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Abstract

A Markov chain model for a battle between two opposing forces is formulated, which
is a stochastic version of one studied by F.W. Lanchester. Solutions of the backward
equations for the final state yield martingales and stopping identities, but a more powerful
technique is a time-reversal analogue of a known method for studying urn models. A
general version of a remarkable result of Williams and Mcllroy is proved.

1. Deterministic theory

Frederick William Lanchester (1868-1946), pioneering engineer and amateur mathe-
matician, made many contributions to the early years of the motor car and later to aviation.
His biography by Ricardo (1948) gives an account of a long and varied career, and a recent
article by Cummings (2001) gives an appreciation from an operational research viewpoint.

Cummings emphasises his work on theories of warfare and battles, and in particular
his fascination with the battle of Trafalgar, fought in 1805 between a Franco-Spanish fleet
commanded by Villeneuve and a British fleet commanded by Nelson. Lanchester suggested
that simple deterministic models could provide useful insight into such events, but such
models tend to fail when opponents are evenly matched and random effects may be decisive,

For the sake of vividness we shall use the language of a naval battle although Lanch-
ester applied his methods to other modes of conflict. Suppose that two hostile fleets, of z¢
and yo ships respectively, approach one another and start firing. The gunfire results from
time to time in ships being sunk or disabled; suppose that at time ¢ there are z; and y,
ships remaining active. Lanchester models these as continuous variables, and postulates

the differential equations
dz
dt

dy
_by s E — —ax_ (1.1)

The strictly positive constants a and b measure the effectiveness of the firing of the two
fleets, so that the rate of attrition of each fleet is proportional to the gunpower of the

other.



Equation (1.1) is very easy to resolve. Note first that

%(awz —by?) =0,

so that
az? — by = azi — byl = A, (1.2)

say. The constant A measures the advantage or disadvantage of one fleet relative to the
other. The point (x,y;) travels down the hyperbolic trajectory (1.2) until it hits one axis
or the other, when the battle is won and lost.

If A > 0, it is easy to check that this occurs at time
7 = (ab)*/2 cosh™? (al/zA_1/2$0) , (1.3)

when
T, =a"Y2AY? = {a_l (amg - byg)}l/2 , Yr =0. (1.4)

Thus the first fleet wins, and (1.4) gives the number of survivors.

Similarly, if A < 0, the final result is
7= (ab)"/Zcosh™* (b1/2|A|_1/2yo) , yr = {07 (by§ — ax%)}l/z . (1.5)

Thus not only does (1.1) yield a clear criterion to predict the winner, but it also predicts
the number of ships surviving after the battle.

The critical case A = 0 is much less satisfactory. Equation (1.2) implies that az? = by?
for all £, and substituting back into (1.1) gives

Ty =zoe™ ", Yo = yoe ", v = (ab)/2. (1.6)

Both fleets decay exponentially, the battle apparently takes an infinite time, and there are

not survivors.

This model is defective because it ignores random effects. A few lucky hits early in
the battle will move A away from zero, to give one fleet or other a decisive advantage.
Thus it is important to have stochastic models to refine (1.1).
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Lanchester’s analysis can be greatly generalised without losing much of the simplicity
of his results. Thus (1.1) could be replaced by

L o by)e@9,1), G = —a@elo 1), (17)

for strictly positive functions a, b and ¢. This allows the firepower of each fleet to depend
non-linearly on the number of ships (perhaps because they get in the way of each other),
and for weather and sea conditions to be modelled in the function c.
Writing
z Yy
Aw) = [ ate)de, B) = [ veman, (1.9
(1.7) shows that
d
= {A() - B)} =0,

so that
A(z:) — B(y:) = A(zo) — B(yo) = A, (1.9)

say. If A > 0, (1.9) implies that A(z;) > A, so that the first fleet never falls below a
minimum size. This is not quite the same as saying that the first fleet wins the battle,
since a, b and ¢ could be such that the battle might go on for ever. It is however easy to
impose conditions that imply that there is a finite 7 with y, = 0, and then the number of

survivors is given by the equation
Alz;)=A. (1.10)

Similarly, if A < 0 the second fleet never loses, and if it wins at time 7 the number of

survivors satisfies

B(y,) = -A. (1.11)

The case A = 0 is again critical, and demands a stochastic treatment.

2. A Markov model

We consider a stochastic analogue of (1.7) in the form of a continuous time Markov

chain on the quadrant

Q= {(z,v); z,y=0,1,2,..., z+y =21} (2.1)
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with (0,0) removed. The state at time ¢ is (X¢,Y;), where X; represents the number of
ships in the first fleet still firing at ¢, and Y; the number in the second.

If
Xo =T, Yo =1%o, (2.2)

the chain has effective state space
Q(zo,%0) = {(,y) € @; z < x0, ¥ < Yo} (2.3)
which is finite, so that the complications associated with infinite state spaces do not arise.

By analogy with (1.7), it is assumed that the transition rates of the Markov chain are
non-zero only for transitions of the form (z,y) — (z,y — 1) and (z,y) — (z —1,y), and
that they are of the form a(z)c(z,y,t) and b(y)c(z,y,t). Here the functions a, b and c are
strictly positive, except that a(0) = b(0) = 0. The states (z,0) and (0,y), which form the
boundary 9Q of Q, are absorbing.

The dependence of ¢ on t, if non-trivial, renders the chain one with non-stationary
transition probabilities, and this can give complications which do not seem profitable to
pursue. We shall therefore take ¢ to be a function ¢(z,y) on Q, though it would not be
hard to remove this restriction if necessary.

Thus we assume that

P{Xitrn =z, Yiqn =y — 1|X; = 2,Y; = y} = a(z)c(z, y)h + o(h)

(2.4)
P{Xttnh =z—1, Yyyn =y|Xs =z, Y2 = y} = b(y)c(z, y)h + o(h)

as h — 0 from above for z,y > 1, all other transitions having probability o(h). This
determines the transition probabilities of the Markov chain (X,Y;) on the finite state
space Q(zo,yo). With probability one the chain reaches, and remains in, one of the states
of 0Q after a finite time. This final state (X0, Yoo) is either (S,0) or (0, S) where S is the

number of survivors.

It is convenient to define an indicator variable x which is 1 in the first case and 0 in
the second, and which therefore shows which fleet wins. The pair (x, S) is a coding of the

final state
Xo=%xS5, Yoo =(1—x)S, (2.5)

and our aim will be to calculate the joint distribution of x and S.
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This process was first studied by Williams and Mcllroy (1998) in the very special case
a(z) ==z, bly) =y (2.6)

which corresponds to Lanchester’s model (1.1) with a = b. They use the language of the
gunfight at the OK Corral, and we shall therefore refer to this special case as the OK
Corral. They arrived at the remarkable result that, if zo = yo and 2o — oo, then

E(S) ~ 2(3)"Y4x=1/20(3/4)x2/* . (2.7)

They did not in fact prove (2.7), but observed the 3/4 power from numerical evidence,
and then described a diffusion approximation which yields the coefficient. It seems difficult
to make this rigorous, but a different approach by Kingman (1999) does succeed in proving
(2.7), and in finding the limiting distribution of S. (By symmetry x is independent of S,
taking values 0 and 1 with equal probability.) It is proved that, as zo — oo, the random

variable
(2x — 1)(2z0) ~%/252 (2.8)

has a limiting normal distribution A(0, 3), from which (2.7) follows at once. More gener-
ally, if o and yo are nearly but not exactly equal, in the sense that zq,yo — oo with

Tog — Yo ,U'(-TO + y0)1/2 (29)
for some constant p, then (2.8) has limiting distribution A (g, 3).

The 1999 analysis does not generalise to our chain (2.4), but there is a simpler approach
which does. As in the earlier work, this relies on the identification of functions f(X,Y}:)
which are martingales, or what is the same thing on solutions of the Kolmogorov backward
equations. The imaginative use of these equations was one of the hallmarks of the work
of the great statistician Maurice Bartlett, and I dedicate this paper with respect, affection

and gratitude to his memory.

3. The backward equation

In this section (X, Y;) is a continuous time Markov chain with state space Q and
initial state (xo,yo) whose transition rates are given by (2.4). The final state (X, Yoo) is
either (S,0) or (0,9) for some S > 1, and is reached after a finite time with probability
one. Together with the indicator variable x, S labels the final state as in (2.5).
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Let g by any function on {0,1} x {1,2,3,...} and let

f(zo0,y0) = E{g(x, 9)} - (3.1)

Then f, as a function of the initial state, satisfies the backward Kolmogorov equation (see
for instance Chung (1967) section I1.17):

{a(z)c(z,y) + b(y)c(z, y) } (=, y)
= a(z)c(z,y) f(z,y — 1) + b(y)e(z, y) f(z — 1,9)

or

{a(z) + b(¥)}f(z,y) = a(z) f(z,y — 1) + b(y) f(z — 1,9). (3.2)

The reason c(z,y) disappears is that the ‘jump chain’, which determines the successive
states of the chain without regard for time, has transition probabilities depending only on

a and b.

Equation (3.2) is fundamental, and was used as the starting point by Williams and
Mcllroy in the OK Corral. They noted that (by induction on z + y), f is uniquely deter-
mined by (3.2) and the boundary conditions

f(z,0)=g(1,z), f(0,9) = g(0,y). (3.3)

This viewpoint was reversed in (Kingman, 1999). If f is any solution of (3.2) and g is
defined by (3.3), then (3.1) holds.

Equation (3.2) is just the condition for f(X;,Y:) to be a martingale. Thus (3.1) is the
familiar stopping time identity

f(o,y0) =E{f (Xoo, Yoo)} - (3.4)

By finding a sufficiently rich family of solutions of (3.2), we can gain enough information
to deduce the distribution of (x, S).

One such solution is easily found. By direct substitution,

f(z,y) = A(z) — B(y) (3.5)
satisfies (3.2) if
A(z) =3 ali), Bly) =3 b0). (3.6)



This choice of f leads to the basic martingale
Zy = A(X;) - B(Yy) , (3.7)
for which (3.1) becomes

A(zo) — B(yo) = E{xA(S) — (1 - x)B(S)} - (3:8)

Specialising to the OK Corral,
fle,y) = 3o(z+1) - 39(y+1) = 3z —y)(z+y+1), (3.9)
and (3.8) becomes
(o — yo) (w0 + 30 +1) =E{(2x - 1)S(S+ 1)} . (3.10)

This is trivial if 2o = o, since by symmetry 2y — 1 is =1 with equal probabilities inde-
pendent of S. It is however shown in (Kingman, 1999) that (3.10) is the first of an infinite
sequence of identities of which the next is

(zo +yo+1)(zo +yo +2) {170 +yo + 3 (20 — yo)z}
—E{S(S+1)(S+2)(35+ 1)} .

(3.11)
This is informative even when zo = yg, and the whole sequence determines the distribution

of (x, S) and is enough to prove the limit theorem cited in the last section.
Unfortunately, the algebraic methods of 1999 do not easily generalise, even to the case
a(z) =az, b(y) =by (3.12)

with a # b. We therefore use a different approach to find solutions of (3.2).

4. A martingale generating function

Seek a solution of (3.2) of product form:

fz,y) = d(@)¢(y) - (4.1)
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Substituting and rearranging, we have
px) —dz—1) _ Py -vy-1)
@@ T ) “2)

Since the left hand side is a function only of z, and the right only of y, they must equal a
constant A (say), and then

= ¢(0) [ [ {1 = Aa(@)}™
i=1

and

Y(y) = H {1+ X0}

The algebra reverses, showing that

flz,y) = H{l—Aa 1H{1+Abu>}‘ (4.3)

i=1
satisfies (3.2) for any A except a(i)~! or —b(j)~! (3,5 =1,2,...).

The interested reader will easily verify that, in the OK Corral, the 1999 solutions are
(apart from numerical factors) the coefficients of powers of A in the expansion of (4.3).
In the general case, (3.5) is the coefficient of A, and the other coefficients give further

solutions.

It is however more productive to apply (3.1) directly to (4.3), giving the very general
identity

H{l —Xa(i 1H{1+)\b ()} ?
(4.4)

s s
=E | x [T {1 - 2@ + @~ [T {1+ 26)}

This holds as an identity between rational functions of A (since the expectation is a finite
sum), and contains enough information to determine the joint distribution of x and S.
To see this, first suppose that the a(i) are distinct, multiply (4.4) by 1 — Aa(z) and let
A — a(z)~?! to get

ﬁ o) ﬁ oz ___p X ﬁ _alo)__ (4.5)
i a(@) —a(1) 5 a(z) + () ¢ i< a(z) —a(i) [’



where y, = 1if x = 1 and S > z and 0 otherwise. Downward recursion on z = o,
zo —1,...,1 determines the distribution of S when x = 1, and a similar argument deals
with x = 0. Finally the case when the a(i) are not distinct can be handled by a continuity

argument.
Equation (4.4) can be used to derive useful inequalities. If A satisfies
0<A<a(d)™ (i=1,2,...,%0) , (4.6)

then

S
P{x=1} <E {XH {1- Aa(z‘)}—l}

Zo Yo
<JIH = 2a@} [T {1+ 2600}
i=1 j=1
=1+A{A(z0) — B(y)}+ 0 (A?)
as A = 0. This is a non-trivial upper bound for small A if
A (zo) < B (y) (4.7)

and can be used for suitable a and b to show that the probability that x = 1 is small when
xo and yg are large. To illustrate in more detail, suppose that (as in the OK Corral)

a(i) = b(7) (4.8)

for all 4, and that a is non-decreasing. Then (4.7) is equivalent to zp < yo, and then

P{x =1} < H {1-22%()?}" [T a+xm
i=1 j==zo+1

Zo

<IT{-veeo}” T 0 sy

=1 j=mo+1

— {1 - Aa(20)} ™ {1+ Aa(e0)} ¥ .

The best value of A in this last upper bound has



(say), when the upper bound becomes
P{x=1}<(1-¢)"™1+¢) ™% < exp{—12 (zo +40) (*} . (4.9)

Thus if
(yo — Eo)z / (zo + yo)

is large, there is high probability that the larger fleet will win.

This has so far only been proved under the symmetry condition (4.8) and for monotone

a, but we shall return to the general case in Section 6.

5. Decoupling the fleets

The existence of the large family (4.3) of martingales of product form suggests that
in some sense the component processes X; and Y; should be independent, but they are
not, nor are they even Markov processes in the simplest case of the OK Corral. It was
noticed however by S.E Volkov that the OK Corral can be seen as a time-reversed form
of a particular urn model, and that some urn models can be decoupled using ideas of S.
Karlin and H. Rubin.

The consequences of this idea were worked out for the OK Corral in Kingman and
Volkov (2002), but the argument is more transparent in the context of the general Lanch-
ester model. We have seen that the distribution of the final state (though not of the time
to reach it) does not depend on the function ¢, and there is accordingly no loss of generality
in taking

c(z,y) = a(z)"'b(y) " (5.1)

Then the transition rate from (z,y) to (z — 1,y) is
b(y)c(z,y) = a(z) ™

and is independent of y. Similarly the transition rate from (z,y) to (z,y — 1) is b(y)~1,
and is independent of z. It follows easily that, under (5.1), X; and Y; are independent
pure death processes with respective rates a(z)~! and b(y) ™!, up to the time when one of

them reaches zero.

It must be stressed that (5.1) is not a realistic choice in modelling terms. It is simply
a mathematical convenience to facilitate calculation of the distribution of (x,S). To see

10



how this works, let &.(r = 0,1,2,...,29 — 1) be the first time that X; enters r, and 7,
be a similar quantity for Y;. Then the event {x = 1,5 = r} is the event that, at ¢ = no,
X;=r2>1. Thus

]P’{X=1, S=T}=IP{£,-<’I70<€T_1} (5.2)

and similarly
P{x=0,S=r}=P{n <& <nr—1} . (5.3)

Since the increments §,_1 — & and 7,_1 — 1, are independent with known (negative ex-
ponential) distributions, these probabilities can be calculated by standard techniques of
renewal theory. This is done in detail for the OK Corral in (Kingman and Volkov (2002))
and the generalisation to the present model is entirely straightforward.

Under mild conditions on a and b, the central limit theorem can be applied to &, and
N, to give limit theorems for (x,S). It is however simpler to proceed directly from the
identity (4.4).

6. Asymptotic normality of the basic martingale
The basic martingale (3.7) has a final value, at the end of the battle, given by
Z = A(Xo) — B(Yo) = xA(S) — (1 = x)B(S) - (6.1)

No information is lost in passing from (X, Yoo) or (), S) to Z. If Z > 0, then x = 1 and
S is given uniquely by A(S) = Z. If Z < 0, then x = 0 and B(S) = —Z. Thus Z is a
coding of the outcome of the battle, and it is also very convenient for formulating limiting

results for large zo, yo.

To express this precisely, consider a sequence of initial values, replacing (zo,y0) by
(Zn, Yn) and imposing conditions on the way in which

Ty, = 00, Y — 00 (N — 00) . (6.2)

The limiting result cited in Section 2 shows what sort of result can be expected. In the
OK Corral,
Z=3z(2x—-1)S(5+1),

which can be normalised so as to have a limiting normal distribution if (2.9) is satisfied.
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To extend this result to the general case, define

z Y
A(z) =) a}, By)=) b} (6.3)
i=1 j=1
and
on = Alzn) + Blyn) , (6.4)
Suppose that, as n — oo
A(zn) — B(yn) ~ pon (6.5)
for some constant u, and assume also the uniform asymptotic negligibility condition
max{a(i) (1< i< zn), 8() (1< J < yn)} =0(on) . (6.6)
Then, if
A=6o;t (6.7)

for fixed 6, the left hand side of (4.4) has logarithm

— anog{l — 00’,;10,('&)} = z"::log{]- + eo-r:lb(J)}

= z’: {90’;10,(2') + %920_;2a(i)2} . Zn {90;112(]') _ %020_;21)(.7-)2} + 0(1)

=00, {A (zn) — B (yn)} + 30%07,2 {A(z0) + B (yn)} + o(1)
=pf + 26% + o(1).
Hence

s s
- = 1
E|x[[{1-007%0)} "+ -0 [ {1+607)} | = %2 (68)
=1 =1
as n — 0o, for all real #. Now use the fact that
1

—u < el _ ()
€ \1+u\e /(1 5)6

when |u| < § < 1 to deduce that, for large n, the expression in square brackets in (6.8) lies
between ¥ and ¥/(1 — §)e’, where

S S
¥ =x[[exp {607 a(i)} + (1= x) [ ] exp {-00775(7)}

= y exp {90';114(5)} +(1- X) exp {‘90;13(5)}
= exp {GO',EIZ}
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and since § can be arbitrarily small, this implies that

lim E [exp {60;72}] = #4237 (69)

This proves that, under conditions (6.5) and (6.6), Z/o, has limiting distribution
N(u,1). This is an exact generalisation of the theorem of Kingman (1999), since in the

OK Corral
Z~32x-1)85"

and
A(z) ~ 32%, B(y) ~ 39°, A(z) ~ 32°, B(y) ~ 35°

Thus (2.9) is the special case of (6.5), and

1
‘712; ~ %(.’L‘i +y2) ~ E(-’En +yn)3-

To say that Z/o, has limiting distribution A (g, 1) is to say that, for any fixed ¢,

Bim P{Z < onC} =3~ ), (6.10)
where
u 1 2
d(u) = (27r)—1/2/ e 2V dv.

In particular, putting ¢ = 0 and recalling that Z > 0 if and only if ¥ = 1, we have
lim P{x =1} = 2(y). (6.11)
n—oo

Thus p measures the advantage of the first fleet over the second; if p is positive and large
the first fleet is highly likely to win. Conversely, if x is strongly negative the second fleet
will very probably win. This tallies with the interpretation of A in the deterministic model.

More precisely, suppose that (6.5) is replaced by
A, =A(z,) —B(y,) >0, on,/Ar = 0. (6.12)
Then the same limiting argument from (4.4) now shows that
P{x=1}—1 (6.13)
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and that
A(S) ~ A, (6.14)

in probability as n — co.

7. Conclusions

The analysis of the stochastic model validates Lanchester’s deterministic model so

long as zo and yo are large, and
A = A(zo) — B(yo) (7.1)
is large (in absolute value) compared with
o = {A(z0) + B(w)}""* . (7.2)

If A > 0 the first fleet will prevail, and will be left with a number of survivors determined
by
A(S)=A. (7.3)

If A < 0 the second fleet will win, with .S ships still afloat, where

B(S) = -A. (7.4)

If A is not large compared with o, a stochastic treatment is essential. The probability
that the first fleet wins is approximately ®(A /o), and the distribution of S is approximated
by (6.10).

To see how this works out, suppose for simplicity complete symmetry between the two
fleets, so that
g = Yo, a(z) = b(’&) (’I, = 1, 2, .. ) . (75)

Then
A=0, 0> =2A(x) , Z=(2x—1) A(S). (7.6)

and in the normal approximation
P{A®S) < C[2A(z0)] "} = 20(Q) - 1. (7.7)
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The % power in the OK Corral can be seen as a consequence of the linearity of a(z). If
(2.6) is replaced by
a(z) =z, bly) =y° (7.8)

for some constant «, (7.7) shows that % must be replaced by

200 +1
2(@+1)°
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