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Abstract

A general scheme for analyzing reductions of dispersionless inte-
grable hierarchies is presented. It is based on a method for determining
the S-function by means of a system of first order differential equa-
tions. Compatibility systems of nonlinear partial differential equations
of Bourlet type characterizing both reductions and hodograph solu-
tions of the dKP hierarchy are obtained. Wide classes of illustrative
explicit examples are exhibited.
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1 Introduction

One of the most important problems in the theory of integrable hierarchies
of nonlinear evolution equations is the analysis of their reductions. Over the
last decade this subject has registered a particularly increasing activity in
connection with the hierarchies of dispersionless integrable systems. These
systems have important applications to several fields such as, for instance,
the dispersionless limit of solutions of integrable models on the zero-phase
domains [1, 2], the classification problem of topological field theory [3]-[5],
the study of systems of hydrodynamic type [6] or the theory of conformal
maps [7, 8, 9]. Several strategies have been proposed to deal with the solu-
tions of dispersionless hierarchies. The use of reductions in this context is
a relevant step within the hodograph method of solution [10, 11, 6], which
can be conveniently illustrated when applied to the dispersionless KP (dKP)
hierarchy [10, 11, 12, 13]

(), =) 2L 1)
Here z = z(p,t) is a function depending on a complex variable p and an
infinite set of complex time parameters ¢ := (z := 3, to, .. .), that admits an
expansion
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and Q, = (2™); denotes the polynomial part of 2™ as a function of p

(Z)+ =b (22)+ = p2 + 2a4, (Z3)+ = p3 + 3pay + 3as,
(%), = p* + 4p°a; + 4pay + 602 + 4as.

For n =2, (1) leads to the Benney moment equations [13, 14]
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and the compatibility equations for (1)

O O
Oty Otm

{0, )} =0, m#n, (4)

form a hierarchy of nonlinear partial differential equations. For instance by
setting m = 3,n = 2 we get the dKP equation (Zabolotskaya—Khokhlov
equation)

3
(us + 3uug ), = Zlw U= —a, ti=13, y:=ty, (5)

and for m = 4, n = 2 one gets

1 1 1
3% (§vy + g )y = (§ut + 3uuy, + 2vuy), (6)

Uy =

with v := —ay,t :=t, and u and y are as in (5).

There are several well-known examples of explicit reductions of the dKP
hierarchy in which z = z(p,t) depends on ¢ through of only finitely many
functions [3]. A scheme to deal with general reductions, without requiring
the knowledge of the explicit form of z = z(p,t), is given by Kodama and
Gibbons in [10, 11, 6]. They define an N-reduction of the dKP hierarchy as
a function z = z(p, u) of the form (2), depending on ¢ through N functions
u = (u1(t), ..., un(t)) satistying a compatible system of hydrodynamic type

(HT) equations
a_u =A (u)a_u_
ot, "oz’

such that z = z(p, u(t)) solves {1). Here A, are N x N matrix functions
depending on u only. Furthermore, if A; has N different eigenvalues and
Uiz,t = 1,..., N, are independent, the matrices A, are necessarily given by
the functions %ﬂ evaluated at p = A3/2. The corresponding HT equations
(7) turn out to be diagonalized by means of a set of Riemann invariants
provided by the turning points z; := z(p;(u), u) of the function z(p, u).

In [8, 9] Gibbons and Tsarev consider the N-reductions of the Benney
moment equations (3). They take the N first moments of z = z(p, u) as the
functions w (u; ;== a;, i =1,..., N), while the higher moments are assumed
to be functions a, = a,(u), n > N, of them. As a consequence (3) becomes
a HT system for u (involving the function ay4;(u)) and a over-determined
system for the functions a,{u),n > N. The compatibility conditions of the

n>1, (7)
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latter reduce to a system of N(IN — 1)/2 second order differential equations
for ay41(u), the solutions of which determine diagonalizable HT systems for
u. Notice that these HT systems play the role of the n = 2 flows in (7) with a
diagonalizable matrix A,. In this sense the results of [8, 9] complement those
of [10, 11, 6], so that the Gibbons—Tsarev analysis applies to the general
reduction problem of the dKP hierarchy.

The starting point of this work is the characterization of the reductions of
the dKP hierarchy in terms of systems of differential equations for p = p(z, u)
of the form .
9p _ rg(w) . _ N (
T ;p_pj(u), i=1,...,N, ®)

satisiying the following compatibility conditions

Opx Opr TiTik — TuTsk
Tik% — Tjk ow E -,
'j (]

17k Pr— D o
87‘,;k _ 8rjk —9 Z TikTil — TikT51 ' ( )
Ou;  Oui = (e — )

This class includes, in particular, the standard reductions associated to func-
tional constraints for z = z(p, u) such as

1) Gel’fand-Dikii reductions

AV pNHL Ly N1

2) Zakharov reductions

M hi
z=p+Zp_Ui.

=1
3) Kodama reductions
(51 VM
o —2
pP— (p — vo)™

ANV N Ly Nl

The basic ingredient of our analysis is a method for characterizing the S-
function for the reductions (8) of the dKP hierarchy in terms of a system of
differential equations. The corresponding compatibility conditions together
with (9) constitute a system of first-order nonlinear differential equations
of Bourlet type. It characterizes both the reductions and the hodograph
solutions of the dKP hierarchy.



2 Reductions of the dKP hierarchy

2.1 The S-function
From (4) it follows [13] that there exists a function S = S(z,t), such that
95(z)

ot,,

This function is a basic object of the dKP theory and it will be henceforth
referred to as the S-function. Without loss of generality it can be assumed
that S has an expansion

. Sn(t
S(zt) =Y 2"ta+ Y sz), z — 0. (11)

n>1 n>1

= Q,(p,t), n>1 (10)

If S satisfies (10) and (11), then by setting n = 1 in (10) one finds p as a
function p = p(z,t) of the form

p=z+zbn(t), br, :=% (12)

n ?
= 2 oz

and it can be proved [13] that the inverted series determines a solution z =
2(p,t) of the dKP hierarchy. The conditions (10) which characterize an S-
function constitute a system of compatible Hamilton-Jacobi type equations

oS aS
. = Qn (_s
Ot, oz
which represents the semiclassical limit of the linear system for the wave
function of the standard KP hierarchy.
From (11) and (12) it is clear that a function S with an expansion of the
S(2)
Otn
powers series of p, have no terms with negative powers of p. In other words,
the conditions (10) are equivalent to

(agf:))_ =0, n>1. (13)

Henceforth we will use .S as a function of either z or p and will denote by S(z)
or S(p) the corresponding functions (S(z,t) = S(p(z,t),t)). Furthermore,

t), n > 2,

form (11) satisfies (10) if and only if the derivatives , considered as
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we will denote by S(p) = S4(p)+S-(p) the decomposition of S(p) in terms of
positive and negative powers of p. Obviously, from (11) and (12) we deduce

= Qutn. (14)

n>1

Hence the conditions (13) for S can be rewritten in the following form

which will be useful in what follows.

2.2 N-Reductions

We will consider N-reductions of the dKP hierarchy determined by systems
of equations for p = p(z,u) of the form

Op .
= R; =1,...,N 1
8“1: R’L(,p’ u)’ ? ) ) ) ( 6)
or, equivalently, in terms of z = z(p, u)
0z 0z )
5&;+Rl( )p_o, i=1,...,N. (17)

The following conditions for the functions R; will be assumed

i) The functions R; are rational functions of p which have singularities only
at N simple poles p; = p;(u), i = 1,..., N, and vanish at p = oo.
Therefore they can be expanded as

Ripuy=3" —%)_ 18)

= p—pilu)

ii) The functions R; satisfy the compatibility conditions for (17)

OR; OR, OR; OR; C
a—uj—a—ui—F 3 RL'——O, i # ] (19)



We are going to prove that under these assumptions the solutions z = z(p, u)
of (17) define N-reductions of the dKP hierarchy. Our method consists in
deriving hodograph relations which determine a class of functions u = u(t)
for which a S-function for z = 2(p, u(t)) exists.

To this end let us consider the conditions (15) for S and assume that not
only p(z,t) but also S_(p) depends on ¢ through the functions u = u(t). In
this way, (15) holds if

or, equivalently, from the reduction condition (16)

(a‘;;p)Rﬁag;Ep))_:o. (20)

We wili look for a S-function such that

oS

—(n.) = \
5, 7)) =0. (21)

Let us denote by E = E(p,u) any entire function in p satisfying
E(pi,u) = Fy(u), i=1,...,N,

where
o5_

Fi(u) := —(p). 22
(u) 5 (p:) (22)
Then by decomposing

%—‘Z=(%+E)&+(%—E)&+%—i,

and by taking into account that according to our hypothesis

((%%-I—E)Ri)_ 0,

o5
B_pRi +

we conclude that (20) is equivalent to the following system of differential

equations for S_ )
d5_(p 05.(p) _ rp
. + Rba—p = (ER;)_. (23)
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We notice that they imply
0S_
ReS(Ri—é‘p—,pj) = Res((ER;)-,p;) = Res(ER;, p;),

so that (22) is satisfied by the solutions of (23). Moreover, by using (19) one
finds that the compatibility conditions for (23) are

O(ER;)- O(ER;)- O(ER;)- O(ER;)_ L,
du; Bu, + R; Bp R; a 0, i#7j. (24)
By taking into account that
_ iv: 7l
o1 P~ Px

one sees that (24) represent a set of consistency conditions for the functions
F;.

To sum up, if the functions R;(p,u) and F;{u) (i = 1,... N) satisfy (19)
and (24), a solution z = z(p,u) of (17) of the form

z—p+Zan (25)

n>1

determines a N-reduction of the dKP hierarchy. Indeed, from (14) and (25)
we determine S, (p) in terms of the coefficients a,(u) and then, by using the
conditions (21) as N implicit equations

83,
a—p(Pi) + Fi(u) =0,

or, equivalently,

o0,
va t + F ) 07 Vin = a_p(p'b)’ (26)

we characterize a class of functions u = u(¢) for which z = z(p, u(t)) admits
a S-function. Observe that the series

5. =3 2,

7
n>1 p
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can be recursively determined from (23). Consequently, z = z(p, u(t)) solves
the equations (1) of the dKP hierarchy. In view of the form of the implicit
relations (26) these solutions will be henceforth called hodograph solutions.

Obviously, the choice F; =0, ¢ =1, ..., N corresponds to S_ = 0 of (23).
On the other hand, if (R;, F;),i =1,..., N is a solution of the compatibility
conditions (19) and (24) and z = 2(p, u) is the associated solution of (17).
Then, for every entire function P = P(z)

OP(2)+

-F~:i = EL = )
Op lp=p:

(27)

is a new solution of (24). The proof of this property follows from the fact
that (17) implies

OP(z) OP(z)
—Bzz,;— + Ri(p, ’U')a_p =0,
so that 5P (2) 9P(2) 8P( )
2)_ z)- _ 2)+

Hence, if S_ is the solution of (23) associated with F; then S_ := S_ — P(z)_
is the solution of (23) associated with F;. It is easy to see that the trans-
formation (27) describes translational symmetries of the implicit relations
(26)

a(t) = u(t + ), (28)

where ¢ := (c3, ¢z, . ..) are the coefficients of the Taylor expansion of P

P(z) = Z 2"

n>0

In [15]-[19] inverse problem techniques are used to construct S-functions
for soiving the initial value problem of several dispersionless models. Qur
analysis provides an alternative viewpoint for determining S which is based
on the systems of differential equations (16) and (23). Thus, S is character-
ized by a set of spectral data {p;(u),ri;(u), Fi(u) : 1 < 4,5 < N}. Moreover,
from (18) one finds that the compatibility conditions (19) and (24) are equiv-



alent to the following consistency conditions for the spectral data

Opy Opr Z TiTik — TaTjk

k Tik
"o 7" Ou; o Pk P
6rzk ar]k -9 Z Tjkrzl Tzk'rjl
au] Uy l;ék (pk - pl
8Fk GFk ’I"ﬂ’f‘.bk - ’f',,l’I"Jk
Fika — Tk = 3 e Uk (f —
“ou; 7" Oy ; (ox — p1)* ( )

(29)

where ¢ # j. In this way the first two groups of equations of the system (29)
characterize the reductions of the dKP hierarchy, while the whole system

determines the set of hodograph solutions.

2.2.1 Differential form formulation of (29): Compatibility

The equations (29) can be neatly written in terms of differential forms. For

that aim we introduce the following notation

N
Ok = Z Tig d u;
i=1
so that (29) are equivalent to

Prt+ D
d(pror) = ok A Z e — )22

2 15
1
dor = 20, A o1,
; (Pk —pz)2
F. + F
d(Freor) =AY (pk—pl;2 !

10
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We shall show that for any solution {py, Fk, ox} of (30) the following equa-
tions are satisfied

(Qk A l; or— o) 2Ql) .= 0, (31)
(Qk /\Z P +Pl ) —0, (32)
l;ék
F + Fz
d (gk A l; mgl) =0. (33)

It is enough to check (33), as (31) and (32) follow from it by choosing
Fy, = 1/2 and F} = p, respectively. One easily gets the desired result as
follows:

Fk + F
d (Qk A Z ~)E° z) — 201 A Z Skim 01 A Om
l;ék l,m#k

=0.

The last equality is consequence of the skew-symmetry of the wedge product:
01 \ Om = —0m N 0 and symmetry of the coefficient

(2p% + o+ P — 2(p1 + Pm)P) Fie | (PR + 297 + P — 2010k — 2pipm) Fi
(=01 +2m)* (e — 2 )* (e —21)* (=21 + Pm)?(Dx — Pm)? (6 — 21)?
(p% + 17 + 207, — 2PkPm — 2P1Pm) P
(=p1 + Pm)*(Px — Pm)*(Pr — P1)?
given by Skim = Skmi-
The system (31)-(33) means that the system itself ensures the equality of

cross-derivatives. Thus, we conclude that the system (29) is compatible in
the sense that

Shim =

0 Opr O Opx
Oum 0w 0w Oy,
5, 87‘,;/;_ 0 an-k
O, Oy Oty Oy’
8 8F, 0 OF

Oup, Bu  Ouy Oy’

holds in virtue of the equations (29).
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2.2.2 Bourlet analysis

Our first aim is to show that (29) has a number of redundant equations. We
shall concentrate on the equations

Opx Opx TiTik — TiaT5k
Tikm— — Tik—— = I ) 34
kauj 7 Ou; ; Pk — D1 (34)
<9F,c OF; TiiTik — TiTjk
i = E ~———(F}, — F 35
"B M ou (o — p1)? (Fie = F1) (35)

I#k
For each k& we define s, € {1,..., N} by the condition 7 # 0 and % = 0
for 2 > s. Then, (34) imply

1 0 sgplfik = Tills :
8pk=—(rikﬁ—ZTklrk Tl’l",ck)’ i £ 5. (36)

6’(1,1' Tsk D — D

Moreover,(34) for i, j # s; holds whenever (36) is satisfied:

Opx Opk Tik ( Opr Z TsplTik — lerskk:)

"B M B, 2 pi—p
_ Tk ( . Opx, _ TsplTik _rilrakk)
Tak\ Ous X pe—p
_ Z TiTik — TaTjk
12k De—D

Second, we notice that when 7,4 # 0 (35) imply

OF 1 OFy TapiTik — TilT sk .
= T - F _ F , i i 37
6ui Tskk; ( ka’u,sk #Zk (pk _ pl)2 ( k l)) % k ( )

As before (35) for 4, j # s; holds whenever (37) is satisfied:

Tik— — Tik = ik
Ou; Ou;  Te \ 7 Oug, (pk — p;)

Ik

Tk ( OF TspiTik — Tzl'rskk P )

- k— B
Tspk ausk #Zk (pk - pl ( )

Z rjl'rzk Tzl'rjlc Fk; -Fl)
= (-
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Then, the system (29) is equivalent to

Opx 1 Opx TsplTik — Til sk .

a — - ’r‘lk——a — ; 1 < sk;,
U Tsrk Usy, 1k D —Di

Opk 1 ToplTik — TilTsgk

u. = — — , 7> Sk,
Uy Tark 14k Dk ]

oF 1 OF; TeiTik — TilTs )
k_ (Tik: k _Z Tk — Til kk(Fk_E)), i < s, (38)

8”"; 'rskk au&k l#k (pk - pl)
OF; 1 T iTik — Tl
k = sillik 'leskk (Fk _ ﬂ), P> Sk,
Ou; Y (px — 1)
or; 0 — Tkl o
Tzk Tjk +9 Z kT3l ik Jl, i> 7,

auﬂ Uy Ik (pk' - pl
for k=1,...,N. The system written in this form is of Bourlet type [21]. In
this sense (uy, ..., Us,—1,Us,+1, Un—1) are principal variables for py, F while
us,, are parametric variable. For r;; we have that (w,...,u;_1) are principal
variables and (uj,...,uy) is a parametric variable. The compatibility in

principal variables is ensured from the result of previous section which gives
compatibility among all variables. To apply the Bourlet theorem we should
check the analytic character of the functions defining the system. We see that
once the conditions 7, # 0 and py # p; are ensured the analytic requirement
is satisfied. Following Bourlet, we conclude that there is a unigue solution
{pk, Fy, 7} in a nelghborhood of an initial point ug = (uf"), . ug\?’) such
that when the principal variables assume initial values then the solution is
transformed in a set of arbitrary analytic functions of the corresponding
parametric variables. Thus, the general solution will depend on N(N + 1)
arbitrary analytic functions of the parametric variables, 3/V of one variable,
and for each [ = 2,..., N — 1 there are N analytical functions of [ variables.
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3 Hodograph solutions and systems of Hy-
drodynamic type

3.1 Associated systems of Hydrodynamic type

The implicit equations (26) are transformations of hodograph type which
reveal the presence of an underlying system of HT equations. In fact from
(17), provided z = z(p, u) is regular at the points p;, it follows that

0z
a—p(Pz') =0,
so that (1) implies
0z; auJ . 0z 8uJ
Z < Ou; ot,  m Z “Ou; 0z’ 21
where
zi = z(p;, u(t)).

Thus, by expressing u(t) in terms of the functions z;, we find that the func-
tions u(t) satisfy the system of equations of hydrodynamic type

ou ou
a—tn—An(U)%, ’I’L—].,...,N,
U
u = : ., A=K DK, (39)
Un
32,;

D, .= diag(vip,...,unn), Kij:i= e
7

Notice that, by taking into account that vy, = 2p;, from (39) we obtain
the Gibbons—Kodama formula [6]

A, =wvn(A), A:=Ay/2, (40)

where v, (p) := 5;}27 =

flow (Benney moment equations) in the analysis of reductions of the dKP

14



hierarchy. Furthermore, by using the HT equation u, = A(u)u, associated
to the Benney moment equations we may rewrite (1) for n = 2 as

0z 0z 0z 08ay\ Ou;
; (;Aiﬂ'a—m _pa_uj+ Bpauj) aa:J =0

Hence, if we assume that the functions J,u;, j = 1,..., N are independent,
we conclude that the functions R; in (16) and (17) can be expressed as

-1 Bal

R =3 (Aw) -p) 52, (41)

o i Ouy

Therefore, the compatibility condition (19) for the reductions of the dKP
hierarchy can be formulated in terms of the matrix A associated with the

Benney system.
From (41) we deduce that

Thus, the differential forms g, are

Z 6zk Ba — o d
1 (91.141 821;; g5

In terms of the new coordinates {z;}¥, the system (30) reads

67'-,; —9 TiT;
0z;  (pj —pi)?
ap,; _ 7'_7'
0z  pj—pi
0F,  F—F

9z (o —p)
We notice that according to (50)

@ 1 _Op 1 _lalnri
8z; F; — F,  0Ozpj—p 2 0z '

i (42)
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These relations provides a link between the system (29) and the theory
of Comberscure transformations of symmetric conjugate nets [22]. Thus, if

we define Y
T VTiT3 L,
Bij = L . 2 = Bjis T # (43)
Vi 0 i)
then there exists a family of parallel conjugate nets @ = a(u) given by the
solutions of 9
T

aZ,,;
where H; and X; (the Lamé an renormalised tangent vectors, respectively)
are characterised by the equations

= H;X,, (44)

OH;

B B Hj, (45)
and

0X;

Obviously, H; := /r; solves (45) and as a consequence one proves that (42)
means that F;H; and p;H; are also solutions of (45).

3.2 Diagonal reductions

From (1) it follows that

52,; _ 32,’

Bt, "oz’
so that z; = z;(u) constitute a set of Riemann invariants of the HT system
(39). If we take z = (21(u), ..., 2n(u)) as the new dependent variables of the
N-reduction the associated HT system is (47), so that the A-matrix for the
Benney flow is A;; = p;0;;. Hence, by using (41) we get that p = p(z, u(2))
satisfy

(47)

) Ti 0
_p:_—", r; :=ﬂ_ (48)
0z P —pi(2) 0z
These equations were already found by Gibbons-Tsarev [8, 9] in their analysis
of the consistency conditions of reductions of the Benney moment equations

in characteristic form.
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Reciprocally, if we consider reductions determined by systems of the form

op T; . daq .
bu . p-mw) ' ow’ (49)
Then
0z _ ri(u) 0z
Ou; p—piOp’

so that z;(u) = z(p;, u) satisfies

62_7'

aui=0 i # 7,

and therefore each u; is a function of z; only. This means that the systems
of the form (49) determine those reductions of the dKP hierarchy in which =
evolve according to diagonal HT sytems. Henceforth these reductions will be
referred to as diagonal reductions. Since every reduction is associated with
a HT system which adopts a diagonal form under the change of variables
u — z, classifying diagonal reductions would allow us to classify the whole
class of reductions of the dKP hierarchy.

The compatibility conditions (29) for diagonal reductions and their cor-
responding hodograph reductions read

Ori _ ., il
Ou;  (pj —mi)?’
8pi 75
= , 50
Ou;  p;—Di (50)
OF; F,-F

—_— =T —,
8uj J(Pj — pi)?

where 7 # 7.

This is a compatible system of first-order differential equations with a
solution depending on 3N arbitrary functions of one variable. The first two
groups of equations were found by Gibbons and Tsarev [7]-[8] in their anal-
ysis of the reductions of the Benney equations. We also remark that the
geometrical interpretation described above obviously holds here as weil.
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4 Examples

4.1 N =1 reductions

If only one function u = u(#) is assumed to be involved in the reduction and

it is set u = —ay, then (16) becomes the Abel’s equation
dp 1
o__ 1 51
Ou  p—pi(u) oy

and from (17) we get the following recursion relation for the coefficients of
the expansion of z = z(p, u)

a1 =-Uu, Qaz= —/pl(u)du,
Umig = Pi(UW)ar, 11 + My, m2>1,

where a,, = %:&. We can now use this expansion to generate solutions of
the equations of the dKP hierarchy. For instance, by setting ¢, = 0, n > 4,

in (26) we get the following implicit equation for determining u

4(p1('u,)3 — 2up:(u) — /p1 (u) du) tyt (52)
3(py(v)? — u)ts + 2p1 (u)ty + T = —F(u),
where py(u) and F(u) are arbitrary functions. For ¢4 = 0 this result reduces
to Kodama’s equation 10, 11] for N = 1 reductions of the dispersionless KP
equation (5).
An explicit expression for the solution z = z(p,u) of (17) is available in
a few cases only. For instance

1. p1(u) = 0 (dKdV-reduction)
2= (p* — 2u)3.

=

2. pi(u)=u .
z = (p® — 3up — 2u?)s.

3. p(u)=u
z=1+W(e(p-u=1)),
where W = W(y) (Lambert function) is the inverse function of y =

T e¥.

18



4. pi(u) = u?

2 =

3 ( A (p) —udphi(p) ,W)
4 9)

() — g, A (p) ~ 2

where Ai(®) are the Airy functions

Ai®)(p) := Bi(—p) £ i Ai(—p).

In what concerns the determination of S_ for p; = 0 we have that (23) is

now 0S_(p) n 185_(p) _F

du p Op p
An explicit solution is given by

s =—( [ PG - =, de)

4.2 N = 2 reductions

Let us consider now the case u = (u,v) with ¥ = —a;. From (41) we get
@ _ p— Ag
Ou (p— An)(p — Az) — ApAgy’
Op Ass (53)

% (p - A11)(p - A22) — ApAy’

where A := (A;;(u)) is the 2 x 2 matrix function associated with the Benney
flow. The right-hand sides of (53) have simple poles at

Ay = %(trA:i: V(trA)2 —4 detA).

In this case (19) lead to the following conditions

O0,det A _ O, trA

19



The moments of z(p, u) are determined by the recursion relations
a; = —1Uu, a2=—/A11du+A12dv,
as = /(detA —u—AntrA)du— AjptrAde,

Oulmiz = tr A Oyam1 — det A 8,a,, + ma,, — (m — 1)Axa,_1,

OyOmiz2 = tr A OyGmy1 — det A 80 + (M — 1) Ajaam,_1-

If we denote

0S_
F:l:(U) = ap(p) IA:H
then (24) reduces to
) F, - F_
(p— Ax)0, E — A130, E = (p* —p tr A — det A)9,(———=),
Ay — A
where FE is taken as
E=vry —a T A A
Thus, one finds at once that
-0, F\ _ Oy G
<8uF>_A(—6uG)’ (55)
h
where o  AF-AF . F—F,
AL —A- AL - A

Hence if A and F, verify their corresponding consistency conditions and we
set £, =0, n > 4, then a solution of the first flows of the dKP hierarchy can
be fcund by solving the following implicit equations for

4(143: — 2’U,A:}: — /Andu+A12 d’U)t4+

(56)
3(A:2|: - u)ta +2A4t+x=—F4.
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If t4 = 0 these equations are equivalent to the Kodama system for N = 2
reductions [10]-[11]
—3(u + detA)tg +x= F,

5
3tI‘At3+2t2=G. (7)

A particularly interesting case arises by imposing © = —a;, v = —ay
which corresponds to the choice

A= ( _OV &,) Vi ALA Wi=A, +A_.

Thus one finds that (54) becomes

o,V +o,W =0, (58)
OV -Vow+WwWov+1=0.
Hence by setting
V=02, W=-9,Z,
(58) can be formulated as a Monge-Ampere equation
OuwZ + 0y, Z O Z — 8y Z Oy Z +1 = 0. (59)
Analogously, (55) can be written as
F=9,T, G=20,T,
(60)

0T +V 8, T +W 0,,T =0.

Next, we will construct some solutions of the dKP equation.
A solution of (58) and (60) is givenr by

2 2
W== V=2 tal+u, T=ku+hkw
[ U

The corresponding hodograph solutions for (5) are given by

u(z,y,t) = % (—Gt + /3612 + c[12t(z — k1) — (2y — kz)z]) :

12t(z — k1) — (2y — k)2
u(:c,y,t) = ( 1;2t2( Y 2) 3

which correspond to ¢ # 0 and ¢ = 0 respectively.
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Another interesting solution of (58) and (60) is

2
w=2 v=" iy 7=t
u U u
It leads to a hodograph solution of (5) implicitly defined by the algebraic
equation
72t%u® + 4(y* — 3tz )u® = K2

4.3 N = 3 reductions

Let us now denote u = (u, v, w) and consider the system

@ _ p2 +Blp+Bg

ou  (p—A)(p— A2)(p— As)’

o _ p+G (61)
ov  (p—A1)(p— A2)(p— As)’

dp Dy

dw (p—A)p-A)p—As)
As the computations in this case are very involved it is convenient to assume
that (u,v,w) are given by the first coeflicients of the expansion of p = p(z, u)

—z+”+v+w+0(1)
p= z 22 28 24

thus we have
Bi=Ci=-V, By=R+u D;=1,

where
V = A; + Az + As,
R =A1Ay+ Ay Az + AzA;,
H = A1A2A3.
The compatibility conditions (19) can be formulated as
Vu = _R'uh

Ru = _Hw+RVw_V-Rw7
H,=1-VH,+HV,,

(62)
Va =Hw+uvw7
R,=VH,—-HV,+uR, —2,
H,=-V+RH,—HR, +uH,.
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Now, if we take S = S.(p) and ¢, =0, n > 4, then (21) implies

oS
A0~ s - ) - 4o - 40)
(63)
= 4ty(p® — Vp* + Rp— H).
On the other hand, as a; = —b; = —u, ay = —by = —v, then
%p(m =2+ 2py + 3(p* — ult + 4(p® — 2up — v)t,. (64)

Thus, by comparing (63),(64) we find that solutions for the first two members
of the dKP hierarchy can be obtained by solving the system
3t z — 3tu

=2 R=Y 9y H=y-
V=—gy B % YT T,

(65)

For instance by trying a function V' of the form V = V(u,v) we find a
solution of (62) given by

V = k1U+k2u+k3,

R = ki+ (k2k3 — 2)u + = (]{,'2 k‘l)UZ + (k’lk‘3 — kg)'l)-{-
%v — kiw + kikauv,

3k1ko— k1k2ks3

H = kekw—l—(%’t—%l) +.___..22_2__u 2‘U+
3
(1 — koks)v + kaw — k2uv — % ’“lzc’f4 + F} + fﬁa kzka

where ki, ko, k3, k4, ks are arbitrary constants with k; # 0. Hence we have
a solution of (5) and (6) implicitly defined by the trascendent equation

K3z — 2k2kay + Bk k2t + 4(k2ks + 3kiks — k3)tat
(12’6%]92754 —_ 3]9:1%)’& + 4k?k5t4ek1u’ = 0,

— _ka 3t _ k
and v = e~ Thn R

In the particular case k5 = 0 one finds

. k13x — 2kfk2y + 3k‘1k’§t + 4([&'?’(53 + 3k1k52 - kg)t,i
B 3k} (kyt — 4hots)
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4.4 Diagonal reductions

We have seen above that the diagonal reductions

Op T Oy

Bu” P on@ T Bu
and their corresponding hodograph solutions are described by the compatible
system of first-order differential equations (50). In [8] Gibbons and Tsarev
provide a set of solutions for the first two subsystems of (50) which are both
scaling and galilean invariants. They are defined by
ZZ-L%‘Tj=1, p,;=u,;+zu'j_UiT'j. (66)
o (pj — ps) iz i T Pi

Corresponding solutions of the third subsystem of (50) satisfying the invari-
ance properties
OF; OF;

are determined by

1 Olnr;
F,=vu,+ 'é ;(’Uq - 'LL,,)(E, - Fz) 8’U,j (67)

Let us analyze the case N = 2 in closer detail. From (66) we may start
with a scaling and Galilean invariant choice for r; and p;

r=-T= —('ul - uz),

8

1 1
P = Z(3u1 +up), p2= Z(ul + 3ug).

The conditions for F; become

OF, 0F, 1R -F

Buz 8'&1 2 U — Uz ’

which are equivalent to

ou
k2 8“," z ) 7
AU oU  oU
2(uy — ug) =

Ou0uy  Ous  Oug
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The solution of the equation for U can be found by the method of separation
of variables and is a superposition of functions of the form

(a Jo(k(uy — uz)) + b Yo(k(u1 — ug))) (ccos(k(ul + ug)) + dsin(k(u; + uz))),

where Jy and Y, are the standard Bessel functions. We find also the simple

solution c

U=c 111(11,1 - ’UQ), Fl = —F2 = 5
U1 — Usg

which leads to the hodograph relations

1 1
3(—(3U1 + U2)2 + al)t;; + "(3’11,1 + UZ)tQ +z=

16 2 Ug — Up
1 \ 1
—_ t —_ =
3(16(U1+3’u2) +(11) 3+2(U1+3UZ)t2+£B oy
where
= 55— w)’
a; = 16 Ui Ug ) .
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