The model, describing
the temporal dynamics of a number of key ionic species which contribute to the transmem-
brane potential, consists of four complicated, highly nonlinear coupled ordinary differential
equations. A well studied reduction of the model, the FitzHugh-Nagumo model, is a cari-
cature and consists of only two equations (FitzHugh 1961, Nagumo et al 1962). Again, a
phase plane analysis of this model reveals the essential phenemenon of ezcitability by which
a neuron “fires” and determines the kinetic properties required to exhibit this behaviour.

3. Models for aggregation in Dictyostelium discoideum

The amoeba Dictyostelium discoideum (Dd) is one of the most studied organisms in de-
velopmental biology from both experimental and theoretical aspects and serves as a model
paradigm for development in higher organisms. In response to starvation conditions, these
unicellular organisms chemically signal each other via cyclic AMP leading to a multicellular
aggregation in which the amoebae undergo differentiation into a stalk type and a spore type.
The latter can survive for many years until conditions are favourable.

Intercellular signalling in this system, which involves relay and transduction, has been
widely studied and modelled. For example, the Martiel and Goldbeter model (Martiel and
Goldbeter 1987) consists of nine ordinary differential equations. By exploiting the differ-
ent timescales on which reactions occur, this model can be reduced to simpler two- and
three- variable systems which not only capture most of the experimental behaviour, but also
allow one to determine under which parameter constraints certain phenomena arise (Gold-
beter 1996). This model turns out to exhibit excitable behaviour, similar in essence to that
observed in electrical propagation in nerves.

Such reduced, or caricature models, can then serve as “modules” to be plugged in to
behaviour at a higher level in a layered model to understand, for example, the phenomenon
of cell streaming and aggregation in response to chemotactic signalling (Hofer et al 1995a,b,
Hofer & Maini 1997). Assuming that the cells can be modelled as a continuum, it was
shown that the resultant model could exhibit behaviour in agreement with experimental
observations. Moreover, the model provided a simple (and counter-intuitive) explanation
for why the speed of wave propagation slows down with increasing wave number. More
sophisticated computational models, in which cells are assumed to be discrete entities, have
been shown to give rise to similar behaviour (Dallon & Othmer 1997). Such detailed models
can be used to compare the movement of individual cells with experimental observations and
therefore allow for a degree of verification that is impossible for models at the continuum level.
However, the latter are mathematically tractable and therefore can be used to determine
generic behaviours.



Several models, differing in their interpretation of the relay/transduction mechanism
and/or details of the chemotactic response all exhibit very similar behaviour (Dallon et al
1997). In one sense this can be thought of as a failure because modelling has been unable to
distinguish between different scenarios. On the other hand, these modelling efforts illustrate
that the phenomenon of Dd aggregation is very robust and has, at its heart, signal relay and
chemotaxis.

4. The Turing model for pattern formation

Diffusion-driven instability was first proposed by Turing in a remarkable paper (Turing,
1952), as a mechanism for generating self-organised spatial patterns. He considered a pair
of chemicals reacting in such a way that the reaction kinetics were stabilizing, leading to a
temporally stable, spatially uniform steady state in chemical concentrations. As we know,
diffusion is a homogenizing process. Yet combined in the appropriate way, Turing showed
mathematically that these two stabilizing influences could conspire to produce an instability
resulting in spatially heterogeneous chemical profiles — a spatial pattern. This is an example
of an emergent property and led to the general patterning principle of short-range activation,
long-range inhibition (Gierer & Meinhardt, 1972). Such patterns were later discovered in
actual chemical systems and this mechanism has been proposed as a possible biological
pattern generator (for a review, see Maini et al 1997, Murray 1993).

Turing’s study raises a number of important points. It showed that one cannot justifably
follow a purely reductionist approach, as the whole may well be greater than the sum of the
parts and that one rules out, at one’s peril, the possibility of counter-intuitive phenomena
emerging as a consequence of collective behaviour. It also illustrates the power of the math-
ematical technique because, had these results been shown in a computational model without
any mathematical backing, it would have been assumed that the instability which is, after all,
counter-intuitive, could only have arisen due to a computational artifact. Not only did the
mathematics show that the instability was a true reflection of the model behaviour, it also
specified exactly the properties the underlying interactions in the system must possesss in
order to exhibit the patterning phenomenon. Furthermore, mathematics served to enhance
our intuitive understanding of a complex nonlinear system.

5. Discussion

For models to be useful in, for example, drug design, they must necessarily incorporate a level
of detail that, on the whole, makes the model mathematically intractable. The phenomenal
increase in computing power over recent years now means that very sophisticated models
involving the interaction of hundreds of variables in a complex three-dimensional geometry
can be solved numerically. This naturally raises a number of questions: (i) How do we
validate the model? Specifically, if the model exhibits a counter-intuitive result, which is
one of the most powerful uses of a model, how do we know that this is a faithful and
generic outcome of the model and not simply the result of very special choice of model
parameters, or an error in coding? (ii) If we take modelling to its ultimate extreme, we
simply replace a biological system we do not understand by a computational model we do
not understand. Although the latter is useful in that it can be used to compute the results of
virtual experiments, can we say that the exercise has furthered our understanding? Moreover,
since it is a model and therefore, by necessity, wrong in the strict sense of the word, how do



we know that we are justified in using the model in a particular context?

In going from the gene to the whole organism, biological systems consist of an interaction
of processes operating on a wide range of spatial and temporal scales. It is impossible to
compute the effects of all the interactions at any level of this spatial hierarchy, even if
they were all known. The approach to be taken, therefore, must involve a large degree
of caricaturizing, based on experimental experience, and reduction, based on mathematical
analysis. The degree to which one simplifies a model depends very much on the question one
wishes to answer. For example, to understand in detail the effect of a particular element in
the transduction pathway in Dictyostelium discoideum will require a detailed model at that
level. However, for understanding aspects of cell movement in response to the signal, it may
be sufficient to consider a very simple model which represents the behaviour at the signal
transduction level, allowing most of the analytical and computational effort to be spent on
investigating cell movement. In this way, one can go from one spatial level to another by
“modularizing” processes at one level (or layer) to be plugged in to the next level. To do
this, it is vital to make sure that the appropriate approximations have been made and the
correct parameter space and spatiotemporal scales are used. This comes most naturally via
a mathematical treatment. Eventually, this allows for a detailed mathematical validation of
the process before one begins to expand the models to make them more realistic.

The particular examples considered in this article use the classical techniques of applied
mathematics to help understand model behaviour. Much of the mathematical theory un-
derlying dynamical systems and reaction-diffusion equations was motivated by problems in
ecology, epidemiology, chemistry and biology. The excitment behind the Turing theory of
pattern formation and other areas of nonlinear dynamics was that very simple interactions
could give rise to very complex behaviour. However, it is becoming increasingly clear that
often in biology very complex interactions give rise to very simple behaviours. For example,
complex biochemical networks are used to produce only a limited number of outcomes (von
Dassow et al 2000). This suggests that it may be the interactions, not the parameter values,
that determine system behaviour and, in particular, robustness. This requires perhaps the
use of topological or graph theoretical ideas as tools for investigation. Hence it is clear that
it will be necessary to incorporate tools from other branches of mathematics and to develop
new mathematical approaches if we are to make sense of the mechanisms underlying the
complexity of biological phenomena.
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