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We discuss the phenomenology of a three-family supersymmetric Standard-
(':l like Model derived from the orientifold construction, in which the ordinary
e chiral states are localized at the intersection of branes at angles. In addition
;:;\l‘ to the Standard Model group, there are two additional U(1)’ symmetries, one
N of which has family non-universal and therefore flavor changing couplings,
g and a quasi-hidden non-abelian sector which becomes strongly coupled above
N the electroweak scale. The perturbative spectrum contains a fourth family
Q of exotic (SU(2)- singlet) quarks and leptons, in which, however, the left-
< chiral states have unphysical electric charges. It is argued that these decouple
s?"" from the low energy spectrum due to hidden sector charge confinement, and
8‘" that anomaly matching requires the physical left-chiral states to be compos-
L ites. The model has multiple Higgs doublets and additional exotic states.
;> The moduli-dependent predictions for the gauge couplings are discussed. The
>Z strong coupling agrees with experiment for reasonable moduli, but the elec-
' '5 troweak couplings are too small.
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I. INTRODUCTION

Despite an enormous amount of promise and interest in superstring/M theory, it is still
difficult to construct models with a fully realistic effective low energy four-dimensional limit
from first principles. The (related) difficulties include the fact that only certain limiting
corners of M theory are perturbative, there are many possible compactifications of the extra
dimensions, the cosmological constant, the method of supersymmetry breaking, the difficulty
of constructing a realistic spectrum for the effective theory, and the stabilization of moduli.
One direction, the subject of this paper, is to examine concrete semi-realistic constructions
in as much detail as possible. One does not expect to find a fully realistic model. Rather, the
goals are: (1) to develop calculational techniques, (2) to suggest promising directions for new
constructions, and (3) to find examples of possible new physics at the TeV scale that might
emerge from explicit top-down string constructions. The latter are sometimes different from
new physics motivated from bottom-up approaches. Of course, the features of a particular
model may simply be shortcomings of that construction rather than generic predictions of
classes of string theories. However, by examining promising constructions from a variety
of corners of M theory one may obtain hints as to likely types of new TeV scale physics.
Difficulties of this program are that most constructions are rather complicated, and that the
unrealistic or unsuccessful aspects of each model often make it difficult to carry out detailed
calculations.

For over a decade, there has been considerable effort in the construction of semi-realistic
string models in the framework of perturbative heterotic string theory [1]. In particular, a
class of free-fermionic string models which contain the gauge group and matter content of
the minimal supersymmetric standard model (MSSM) have been constructed {2,3]. These
constructions have many interesting features, such as extended gauge structures and matter
content [4]. Some of the features of one of these constructions summarized in the Appendix.

The purpose of this paper is to examine the phenomenological issues in another calculable
regime of M theory, namely, Type II orientifolds. In recent years, the advent of D-branes
has facilitated the construction of semi-realistic string models using conformal field theory
techniques, as illustrated by the various four-dimensional A" = 1 supersymmetric Type II
orientifolds ( [5-16] and references therein). A promising direction to obtain chiral theories
is by constructing models with D-branes intersecting at angles [17]. This fact (or its T-dual
_ version, i.e., branes with flux) has been exploited in [18-20] to construct semi-realistic string
models (see also [21]). However, the constraints on supersymmetric four-dimensional models
are rather restrictive. Despite the remarkable progress in developing techniques of orientifold
constructions, there is only one orientifold model [15,16] that has been constructed so far
with the ingredients of the MSSM: N = 1 supersymmetry, the Standard Model (SM) gauge
group as a part of the gauge structure, and candidate fields for the three generations of
quarks and leptons as well as the electroweak Higgs doublets. We hope that by studying
the phenomenology of this model in detail, we can probe some of the generic features and
predictions of string models derived from the orientifold approach.

In this paper we concentrate on direct compactifications of the underlying M theory to
a four-dimensional field theory containing the MSSM (i.e., without having an intermediate
four-dimensional grand unified theory). We focus on the case in which the fundamental scale
is comparable to the Planck scale, i.e., the case with no very large extra dimensions.



In Section II we briefly summarize the construction of the model, including the gauge
factors and the quantum numbers of the chiral and non-chiral spectrum. The properties of
the perturbative spectrum are discussed in more detail in Section III, including the properties
of the multiple Higgs doublets, the three regular families, the fourth exotic family, and
alternative assignments. The properties of the additional U(1)’ gauge interactions and the
possibilities for breaking them at the electroweak or intermediate scales are discussed in
Section IV. Section V is concerned with the gauge couplings. The model does not have
the conventional form of gauge unification because each group factor is associated with a
different set of branes. However, the string-scale couplings are predicted in terms of the
ratio of the Planck to string scales and a geometric factor. The low energy electroweak
couplings are too small due to the multiple Higgs fields and exotic matter, while the strong
coupling is more reasonable. The quasi-hidden sector groups are asymptotically free. The
implications of these results for the spectrum are described in Section VI. In particular, the
fractionally charged exotic states presumably disappear from the low energy spectrum due
to hidden sector charge confinement, to be replaced by composite states with the appropriate
quantum numbers to form the left-handed components of an exotic fourth family. The results
are summarized and contrasted with a particular heterotic construction in Section VII. A
more detailed description of the features of that construction is given in the Appendix. A
detailed discussion of the Yukawa couplings of the model will be presented separately [22],
and further implications of the strong couplings for moduli stabilization and supersymmetry
breaking is under investigation [23].

II. DESCRIPTION OF THE MODEL

For completeness, let us describe the construction of the model in [15], which is obtained
by compactifying Type IIA string theory on a T®/(Z, x Z,) orientifold. We considered a
general framework in which the D-branes are not necessarily parallel to the orientifold planes,
which gives rise to new possibilities of embedding the gauge sector in the same background
geometry. (In the T-dual picture [6], this corresponds to turning on a background flux of
the gauge fields on the D-branes).

The generators 0, w of Zy X Z; act as § : (21, 22, 23) — (—21, —22,23), and w : (21, 22, 23) —
(21, —22, —23) on the complex coordinates 2; of T® = T? x T? x T?. The orientifold action is
Q R, where § is world-sheet parity, and R acts by R: (21, 22, 23) = (71, %Z2,%3). The model
contains four kinds of O6-planes, associated with the actions of QR, QRI, QRw, QRiw.
The closed string sector contains gravitational supermultiplets as well as orbifold moduli
and is straightforward to determine, and so in what follows we will focus on the open string
(charges) spectrum. The cancellation of the RR tadpoles from the orientifold planes requires
an introduction of K stacks of N, D6-branes (¢ = 1,..., K) wrapped on three-cycles [II,]
(which for simplicity is taken to be the product of 1-cycles of the two-tori):

1) = T] (v fad + i [5) 1

and similarly for their orientifold images under R. The cycles that the D6-branes and their
orientifold images wrap around are specified by the wrapping numbers (n%, m¢). The number
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of D6-branes and the associated wrapping numbers are constrained by (i) cancellation of
RR tadpoles, and (ii) supersymmetry.

Analogous to the situation in [20], models with all tori orthogonal lead to an even number
of families. Hence, as in [20], we consider models with one tilted T?, where the tilting
parameter is discrete and has a unique non-trivial value [24]. This mildly modifies the
closed string sector, but has an important impact on the open string sector. Namely, a
D-brane 1-cycle (ni,m) along a tilted torus is mapped to (n', —m! — n*). It is convenient
to define m' = m* + 2n‘, and label the cycles as (nf, m?).

Let us summarize the results for D6-branes not parallel to O6-planes (for zero angles,
the spectrum follows from [6]). The aa sector (strings stretched within a single stack of
D6,-branes) is invariant under @, w, and is exchanged with a’a’ by the action of QR. For the
gauge group, the § projection breaks U(N,) to U(N,/2) x U(N,/2), and w identifies both
factors, leaving U/(N,/2). Concerning the matter multiplets, we obtain three adjoint N =1
chiral multiplets.

The ab + ba sector (strings stretched between D6,- and D6;-branes) is invariant, as
a whole, under the orbifold projections, and is mapped to the b'a’ + a’d’ sector by QR.
The matter content before any projection would be given by I,; chiral fermions in the
bifundamental (O,,0) of U(N,) x U(N,), where

3
Iy = (nimy —niml) (n2mi — nim?) (n2mmj — nim3) = H It
i=1
is the intersection number of the wrapped cycles (see [18,19]), and the sign of I,; denotes the
chirality of the corresponding fermion (1,5 < 0 gives left-handed fermions in our convention).
For supersymmetric intersections, additional massless scalars complete the corresponding
chiral supermultiplet. In principle, one needs to take into account the orbifold action on the
intersection point. However the final result turns out to be insensitive to this subtletly and
is still given by I, chiral multiplets in the (O0,,5) of U(N,/2) x U(N;/2). A similar effect
takes place in the ab’ + a sector, for @ # b, where the final matter content is given by I,
chiral multiplets in the bifundamental (O,, ).

For the aa’ + a’a sector the orbifold action on the intersection points turns out to be
crucial. For intersection points invariant under the orbifold, the orientifold projection leads
to a two-index antisymmetric representation of U(N,/2), except for states with § and w
eigenvalue +1, where it yields a two-index symmetric representation. For points not fixed
under some orbifold element, say two points fixed under w and exchanged by @, one simply
keeps one point, and does not impose the w projection. Equivalently, one considers all
possible eigenvalues for w, and applies the above rule to read off whether the symmetric or
the antisymmetric survives. A closed formula for the chiral piece in this sector can be found
in [15].

In addition to the chiral multiplets, there can be vector-like multiplets from the ab + ba,
ab’ +b'a and aa’ + a'a sectors. This happens when I, = 0 for a single i = 4y, the intersection
number is zero. Instead of having only left-handed or right-handed chiral multiplets at the
intersection, both the left-handed and the right-handed chiral multiplets are present. The
multiplicity of vector-like multiplets is given by

Iab = H I:,b (2)

i
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These vector-like multiplets are generically massive as explained in [15].

The condition that the system of branes preserve N = 1 supersymmetry requires [17]
that each stack of D6-branes is related to the O6-planes by a rotation in SU(3): denoting
by #; the angles the D6-brane forms with the horizontal direction in the i** two-torus,
supersymmetry preserving configurations must satisfy 6, + 8; + 03 = 0. In order to
simplify the supersymmetry conditions within our search for realistic models, we considered
a particular ansatz: (6y,62,0), (61,0,0s) or (0,0,,83).

Due to the smaller number of O6-planes in tilted configurations, the RR tadpole condi-
tions are very stringent for more than one tilted torus. Focusing on tilting just the third
torus, the search for theories with U(3) and U(2) gauge factors carried by branes at angles
and three left-handed quarks, turns out to be very constraining, at least within our ansatz.
We have found essentially a unique solution. The D6-brane configuration with wrapping
numbers (n¢,m}) is given in Table L

Type N, (nl,ml) x (n2,m?) x (nd, m3) Group

Ay 8 (0,1) x (0,-1) x (2,0) Qs,gr

Ay 2 (1,0) x (1,0) x (2,0) Sp(2)4

By 4 (1,0) x (1, —1) x (1,3/2) SU(2)

B, 2 (1,0) x (0, 1) x (0, =1) Sp(2)B

1 6+2 (1,-1) x (1,0) x (1,1/2) i SU(3),Q3, @1
Cs 4 (0,1) x (1,0) x (0, =1) Sp(4)

TABLE 1. D6-brane configuration for the three-family model.

The 8 D6-branes labeled C are split in two parallel but not overlapping stacks of 6 and 2
branes, and hence lead to a gauge group U(3) x U(1). Interestingly, a linear combination of
the two U(1)’s is actually a generator within the SU(4) arising for coincident branes. This
ensures that this U(1) is automatically non-anomalous and massless (free of linear couplings
to untwisted moduli) [19,25], and turns out to be crucial in the appearance of hypercharge
in this model.

For convenience we consider the 8 D6-branes labeled A; to be away from the O6-planes
in all three complex planes. This leads to two D6-branes that can move independently
(hence give rise to a group U(1)?), plus their 8, w and QR images. These U(1)’s are also
automatically non-anomalous and massless. In the effective theory, this corresponds to
Higgsing of U/Sp(8) down to U(1)2.

The surviving non-abelian gauge group is SU(3) x SU(2) x Sp(2) x Sp(2) x Sp(4). The
SU(3) x SU(2) corresponds to the MSSM, while the last three factors form a quasi-hidden
sector (i.e., most states are charged under one sector or the other, but there are a few which
couple to both.) In addition, there are three non-anomalous U(1) factors and two anomalous
ones. The generators @3, @1 and @2 refer to the U(1) factor within the corresponding U(n),
while Qs, Q% are the U(1)’s arising from the USp(8). @Q3/3 and @, are essentially baryon




(B) and lepton (L) number, respectively, while (Qs + Q5)/2 is analogous to the generator
T5p occurring in left-right symmetric extensions of the SM. The hypercharge is defined as:

Qv = 5@5— 5Qi + 5(Qs + @b €

From the above comments, Qy as defined guarantees that U(1)y is massless. There are two
additional surviving non-anomalous U(1)’s, i.e., B — L = Q3/3 — @1 and Qs — Q3. The
gauge bosons corresponding to the anomalous U(1) generators B + L and @), acquire string-
scale masses, so those generators act like global symmetries on the effective four-dimensional
theory.

The spectrum of chiral multiplets in the open string sector is tabulated in Table II. For
completeness, we also give the spectrum of the vector-like multiplets in Tables III, IV and V
even though these multiplets are generically massive. The theory contains three Standard
Model families, multiple Higgs candidates, a number of exotic chiral (but anomaly-free)
fields, and multiplets which transform as adjoints or singlets under the SM gauge group.The
spectrum is discussed in more detail in the following section.

III. THE PERTURBATIVE SPECTRUM

In this section we describe the simplest version of the perturbative chiral spectrum. The
modifications expected due to strong coupling effects in the quasi-hidden sector will be
described in Section VI.

e The A, B, sector contains 24 Higgs doublets, i.e., twelve Hy;, Hp pairs, where Hy (Hp)
has the appropriate hypercharge to generate masses for the charge 2/3 quarks and neu-
trinos (the charge —1/3 quarks and charged leptons). Six pairs have Qs charges, and
the other six (g charges. The existence of so many doublets is the most unrealistic fea-
ture of the model, and is a major cause for the unrealistic predictions for the low energy
gauge couplings in the MSSM sector. Nevertheless, it at least suggests the possibility
of additional Higgs doublets, and the associated phenomenological consequences, such
as a richer Higgs/neutralino/chargino spectrum and Higgs-mediated flavor changing
or CP violation effects. The problem for this construction is aggravated by the fact
that there is no satisfactory mechanism to generate effective supersymmetric masses
(¢ terms) for all of the Higgs multiplets. Elementary u terms are not generated in the
string construction (and are also forbidden by ¢)2). An effective o would be generated
by the VEV of the scalar component of a superfield S if there were a term SHy Hp in
the superpotential [26,27]. However, there are no SU(2)-singlet, @y = 0 states in the
chiral spectrum with the gauge quantum numbers to play the role of S. In particular,
the NHyHp couplings are forbidden by @, and (3. However, there are non-chiral
By B] states with the appropriate quantum numbers. There are couplings between
the A, B,, B1B] and BjA; sectors. Since the BjA,; sector is the same as A} B, and
furthermore, A; = A} (because the A; brane is the same as its own orientifold image),
in principle, there are non-zero couplings of the form (A, B)(B1B;)(A1B1). Hence, if
these non-chiral states are not massive, they can play the role of the S field. An explicit
calculation of the above coupling from the corresponding string amplitude, however,



Sector|[SU(3) x SU(2) x Sp(2)s x Sp(2)a x Sp(4)||Q3|Q1|Q2|Qs|Q%| Qv |Qs — Q5| Field
Ay By 3x2x(1,21,1,1) 0|0 |-1£1| 0| £3 | £1 |Hy, Hp
3x2x(1,2,1,1,1) 0 —1] 0 |+1] +2 F1 |Hy, Hp
A Cy 2x(3,1,1,1,1) ~1 +1} 0 |3,-2| 1,-1 | D,U
2x(3,1,1,1,1) -1| 0 0|+1/3,-% -1,1 | D, U
2x(1,1,1,1,1) 0 (-1 +1| 0 1,0| 1,-1 | E,N
2x(1,1,1,1,1) 0|-1{0}0|+1) 1,0| -1,1 | E,N
BiCy 3,2,1,1,1) 1jof-1o0]|0]| & 0 Qr
(1,2,1,1,1) o(1|-1f0|0} -3 0 L
B1Cs (1,2,1,1,4) ofof1]o]off O 0
ByCy (3,1,2,1,1) 1jojofojo| ¢ 0
(1,1,2,1,1) ol1|(of{0f0] -2 0
B,C} 2x(3,2,1,1,1) 1jfoj1|(o|0| & 0 QL
2x(1,2,1,1,1) o|1{1fofo0| -3 0 L
B, B 2% (1,1,1,1,1) ofoi-2(0]0]| O 0
2x(1,3,1,1,1) ofo[2]|o0]|0]| O 0
A1 A 3x8x(1,1,1,1,1) ofofo|o]o] O 0
3x4x(1,1,1,1,1) 00| o0l£1]+1ff +1 0
3x4x(1,1,1,1,1) 00} 0Ix1{F1f O© +2
3x(1,1,1,1,1) 00|02 0] +1 +2
3x(1,1,1,1,1) 0[0]o0]| 0|2 +1 T2
Az Ay 3x(1,1,1,1,1) ololo|ojo] o 0
B1B; 3x(1,3,1,1,1) olojlo|o|o}| o 0
3x(1,1,1,1,1) ofolojo|oO]| o 0
B, B, 3x(1,1,1,1,1) ofolo|o|O| O 0
C1Cy 3x(8,1,1,1,1) ofo|lojo|O}| O 0
3x(1,1,1,1,1) olo|l0|O0|O]| O 0
CyCy 3x(1,1,1,1,5+1) o(ojlojojol|l O 0

TABLE II. The chiral spectrum of the open string sector in the three-family model. To be
complete, we also list (in the bottom part of the table, below the double horizontal line) the chiral
states from the aa sectors, which are not localized at the intersections.




Sector|| SU(3) x SU(2) x Sp(2)B x Sp(2)4 x Sp(4)|| Qs| Q1| Q2| Qs| Qi| Qv Qs — Q%
Ay A,y 2x(1,1,1,2,1) + 2 x (1,1,1,2,1) 0 0] 0} +1| of +2 +1
2x(1,1,1,2,1) + 2 x (1,1,1,2,1) 0 0f O 0f £1]| +1 ¥l
AiBy| 2x2x(1,1,2,1,1)+2x2x(1,1,2,1,1)| 0| 0| Of £1| 0| 2 +1
2x2x(1,1,2,,1)+2x2x(1,1,2,1,1)l 0| 0| 0} O *1|| +L F1
A0 2x2x(1,,L,L,4)+2x2x(L,L,L,1,4 0] 0| Of +1] 0| +i +1
2x2x(1,1,,,4)+2x2x(L,L,1,1,9F 0] 0| 0| 0 1| +1 =J|
A2B; 3x(1,2,1,2,1) 0o/ o 1| of o 0 0
3x(L,2,1,2,1) 0| 0| -1 0 O 0 0
AyB; 2x(1,1,2,2,1) +2x(1,1,2,2,1) 0 o 0} 0f 0O 0 0
ACh (3,1,1,2,1) 1| 0| 0| 0 O a 0
(3,1,1,2,1) -1l 0| o o] o} -% 0
(1,1,1,2,1) 0| 1| of of o} -1 0
(1,1,1,2,1) 0| -1 0] of| 0 3 0
AyCy 2x(1,1,1,2,9) + 2x (1,1,1,2,4) of ol of oy of o 0
B1B; (1,2,2,1,1) 0 0| 1| o| of -1 0
(1,2,2,1,1) 0 0| -1| 0] O z 0
By, (1,1,2,1,4) + (1,1,2,1,4) 0| of 0] of O 0 0
C1Cy (3,1,1,1,9) 1y 0| of ol of % 0
(3,1,1,1,4) -1 0| 0| 0| o} -% 0
(1,1,1,1,4) 1 of of of -3 0
(1,1,1,1,4) 0 -1 o| 0o} o : 0

TABLE III. Non-Chiral Spectrum from the ab sectors in the three-family model. These states,
as well as those in Tables IV and V, are generically massive.



Sector| SU(3) x SU(2) x Sp(2)p x Sp(2)a x Sp(4)|| Q3| Q1| Q2| @s| Q| Qv| Qs — Qs
AByll 2x2x(1,1,2,1,1) +2x2x(1,1,2,1,1)f 0| 0| O 1| 0| =+3 +1
2x2x(1,1,2,1,1)+2x2x(1,1,2,1,1)|| 0| O| O O] £1|| %3 =y
ACHE 2x2x(1,1,1,1,4)+2x2x(1,1,1,1,4) || 0| 0| O] £1f 0 +i +1
2x2x(1,1,1,1,4) +2x2x (1,1,1,1,9 | 0 0| O] O £1j| +2 F1
AyB, 3x(1,2,1,2,1) ol o 1| o| of 0O 0
3x(1,2,1,2,1) 0] 0| -1 0| O 0 0
AyB), 2x (1,1,2,2,1) + 2 x (1,1,2,2,1) 0| o of of off o 0
AC (3,1,1,2,1) 1| o o| of Oof % 0
(3,1,1,2,1) -1 o of of o -3 0
(1,1,1,2,1) 0 1| oy of off -3 0
(1,1,1,2,1) 0| -1 o} o] o : 0
A CY 2x(1,1,1,2,4) +2 x (1,1,1,2,4) 0 0| ol of of o 0
B, B, (1,2,2,1,1) 0 0] 1} o off o 0
(1,2,2,1,1) 0| o] -1} of o] o 0
ByCh (1,1,2,1,4) +(1,1,2,1,4) 0| ol o| of 0} o 0
C1C}, (3,1,1,1,4) 1{ 0] o 0] 0O : 0
(3,1,1,1,9) -1} o of of of -3 0
(1,1,1,1,4) 1 of of of -3 0
(1,1,1,1,9) -1 o] o] of % 0
TABLE IV. Non-Chiral Spectrum from the ad’ sectors in the three-family model.
Sector| SU(3) x SU(2) x Sp(2)p x Sp(2)a x Sp(4)|| Q3| Q1| Q2! Qs| Qs| Qy| @s— Q%
B:B; 4x(1,1,1,1,1) 0 o £2| o| of 0O 0
CiC 2x(3,1,1,1,1) 21 0] 0 : 0
2x (3,1,1,1,1) -2/ 0| o o -1 0

TABLE V. Non-Chiral Spectrum from the aa’ sectors in the three-family model.




is necessary to verify that there are no additional stringy symmetries to forbid such
couplings.

e The B;(] intersection yields two families of quark and lepton doublets, while a third
is associated with B;(";. Only the first two can have Yukawa couplings to the Hyp
because of ()3, so one fermion family will remain massless. (The Yukawa couplings
of the model are discussed in detail in [22].) The A;C} sector contains four families
of SU(2)-singlet antiquarks and antileptons, U/, D, E, and N, two charged under Qs
and two under QJg:. Three of these should be the partners of the quark and lepton
doublets.

o The B;C; and B;C) states couple to both the ordinary and quasi-hidden sector gauge
groups, and they carry the fractional electric charges :l:%, é. In particular, the B,C,
states include two SU(3) triplets and two SU(3) singlets. All are SU(2) singlets. These
would be the natural partners of the extra U, D, E, and N family from A4,C; except
that they have the wrong electric and hypercharges'. It will be argued in Section VI
that these states most likely disappear from the physical low energy spectrum due to
charge confinement for the strongly coupled hidden sector gauge groups, to be replaced
with composite fields with the appropriate quantum numbers to be the (SU(2)-singlet)
partners of the fourth family of U, D, E, and N.

e The B;Bj and aa sector chiral supermultiplets in Table II include three SU(3) octets
and five SU(2) triplets, as well as a number of non-abelian singlets with non-zero
hypercharge. The aa states are not localized at intersections, and there is no known
mechanism to give them large masses. Hence, they contribute significantly to the
running of the gauge couplings. (We will actually ignore them, hoping that some
mass mechanism will be eventually found.) These kinds of states (adjoints of the
non-Abelian gauge symmetry) are a generic problem for orientifold constructions with
intersecting branes; since each brane wraps a (flat) supersymmetric three-cycle of the
six-torus, these three-cycles are not rigid and thus the adjoint matter corresponds the
moduli associated with the translational invariance of each three-cycle. One possibility
to remove these states would be to put branes on curved (Calabi-Yau) space with rigid
three-cycles, which is beyond the scope of the original construction of the model. The
sector also contains a number of SM singlets, and three Sp(4) 5-plets.

e One can consider alternative identifications of some of the multiplets, due to the fact
that the lepton doublets L and the Higgs doublets Hp have the same SM quantum

1We have explored the possibility of using an alternative hypercharge definition, in which Qy
includes as an additional term the diagonal generator of the first Sp(2) group. However, the
required Sp(2) breaking cannot occur without breaking supersymmetry because in this sector there
are only two-branes and thus there are not enough branes available to split the branes in a Zq X Z
invariant manner and compatible with the orientifold projection. Breaking of this Sp(2) symmetry
by some (perhaps non-perturbative) mechanism at the TeV scale might still be a possibility, but
we concentrate here on the alternative mechanism described in Section VI.
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numbers. For example, one could interpret one or both of the SU(3)-singlets in B, (]
to be Hf, states, and some of the doublets in A;B; as leptons. One could give masses
to all of the charged leptons in this way, but not all of the quarks. Also, if the scalar
component of N acquired a VEV, some, but not all, of the Higgs fields could have
effective y terms. We do not pursue this alternative further.

IV. THE ADDITIONAL U(1) FACTORS

As described in Section II, there are two surviving non-anomalous U(1)’s, B — L =
Q3/3 — @1 and Qs — Q%, in addition to hypercharge®. The Qs — Q% charges are not family
universal for the antiquarks and antileptons. For example, two of the U have Qs — Q% = —1
and two have +1. When family mixing is considered, there may be flavor changing neutral
current (FCNC) couplings of the corresponding Z boson to the U quarks [28], provided that
the two types of I/’s mix with each other. (This will occur provided there are Hys scalars of
both types, i.e., with Qs # 0 and with Qg # 0, with nonzero VEVs.) Similar statements
apply to the D, E, and N couplings. Such couplings could lead to decays such as B, — utpu~
or 7 — pete™. On the other hand, the B — L charges are family universal (even though one
of the three families of @ and L has a different origin than the other two), so there are no
flavor-violating B — L couplings.

Limits on the mass and mixings of extra Z’ bosons depend on their couplings, but
typically Mz > 500-800 GeV, and the Z — Z’ mixing angle is < few x1073 [29]. One
possibility is for a U(1)' to be broken at a large scale intermediate between the TeV and
Planck scales. This can occur if there are two or more scalar fields with opposite signs for
their U(1)' charges, so that the symmetry breaking is along a D (and F')-flat direction [30].
This would be desirable for implementing a neutrino seesaw mechanism if the heavy singlet
neutrino carries a nonzero U(1)’ charge. Alternatively, the breaking can occur at the TeV
scale or lower [27], in which case the minimum need not be supersymmetry conserving. In
either case, one expects to first generate masses for and possibly mixing between the two
new Z' bosons via the VEVs of SM-singlet fields that are large compared to the electroweak
scale. A small mixing of these states with the Z would then be induced by Higgs doublet
VEVs if they carry U(1)' charges®.

The only SM-singlet fields which couple to the extra U(1)”’s are: (1) the two pairs of
N states with B— L = 1 and Q3 = —1 or Qf = —1. We refer to these as N(8) and

2Strictly speaking, the three independent U(1)’ charges are Qs — Q%, Qs + Q%, and B — L. One
can rotate the corresponding gauge bosons so that they couple to Qs — Qg, Qy, and S(Qs+ Q%) —
%(B — L), where B = gs+/gB—1 is the ratio of Qs + Q% and B — L gauge couplings.

3In a multi-Higgs model, one can in principle generate the entire Z — Z’ mass matrix by the VEVs
of Higgs doublets. (One of the mass eigenvalues vanishes for a single doublet.) The mixing can
vanish for one or more Hy p pairs (along a D-flat direction for more than one pair). However, the
large Z'/Z mass ratio would require a very large Z’ coupling to the doublets, which is not the case
here.
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N(8'), respectively; (2) the Qy = B— L = 0 and Qs — Q% = +2 states in the (otherwise
problematic) A; A sector. The A;.A; states, if present in the spectrum, could lead to a D-flat
direction for which Qs — Qg (but not B — L) is broken at an intermediate scale. Depending
on whether these A;A; states are relevant, one could have either that QJs — Q)% is broken at
an intermediate scale and B — L at the TeV scale (by N(8) and N(8')); or that both are
broken at the TeV scale by N(8) and N(8'). The second possibility could lead to significant
mixing between the two Z’ bosons. Of course, symmetry breaking induced by the VEVs of
the scalar components of N(8) or N(8') would lead to mixing between the corresponding
gauginos and the fermionic sterile neutrinos in N(8) and N(8').

The composite SU(2)-singlet N4 supermultiplet suggested by the strong coupling of the
Sp(2)p group (Section VI) could also play a role in the breaking of the extra U(1)"’s. This
state is only relevant to the effective theory below the scale at which Sp(2)p becomes strong,
but that could be anywhere from a few TeV up to very high scales, so it is possible for B—L to
be broken along a D-flat direction at a large scale. Of course, other dynamical mechanisms,
such as fermion condensates, could possibly be relevant to the breaking of the extra U(1)"’s

V. GAUGE COUPLINGS

The gauge couplings are associated with different stacks of branes and do not exhibit
conventional gauge unification. Nevertheless, the value of each gauge coupling at the string
scale is predicted in terms of a modulus y and the ratio of the Planck to string scales. The
running is strongly affected by the exotic matter and multiple Higgs fields, leading to low
values of the MSSM sector couplings at low energy. However, the hidden sector groups are
asymptotically free.

The gauge coupling of the gauge field from a stack of D6-branes wrapping a three-cycle
is given by [15] (the factors of v/2m were carefully worked out in [8]):

Ve
QYMM ¢ — = V2r M \</3_6 (4)

where V3 is the volume of the three-cycle, Vi is the total internal volume, and M, is the
string scale. The four-dimensional Planck scale is defined as the coefficient of the Einstein
term in the low energy effective action:

1
10 = (MED)? / dz*\/gR+ ... = f dz*\/gR+ ... (5)
167GN

Since G/? = 1.22 x 10'® GeV, we have MU¥ = # x Gy/* = 1.7 x 10'® GeV. (Some
authors define a scale larger by v/2.) V3 is given by

(27) H\/nz Ri)? 4+ hi2 (RL)?, (6)

where Ri » are the radii of the two dimensions of the i*! two-torus, M’ = m‘ for i = 1,2,
3 = M3, and the wrapping numbers (n‘, /') are given in Table 1. The total internal volume
is given by
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2m)° - i i
V6 = ( 4) iI;[lR1Rz- (7)
The factor of 1/4 comes from the fact that we are orbifolding T° by Z, x Z,, which is an

Abelian group of order 4. The Planck scale and Yang-Mills couplings are related to the
string coupling gs by

g MSV
v d s V6
Fls MED)? = 557 ®)
and
1 MV,

912/M - (271')493.
In terms of the complex structure moduli x; = R/ R,

_ V2n M, VX1X2X3 (10)

2

Supersymmetry requires that x; : x2 : xa =1 : 3 : 2. Therefore,

2 :\/EEMS. x>/ (11)
eI + (B0 + 9Pl + AR

where x = x1.
At a scale M below the string scale, the coupling a, = g2/4x of the a™ gauge factor is
given (at one loop) by

1 ca(x)

= + byt 12
&) ~ aa(x) (12)

where

_ /3 M 3/2
ac(x) =14/~ 4—M}(:4d)x (13)
and
1 M,

For M = Mzand M, ~ M I(fd) one has t ~ 6. The ¢, and b, are displayed in Table VI. For the
b, the contributions b,(int) from the states at the intersecting branes (used in the analysis)
and those b,(aa) from the unwanted aa states are displayed separately. The hypercharge
U(1) is in general a linear combination of U(1)’s from branes wrapping around different
three-cycles:

Qv =) diQ.. (15)
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Group a Ca ba(int) be(aa)
SU(3) 1+ 2 -1 9
SU(2) 1+ 9x? 18 6
B B0 4 -

Qs+ Qu 12 80 144

R P+ 5 i
5p(2)B 6x° —4 -

Sp(2) 4 2 —6 -
Sp(4) I’ -5 3

TABLE VI. Coefficients ¢, of 1/ag, and B functions b, for the at® gauge group. The contribu-
tions b, (int) from the intersecting branes (used in the analysis), and the additional contributions
bo(aa) from unwanted ae states not localized at the intersections are both displayed. Sp(2)p and
Sp(2) 4 refer to the Sp(2) groups associated with the B2 and A2 branes, respectively. The gauge
coupling for hypercharge is not independent of that for B — L and Qs £ Qg, but is shown for
completeness. For comparison, the 8 functions b,(MSSM}) in the MSSM for SU(3), SU(2), and
1/ are respectively —3, 1, and 33/5.

Its coupling ay (or the related a; = 4/5/3ay conventionally used in the MSSM) is not
independent of the three other U(1)’s, but is included for convenience. It is given by the
relation

1 1
— = d2—. 1
T (16

From (8), along with the requirement MVg =2 (27)6 (i.e., the compactification radii
cannot be smaller than the string scale) and g2 < 4 (perturbative string theory), we expect
that M1(34d) = M/ V81, We will generally take Ml(fd) = M, in our numerical examples.
Near unification of, e.g., the SU(3) and SU(2) couplings at M, prefers small y, but the
overall scale ag requires that x cannot be too small. The best results are for x ~ 0.5. The
predicted MSSM gauge couplings at the electroweak scale are presented as a function of y
in Figure V. It is seen that the predicted value of a3 is quite close to the experimental value
for x ~ 0.5 (1/as ~ 8.5). However, a is predicted to be much too small, mainly because of
the contributions of the exotic states to the running, while sin? 8y is predicted too large by
a factor ~ 2. (The predicted value of sin® §y at the string scale M, ranges from 0.78 to (.73
for x varying from 0 to oo, while 1/ag ~ 12 for x ~ 0.5 and M](fd) = M,.)

Although the predictions for the MSSM gauge couplings are unrealistic, the quasi-hidden
sector Sp groups are all asymptotically free. Figure V displays the scales at which each Sp
group becomes strongly coupled as a function of x. All three groups become strong above the
electroweak scale for M 1(,4d) = M, and x R 0.4. For M 1(,4d) < M, the couplings become strong

at higher scales (e.g., Sp(2)p would become strong at around 10'° GeV for M}(fd) = M,/3
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FIG. 1. Predicted values of (a) 1/as, (b)l}a = 1/ay + 1/as, and (cx) the weak angle
sin? w = ay /(a2 + ay) at the electroweak scale as a function of x for Ml(fd) = M,. Only the
contributions b, (int) of the states localized at the brane intersections (as well as the gauge bosons)
to the running are included. The experimental values are ~ 8.5, 128, and 0.23, respectively.
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and x = 0.5, with possible implications for neutrino mass, as mentioned in Section IV). The
implications will be further discussed in Section VI and in [23].

VI. IMPLICATIONS OF A STRONGLY COUPLED SECTOR

We have seen that for sufficiently low values of M };‘M) /M, the quasi-hidden sector groups
Sp(2)B, Sp(2)a, and Sp(4) will become strongly coupled above the electroweak scale. This
is likely to lead to supersymmetry breaking in the hidden sector, which can be transmitted
to the observable sector by supergravity, as well as dilaton/moduli stabilization [23]. Here
we will focus on another aspect, i.e., the confinement of free Sp charges, expected in analogy
with QCD. In particular, it is plausible to assume that when one of the Sp(n) groups
becomes strongly coupled at some scale M > Mz any states carrying Sp(n) charges become
confined and drop out of the physical spectrum. However, there may be Sp-neutral bound
state chiral supermultiplets remaining in the spectrum?, which may be required to avoid the
introduction of anomalies for the remaining gauge groups.

Sp(4) is expected to become strong at a high scale. The only state in the chiral sector
with Sp(4) charge is from the B;C, intersection. We denote this state as ¥, which trans-
forms as (1,2,1,1,4) under SU(3) x SU(2) x Sp(2)s x Sp(2)4 x Sp(4). The strong Sp(4)
forces may lead to a composite chiral supermultiplet ¥%,, where the subscript indicates
an antisymmetrization in both the SU(2) and Sp(4) indices. ¥%, is a total gauge singlet.
Whether or not this composite state is formed, the confinement of ¥ does not lead to any
anomalies for the residual gauge groups. An anomaly is induced in the @ — SU(2)? vertex,
where (), is associated with an anomalous U(1) with a massive gauge boson. This can be
regarded as a breaking of ()2 and is presumably harmless, analogous to to the breaking of
the global axial U(1) symmetry in QCD. The four SU(2) doublets contained in ¥ drop out
of the renormalization group equations for SU(2) at the decoupling scale, lowering bgy 3y by
2, but this has only a minor impact on the discussion in Section V.

Sp(2)p can become strongly coupled anywhere from a few TeV up to very high scales
such as 10'® GeV, depending on x and M, 1(;44) /M. The fractionally charged B;C, states are
charged under Sp(2)p. Let us denote them as ® = (3,1,2,1,1) and ¥ = (1,1,2,1,1). By
our assumptions, these will be confined at the Sp(2)p scale. The strong Sp(2)p binding
might form the composite color triplet ®¥X = (3,1,1,1,1). This has charge —1/3, and
would be a candidate for an exotic SU(2)-singlet down-type quark, except that it has lepton
number L = 1. Furthermore, if this were the only massless composite, anomalies would be
induced in the @3 and Qy — SU(3)? vertices. The anomaly-matching condition suggests
that, instead of ®3, there is a more complicated spectrum of massless composites. The
simplest possibility is that the spectrum consists of

E,=0%U

4Supersymmetry breaking associated with a related gaugino condensation will be transmitted to
the ordinary sector only by weak supergravity effects, and can be ignored for the purposes of the
present discussion.
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Ny = ®%D
U, = % E
Dy = ®N, (17)

i.e., ®% forms bound states with each member of one of the four families of SU(2)-singlet
antiquarks and antileptons. The latter do not have to drop out of the spectrum, so the
composite Uy, Dy, B4, and N, are candidates to be the exotic (SU(2)-singlet) left-handed
partners of the elementary fourth family of antiparticles. This spectrum matches all of the
gauge anomalies, although it does lead to a (presumably harmless) (B + L) — Q2 anomaly,
again similar to the axial U(1) in QCD.

This binding mechanism seems very plausible from the viewpoint of anomaly matching.
However, it is harder to understand from the actual forces between the constituents, since
the U, D, E, N are not charged under the strong Sp(2)g group. (They do carry other gauge
charges.)

The decoupling of ® and ¥ and the appearance of the composite states lead to a net
increase of 6/5 for the # function for 1/ at the decoupling scale (bsy(s) and bsy(z) do not
change), but this is a small effect for the specific numerical example we have displayed. For
example, for MI(;-4d) = M, and x = 0.5, Sp(4) and Sp(2)p become strong at ~ 10'° GeV
and 2 x 10% GeV, respectively. Including both decouplings, the predicted values of a~! and
sin? @y decrease by ~ 6 and 0.02, respectively, compared to those in Figure V.

Sp(2)4 may also become strongly coupled. However, there are no chiral states with
Sp(2)4 charges.

VII. DISCUSSION

In this paper we have described the phenomenological implications of a semi-realistic
supersymmetric three family model derived from an orientifold construction. In addition to
the MSSM, the model involves an extended gauge structure, including two additional U(1)’
factors, one of which has family non-universal couplings. There is also a quasi-hidden sector
non-abelian group, which becomes strongly coupled above the electroweak scale. There
are many exotic chiral supermultiplets, including an exotic (SU(2)-singlet) fourth family of
quarks and leptons in which the left-chiral states have unphysical fractional electric charges.
These are presumably confined by the strong hidden sector interactions, while anomaly
constraints imply composite left-chiral states with the correct charges. The right-chiral
states are elementary. The Yukawa sector [22] and other aspects of the hidden sector [23]
will be presented separately.

As emphasized in the Introduction, none of the models that have been constructed are
fully realistic, and it is difficult to know whether the specific features of a given model are
hints of possible new TeV scale physics, or merely artifacts of the construction. For that
reason, it is useful to contrast some of the features of this orientifold construction with
those of a specific heterotic model described in [4]. For convenience, those predictions are
described in more detail in the Appendix.

Both models predict additional U(l)" gauge symmetries, some of which have family-
nonuniversal and therefore flavor changing neutral current couplings. Both are most likely
broken at the TeV scale, but have a possibility of being broken at an intermediate scale along
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a D-flat direction. Both also have quasi-hidden nonabelian gauge sectors. This means that
while most of the states in the model are charged under one or neither of the gauge sectors,
there are a few states which couple to both. (The U(1)’ also connect the two sectors.) These
mixed states have fractional charges like 1/6 or +1/2. A hidden sector is an ideal candidate
for dynamical supersymmetry breaking if it is strongly coupled. In the heterotic example
the hidden sector groups are not asymptotically free. However, in the orientifold example,
the groups are asymptotically free, and may lead to gaugino condensation, dilaton/moduli
stabilization, and charge confinement, modifying the low energy spectrum.

Both models involve exotic states, often with no satisfactory means of generating fermion
masses. These include additional Higgs doublets and singlets, suggesting such effects as a
rich spectrum of Higgs particles, neutralinos, and charginos, perhaps with nonstandard
couplings due to mixing and flavor changing effects. The effective y terms are either missing
or nonstandard. There may also be vector pairs of additional quarks and leptons. In the
orientifold case, the left-chiral states are composite and their right-chiral partners elementary.
The orientifold model also contains unwanted adjoints. There may be mixing between lepton
and Higgs doublets, leading to lepton number violation. This was required in the heterotic
case (where baryon number violation was also possible for one flat direction), and optional
for the orientifold.

Although the Yukawa couplings have tree-level contributions in string perturbation the-
ory (in orders of g,) in the two constructions, they have different origins from the worldsheet
perspective. In the orientifold model, the Yukawa couplings arise from non-perturbative ef-
fects (worldsheet instantons) in the worldsheet conformal field theory. In the CHL5 model,
the Yukawa couplings are tree-level from the worldsheet point of view. We note, however,
that in some heterotic string constructions, the quarks, leptons and the Higgs fields are
localized at different orbifold fixed points (see e.g., [31] and references therein.). In these
constructions, the Yukawa couplings also come from worldsheet instantons. Both construc-
tions can yield masses and mixings for some, but not all, of the fermions, but the details
depend on the mechanism of supersymmetry breaking. Neither has an obvious mechanism
for a neutrino seesaw, except possibly for the case of an intermediate scale breaking of a
U(1y.

In the heterotic model the gauge unification predictions are non-standard (and not very
successful) due to the combination of exotic particles contributing to the running of the
gauge couplings and higher Ka¢-Moody levels at the string scale. The orientifold predictions
are also non-standard: the gauge groups are associated with different branes, and have non-
standard moduli-dependent boundary conditions at the string scale, and there are also exotic
particles contributing to the running, leading to electroweak couplings that are too small.
Resolutions of these difficulties in more successful constructions might involve avoiding these
non-standard features, having exotics which fall into complete grand unification multiplets,
or invoking cancellations of effects occurring by accident or due to some other mechanism.
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APPENDIX:

As described in the Introduction, there has been considerable study of semi-realistic
perturbative heterotic string constructions, including a class of free-fermionic string models
which contain the gauge group and matter content of the MSSM [2,3]. Such constructions
generally involve additional gauge factors and many extra matter supermultiplets. How-
ever, they also contain an anomalous U(1)4 symmetry and a corresponding Fayet-Iliopoulos
contribution to the U(1)4 D-term. Maintaining supersymmetry at the string scale requires
that some of the fields in the effective four-dimensional theory must acquire compensating
vacuum expectation values (VEVs) near the string scale, while maintaining F-flatness and
D-flatness for the other gauge factors. These break some of the extra gauge symmetries,
remove some of the apparently massless states from the low energy effective theory, and
require that the theory be restabilized, i.e., the superpotential for the remaining massless
states must be recalculated when some of the fields are replaced by their string-scale VEVs.
A systematic procedure was developed in [32] to classify the flat directions associated with
non-abelian singlet fields. This was used in [4] to investigate the flat directions and related
low energy phenomenology in detail for a promising model due originally to Chaudhuri,
Hockney, and Lykken [3] (CHL5). Flat directions associated with non-singlets were studied
in [33]. The procedures were used to study the flat directions in a class of models due to
Faraggi, Nanopoulos, and Yuan [2] in [34].

The features of perturbative heterotic string models are illustrated by the prototypical
example of the CHL5 model. These include:

e One or more additional (nonanomalous) U(1)" gauge factors. The associated Z' gauge
boson is typically expected to be lighter than around 1 TeV [27], although for one flat
direction studied the breaking could be at an intermediate scale [30]. The Z’ couplings
are family nonuniversal, leading to flavor changing neutral currents (FCNC) [28].

e Additional non-abelian gauge factors. These could, in principle, play a role in dy-
namical supersymmetry breaking. However, in the model studied the factors do not
become strongly coupled below the string scale (i.e, they are not asymptotically free).
These extra gauge factors are quasi-hidden, i.e., most matter multiplets transform
nontrivially under the standard model SU(3) x SU(2) group or under the hidden sec-
tor group (or neither), but not both. However, there are a few exceptions which are
charged under both. The extra U(1) typically couple to both sectors.

e There are many exotic supermultiplets in the model, including an extra d-type quark,
extra Higgs/lepton doublets, and many non-abelian singlets. For many, there is no
mechanism to give a significant mass to the fermions. This is a major flaw of most
such models. (One exception, which however has unrealistic Yukawa couplings, is
described in [34].) The spectrum includes a number of charge +£1/2 states. These
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are all charged under the quasi-hidden sector group, and potentially could disappear
from the spectrum if the hidden sector charges are confined [35]. However, as noted
above, the hidden sector factors in the CHL5 mode! are not strongly coupled, so this
mechanism does not occur.

There are more than the two Higgs doublets of the MSSM. In addition to the more
complicated Higgs spectrum, there is a possibility of Higgs mediated FCNC. Models
with an electroweak scale U(1)’ can generically provide a natural solution to the u
problem [26,27], which is generated dynamically by the VEV of the field that breaks
the U(1)’. However, in the CHL5 model the effective p terms are non-canonical,
connecting Higgs doublets which generate the ¢ and b masses to others. In the specific
examples studied, one of the needed effective u terms is absent, leading to an unwanted
global symmetry.

The model has gauge coupling unification. However, the detailed predictions for the
low energy couplings differ from the MSSM (and from experiment) because of the
additional matter fields as well as higher Ka¢-Moody levels for the U(1) factors.

The Yukawa couplings at the string scale are either g, g//2, or 0, where ¢ = 0O(1)
is the gauge coupling, allowing large masses for the ¢ and b, and the possibility of
radiative electroweak breaking. Smaller Yukawa couplings can be associated with
higher dimensional operators that become cubic after vacuum restabilization. CHL5
contains { — b and an unphysical g — 7 universality, a noncanonical b — 7 relation, and
a nontrivial (but unphysical) d quark texture for one flat direction.

The models violate R-parity and lepton number (due to mixing between lepton and
Higgs doublets), so there is no stable neutralino. Baryon number is violated for one
flat direction, leading to proton decay and n — 7 oscillations (with rates that cannot
be calculated without resolving the problem of the massless exotics).

There is no obvious mechanism for a neutrino seesaw except for the cases in which one
of the U(1)' gauge factors is broken at an intermediate scale [30].

When phenomenological soft supersymmetry breaking parameters are introduced by
hand at the string scale, one can calculate the symmetry breaking and the spectrum
of the Higgs and supersymmetry particles. One can obtain a sufficiently large Z’' mass
(e.g., > 700 GeV) and small Z — Z' mixing (e.g., < 0.005) for somewhat tuned values
of the soft parameters. The large Z’ mass scale is set by the soft breaking parameters,
implying a spectrum quite different from most of the parameter space of the MSSM:
typically, the squark and slepton masses are in the TeV range (except possibly for
the third family), but there is a richer spectrum of Higgs particles, charginos, and
neutralinos [36].
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