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1. INTRODUCTION

The study of rational curves of minimal degree has proven to be a very useful tool in
Fano geometry. The spectrum of application covers topics such as deformation rigidity,
stability of the tangent sheaf, classification problems or the existence of non-trivial finite
morphisms between Fano manifolds.

In this paper we will consider the situation where X is a projective variety, which is
covered by rational curves, e.g. a Fano manifold over C. A typical example of that is P™,
which is covered by lines. The key point of many applications of minimal degree rational
curves is showing that they are similar to lines in certain respects. For instance, one may
ask:

Question 1.1. Under what conditions does there exist a unique minimal degree rational
curve containing two given points?

This question found a sharp answer in [Keb02] —see [CMSB00] and [Keb01a] for a
number of applications. The argument used there is based on a criterion of Miyaoka, who
was the first to observe that if the answer to the question is “No”, then a lot of minimal
degree curves are singular. We refer to [Kol96, Prop. V.3.7.5] for a precise statement.

As an infinitesimal analogue of this question one may ask the following:
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Question 1.2. Are there natural conditions which guaraniee that a minimal degree rational
curve is uniquely determined by a tangent vector?

Although a definite answer to the latter question would be as interesting as one to the
former, it seems that Question 1.2 has not been studied before. This paper is therefore a
first attempt in that direction. We give a criterion which parallels Miyaoka’s approach.

To formulate our setup more precisely, let RatCurves™(X) be the space of rational
curves on X and pick an irreducible component H C RatCurves”(X) such that the
following holds:

(1) the rational curves associated with H dominate X,
(2) the degree of the curves associated with H is minimal among all irreducible com-
ponents of RatCurves™(X) which satisfy (1).

The component H is often called a “maximal dominating family of rational curves of min-
imal degree”. We refer the reader to [Kol96] for a thorough, but rather technical discussion
of RatCurves™(X).

Let U C H x X be the universal family. By construction, all fibers of the first projection
w : U = H are irreducible and generically reduced rational curves. The tangent map of
the second projection + : U — X, restricted to the relative tangent sheaf Tt/ 5, gives rise
to a rational map 7:

. - = P(T3)

-
Ve
7
[

[ -
u evaluation
" l

H

It has been shown in [Keb02] that 7 is generically finite. Examples of rationally connected
varieties, however, seem to suggest that the tangent map 7 is generically injective for a
large class of varieties. Qur main result supports this claim.
Theorem 1.1. Let X be a projective variety over an algebraically closed field k and
H C RatCurves™(X) a proper, covering family of rational curves. Assume that either
char(k) = 0, or that there exists a line bundle L € Pic(X) such that the intersection
number L.£ of L with a curve £ € H does not divide char(k).

Then 71 is generically injective, unless H contains a cuspidal curve.

For complex projective manifolds we have a stronger statement.
Theorem 1.2. Let X be a smooth projective variety over the field of complex numbers
and let H C RatCurves™(X) be a dominating family of rational curves such that the
subfamily

H,={{eH|zel}CH

is proper for all points ¢ € X, outside a subvariety S C X of codimension at least 2.

Then T is generically injective, unless the curves associated with the closed subfamily
H? C H of cuspidal curves dominate X, and the subvariety

D :={z € X | 3¢ € H™? : £ has a cuspidal singularity at z},

where curves have cuspidal singularities, has codimension 1.

Remark 1.3. It is known ([Kol96, Chap. 11, Prop. 2.14]) that the family H, is proper if H
is a maximal dominating family of rational curves of minimal degree and if « is a general



ARE MINIMAL DEGREE RATIONAL CURVES DETERMINED BY THEIR TANGENT VECTORS? 3

point. The assumption that H, is proper for all points outside a set of codimension 2,
however, is restrictive.

It is also known that H is proper, e.g., if there exists a line bundle L € Pic(X) that
intersects a curve £ € H with multiplicity L.£ = 1.
Remark 1.4. Let X be a projective contact manifold over C, different from the projective
space. It has been shown in [KebO1b] that X is covered by a compact family of rational
curves H such that for a general point z, all curves associated with points in H, are smooth.
Thus, the assumptions of Theorem 1.2 are satisfied, and T is known to be generically
injective. This has been shown previously in [KebOlc] using rather involved argument
which heavily relies on the contact geometry.

Acknowledgement. Parts of this paper have been worked out while the first named an-
thor visited the University of Washington at Seattle, the University of British Columbia at
Vancouver and Princeton University as well as while the second author visited the Isaac
Newton Institute for Mathematical Sciences at Cambridge. Both authors are grateful to
these institutions for their hospitality. S. Kebekus would like to thank K. Behrend and
J. Kollér for the invitations and for numerous discussions. S. Kovics would like to thank
the organizers, Alessio Corti, Mark Gross, and Miles Reid for the invitation to the "Higher
Dimensional Geometry Programme” of the Newton Institute.

After the main part of this paper was written, J.-M. Hwang has informed the authors
that he together with N. Mok has shown a similar, but stronger, statement using entirely
different methods.

2. DUBBIES

Throughout the proofs of Theorems 1.1 and 1.2, which we give in Section 3, we will
assume that the tangent map 7 is not generically injective. This is to say that we are
assuming that X contains a large number of pairs (4, £;) of minimal rational curves which
intersect tangentially in at least one point. A detailed study of these pairs will be given in
the present chapter.

Definition 2.1. A dubby is a reduced, reducible curve, isomorphic to the union of a line
and smooth conic in P? intersecting tangentially in a single point.

Remark 2.1. The definition may suggest at first glance that one component of a dubby
is special in that it has a higher degree than the other. We remark that this is not so. A
dubby does not come with a natural polarization. In fact, there exists an involution in the
automorphism group that swaps the irreducible components.

Later we will need the following estimate for the dimension of the space of global
sections of a line bundle on a dubby. Let £ = £; U £; be a dubby and L € Pic(¢) a line
bundle. We say that L has type (dy, d») if the restriction of L to the irreducible components
£, and £, has degree d; and dj, respectively.

Lemma 2.2, Let £ be a dubby and L € Pic(£) a line bundle of type (dy,d2). Then
hO(¢, L) > dy + da.

Proof. By assumption, we have that Ly, ~ Opa(d;). Let £;.£; be the scheme theoretic
intersection of £; and £3, ¢* : £; — £ the natural embedding, and L; = (% (L|,,) fori =1, 2.
Then one has the following short exact sequence:

0=>L—=L1®Ly— Oy 4, = 0.
This implies that h%(¢, L) > x(L) = x(L1) + x(L2) — x(O, .4,) = dy + da. |
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2.1. The identification of the components of a dubby. In the situation which is of inter-
est to us, let L € Pic(X) be an ample line bundle, and assume that £ = ¢; U/, C X isa
dubby where both components are members of the same connected family H of minimal
rational curves. In particular, L|; will be of type (m, m), where m > 0. Remarkably, the
line bundle L induces a canonical identification of the two components £, and £, at least
when m is coprime to the characteristic of the base field k. Over the field of complex num-
bers, the idea of construction is the following: Fix a trivialization ¢ : L|y — Oy of L on
an open neighborhood U of the intersection point {z} = £1 N #3. Given a pointz € {3 \ £,
letoy € H°(4y, L|g,) be a non-zero section which vanishes in z with multiplicity m. Then
there exists a unique section oz € H° (€2, L|¢,) with the following properties:

(1) The section o3 vanishes on exactly one point y € £s.
(2) The sections ¢o; and o3 agree on the intersection of the components:

01(2) = 02(2)

(3) The differentials of &7 and o5 agree on 2:
¥(t 0 01) = U(t 0 02)
for all non-vanishing tangent vectors ¥' € T, N Ty,.

The map that associates z to y gives the identification of the components and does not
depend on the choice of £.

In the remaining part of the present chapter, we will give a proper construction of the
identification morphism which also works in the relative setup and in arbitrary character-
istic.

2.2. Bundles of dubbies. For the proof of the main theorems we will need to consider
bundles of dubbies, i.e. morphisms where each scheme-theoretic fiber is isomorphic to a
dubby. On first reading, the reader might want to skip the rather lengthy proof and go
directly to Chapter 3.

Proposition 2.3. Let A : A — B be a family of dubbies over a normal base B and assume
that A is not irreducible. Then it has exactly two irreducible components A1 and A,, both
Py -bundles over B.

Assume further that there exists a line bundle L € Pic(A) whose restriction to a A-
fiber has type (m,m), where m is positive and relatively prime to char(k). Then there
exists an identification of Ay and A;. More precisely, there exists a morphism -y from A
to a Py-bundle over B whose restriction to each of the two components Ay and A2 is an
isomorphism.

Proof of Proposition 2.3, the irreducible components of A. The map A is flat because all its
scheme-theoretic fibers are isomorphic. Let A; C A be one of the irreducible components.
It is easy to see that if 2 € A; is a general point, then A; contains the (unique) irreducible
component of £5(z) := A~ A(z) which contains 2. Since X is proper and flat, A(A;) = B.
Hence A; contains one of the irreducible components of £, for all b € B. Repeating the
same argument with another irreducible component, Az, one finds that it also contains
one of the irreducible components of £, for all b € B. However, they cannot contain the
same irreducible component for any b € B: In fact, if they contained the same component
of ¢, for infinitely many points b € B, then they would agree. On the other hand, if
they contained the same component of £, for finitely many points b € B, then A would
have an irreducible component that does not dominate B. This, however, would contradict
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the flatness of A. Hence A; U Ax = A. They are both P;-bundles over B by [Kol96,
Thm. 11.2.8.1]. O

Proof of Proposition 2.3, the intersection of A1 and As. We have seen above that A, and
A, are P;-bundles over B. Let ¥ = A; N Ay C Ay be the scheme-theoretic intersection,
and Yeq C X the associated reduced subscheme. By assumption, the subscheme X is
isomorphic to the first infinitesimal neighborhood of ¥;eq. Thus, if J1 C Oy, is the ideal
sheaf of X;eqg C Ay, then T f is the ideal sheaf of ¥ C A;.

In order to study Pic(A), it will be necessary to express the sheaf 0%, of invertible func-
tions on X purely in terms of the reduced subvariety ¥;.q. Recall from [Har77, III. Ex.4.6]
that there exists a short exact sequence of sheaves of Abelian groups !,

0 —— J1/77 —2 0y 2 03, — L
2.1 ——

v
Bred A1

where £ is the canonical restriction map and « is given by

a: (jl/j¥’+) — O;)
I = 14 f. O

Proof of Proposition 2.3, Mayer-Vietoris sequence for O*. Let w : A — A be the normal-
ization morphism. The variety Ais isomorphic to the disjoint union of the two IP;-bundles,
A; and A,. The aim of this subsection is to establish the existence of the following mor-
phism between short exact sequences of sheaves of Abelian groups.

l1— 0 — T 0% — 0y — 1

| | |

«  diagonal % * quotient -
1 Ozred Ozzed X Ozted Ozred 1'

Although the first line is classically known as the Mayer-Vietoris sequence for O* (see
e.g. [Eis95, Chap. 11, Ex. 11.15]), we discuss it here briefly for the reader’s convenience.

Recall that m,0F = O, x Oyp,. Thus, if an open set U C A and a section
s € H'(U,m.03%), s = (s1,83) € HYU,O},) x H*(U,03,) is given, then s comes
from a section in H°(U, O}) if and only if s; and s, agree on the scheme-theoretic inter-
section ¥ = A; N Ay. Consequently O}, is exactly the kernel of the map

mo; - (@)
(51,82) — S1/gs.

The existence of the first short exact sequence is thus shown. The vertical arrows are
simply the natural restriction morphisms. O

Proof of Proposition 2.3, existence of a line bundle of type (1,1). As the next step, we
need to find a line bundle L € Pic(A) whose restriction to the fibers of ) is of type
(1,1). First note that X4 gives a section of A, o: B — A, such that Ao ¢ = idp

1The sequence (2.1) is actually split, but we do not use this fact here.
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and ¢ o A|g,_, = idx,,. Then the long exact sequences associated with the short exact
sequences (2.2) can be written the following way:

. —— Pic(A) ——  H'(A,mO}) —— HYZ,05) — -

<] ! !

. —— Pic(B) %%, pic(B) x Pic(B) 2% H1(S,eq, 0%

Since 7 is finite, we have that
H(A,7.0%) ~ Pic(A) = Pic(A;) x Pic(Az) ~ Pic(B) x Pic(B) x Z?

Using this, and sequence (2.1) from above, we obtain an exact sequence of morphisms
between the kernels as follows:

red

¢ ¥

v ;
Y Z2 ¥ Hl(zredaNEred|A1)

- — ker(o*)

In order to find L, set

L':=L®X\¢ L™
It follows immediately from the construction that L' € ker(c*) and that ¢(L') = (m, m).
In particular, we have that ¢(m, m) = m - 4(1,1) = 0. Since H' (E,ed,Ng“dMl) is the
additive group of a k-vector space and since m and char(k) are coprime, this implies that
(1,1) € ker(y)) = im(¢). The existence of L is therefore established. a

Proof of Proposition 2.3, the identification of A1 and As. Let b € B be any (closed) point
and £, = £} U £2 the associated A-fiber. Consider the restriction morphisms

ri: H(6, Lly,) = HO(6, L) ~ HO(P*, Opa(1))-

We claim that the morphism r} is an isomorphism forall b € B and € {1, 2}. If this claim
holds, then it implies that ﬁ| ¢, is generated by global sections, and thus gives a morphism
T : £y — P, whose restriction 7| ¢ to any of the two components is an isomorphism.
Then the natural morphism

v: A= POL)
restricted to either A; or A, is an isomorphism giving the required identification between
A]_ and Az.

To finish the proof of Proposition 2.3, let us prove the above claim. The roles of
r} and r? are symmetric, so it is enough to prove the claim for ;. First note that
h%(£y, L]s,) > 2 by Lemma 2.2. It is then sufficient to prove that ri is injective. Let
s € ker(rl) C H°(fs,Lls,). In order to show that s = 0 it is enough to show that
72(s) = 0. But r2(s) is a section in H°(¢Z, L| ¢) that vanishes on the scheme-theoretic
intersection £} N £2. The length of this intersection is two, but any non-zero section in
HO(, I ) = H°(P!, Op1(1)) has a unique zero of order one, hence r3 (s) must be zero,
and so the proof of Proposition 2.3 is finished. O
Corollary 2.4. Let £ be a dubby. Then its Picard group fits into the following short exact
sequence:

0 y Gq s Pic(f) 223 ZZ — 0.
In particular, line bundles of type (0,0) on £ are parametrized by G,.

Proof. Let B = Speck and A = £. Then the long exact sequence associated to (2.2)
implies the statement. Note that this part of Proposition 2.3 does not use the existence of
L, so it holds for all dubbies. O
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3. PROOF OF THE MAIN THEOREM

3.1. Setup. Throughout the present section we maintain the notation of the introduction
and suppose that either the assumptions of Theorem 1.1 or those of Theorem 1.2 hold.
Furthermore, we will assume throughout that the tangent map 7 is not generically injective.
We will fix a curve £ C X that corresponds to a general point in H.

Lemma 3.1. For each point x € £, the subfamily
H,={{ €eH|zel}CH
is proper.

Proof. There is nothing to prove if we are in the setup of Theorem 1.1 where H is assumed
to be proper.

In the setup of Theorem 1.2, where the subfamily H, is assumed to be proper only
for those points £ € X that are not contained in a subvariety .S of codimension two, the
assertion follows from the fact that on a projective manifold over the complex number field
a general curve does not intersect a set .S of codimension 2 [Kol96, Chapt. II, Prop. 3.7 and
Thm. 3.11]. O

Corollary 3.2. If{ is a general member of H, then the subfamily,
Hy={{ce¢H|Inl #0}CH

is proper.

Proof. Let Zy = 7~ (Hy)Nv~1(£€) C U. The restriction of ¢ gives a morphism ¢ : Z; — .
Forany z € £, ("'(z) = +}(z) N7 1(H,) is a closed subset of 7~1(H,), and since
7~ 1(H,) is proper by Lemma 3.1, so is {~(z). Therefore we conclude that Z; is proper,
since £ is. Finally, H; = m(2Z;), so the statement is proven. O

Next, consider the subvariety P(T;) C P(T%) and let By,..., By C U be the curves
that dominate IP(T;") via the generically finite tangent morphism 7. One of these curves,
say By, is the fiber of the natural projection # : U — H. Since we assume that 7 is
not generically injective and since the restriction ¢| B, 1S injective, there exists a further

component Bl, which is not a fiber of 7. Set
B:=x (Bl)

By Corollary 3.2 the curve B is properin H.

The assumptions imply that for every general point z € £, there exists a point b € B
with fiber £, := 7! (b) and a point s € 771 (P(T}})) N £ which is not a fundamental point
of 7, such that

(1) The curve £; is smooth at s.

(2) The scheme-theoretic preimage (¢|¢, )~ (£) contains the point s with multiplicity
at least two.

Formulated in more geometric terms, items (1) and (2) guarantee that the rational curves
£y and £ intersect tangentially in z. Figure 3.1 depicts the setup.
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FIGURE 3.1. Setup of the proof

Let Ug := m~1(1B) be the universal family over B, and let Up be its normalization. We
obtain a diagram as follows.

‘B

/'—_\

UB normalization UB LB X
turns out tobe a | _ -
Fybundle |™7
B ] B

After a base change, replacing B by a finite cover if necessary, we can (and will hence-
forth) assume that the following holds:

(3) The curve B is normal and therefore smooth.
(4) The bundle space Up is a IP;-bundle over B in the sense that for every closed point
b € B, the scheme-theoretic fiber 75" (b) is isomorphic to the projective line. We
refer to [Kol96, Thm. I1.2.8.1] for a proof of this fact. Note that even though the
proof is straightforward in characteristic zero, it is somewhat involved in finite
characteristic. See [Keb01d, Sect. 1.5] for an elementary worked example.
(5) The scheme-theoretic preimage I (£) contains a section & C Up over B such
that )
(a) the differential of the morphism (75 X Ig) : Ug — B x X has rank two
generically along &,
(b) the scheme-theoretic preimage 21_31 (€) is not reduced along &.
Of course, items (5a) and (5b) parallel (1) and (2) above. Note that by the choice of B,
the image g (o) is the entire curve £, and not just a point on £.
Finally, let p C B x £ be the image p = (7p % ig)(5), v : £ — £ the normalization of
£,and 5 C B x I the strict transform p.

3.2. The triviality of Ugo. Let B® C B be the maximal, Zariski-open subset such that
the following holds;

(1) The differential of the morphism (g X ig) : Ug — B x X has rank two along
& over BY,
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r bundle of | . p
dubbies bundle of two rational curves
with complicated intersection

two disjoint
P;-bundles

BO

FIGURE 3.2. A partial resolution of singularities

(2) The differential of the morphism (idg xv) : B x £ — B x £ has rank two along
p over B,

Roughly speaking, B® C B is the set where the cuspidal singular points of the 7 g-fibers
stay off the distinguished section &.

The aim of this section is to show that there exists a trivialization of the P;-bundle
UY := #5" (B®). The strategy of the proof is the following: Consider the reducible space

Vpo :=Upgo U{Bo X Z}

and let p : Vgo — BY be the natural projection. If 5 € B° is any point, then the fiber
p~1(b) C Vpo is a union of £ and another rational curve, £,. These two curves intersect
tangentially in one point and may have complicated intersection otherwise.

In the simplest possible case, where the two curves intersect tangentially in exactly one
point, the fiber p~*(b) would be isomorphic to a dubby. The space Vo would be a bundle
of dubbies, and we could employ Proposition 2.3 from page 4 in order to identify the two
components Ugo and {B°® x £} of Vgo.

In practice, however, we cannot assume that Vo is a bundle of dubbies. In this situation
we note that the normalization Vigo of Vo is a disjoint union of two IP; -bundles over B°
which are isomorphic to Ugo and to {B® x £}, respectively. The core idea is to construct
a partial resolution of singularities, Vigo, which factors the normalization map and has the
structure of a bundle of dubbies. The technically correct formulation of this approach is
the following:
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Proposition 3.3. After changing the base, if necessary, the normalization morphism n
factors as follows:

n

m

VBO = VBO Vpo

= bundleof| .
2 dubbies lp ?
two disjoint bundle of two curves with

P1-bundles BU complicated intersection

where

(1) The variety VBo is a bundle of dubbies in the sense that for every closed point
b € BO, the fiber p~1(b) is isomorphic to a dubby.

(2) The bundle space VBo decomposes into two irreducible components
VBo e VBM U VBo.z where ng is canonically isomorphic to Ugo and
Vgo.z = B~1(B° x £) is isomorphic to the trivial P1-bundle B® x L.

(3) The singular locus of Vgo satisfies: (VBD)Sing = Vgo.a N Vgo.2, a section of p.

Proof of Proposition 3.3, construction of VBo and Vigo. First we will construct the space
Vige. Because the normalization map 7 is an affine morphism, it seems appropriate to
construct a suitable subsheaf A C 7. 0‘-,50 , which is a coherent sheaf of Oy, ,-modules
and set Vo := Spec(A).

To this end, we will find an identification of the first infinitesimal neighborhoods 5 of
5 C B®x £and ' of & C Uge. In fact, since 7 is a separable morphism, it follows
directly from the choice of B that both 5! and 5' map isomorphically onto their scheme-
theoretic images 7(6') and n(5*), which are both supported on p, have relative length
2 over B? and are subschemes of B x £ C B x X. Furthermore, since B x £ is of
relative dimension one, it follows that the images n(¢') and n(5') agree along the open
set (B® X freg) N p C p. Thus, the separatedness of the relative Hilbert-scheme implies
that n(6') = n(p') are isomorphic over B®. We obtain the desired identification of first
infinitesimal neighborhoods

Let
ip:p* 2B xZCVgo and i, :6" = Upo C Vo

be the inclusion maps and consider the sheaf morphism

# . ,
p:=7" ozf—z#:(’)%o - Opa.

The sheaf
A := n. ker(p)

is thus a coherent sheaf of Oy,_,-modules. As mentioned above, define Vgo := Spec(A)
and let Vgo be the normalization of Vgo. The existence of the morphisms a and 3 follow
from the construction and we let p = po 8 and $ = p o B o c. It remains to show that VBo
satisfies properties (1)—(3). |
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Proof of Proposition 3.3, property (1). Let by € B be any closed point. After shrinking
BY, if necessary, we can assume that
(1) the curve B? is affine, say B° = Spec R, and
(2) the P;-bundle Upeo is trivial. To see this, note that 77*(’),7}3 . (o) is locally free and
U go is naturally identified with P (’7*‘9&50 (0)).

Shrinking B° further, if necessary, we can thus find two sections, oo C Ugo and
Poc C {B° x £} which are disjoint from both &, 5, and from the preimage 7~ (Vgo sing)
of the singular locus. We can thus find homogeneous bundle coordinates [z : 21] on Ugo
and [y : y1] on BY x £ such that

o= {([.’EQ H $1],b) € f]BD I.’L‘o = 0} a'oo = {([ﬂ?o : $1],b) € [730 11171 = 0}
p={(lyo: 11,5) € {B° x &} |yo =0} poo = {([yo : ¥1],5) € {B° x &} |y1 = 0}.

If we set
Uo := Vo \ (Goo U foo),
then the image Uy := 5{Uy) is affine, and we can write the relevant modules as
0y,,,(Us) = R ® (k[zo] © Klyo])
O3 (Uo) = R ® k[z0, 0]/ (%0 — Y0, 43)-

Adjusting the bundle coordinates, if necessary, we can assume that the identification mor-
phism ¥ O (Uo) = O (Up) is written as

7*: Rokzl/(sd) - R kiyl/(s)
rQ® To = 7 ® Yo-

In this setup, we can find the morphism ¢ explicitly:

¢: R® (klzo] ®k{yo]) — R® k[zo,y0]/(zo — ¥0,¥5)
r® (f,9) = r®(f—g).

As an R-algebra, ker(y)(U,) is therefore generated by the two elements u := 1z ® (%0, ¥o)
and v := 1 ® (z3,0) which satisfy the relation v(u? — v) = 0. Thus

ker(p)(Uo) = R ® k[u, 9]/ (v(u® — v)).

In other words, 871(Up) is a bundle of two affine lines, meeting tangentially in a single
point.

It follows directly from the construction of the sheaf A that o is isomorphic away from
& U p. The curve p~1(bg) is therefore smooth outside of 51 (bg) N B~ (), and it fol-
lows from Zariski’s main theorem that 5~ (bp) is a dubby indeed. This ends the proof of

property (1). |

Proof of Proposition 3.3, property ( 2). By Proposition 2.3, the bundle Vgeo of dubbies
decomposes as VBo = VBo 1 U VBo 2, where VBo : = BY%is aPy-bundle fori = 1,2.
In particular, Vgo,: and Vgo,2 are smooth. The restriction of a to the components of Vgo
gives an isomorphism onto respective components of VBo outside & and p. Since the
targets are smooth over B and « is a B morphism, this means that the restriction of o to
both components is an isomorphism. ]
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Proof of Proposition 3.3, property (3). On one hand, it is clear tpat a is isomorphic away
from & U . On the other hand, the two (smooth) components Vgo,: and Vgo.2 meet in a
section over B?. Together, these yield the claim. O

Corollary 3.4. After a finite base change, if necessary, the bundle Ugo is trivial. There ex-
ists a canonical identification Ugo = B® x 7 such that the second projection s : Ugo — ]
satisfies the following equality:

Voﬂ'zl& = ZB°]5'-

Proof. The identification of Ugo and B° x £ is an immediate consequence of Proposi-
tion 3.3 and of the identification Proposition 2.3 (see page 4). For this, recall the assump-
tion that either char(k) = 0, or that there exists an ample line bundle L € Pic(X) such
that char(k) does not divide the degree L.£. It is clear from the construction of the maps
and the bundles that v o m3|; = Ipols- O

3.3. End of proof. To end the proof we will now consider the cases B = B? and B # B°
separately.

3.3.1. The case B = B°. In this case we will derive a contradiction by calculating certain
intersection numbers on U go. Since U go is isomorphic to the trivial bundle B x £, we have
a decomposition of the numerical classes as follows:

Num(Upgo) ~Z- Fy ® Z - Fy,

where Fp is the class of a fiber of the map Uge — 7, and Fy that of a fiber of the
other projection Ugo — B. We let d be the degree of the (finite, surjective) morphism
ZBl& 0 — L

It follows directly from Corollary 3.4 that & intersects a curve of type Fy with multi-
plicity d. Since & is a section over B, we obtain that

&EFH+d-Fv,

where = denotes numerical equivalence. On the other hand, if L € Pic(X) is any ample
line bundle which intersects the curves associated with B with multiplicity m, then we
obtain that
g(L).Fy = m
B(L)s = d-m
= Z};(L)(FH +d- Fv).

It follows that % (L) intersects all fibers of the projection Uge — £ with multiplicity 0.
This is absurd since ig is finite and does not contract a curve. A contradiction is thus
reached, and the proof of Theorems 1.1 and 1.2 is finished in this case.

3.3.2. The case B # B°. Using the results of the previous Section 3.3.1, we may now
assume that B # BC. If b € B\ B° is any point, and £, C X the associated rational curve,
then it follows from the definition of B that eitber £ has a cuspidal singularity, or that £;
has a cuspidal singularity which is contained in £. This shows that H contains a cuspidal
curve and ends the proof if we are in the setup of Theorem 1.1.

It remains to consider the case where X is a smooth variety over C. In order to show
that

D :={y € X| 3¢ € H™P : [ has a cuspidal singularity at y},

has codimension 1 in X, recall the fact that we used already: if D had codimension > 2,
then the general curve £ € H would be disjoint from D. As a consequence, B® would be
equal to B, which would violate the assumption that B # B°.
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In order to show that X is covered by cuspidal rational curves, we will again argue by
contradiction: we may assume that all cuspidal curves are contained in a divisor. The total
space of the family of cuspidal curves is at least (dim D + 1)-dimensional, so for a general
point z € D there exists a positive dimensional family of cuspidal curves that contain
z and are contained in D. That, however, is impossible: it has been shown in [Keb02,
Thm. 3.3] that in the projective variety D, a general point is contained in no more then
finitely many cuspidal curves. This finishes the proof of Theorem 1.2.
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