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We study the partition function of type ITA string theory on 10-manifolds of the form
T? x X where X is 8-dimensional, compact, and spin. We pay particular attention to
the effects of the topological phases in the supergravity action implied by the K-theoretic
formulation of RR fields, and we use these to check the T-duality invariance of the partition
function. We find that the partition function is only T-duality invariant when we take into
account the T-duality anomalies in the RR sector, the fermionic path integral (including
4-fermi interaction terms), and 1-loop corrections including worldsheet instantons. We
comment on applications of our computation to speculations about the role of the Romans
mass in M-theory. We also discuss some issues which arise when one attempts to extend

these considerations to checking the full U-duality invariance of the theory.
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1. Introduction & Summary

Duality symmetries, such as the U-duality symmetry of toroidally compactified M-
theory, have been of central importance in the definition of string theory and M-theory.
Topologically nontrivial effects associated with the RR sector have also played a crucial role
in defining the theory. It is currently believed that RR fieldstrengths (and their D-brane
charge sources) are classified topologically using K-theory [1,2,3,4,5,6,7,8]. Unfortunately,
this classification is not U-duality invariant. Finding a U-duality invariant formulation of
M-theory which at the same time naturally incorporates the K-theoretic formulation of
RR fields remains an outstanding open problem.

With this problem as motivation, the present paper investigates the interplay between
the K-theoretic formulation of RR fields and the T-duality group, an important subgroup
of the full U-duality group. While T-duality invariance of the theory was one of the guiding
principles in the definition of the K-theoretic theta function [4][7] we will see that the full
implementation of T-duality invariance of the low energy effective action of type II string
theory is in fact surprisingly subtle, even on backgrounds as simple as T2 x X, where T2 is
a two-dimensional torus, and X is an 8-dimensional compact spin manifold. We will show
that, in fact, in the RR sector there is a T-duality anomaly. This anomaly is cancelled by
a compensating anomaly from fermion determinants together with quantum corrections
to the 8D effective action. A by-product of our computation is a complete analysis of the
1-loop determinants of ITA supergravity on X x T2.

As an application of our discussion, we re-examine a proposal of C. Hull [9] for inter-
preting the Romans mass of ITA supergravity in the framework of M-theory. We will show
that, while the interpretation cannot hold at the level of classical field theory, it might
well hold as a quantum-mechanical equivalence. In section 10 we comment on some of the
issues which arise in extending our computation to a fully U-duality invariant partition
function. This includes the role of twisted K-theory in formulating the partition sum.

This paper is long and technical. Therefore we have attempted to write a readable

summary of our results in the remainder of the introduction.

1.1. The effective eight-dimensional supergravity, and its partition function

Previous studies of the partition function in type II string theory [4][7] considered the
limit of a large 10-manifold. One chose a family of Riemannian metrics g = t2gy with

t — oo and go fixed. Simultaneously, one took the string coupling to zero. The focus of
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these works was on the sum over classical field configurations of the RR fields. In this
paper we consider the limit where only 8 of the dimensions are large. The metric has the

form
ds? = dsk, +t2ds%k (1.1)

where ds%., is flat when pulled back to T?. The background dilaton g2, ;.. = €% is constant.

We will work in the limit
t— o0

1.2
e % =2V 50 (1.2)

where V is the volume of 72 and ¢ is the 10-dimensional dilaton. Finally - and this is
important -until section 10 we assume the background NSNS 3-form flux, H, is identically
zero. In particular, the 2-form potential, B, isa globally well-defined harmonic form on
X x T2

As is well-known the background data for the toroidal compactification (1.1) include a
pair of points (7, p) € H x 'H where H is the upper half complex plane. 7 is the Teichmuller
parameter of the torus and p := Bg + iV, where Bodo®Ado? is an harmonic 2-form on 72.
While we work in the limit (1.2), within this approximation we work with exact expressions
in the geometrical data (7, p). In this way we go beyond [7].

It is extremely well-known that the low energy effective 8D supergravity theory ob-
tained by Kaluza-Klein reduction of type II supergravity on T2 has a “U-duality symmetry”
which is classically SL(3, R) x SL(2, R), and is broken to D := SL(3,Z) x SL(2,Z) by
quantum effects {10,11,12,13,14]. These are symmetries of the equations of motion and
not of the action. (The implementation of these symmetries at the level of the action
involves a Legendre transformation of the fields.) What is perhaps less well-known is that
the K-theoretic formulation of RR fields leads to an extra term in the supergravity action
which is nonvanishing in the presence of nontrivial flux configurations. Indeed, the proper
formulation of this term is unknown for arbitrary flux configurations with [Ha] 0, but
for topologically trivial NSNS flux the extra term is known [7] and is recalled in equations
(1.14) and (1.15) below. This term breaks naive duality invariance of the classical super-
gravity theory already for the T-duality subgroup of the U-duality group, and makes the
discussion of T-duality nontrivial.

Let us now summarize the fields and T-duality transformation laws in the conventional
description of the eight-dimensional effective supergravity theory on X. The T-duality
group is Dr = SL(2,Z); x SL(2,Z),. The theory has the following bosonic fields. From
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the NSNS sector there is a scalar ¢, characterizing the size of X, a unit volume metric
gmN, a 2-form potential B(3), with fieldstrength H(3), and a dilaton &, all of which are
invariant under Dr. In addition, there is a multiplet of 1-form potentials A("l‘f‘ transforming
in the (2,2) of Dr. Finally, the pair of scalars (7, p), transform under (y1,72) € Dr as
(r,p) = (71 - 7,72 - p) where v- is the action by a fractional linear transformation. We
therefore call the factors SL(2, Z),,SL(2, Z),, respectively.

The fieldstrengths from the RR sector include a 0-form and a 2-form, 9oy P = 0,2, =
1,2 transforming in the (1,2) of Dr, and a 1-form and 3-form g(pym, p = 1,3,m = 8,9
transforming in the (2/,1) of Dr. Finally there is a 4-form fieldstrength g(4) on X. This
field does not transform locally under T-duality, rather its equation of motion mixes with
its Bianchi identity [14]. The fermionic partners are described in section 7 below.

The real part of the standard bosonic supergravity action takes the form

3
Re (Siemn) = Snsns+>_ 55 (9) + S (90) (1.3)

p=0

In the action (1.3) all of the terms except for the last term are manifestly T-duality

invariant. The detailed forms of the actions are:

SN.S’NS = %\/ e_2£{t6 (R(g) + 4d€ A *df -+ 28t_2dt/\ * dt) + %tzH(:;) A *H(3)
X

(1.4)
1cdrAxdr 1 dpAxdp 1
_t6 —46 —-t4 e FeA F’nﬁ
2" Tr 3 (mppp T30 ImmGest &N e
where * stands for the Hodge dual with the metric gasn, We also denote
1
G5 =dAGS, H) = dB(a) ~ semnbopATlS st (1.5)

€mn and Eqg are invariant antisymmetric tensors for SL(2, Z), and SL(2,Z), respectively,
Gmn = M(1), g™ = M(T)_la Gap = M(p) (1.6)
and finally

ME) = o (e 105 ) (17)

Imz

1 We will always indicate by the subscript (p) the degree p of a differential p-form on X
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The real part of the RR sector action is given by
3
> Sp (9) =7 /X {tsgaﬁgﬁ))’\ * gy + 129" gymA * gaynt (1.8)
p=0

t*GagglsyN * 905 + 126" g(3ym A * g(s)n}

together with

Sa(g) =m /X Im(p)g(a) A *g(a)- (1.9)

1.2. The semiclassical expansion

The vevs of the two fields ¢ and e~2¢ (the 8-dimensional length scale of X and the
inverse-square 8D string coupling) define semiclassical expansions when they become large.
We will expand around a solution of the equations of motion on X. To leading order in our
expansion this means X admits a Ricci flat metric? gp;n. We also have constant scalars
t, &, 7, p, and Fy =0, Hs) = 0, so the background action Snysns is zero. Finally, we
expand around a classical field configuration for the RR fluxes, and to leading order these
fluxes g(,) are harmonic forms. Nonzero fluxes contribute terms to the partition function
going like O(e=t" ™).

Let us consider the leading order contribution to the partition function. There are
several sources of contributions even at leading order, but, since we are interested in
questions of T-duality, most of these can be neglected. 2 The volume of X suppresses
the contribution of fluxes g«,),p =0,1,2, 3, and, to leading order in the t — co expansion
these can be set to their classical values. Note, however, that neither the string coupling,
nor the volume of X, suppress the action for g(4), and thus we must work in a fully

quantum mechanical way with this field. This is just as well, since (not coincidentally)

2 Almost nothing in what follows relies on the Ricci flatness of the metric. We avoid using
this condition since a T-duality anomaly on non-Ricci flat manifolds would signal an important
inconsistency in formulating string theory on manifolds of topology X x T2.

3 In particular we are negelecting determinants of KK and string modes, and perturbative
corrections O(g2ing). These are all T-duality invariant. The backreaction of nonzero RR fluxes
on the NSNS action simply renormalizes V to Ves¢, where p = Bo+iVesy is the variable on which

SL(2,7Z), acts by fractional linear transformations.
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this is the term in the action which is not manifestly T-duality invariant. Fortunately, in
our approximation, g(4) is a free, nonchiral field and hence quantization is straightforward
(after the K-theory subtleties are taken into account). Including subleading terms in the
expansion parameter ¢ involves (among other things) summing over the RR fluxes g(;),
p=0,1,2,3.

Finally, in order to be consistent with our approximation scheme we must allow the
possibility of flat potentials in the background. 4 These contribute nontrivially to the parti-
tion function through important phases and accordingly, we will generalize our background
to include these. The real part of the action for the flat configurations vanishes, of course,
and hence in the physical partition function one must integrate over these flat configura-
tions. In the RR sector the flat potentials are thought to be classified by K'(X0; U(1))
[5]. These contribute no phase to the action and we will henceforth ignore them. 5 The

space of flat NSNS potentials is
HY(X;U(1) < (HH(X;U(L)*

In this paper we will work only with the identity component of this torus. Accordingly,
we will identify the space of flat NSNS potentials with the torus

H2(X)  (HYX)\!
HE(X) (HIZ(X)) (1.10)

where HP(X) is a space of harmonic p-forms on X and H%(X) is the lattice of integrally
normalized harmonic p-forms on X. The first factor is for B(z) and the second factor for
the fields Az’;")“‘ transforming in the (2,2) of Dr.

Putting all these ingredients together the partition function we wish to study can be

schematically written as

Z(tagMNa§: T, P) = / d,ufﬂat Z Det, - C-Sd + e (111)

flat potentials RR fluxes

where dpgae is a T-duality invariant measure on the flat potentials, Det is a product of

1-loop determinants and S, is the classical action. Now, to investigate T-duality it is

4 By “flat” we mean the DeRham representative of the relevant fieldstrength is zero.

5 If treated as differential forms, RR zero modes do contribute to the overall dependence of the
partition sum on £ = te”¢/3, See eq.(7.39) below.) In the K-theoretic treatment they also give a
factor of |Kpps (X x T?)|.



convenient to denote by F the collection of all fields occuring in (1.11) which transform
locally and linearly under Dp. These include the flat NSNS potentials above as well as
the classical fluxes g¢),p = 0,...,3. We introduce a measure [dF] on F which includes
integration over the flat potentials and summation over the fluxes for p = 0,1,2,3. This

measure is T-duality invariant, and we can write
Z(t1gMN1€:T1p)=/[d’7:]Z('7:;t7gMN’£aTap)' (112)

The invariance of (1.12) under the subgroup SL(2,Z), of the T-duality group is essen-
tially trivial. The relevant actions and determinants are all based on SL(2, Z),-invariant
differential operators. The invariance of the theory under SL(2,Z), is, however, much
more nontrivial. Therefore we simplify notation and just write Z(F, p) for the integrand
of (1.12). Now, checking T-duality invariance is reduced to checking the invariance of
Z(F, p). This function is constructed from

a. The K-theoretic sum over RR fluxes of g(4) in the presence of F.

b. The integration over the Fermi zeromodes in the presence of g(4) and F.

c. The inclusion of 1-loop determinants, including determinants of the 8D supergravity

fields and the quantum cerrections due to worldsheet instantons.

In the following subsections we sketch how each of these elements enters Z(F, p).
Briefly, the K-theoretic sum over RR fluxes g(4) leads to a theta function ©(F,p). This
function turns out to transform anomalously under T-duality. The integration over the
fermion zeromodes corrects this to a function é(]—' ,p). This function still transforms
anomalously. The inclusion of 1-loop effects, including the string 1-loop effects finally

cancels the anomaly.

1.8. The K-theoretic RR partition function

In order to write explicit formulae for the quantities in (1.12) we must turn to the
K-theoretic formulation of RR fields. In practical terms the K-theoretic formulation alters
the standard formulation of supergravity in two ways: First it restricts the allowed flux
configurations through a “Dirac quantization condition” on the fluxes. Second, it changes

the supergravity action by the addition of important topological terms in the action. 6

6 Tt also alters the overall normalization of the bosonic determinants by changing the nature

of the gauge group for RR potentials, but we will not discuss this in the present paper.
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In more detail, the K-theoretic Dirac quantization condition states that the DeRham
class of the total RR fieldstrength [G/(2)] is related to a K-theory class z € K°(X3p) via

[%] — ch(z)VA (1.13)

The topological terms in the action can be described as follows. On a general 10-manifold
this term involves the mod-two index of a Dirac operator and cannot even be written as a
traditional local term in the supergravity action [4,5,7]. In the case of zero NS-NS fluxes,

the general expression for the phase in the supergravity theory is:
Im(SmD) =210, &=, + oy (1.14)

where 2™ is the mod-two index and ®, is given by the explicit expression

(I)IZ/XM{_% (%)S’Ls(gﬁ) (;;4) 12(“%)] (1.15)
(@) [aE) 22 2@

where Ga;,j = 0,1,2 are RR fluxes on Xig, p1 = p1(TX10) and A is expressed in terms of

the Pontryagin classes of Xig as

1 1
A= 1= 2471+ 5o

7p} — 4p2) . (1.16)
In the case that we reduce to 8 dimensions, taking our manifold to be of the form
X x T? with the choice of supersymmetric spin structure on 7% the above considerations

simplify and can be made much more concrete.

Consider first the Dirac quantization condition. We reduce RR fieldstrengths as: 7
G(_) 2
o 90
G m
ﬁ = 9{oydo®Ada® + g1ymAdo™ + gl (1.17)
G

4 )
om 9(a) + g(zymNdo™ + g(lz)/\alas/\dcr9

7 Beware of notation! The subscript (p) indicates form degree, while the other sub- and
superscripts on g(p) indicate Dt transformation properties. Thus, for example, g(zo) is the second

component of a doublet g, of O-forms.



where 0™, m = 8,9 are coordinates on T2. In the K-theoretic formulation of lux quantiza-
tion the fieldstrengths g(4), 9(3ym. 92"2), 9(1)ms gff)) are related to certain integral cohomology
classes which we denote as

"

a€ HYX,Z), fme€ HX,Z)®Z?, e°‘=(e

. ) € H*(X,Z) @ Z?, (1.18)

Tm € HY(X,Z) ® Z2, n®= (Zé) € H(X,Z) ® Z2

The explicit relation between these classes and the g(;) is somewhat complicated and given
in equation (4.3) below. The K-theoretic Dirac quantization condition leaves all integral
classes in (1.18) unconstrained except for f,,. One finds that S¢*(f,») = 0. As explained
in section 3.3 and 5.2 “turning on” flat NSNS potentials corresponds to acting on the
K-theory torus by an automorphism changing the holonomies of the flat connection on the
torus. In concrete terms, turning on flat potentials modifies the reduction formulae (1.17)
according to equations (5.15) to (5.18) below.

Now let us consider the phase. It turns out that on 10-folds of the form X x T2 the
phase 2™®2 arising from the mod 2 index may be expressed in concrete terms as

exp[2mi®s] = exp | im /X {g(s)sUqu(g(s)g)+g(3)sUSq2(g(3)s)+9(3)9U5q2(g(3)9)} (1.19)

2
: A 9(0) 1o\ ([ 1 2 2 . m
+m/ ginAs + | gy + =1 — 5 (g 9(2y — 9(0)9(2) T+ 9(1)89 +=
X{ (0) ORI 9 ( (2)) 192y 7 9(@9(2) T 9(1)8 (1)9] )

2 3 2
. P1 mn
T3 + 9(1)89(1)9 (9(22)) - (9(22)) € g(1)mg(3)n}]

This expression is cohomological although it is still unconventional in supergravity theory
since it involves the mod-two valued Steenrod squares, denoted Sq? (93)), in the first line.

The above topological term (1.14) is deduced from the K-theory theta function ©x
defined in [4,5,7], and reviewed below. As explained above, it is convenient to fix the fields

F. We can define a function 8(F, p) by writing O as a sum
Ok =Y e #FIO(F, p) (1.20)

The sum is over all integral classes except a. That is, we sum over n%,7,,, €%, fm subject

to the constraint on S¢3f,,. The action Sp(F) is the manifestly T-duality invariant action

8



for the fluxes given in (1.8). ©x is a function of gy, p, 7 and the flat background NSNS
fluxes. As we have mentioned, turning on flat potentials corresponds, in the K-theoretic
interpretation, to acting by automorphisms of the K-theory group K°(X) @ R. These
automorphisms act naturally on the theta function. We give concrete formulae for this
action by showing how the inclusion of nonzero flat NSNS fields By, By, A?’{ﬁ" modifies
the phase ®. The explicit formula is in equations (5.20)-(5.24) below.

Since the K-theoretic constraint Sq%a = 0,a € H*(X, Z) is automatically satisfied on
spin 8-folds X it turns out that ©(F) is, essentially, a Siegel-Narain theta function for
the lattice H*(X;Z). More precisely, there is a quadratic form on H*(X;R) given by
Q = Im(p)HI —iRe(p)I where H is the action of Hodge * and I is the integral intersection
pairing on H*(X,Z). Then

o(F,p) = 70| €| (121)

Here © [

are written explicitly in equations (5.10), (5.20), and (5.21) below. Finally, the prefactor
A®(F) in (1.21) is defined in (5.23) and (5.24) below.

Huly

} (Q) is the Siegel-Narain theta function with characteristics. The characteristics

1.4. T-duality transformations

One of the more subtle aspects of the K-theoretic formulation of RR fluxes, is that
the very fermulation of the acticn depends crucially on a choice of polarization of the K-
theory lattice K (X79) with respect to the quadratic form defined by the index. In the above
discussion we have chosen the “standard polarization” for ITA theory, i.e I's is the sublattice
of K(Xj0) with vanishing G4, G2, Go. I'1 is then a complementary Lagrangian sublattice
such that K(X;9) = I'; + I';. The standard polarization is distinguished for any large
10-manifold in the following sense. When the metric of Xi¢ is scaled up §yrz — t2055
the action [ +/§|Gap|? of the Type ITA RR 2p-form scales as ¢'°~*7. This allows the
sensible approximation of first summing only over G4, with Gy = G¢ = 0, then including
G5 with Gy = 0, and finally summing over all classical fluxes G4, Gs, Gy.

In the case of X9 = 72 x X with the metric (1.1) the standard polarization is no
longer distinguished. Various equally good choices are related by the action of the T-
duality group Dz on Tk := K(X x T?). 8 In section 4 we explain how the duality group

8  There is also a polarization on manifolds of the type S* x Xp, (in our case Xo = S x X )
where the measure is purely real and the imaginary part of the action is an integral multiple of 7
(without flat NSNS potentials). However, this polarization does not lead to a good long-distance

approximation scheme.



Dr acts as a subgroup of symplectic transformations on the K-theory lattice and we give
an explicit embeding Dr C Sp(2N,Z), where 2N = rank(I'x). As explained in section
4.2, since Dy acts symplectically, the function ©(F, p) must transform under T-duality
as O(y - F,y-p) = j(v,p)O(F, p) where j(v,p) is a standard transformation factor for
modular forms. Nevertheless, this transformation law leaves open the possibility of a
T-duality anomaly through a multiplier system in j(v, p). In order to investigate this
potential anomaly more closely we must choose an explicit duality frame and perform the
relevant modular transformations.

We find that, in fact, the function ©(F, p) does transform as a modular form with
a nontrivial “multiplier system” under SL(2,Z),. That is, using the standard generators
T,S of SL(2, Z), we have:

(T - F,p+1) = u(T)O(F,p)

i1y (1.22)
O(S - F, —1/p) = u(S)(~ip) 3% (i7) 1 ©(F, p)

where T'-F, S-F denotes the linear action of Dr on the fluxes. Here b}, b, is the dimension
of the space of self-dual and anti-self-dual harmonic forms on X and the multiplier system
is ]
i
p(T) = exp [Z-/ A?]
X
i

u(S) = exp[ /X ]

where A is the integral characteristic class of the spin bundle on X. (So, 2A = p;). The

(1.23)

multiplier system is indeed nontrivial on certain 8-manifolds. As an example, on all Calabi-

Yau 4-folds we have the relation

i/X,\2=62/XAS—4+1—12X (1.24)
and hence p is nontrivial if x is not divisible by 12. In particular, a homogeneous polyno-
mial of degree 6 in P°, has x = 2610. See, e.g. [15].

In more physical language, the “multiplier system” signals a potential T-duality anom-
aly. Such an anomaly would spell disaster for the theory since the T-duality group should
be regarded as a gauge symmetry of M-theory. Accordingly, we turn to the remaining
functional integrals in the supergravity theory. We will find that the anomalies cancel, of

course, but this cancellation is surprisingly intricate.
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1.5. Inclusion of 1-loop effects

We first turn to the 1-loop functional determinants of the quantum fluctuations of
the bosonic fields. We show that these are all manifestly T-duality invariant functions of
F except for the quantum fluctuations of g(4). The full bosonic 1-loop determinant Detp
is given in equation (6.20) below. The net effect of inlcuding the bosonic determinants is

thus to replace
e 5B F)Q(F, p) — Zp(F,p) := Detge52FIQ(F, p) (1.25)

Inclusion of this determinant alters the modular weight so that Zg(F, p) transforms with
weight ( %(x + o), %(X —0)), in close analogy to the theory of abelian gauge potentials on
a 4-manifold [16,17]. Here x, o are the Euler character and signature of the 8-fold X. The
multiplier system (1.23) is left unchanged.

Now let us consider modifications from the fermionic path integral. Recall that we
may always regard a modular form as a section of a line bundle over the modular curve
H/SL(2,Z),. On general grounds, we expect the fermionic path integral to provide a
trivializing line bundle. The gravitino and dilatino in the 8d theory transform as modular
forms under the T-duality group Dr with half-integral weights and consequently they too
are subject to potential T-duality anomalies.

The inclusion of the fermions modifies the bosonic partition function in two ways:
through zeromodes and through determinants. The fermion action in the 8D supergravity
has the form

S(B) = Skinetic + Sfermi—ﬂux + S4—fermi (126)

Fermi

where kinetic terms Syipetic a8 well as fermion-flux couplings Srermi—pux are quadratic in
fermions and S4—_ferm; denotes the four-fermion coupling. Skinetic i8 T-duality invariant
but Stermi—flux and Sa1_fermi contain some non-invariant terms. The non-invariant fermion

zeromode couplings are collected together in the form
§(zm)nine _ / {47rImp g * Yy + 2rlmp Yy A * Y(4)} (1.27)
X

where the harmonic 4-form Y{4) is bilinear in the fermion zeromodes. The explicit expres-

sion for Y(4y can be found in equations (7.21) and (7.41) below.
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The inclusion of the integral over the fermionic zeromodes of Syinetic modifies the

partition function by replacing the expression O(F, p) in (1.21) by

-

87,0 = [au™ e8] (@) (1.28)

Here ~
JHE

B
is a supertheta function for a superabelian variety based on the K- theory theta functlon
(This is explained in Appendix F.) In particular, the characteristics &, 3 differ from & ,3
by expressions bilinear in the fermion zeromodes. Similarly, the prefactor Ad differs from

(zm) .

Ad by an expression quartic in the fermion zeromodes. Finally, duy '~ is a T-duality

invariant measure for the finite dimensional integral over fermion and ghost zeromodes. It

_g(zm)inv .
s from the action.

includes the T-duality invariant term e
Including the one-loop fermionic determinants of the non-zero modes we finally arrive

at
Zp.r(F,p) := Det’yDet’ire 52 FIS(F, p) (1.29)
The formula we derive for (1.29) allows a relatively straightforward check of the T-

duality transformation laws and we find:
Zpr(T-F,p+1) = w(T)ZB+r(F, p)
Zip(S - F,=1/p) = (—ip) W i) ot [ 0¥ 7 (7 )

Perhaps surprisingly, the fermion determinants have not completely trivialized the

(1.30)

RR contribution to the path integral measure. However, there is one final ingredient we
must take into account: In the low energy supergravity there are quantum corrections
which contribute to leading order in the t — oo and £ — —oo limit. From the string
worldsheet viewpoint these consist of a 1-loop term in the o’ expansion together with
worldsheet instanton corrections. From the M-theory viewpoint we must include the one-
loop correction [ C3Xs in M-theory together with the effect [18] of membrane instantons.

The net effect is to modify the action by the quantum correction
Tl 1 2 1 1 2 _
Saumst = [+ 7 [ 2= N)toa 0ol + [5x - 7 [ (2 = )]teg (-] (131
Where n(p) is the Dedekind function. The final combination
Z(F,p) = e~ S0 Ty u(F, p) (1.32)
is the fully T-duality invariant low energy partition function.
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1.6. Applictions

As a by-product of the above results we will make some comments on the open problem
of the relation of M-theory to massive ITA string theory. In [9] C. Hull made an interesting
suggestion for an 11-dimensional interpretation of certain backgrounds in the Romans
theory. One version of Hull’s proposal states that massive IIA string theory on T2 x X is
equivalent to M-theory on a certain 3-manifold, the nilmanifold.

In section 9 we review Hull’s proposal. For reasons explained there we are motivated
to introduce a modification of Hull’s proposal, in which one does not try to set up a 1-1 cor-
respondence between M-theory geometries and massive IIA geometries, but nevertheless,
the physical partition function Z(F,p) of the massive IIA theory can be identified with
a certain sum over M-theory geometries involving the nilmanifold. The detailed proposal

can be found in section 9.3.

1.7. U-duality and M -theory

In the final section of the paper we comment on some of the issues which arise in trying
to extend these considerations to writing the fully U-duality-invariant partition function.
We summarize briefly the M-theory partition function on X x T3, we comment on the
SL(2,Z), duality invariance, and we make some preliminary remarks on how one can see

K-theory theta functions for twisted K-theory from the M theory formulation.

2. Review of T-duality invariance in the standard formulation of type IIA
supergravity
We start by reviewing bosonic part of the standard 10D ITA supergravity action [19].

Fermions will be incorporated into the discussion in section 7.

2.1. Bosonic action of the standard 10D ITA supergravity

The 10D NSNS fields are the dilaton ¢, 2-form potential B, and string frame metric
915> Where M,N =0,...9. The 10D RR fieldstrenghts are the 4-form G4, 2-form G5 and
0-form Gy.

We measure all dimensionful fields in units of 11D Planck length I, and set ki, = ,

S0
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Shod) = % / e % (\/91072(57) +4d¢ A ¥dep + —;-}L A %ﬁg)
X10
2.1)
+ 4l71- (é4/\>?<é4 + ’iB/\é4/\é4 + éz/\%éz + 4 /QIOG%)
X0

where % stands for the 10D Hodge duality operator. The fields in (2.1) are defined as
~ N ~ . 1. - A N
Go =Gz + BaGo, Gy =G4+ BaGo + 5323200, H; =dB;.
We explain the relation between our fields and those of [19] in Appendix(B).

2.2. Reduction of IIA supergravity on a torus

We now recall some basic facts about the reduction of the bosonic part of the 10D
action on T?2. Let us consider X30 = T2 x X and split coordinates as X™ = (zM,0™),
where M =0,...,7, m=2_8,0.

The standard ansatz for the reduction of the 10d metric has the form:
ds?y = *gundzM dz™ 4+ Vgmaw™ @ W™ (2.2)

where gmy, is defined in (1.6), t2gpn is 8D metric, detgyy = 1. V is the volume of 72
and w™ =do™ + Az’{). The other bosonic fields of the 8D theory are listed below.
1. ga]),g&), a=12 guym 93ym ™m=28,9 and g are defined from®

G

2
= 9(0)
27
éz 1 2 1 2
7 = (9 + 9%)Bo) Emn@"W" + gymw™ + 9iz) (23)
G

1
5‘7% = g(a) + 9@ymw™ + (309(22) + 9(12)) ifmnwmwn

2 . The 8D dilaton ¢ is defined by

e X =2V (2.4)

3 . B(2), Baym, Bo are obtained from the KK reduction of the NSNS 2-form potential

in the following way

9 (80 1, ep=1
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i 1 1
Bz = §Boemnwmw" + B(l)mwm + B(z) + EAH)B(I)"" (25)

Now, the real part of the 8D bosonic action obtained by the above reduction is

3
Re (SE2)) = Sns+ > S, (96) + 51 (90) (2.6)

p=0

where

Sns = 51; / e~ {tﬁ (R(g) + 4dE A *d¢ + 28t 2dtA * dt) + %tzH@) A xH 3y

2.7
1 adrAxdr 1 dpAxdp 1
+ 2" (Im7)2 2 (Imp)? talte Gap +F

where Gog is defined in (1.6) and AH) and B(1), are combined into 1-form as a collection

of
mo emnB(l)n)
= m (2.8)
5= (s
Also, we denotel®
1 nB
Hy =dBy) — §€mn5aﬁA(1)maF(2) (2.9)
3
> S (om) =7 /X {tsgaﬁg(%)/\ * gy + 9™ g(1ymA * gynt (2.10)
p=0

t4gaﬂg(“2)/\ * 952) + 29" g3ym A * 9(3)n}

Finally we have
S4(9a) =7 /X Im(p)g(ay A *g(a) (2.11)

It is convenient to introduce the notation Sg(F) = Zi:o Sp (9(p)) for the value of the
actions evaluated on a background flux field configuration. Sp(F) will enter the partition

sum Zp, p(F,T,p) in equation (8.1) below.

10 =1, &1=-1
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2.3. T-duality action on 8D bosonic fields

The T-duality group of the 8D effective theory obtained by reduction on 72 is known
to be Dy = SL(2,Z), x SL(2,Z),, where the first factor is mapping class group of T2

which acts on 7
ar+b
—)

cT+d (2.12)
and the second factor acts on p = By + iV
ap +f8
- 2.13
VP +9 (213)

Let us denote generators of SL(2,Z), by

S:p——=1/p, T:p—p+1
and generstors of SL(2,Z), by

S:r—o-1/r, Tir—>7+1

We now recall how T-duality acts on the remaining bosonic fields of the 8D theory
[14]. First, &,t,gmn are T-duality invariant. Next, there is the collection of fields F
mentioned in the introduction. These transform linearly under T-duality. They include
the NS potential B(g), which is T-duality invariant, as well as A?ﬁl, which transform in
the (2,2). The other components of F are the RR fieldstrengths g(°6), gf"z), a =1,2 which
transform in the (1,2) of Dr and g(1)m, 9(3ym, ™ = 8,9 which transform in the (2’,1) of
Dr.

Finally, the field g(4) is singled out among all the other fields since according to the
conventional supergravity [14] SL(2,Z), mixes g4 with its Hodge dual *g(4) and hence

g(4) does not have a local transformation. More concretely,

( —Repg(q) + ilmp * g(4) ) (2.14)
9(2)
transforms in the (1, 2) of Dr. Due to this non-trivial transformation the classical bosonic

8D)

8D action St(mson is not manifestly invariant under SL(2,Z),.

3. Review of the K-theory theta function

In this section we review the basic flux quantization law of RR fields and the definition

of the K-theory theta function. We follow closely the treatment in [4,5,7].
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3.1. K-theoretic formulation of RR fluzes

As found in [1]-[4] RR fields in ITA superstring theory are classified topologically by

an element z € K°(X10). The relation for By = 0 is
a _ 10
[%] = \/Zch:):, G = ;Gj (3.1)

where ch is the total Chern character and A is expressed in terms of the Pontryagin classes
as
A=1-i¢rwj;(m{—@g (3.2)
24 5760
In (3.1), the right hand side refers to the harmonic differential form in the specified real
cohomology class. The quantization of the RR background fiuxes is understood in the

sense that they are derived from an element of K°(Xi).

3.2. Definition of the K-theory theta function

Let us recall the general construction of a K-theory theta function, which serves as the
RR partition function in Type ITA. One starts with the lattice Tx = K%(X10)/K°(X10)tors-
This lattice is endowed with an integer-valued unimodular antisymmetric form by the for-

mula
w(z,y) =I(z@7), (3.3)

where for any z € K%(X10), I(2) is the index of the Dirac operator with values in z.

Given a metric on Xjg, one can define a metric on I'g

smy) = [ 2N (3.4

where % is the 10D Hodge duality operator.
Let us consider the torus T = (I'x ®z R) /T'x. The quantities w and g can be in-
terpreted as a symplectic form and a metric, respectively, on T. To turn T into a Kahler

manifold one defines the complex structure J on T as

9(z,y) = w(Jz,y) (3.5)

Now, if it is possible to find a complex line bundle £ over T with ¢;(£) = w, then T

becomes a “principally polarized abelian variety.” £ has, up to a constant multiple, a
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unique!! holomorphic section which is the contribution of the sum over fluxes to the RR
partition function.
As explained in detail in [20], holomorphic line bundles £ over T with constant cur-

vature w are in one-one correspondence with U(1)-valued functions 2 on I'x such that
Oz +y) = Q2)Qy)(-1)“ ). (3.6)

For weakly coupled Type II superstrings one can take {2 to be valued in Z5. Motivated by
T-duality, and the requirements of anomaly cancellation on D-branes [5], Witten proposed
that the natural Z,— valued function Q for the RR partition function is given by a mod
two index [4]. For any = € K°(X10), z© T € KO(X1o) lies in the real K-theory group on
X10, and for any v € KO(X10), there is a well-defined mod 2 index g(v) [21]. We take

Q(c) = (-1)® (3.7)

where j(z) = q(z ® Z).

As explained in [4,5,7] there is an anomaly in the theory unless () is identically 1 on
the torsion subgroup of K(Xj0). In the absence of this anomaly it descends to a function
on 'y = K%(X10)/K°(X10)tors and can be used to define a line bundle £ and hence the
RR partition function.

To define the theta function one must choose a decomposition of 'k as a sum I'; @T'g,
where I'y and I'; are “maximal Lagrangian” sublattices. w establishes a duality between

I'; and I's, and therefore there exists 8k € I'; /2I'1 such that
Qy) = (-1)*Cx¥), vy el, (3.8)

Following [7] we choose the standard polarization:the sublattice I's*¢ is' defined as the
set of z with vanishing Gg, G2, G4. This choice implies that Gy, G2, G4 are considered as
independent variables. This is a distinguished choice for every large 10-manifold in the
sense that it allows for a good large volume semiclassical approximation scheme on any

10-manifold ( see sec.5).

11 The uniqueness follows from the index theorem on T using unimodularity of w and the fact

that for any complex line bundle M over T with positive curvature we have H* (T; M) =0, i> 0.
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It was demonstrated in [7] that ['{*® in the standard polarization consists of K-theory
classes of the form z = ngl + z(c1, ¢2). 1 is a trivial complex line bundle and z(c1,¢2) is
defined for ¢; € H?(X10,Z) and ¢ € H*(X10,Z) with SgPc; =0, as

1
ch(z(er,e2)) =1+ (—e2 + ch) +.... (3.9)

The higher Chern classes indicated by . .. are such that z(c1, ¢2) is in a maximal Lagrangian
sublattice T'{** complementary to I'§!%. Then, 0k for the standard polarization can be

chosen to satisfy
cho(gK) =0, ch]_(eK) =0, ch2(9K) = —A + 2ay, I(QK) =0 (3.10)

where A= %pl and dp is a fixed element of H* (X10,Z) such that
vee L' f(e)= / éuU Sq%ay (3.11)
Xi10

where L' = {é € H},,(X10,2)/2HE, . (X10,Z), S¢3(8) = 0} and f(&) stands for the
mod 2 index of the Dirac operator coupled to an Eg bundle on the 11D manifold X1 x S!
with the characteristic class & € H*(X10,Z) and supersymmetric spin structure on the S*.
(We will show in section 5.1 below that for X390 = X X T2 in fact dg = 0.)

The K-theory theta function in the standard polarization is

Ox =™ Z eivr'rx(m+§0x)9(m) (3.12)
zel'y
where u = — % f X0 cha(0k)chs(fk) and the explicit form of the period matrix 7x is given
by 1 1
“O0r) = —— - G4G .13)
Retg (z + 5 K) )2 /Xlo (GoG1o — G2Gs + G4Gs) (3.13)
Imtg(z+ 10 ) 22:—1 / GopNiG (3.14)
K -0x) = 2 2 .
2 @) Jx T

The RR fields which enter (3.13),(3.14) are:

1 1
%GO(-’B + 591{) =nNg
1 1
s =& 3.15
2ﬂ_G2(l’+ 291{) e ( )
1 1 . 1o 1
il 4+ = — —a2 _ -
27[_G4(5L‘ } 20[{) a-—+ 26 2(1 +7’L0/12))\
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where we denote é = c1(z), &= —ca(z) + do.
From (3.12) and (3.13),(3.14) the following topological term was found in [7] to be the
K-theoretic corrections to the 10D IIA supergravity action.

e2mi®(no.é,8) _ exp [—27rino/
X10

& (\/E)S] (Q(1))"° e2ri(Ed) (3.16)

ah é

e . - 836 1183X  éax  éx? 1.
2mi®(6,8) _ (_1)F(80) (_1)F(®) ogp |2 / £ &a_ 1&xr éar & 1,
e (-1) (-1 ezp[ i X10(60 + : 14 2 + 15 26As)

(3.17)
8.8. Turning on the NSNS 2-form flux with [I:Ig] =0

In the presence of an H-flux we expect K-theory to be replaced by twisted K-theory
Ky classifying bundles of algebras with nontrivial Dixmier-Douady class. The Morita
equivalence class of the relevant algebras only depends on the cohomology class of H,
but this does not mean that the choice of “connection” that is, the choice of B field is
irrelevant to formulating the K-theory theta function. Indeed, when [H] = 0, the choice of
trivialization B in H = dB changes the action in supergravity and “turning on” this field
in supergravity corresponds to acting with an automorphism on the K-theory torus. In
this section we describe this change explicitly. See [22][23] for recent mathematical results
relevant to this issue.

Let us turn on By € H?(X10, R). We normalize B, so that it is defined mod H? (X1, Z)
under global tensorfield gauge transformation. By Morita equivalence, the RR fields are
still classified topologically by 2 € K°(X10). The standard coupling to the D-branes implies
that the cohomology class of the RR field is

[}

2(:) = P2 ch(w)\/z (3.18)

Let us define

T

~~
~—

= e'Bzch(:E)\/Z (3.19)

o

Y

The bilinear form on I'xx = K®(X10)/K°(X10)t0rs is still given by the index:

w(@) = gz [, CE@NE) = IwoD) (3.20)
20




while the metric on I'x is modified to be
. 1 / ~ s
gz, y) = —= G(x)N*G(y 3.21
=9) = Gyt [, CENEW) (3.21)

and the Z, valued function Q(z) is unchanged. If we continue to use the standard polar-
ization then 6k € I'1/2T"; is unchanged as well.
The net effect to modify (3.12) is that the period matrix 7x should be substituted for
% = (G — G).
Ok (Bz) =i Z ei"';;(“”"'%e"’)ﬂ(m) (3.22)
z€l

Note, that the constant phase e** in front of the sum remains the same as in (3.12)
The imaginary part of the 10D Type ITA supergravity action now becomes I'm(S1op) =

—27rff>, where
o 17, . 1, 1, 1 a5 o]

® is defined in (3.16),(3.17) and Gap(z + 36k), p=0,1,2 are given in (3.15).

From (3.23) we find that corrections to ® depending on B, coincide with the imaginary
part of the standard supergravity action (see, for example {12].)

Note, that G defined in (3.19) is a gauge invariant field if the global tensorfield gauge

transformation

Bg — Bg +f2, fo € Hz(Xm, Z) (3.24)

also acts on K°(X1o) as:
T — L(—fz) Rz, =x€ KO(Xlo) (3.25)

where the line bundle L(—f2) has ¢1 (L(—f2)) = —fa.
Thus, according to (3.25) a tensorfield gauge transformation acts as an automorphism
of 'k, preserving the symplectic form w. (3.25) acts on theta function (3.22) by multipli-

cation by a constant phase:

Ok (Ba+ f2) =€ Sy TsA-200 g (82) (3.26)

4. Action of T-duality in K-theory

In this section we consider X9 = T2 x X and describe the action of T-duality on the

K-theory variables.
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As we have mentioned, the standard polarization is distinguished for any large 10-
manifold in the following sense. When the metric of X1 is scaled up g5 — P55
the action [ X1o V/§|G2p|? of the Type IIA RR 2p-form scales as t197%P. This allows the
successive approximation of keeping only G4 whose periods have the smallest action, then
including G5 and finally keeping all G4, G2, Go.

In the case of X3p = T2 x X with the metric (1.1), the standard polarization is
no longer distinguished. Various equally good choices are related by the action of the
T-duality group Dr on T = K°(T? x X)/KD,..(T? x X).

We argue below that D7 can be considered as a subgroup of Sp(2N,Z), where N
denotes the complex dimension of the K-theory torus T = K°(T? x X) ®z R/Tg and
Sp(2N, Z) stands for the group of symplectic transformations of the lattice I'x.

4.1. Background RR fluzes in terms of integral classes on X.

To describe the action of Dr on K-theory variables, we will write RR fields in terms
of integral classes on X. Let us start from the standard polarization '? and write a general

element of T as
z=mngl + (L(nleo + e+ Ymdo™) — 1) + z(eoe’ + a + hpdo™) + A (4.1)

where eg = do®Ado®, sothat [, eo = 1. L(é) is aline bundle with c1(L) = é € H?(X10; Z),
1 is a trivial line bundle, and for any 4 € H*(X10; Z), (&) is a K-theory lift (if it exists).

In (4.1) A puts z into the Lagrangian lattice I'{*¢ and we also introduce the notations:
a € HY(X;Z), e € H(X;Z), hm€ H(X,Z), vm€ H(X;Z) m=28,9 (42)
The RR fields entering (3.13),(3.14) are given by

1 1
ﬁGo(w + 591{) = ny,

1 1
%G’g(w + 50}{) =nieo+ €+ ymda™, (4.3)
1 1 _ 1, " m 1
27TG4(x+20K)—a+ 5¢ + ege’ + fdo 2(1+no/12))\
where
e =me+e -2, fm=hm+am+erm (4.4)

Note that (3.13) is in fact only a function of these variables, by the Lagrangian property.
From the 10D constraint Sq3d = Sq¢3ao, valid in the case [I?I3] = 0, we find the
constraints on the integral cohomology classes: S¢°f,n = Sq®am, m =8,9. We will show

that actually S¢3f,, =0, m = 8,9 ( see comment below 5.8).

12 pstd and I'st? are defined on page 19.
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4.2. The embedding Dr C Sp(2N,Z)

From the transformation rules of the RR fields under the T-duality group [24] we find
that f, and -y, transform in the (2/,1) of Dr and we can form a representation (1, 2) out

of ng,n1 and e, €’ in the following way:

e (z). == ()

We would like to reformulate the transformation rules for RR fields in terms of the
action on I'gc. 13 The action of SL(2, Z), on I'x is via standard pullback under topologically
nontrivial diffeomorphisms. The action of SL(2,Z), is more novel.

We will explain the action of the two generators S, T of SL(2, Z) , separately. To begin,
the action of T on I'k is a particular case of the global gauge transformation (3.24),(3.25)
with f2 = ep and for this reason T' € Sp(2N, Z). The action of T preserves the standard

polarization since it maps I'§*¢ — I'§t:
G2p (y® L(—e0)) =0, VyeTl§ p=0,1,2 (4.6)

The action of the generator & on I'x is more interesting. By the Kunneth theorem we can

decompose
KX xTH=K'X)® K(T?) @ K'(X) ® K*(T?) (4.7)

Both K%(T?) = Z&Z and K'(T?) = Z @ Z have natural symplectic bases on which S acts
as the standard symplectic operator ige. For K°(T?) we choose basis 1 and L(ep) —1, and
for K1(T?) we denote the basis as (™, m = 8,9. We now have a Lagrangian decomposition
of T =T1&Ty:

M=K'X)01leoK'(X)®¢®, T:=K’(X)®(L(ee) -1 K(X)®¢® (4.8)

on which the T-duality generator S acts simply. However, the decomposition (4.8) is not
compatible with the standard polarization, and hence the action of S in the standard
polarization appears complicated. We now give an explicit description of the action of S
in the standard polarization.

Let us write a generic element y € ['§*? as

y=2(@)® (Leo) ~1) + 2+ + 20 (Lleo) —1), GEH(X,Z)  (49)

13 Some discussion of T-duality in the K-theoretic context can be found in [25].
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In (4.9) 21, 22, 23 are such that

G . om G G

%(zl) = jmdo™, —ﬂ_(zz) =k, —7[_(23) =k (4.10)
where jn, € H5(X,R) ® H(X,R), k, kK € H%(X,R) & H%(X,R) According to the
transformation rules of RR fields [24] S acts on y as

Siy—y, ¥ =3(@)+n+2-20(Le)-1) (4.11)

From (4.11) we find that the image I'y := S(I's*®) differs from ['gd. 14

Since we have an embedding Dz C Sp(2N, Z), we can deduce the existence of well-
defined transformation laws under Dr of the function ©(F, p), related by (1.20) to the
K-theory theta function @x. This follows from the fact that O is an holomorphic section
of the the line bundle £ over the K-theory torus with ¢;(£) = w. Since £ is not affected by
symplectic transformations, and has a one-dimensional space of holomorphic sections, it
follows that under T-duality transformatons ©  can at most be multiplied by a constant.
Nevertheless, this leaves open the possibility of a T-duality anomaly, as indeed takes place.

To conclude this section we show how the multiplier system of (1.22)(1.23) is related
to the standard 8" roots of unity appearing in theta function transformation laws. Let us
recall the general transformation rule under Sp(2N,Z) for the theta function 8[m](7) of
a principally polarized lattice A = A; + Ag of rank 2N. Here m = ::,,, € R?N are the

T

characterstics and the period matrix 7 € My(C), 7+ = is a quadratic form on A;.

It was found in [26] that under symplectic transformations

AT+ B
the general 8[m](7) transforms as
Bo - m] (o - 7) = k(0)eZ™ ™) det(C'r + D)/29[m](7) (4.13)

where

L

14 Tn following [24] we have actually combined the transformation S with the transformation S

from SL(2,Z).. This is a more convenient basis for checking the invariance of the theory.
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1 ’ ’ "
o(m, o) = -3 (m TDBTm' —2m TBCTm” + m TCATm”) +

+% (m'TD - m"7C) (47B),

where (A)q denotes a vector constructed out of diagonal elements of matrix A.
The factor k(o) in (4.13) has quite nontrivial properties [26]. In particular x2(c) is a
character of I'(1,2) C Sp(2N, Z), where

oce€I(1,2) iff (A"B),e€2Z, (CTD),ec2Z (4.14)

One can easily check that SL(2, Z), C I'(1,2) by writing out explicit representations
o(S) and o(T) in Sp(2N,Z) . We give o(S) and o(T) in Appendix(A).

Using the explicit expressions for ¢(5) and o(T) as well as the definition of 7x
(3.13),(3.14) we find that in (4.13)

det(C(S)x + D(S))/2 = ¥4 (—ip)3% (ip)3% | p(m,c(S)) =0 (4.15)

det(C(T)tx + D(T)V?2 =1, ¢(m,o(T)) =0 (4.16)

Now comparing (4.13) and the explicit formulae (5.31) for the transformation laws of

O(F, p) derived in the next section we find the relation between k(o) and the multiplier

system w(S), u(T)
K(S)e T = u(S),  K(T) = w(T) (4.17)

5. ©(F,p) as a modular form

In this section we derive an explicit expression for ©(F, p) using its relation (1.20) to
the K-theory theta function © x and we check that ©(F, p) transforms under the T-duality

group Dr as a modular form.

5.1. Zero NSNS fields

We first assume that all NSNS background fields are zero. In this case ©(F, p), defined

in (1.20) is given by an expression of the form

OF, p)= 3 emdan)g i Imelaiaw (5.1)
a€HA(X,Z)
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where the imaginary part of the 8D effective action 27 ®(a, F) is derived as follows. We
substitute
G=a+ee + hpdo™, €é=e+nieg+ymdo™ (5.2)

into the definition (3.16) of e?27®(r04a),
We need to evaluate f(a + ege’ + hmdo™). We use the bilinear identity from [7]

flu+v)= f(uw)+ f(v) + /X uSq?v, VYu,v € H*(X10;Z) (5.3)

to find
fla+ege +hmdo™) = f(a + eoe’) + f(hmdo™). {5.4)

Let us consider f(hn,,do™) first. Again using the bilinear identity we obtain:
F(hmdo™) = £(hado®) + f(heda®) + / heSq(ho) (5.5)
X

From (5.3) it follows that f(hdo™),m = 8,9 are linear functions of h € H3(X,Z). More-
over, from the diffeomorphism invariance of the mod two index we see that f(hdo®) =
f(hdo® + £hdo®), for any integer £ and, using the bilinear identity once more we find that
f(hda™) = r(h), m = 8,9 where

r(h) = fX hSq*h, he HY(X,Z) (5.6)

is a spin-cobordism invariant Zgp-valued function. In fact, r(h) is a nontrivial invariant
since for X = SU(3) and h = z3 the generator of H*(SU(3),Z) we have r(h) = 1. In
conclusion:

f(hmdo™) = /X [thqzhs + hgSq*hg + hsqu(hg)] (5.7)

Now we consider f(a + ege’):

fleoe' +0) = f(a) + fleac) + [ ene'SePa
) Xio . (5.8)
= /X(a)2 - 5(8,)2)\ +(¢')%a = /X a + (€)2(a - 5)\)

This uses the bilinear identity (5.3), the reduction of the mod two index along T2, and the
formula eq.(8.40) for f(u Uv) from [7].

We can now evaluate dg defined in (3.11). The kernel of Sq® is given by those elements
a+ ege’ 4 hydo™ such that hg Uhg = hoUhg = 0. If we add the condition that the element
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is a torsion class then f(a + epe’) = 0 and we need only evaluate (5.7). Now, since
S¢3(hm) = hm Uhy = 0 it follows that Sq?(h.,,) has an integral lift. Using again the
condition that h,, is torsion we find that the right hand side of (5.7) is zero. It follows
that g9 = 0.

We can now evaluate the phase. Using (4.4) we reexpress (5.5) as
f(hmdo™) = /X(fsqu(fg) + fs54*(fs) + foSa*(fo) + €*(vofs — 18 fo) + 63’)‘8“/9) (5.9)
Taking into account (5.9) and (5.8) we find the total phase ®(a, F) in (5.1) is given by:
®(a, F) =AD+ /X(a + o), (5.10)

where the characteristics are defined as:
1

1 1

5( ) + = (1—n0/12))\+—(e"+e) €™ Y Tn

2 (5.11)
2

=
B==(¢ )+ (1—n1/12)A+ (e”—e)e’”"fymvn

and we recall that e” = nje + e’ — %Em"'ymfyn. Note that for convenience we have made a
shift of the summation variable in (5.1) @ — a + A+ % (e + €”) €™y n.
The prefactor A is given by

exp[2miA®| = exp [m/x (fsSqZ(fg) + fsS3(fs) + fgSq2(f9))J (5.12)

. I P IRY: i ” 13 2 i 4% 1 2
ewp[Zm/X( (e"e)” — 21¢ ex+ 6e e e A+48no)\(e ) +4(1+n0/12))\ +

r 2
1 1 A A
+§(no —ny)Ag — 5non1 [As + (24) ] 21€ T Y fnt

-1-% [no(e —e)A — 122" — 4e) — 433] em"fym'yn)]

In deriving A® we have used

B ()



Also, in bringing A® to the form (5.12) we have used the congruences

1 1 1
/X . [( "Be+ee 3] i (")’ e? — ﬁ)\e"e €Z (5.13)

/ ("e)? € 22, / ¢'e) € 22. (5.14)
X X
which follow from the index theorem on X :

/ Loa_ -——A €Z, Vee H*X,Z). (5.15)

5.2. Including flat NSNS potentials
Let us now take into account globally defined NSNS fields:
» 1 m,n m 1 m m
By = 5 Boemnw™w" + Baymw™ + Bg) + A Baym: Al

and recall that Af}) and B(y),, are combined into the (2,2) of Dr as in (2.8).
We define a gauge invariant fieldstrength G = eB2G asin (3.18) where G are given in
(4.3) and we expand G (z + 10k) as

GO 1 2

G’z 1
271_ (w —+ 29}{) (g(o) + g(O)BO) emnw w™ + g(l)mw -+ g(2) (516)

G4 1 1
o (w + 291{) = g() + 9@)mw™ + (Bog(z) +g(2)) 5 €mnw"wW"

The first effect of including flat NSNS fields is to modify the fields which enter Sg(F). These
fields 900y> 9(1)m> 9(2)» 9(3)m are NOW linear combinations of the integral classes vy, fm, €%, n®
defined in {4.2),(4.4) with coefficients constructed from ATy and B(yy:

o n a o ma 1 a
9(0) = (n;) y Qym = ’Ym+€(1)ma 9(2) =e +A(1) (’)’m + §€(1)m) +B(2)g(0) (5.17)
1 1 pa nB
g@3ym = f'm + B(Z)g(l)m + )‘(3)m + Ek(3)m + EemngaﬁA(l)g(l)pA(l) (518)
where we denote

$(l)m = Gmngaﬂga))A?]g, )\(3)m = Emnga,@eaA?f)‘, k(3)'m. = EmngaﬂAI(JS’)’p ?1) (519)
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The other effect of including flat NSNS fields is to shift the characteristics and the
prefactor of ©(F, p). Now O(F, p) has the form:

O(F,p) = ™A% N~ exp [ / (—W Im(p)gyA * g(ay + imRe(p)g(a)\g(a) + 27 i9(4)ﬁ~)]
o€ H4(X,Z) ( J)
5.20

where [gyy] =a+&, a€H 4(X,Z), and the shifted characteristics &, 3 are

i=at¢’, f=pf+¢' (5-21)

where a, # are defined in terms of integral classes ng, n1,ym, e® in (5.11), while ¢® trans-
form in the (1,2) of Dr. Explicitly,

1 1 o Ame 1
p* = ATIS (fm + S\ @m + gk(s)m) + B [e +AQ) (% + §f<1)m)] o (622)

1 (24 (o]
+5B@B2)9(0) ~ {90

where &(1)m, A(3)m k(3)m are given in (5.19) and we also denote

Ca) = 645ﬁ1ﬁ28ﬁ3ﬁ4A )l6 EmnzA?f)ﬁsAﬁ;ﬂg€m1M2AZ’;§ﬁ4 (5.23)
The shifted prefactor Ad in (5.20) is given by
~ 1
AD =AD— fX |:,3/\<p2 + §¢1A<p2] +(AD),, (5.24)

where A® is defined in terms of integral classes ng,n1vm,e%, fm in (5.12) and (A®), .
is the part of the phase which is manifestly invariant under the T-duality group Dr.

Explicitly,

1 N 1 1, 1
(AD),,., = /X B?z)[l_zgaﬁg(meﬂ— %wn——e E(l)mvn——e f(l)mg(l)n] (5.25)

1 .. | 3 1
/X B}, [——6 §(1ymfn — 3¢ A@)ymTn — gf "A@)ymE(1)n — —6 k(3)m£(1)’n-'

/ B2 [——E " fnfn — -2-6 "A@ymfn — 1€ A@ymA3)n — i A@)ymk@)nt+

1

m a, B mmn m mn

+—12 §yma(s) + §C(4)5aﬂ6 9(0) T ()€ ’Ym%] + /x [—12 A@)yma(s) T S(a)€ ’men]
where gty = Eag AT f AT
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5.3. Derivation of T-duality transformations.

Let us study transformations of ©(F, p) defined in (5.20) under Dr. First, we note
that ©(F, p) is invariant under SL(2, Z),. Next, we consider the action of the generator
S. For any function h(F) of fluxes F, we denote

S[h(]—')] = h(S - F)
and
Ss[h] == S[h] — h

where S-F denotes the linear action on fluxes. To check the transformation under .S we need
to do a Poisson resummation on the self-dual lattice H*(X, Z). The basic transformation

law is:

0[2] (0] — 1/7) = (—ir) /20 g [ ‘0"5} olr) (5.26)

and its generalization to self-dual lattices (4.13).
After the Poisson resummation and a shift of summation variable a — a + €2 + \ we

find that ©(F, p) transforms under S as

o(S - F,~1/p) = ez”i{fx s{a)s(p]+as[23] } (—ip) 4% (ip) 5 ©(F, p) (5.27)

Now using the definitions of &, 3 (5.21),(5.22) and A® (5.24) as well as the transformation

rules for F, we find after some tedious algebra

~ _ A2
55 [A8] = —/ S[a)S[a] +/ = +2 (5.28)
X x 4
We conclude that the generator S acts as
(S - F,-1/p) = & Jx 12 (i) 1 (i) ¥ ©(F, p) (5.29)

To check how ©(F, p) transforms under the generator T' we use its relation (1.20) to
the K-theory theta function Ok as well as the transformation of @ under global gauge
transformation By — By + fo (3.26) where the action of the generator T' corresponds to
f2 = eg. In this way we find from (3.26) that

o(T - F,p+1) = " Jx/e(F, p) (5.30)
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5.4. Summary of T-duality transformation laws

Below we summarize the transformation laws of the function ©(F, p) under the gen-
erators of T-duality group Dr.
©(F, p) is invariant under SL(2, Z),:

. (5.31)
o(5 - F,p) = O(F,p)

O(F, p) transforms as a modular form with a nontrivial “multiplier system” under
SL(2,Z),. That is, using the standard generators T,.S of SL(2,Z), we have:

O(T - F,p+1) = u(T)6(F, p)

Lt Lpe (5.32)
O(S - F,~1/p) = u(S)(—ip) 2% (ip) 3°: ©(F, p)

where T-F, S-F denotes the linear action of Dr on the fluxes. Here bJ, b; is the dimension
of the space of self-dual and anti-self-dual harmonic forms on X and the multiplier system

WT) = el [ ¥

u(s) = exoly [ 3]

where p1 = p1(TX). These define the “T-duality anomaly of RR fields.”

(5.33)

6. The bosonic determinants

In this section we compute bosonic quantum determinants around the background

specified in section 2.
Let us factorize bosonic quantum determinants as: Deig = DgrrDys, where
Drr(Dns) denotes the contribution from RR (NSNS) fields.

6.1. Quantum determinants Dpr for RR fields
Quantum determinants Drg for RR fields have the form
4
Drr = H ZRR,p (6.1)
p=1
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where Zrp,p is the quantum determinant for g(,. First, we present the contribution Zrg 4

arising from the fluctuation dC(3) of g4). From (2.11) we find the kinetic term for C(3)
83,0 = wIm(p) (dC’(?,), dC(g)) (6.2)

where (, ) denotes the standard inner product on the space of p-forms on X, constructed
with the background metric gasn.
We use the standard procedure [27,28] for path-integration over p-forms, which can

be summarized as follows. Starting from the classical action for the p-form S, =

a(dCy), dC(y)) one constructs the quantum action as?®:
- s k k
Sp,qu = O‘(C(pﬁ Apc(p)) + Z amtl Z (u(p—m)l Ap—mu(p—m)) (6.3)
m=1 k=1

where ué‘p_m), k=1,...m+1m = 1,...p are ghosts of alternating statistics. For
example, ué“p_l), k = 1,2 are fermions, ufp_z), k =1,2,3 are bosons, etc. In (6.3) A,
is the Laplacian acting on p-forms and constructed with gasnt6.

To compute Zrg 4 we apply (6.3) for p=3, o = nIm(p) and use the measure [DCp]

normalized as [[DCple™(C»Cs) =1

)—%(BQ—B§+B{—B[',) [det'Ag]—% [det’Az] [det’Al]—3/2 [det’Ao]z

7 v LW 7 (6.4)

Zpr4 = (&

where det’A,, is the determinant of nonzero modes. of the Laplacian acting on p-forms.
B, = By — by, where B, denotes the (infinite ) number of eigen-p-forms and b, and V;, are
the dimension and the determinant of the metric of the harmonic torus 7%, . = HF /HE.
The appearance of V,, in (6.4) is due to the appropriate treatment of zeromodes and is
explained in Appendix(E).

The determinants det’ A, together with the infinite powers depending on By, here and
below, require regularization and renormalization, of course. These can be handled using,

for example, the techniques of [29]. In particular the expression

g(Imp) = (Imp)~3(Bo—Fa+ Bi— o) (6.5)

15 Factors ot should be understood as a mnemonic rule to keep track of the dependence on
a which follows from the analysis of various cancellations between ghosts and gauge-fixing fields
16 A=dd'+d'd
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—7l A2 .
almp [, (u *P2) \where the numbers u, v depend on

is a local counterterm of the form e
the regularization. From now on we will assume that mImp [y (ul? +vp;) is included into

the 1-loop action:
S1—toop = wImp/ (uA? + vpy) + ﬂRep‘/ (p2 — )\2) (6.6)
X 24 X

In section 8 we will show that T-duality invariance determines u and v uniquely.

Next, we consider the contributions to Drg from dCa)m, dCa), dé(o)m which are
the fluctuations for g(sym, g(“z), g(1)m respectively. Let us also make field redefinition
of the quantum fields C(g)m,m = 8,9 to fields C(g),m = 8,9 which have well defined
transformation properties under the full U-duality group!”
1

\/—;_2-656'(0)9 (67)

C'(0)3 = ﬁefé’(o)s, C'(0)9 =

From (2.10) we find classical action quadratic in the above fluctuations:

So.a = 189" (Cloym d'dCion) 1t = TtGap (CGiy, d'dCT, )

SZ,cl = 7Tt2gmn (0(2)m1 deC(2)n)

where £ = te~4/3 is U-duality invariant, and ¢’®® = %gss’ 9% = 19%, ¢'®° = ¢%.
Now, using (6.3) with a = 7wt8¢g"™", 7t*Gag, 7t?g™™ and p = 0,1,2 correspondingly we
find: A
=B rdet -1
_ 76 0 0
ZRR1 = (ﬂt ) [ 7 ] (6.8)
By—Bi rdet' Ay1-11det' Ag2
_ 4\ P05 1 0
o= () ] [ o
—B;+B1—Bg rdet’ Ag1-1rdet’ A1 12 [det’ Ag1—3
— 2 2T o 2] 1] [ 0
Zrrs = (mt?) [ o [ 7 = ] (6.10)
In computing (6.8)-(6.10) we also used that det,, ,g™" = 1, detypn,g™" = 1 and
deta,ﬁgaﬂ =1.
Collecting together (6.4) and (6.8)-(6.10) we find that Dgrp has the form:
det’Aa'l_% |'det’A1 "'%
Drr —TRR(taP)[ Vi | W ] (6.11)

17 For some discussion of U-duality see sec.10
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where

7 l(bs_b2+b1_b0) ’ 1l ’ ’ 7 ’ ?
rrr(t, p) = (e5)250 (Imp) ’ ¢72B2~2B1 4By ()~ 3(Bo+ B+ Byt By)

and we recall that g(Imp) was included into S1_jo0p.
We have computed the quantum determinants Dgp treating RR fluctuations as differ-
ential forms. It would be more natural if these determinants had a K-theoretic formulation.

This might be an interesting application to physics of differential K-theory.

6.2. Quantum determinants for NSNS fields

Let us first consider fluctuations daz’l“)’ and db(g) of the NSNS field F'Eg;' and Hsy.

From (2.7) we find the quadratic action for fluctuations:

1 — ma 7,
Scl = Z;e Ze{t4gmngaﬂ (a(l) ,dea(f;) + tz (b(2)!deb(2))} (6.12)

Now, again using (6.3) we find

O ) B - I 6.19)
and 2 e\ 2(B1=B2=Bo) rdet’' Ap 1~ rdet/ Ay rdet’ Ao —3/2
Znsa = (%) [ 7 7% 7 I o ] (6.14)

Let us now consider fluctuations of scalars: 8¢, 67, dp. From (2.7) we write the action

quadratic in these fluctuations:

1

Soear = B / {saMagaMag b Mg + M 5p3M<5ﬁ} (6.15)
X

(m2)? (p2)?

where 8 = Le~%tf. Now using the scalar measures defined as

/ (Dop|[Dople Ix EoF =1, / [Dsr|[Ds7le” Jx G =1 (6.16)
/ (Dogle™® Jx Mot _ g (6.17)

we find the quantum determinants for the NSNS scalars Zn 5,0

det' Ao~

Znso = BP0 [ 7

(6.18)
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Finally, we consider the fluctuation hasy of the metric t2garn. Recall that we work in
the limit e~¢ — oo so that in computing the quantum determinant for the metric we drop
couplings to RR background fluxes.

From (2.7) we find the quadratic action:

Smetr = B / {(DNhMp)PMPQS (DVhgs) + RMEP Ry pohN @ (6.19)
X

2
= (DMhMN - %DNh) }

where h = g™ hyn and

MP _QS

1 1
PMPQS _ Z MQPS _ - MP,

27 1
In (6.19) Rmnpg is the Riemann tensor of the Ricci-flat!® background metric gasn-
The covariant derivative Dps is performed with the background metric, and indices are
raised and lowered with this metric.
Following standard procedure [30,31] we first insert the gauge fixing condition into
the path-integral § (ky — (DMhpyn — %DNh)) Then, we insert the unit

1= 4/det(f14) / Drggyelrmsm) (6.20)

and integrate over k(1) in the path-integral. This procedure brings the kinetic term for the

fluctuation Apsny to the form
8 /X harpPMPNRC@S hos K9S = 596D, DR 4 2R, 9,5 (621)
Gauge fixing also introduces fermionic ghosts k1), /(1) with the action

Sen = B2 (1), A1kyy) (6.22)

_ fx haunPMNPQy o

Using the measure [[Dhynle = 1 we obtain the result for the quantum

determinant Z,,etr of the metric:
_% det’Al
1

Zetr = (ﬂ)—%(N’IC_B;) [det,lc] (6'23)

18 If the background metric is not Ricci-flat there are terms involving the Ricci-tensor in (6.19)

as well as in (6.22) below.
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where det’K is a regularized determinant of nonzero modes of the operator X defined in
(6.21) and Ny = Nx — ng, where N stands for the dimension (infinite ) of the space of
the second rank symmetric tensors and ng is the number of zeromodes of the operator K.
We will explain how we regularize det’'KC shortly.

Combining all NSNS determinants together we find:

1 d t’A -1
Dns = ’I'Ns(t, f) [det'lC] 2[ BV 2] : (624)
2
where
ras(t,€) = (47T)%N,’C+B{,+Bi+§3; (eg)N;c+Bz+2Bl+ZBo 4—3Nk—B;—4B|—8Bj (6.25)

Finally, from (6.11) and (6.24) we find the full expression for bosonic determinants

) 1 (ba—ba+b1—bo)

Detp = Q(t,gmnN) (Imp (6.26)

where @ is a function only of the T-duality invariant variables gasny, t and £. Explicitly,

det’Ag,]—% [det’Az]—% [det'Al]_% (6.27)

-1
e
Q( IMN ) Ttot | Q€ 7 7 i
where we regularized det’K in a way that eliminates dependence on ifinite numbers B, and
Nx so that

Teor = (£)3(nictbat2bitabo) (6.28)

where we recall £ = te=¢/3.
Now, let us check the transformation laws of Det g under Dr. From (6.26) it is obvious

that Detp is manifestly invariant under all generators of Dt except generator S.

Using, 0
Im(p
Im(—1/p) = ——= 6.29
(=1/p) o7 (6.29)
we find that under S, Detp transforms as
1 (bg— _
Detg(—1/p) = sgDetp(p), sB= (pp) 3 (bo—b1+ba=bs) (6.30)

7. Inclusion of the fermion determinants

In this section we include the effects of the fermionic path integral. We recall the
fermion content in the 10-dimensional and 8-dimensional supergravity theories and de-
rive their actions. In the presence of nontrivial fluxes these fermionic path integrals are

nonvanishing, even for the supersymmetric spin structure on 7'2.
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7.1. Fermions in 8D theory and their T-duality transformations.

Let us begin by listing the fermionic content in the 8-dimensional supergravity theory
(this content will be derived from the 10-dimensional theory below.)

The fermions in the 8D theory include two gravitinos 4, 74, A =0,...,7 and
spinorsE, A, I, p, I, . Therelation of these fields to the 10D fields is explained
in (7.13),(7.14) below. There are also bosonic spinor ghosts by,¢;1, To and by, co, T; which
accompany ¥4 and 4 respectively.

The fermions and ghosts transform under T-duality generators as follows. The gen-
erators T, T, S act trivially on fermions and ghosts while the under the generator S they

transform as

,‘/)A — eiaf¢A’ ,,,’A N nA, A= e—iaf‘A, )Y 3 (71)
[ — e2iaf‘l’ T — e—2ial_"l-, f— eiaf‘y” i — eiaf‘ﬁl (72)

and ghosts transform as
T]_ — Tl, Tz s e_iaf‘Tz (73)
{er, b1} — €T {e1, b1} {e2,b2} — {c2, b2} (7.4)

where « is defined by
1 ,

a=v+ o, ip = e"|p| (7.5)

and T is the 8D chirality matrix.

The above transformation rules for space-time fermions follow from the transforma-
tion rules for the appropriate vertex operators on the world-sheet (as discussed for example
in [11]). The only generator of Dz acting non-trivially on fermions is 5. The components
V% s,a = 8,9 of the right-moving NS vertex are rotated by 2a, while the components V§ ¢
are invariant. This follows since S does not act on the left-moving components of vertex
operators. In this way we find the transformation rules for n4,bs, c2, %, 11,1, [, which orig-
inate from R® NS sector. To account for the transformation rules for 44, b1, ¢1, A, To, i, fi
we recall that these fields originate from NS ® R sector and that the right-moving R vertex
Vg transforms under S as

S : Vg — el yy. (7.6)

19 These fields are MW in Lorentzian signature. We supress 16 component spinor indices below
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7.2. 10D fermion action

We start from the part of the 10D IIA supergravity action quadratic in fermions[19].

We work in the string frame. 2°
26|13 aanBp 2 liemp 2 L e

S = / V=g10e”%? l:‘Q"‘)bAFANBDN’l/)B-l-EAFNDNA——2(8N¢)AI\APN %]

L [ gme 4G 4 |70 pPACE  F11GF 4 B Rpbpacruy, | B fpacpuj
ti6 | V9w "Cae & pl "+ S ATPTACT g + ZADMCTTA
J

so |17 pAB; 5 zaas 213z
+ [ V=g10e7 G0 | gl g + oAl g — S5 AR+ (7.7)

AAAAA

1 _ ZE A A AARAA Aqq as s E AR BAA N
+4_8. \/%8 2¢H B [,lp F[EFABCI‘F"‘]FII’Q/JF + \/5 EFABCF11¢E:|

where A and ’IZ’A are the Majorana dilatino and gravitino and covariant derivatives act on

them as

AR

D]V"zA — 81\71/)‘4 + WNAB,&B ;

DNA = BNA + inBC,F

-+
e
€
2)
b
(o

v
&
>

There are also terms quartic in fermions in the action. It turns out that it is important
to take them into account to check the T-duality invariance of partition sum. We recall

the 4-fermionic terms in Appendix(C).

7.8. Reduction on T2.

To carry out the reduction of the fermionic action to 8D we choose the gauge for the

10D veilbein as .
i _ (B ARVier,
M 0 V%e“ ) (7.8)

(recall a = 8,9 and A =0, ...,7) and use the following basis of 10D 32 x 32 matrices f“‘i,

f‘A=02®FA A=0,...7, f‘8=0'1®116, f‘9=0'2®f‘, r=r°..r1"7 (7.9)

20 We explain the relation between our conventions and those of [19] in Appendix(B).
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Here I'4 are symmetric 8D Dirac matrices, which in Euclidean signature can be all chosen
to be real, and o123 are Pauli matrices. In this basis the 10D chirality 11 and charge

conjugation matrices C(19) have the form
f\ll =03 ® 11s, 0(10) =103 ® 145. (7.10)

The 8D fermions listed in section 7.1 are related to 10D fields 1/3"i and A in the following

way 21:
A A ~n
(ij) = 4 TPAD e, ( f) 3 i, (7.11)
(1) =t -2a (§)=tu-1d (.12)

7.4. 8D fermion action

Now we present the 8D action s® = Skin + Sfermi—fiuz quadratic in fermionic

quad
fluctuations 22 over the 8D background specified in section 2.2. The kinetic term is standard

Shim = / e‘zﬁﬂ{ %«ZAFAMBDWB + %ﬁAPAMBDMnB + gerpMz + %KI‘MDMA
X
(7.13)
+%Z_I‘MDMZ + %ﬂI‘MDMu + %iI‘MDMl'+ iﬁl“MDMﬁ}

The coupling of fluxes to fermion bilinears is:

JIop

T _ nop +n ngp +n
Stermi—fluz = —/ e 5{ts [LX(O) 0";X(o)l +tTguymA * X+ (7.14)
b

2 1 2 = 1
g g g g
] @P 90,y _I@P 190

vImp 2 VImp
+t4\/Impg(4)/\ * [X (a) + f((4)] }

A Xy | + Cgymh + X

21 A and T'29)® are mixed to give the 8D “dilatino”, the superpartner of e~ = e~ 2¢V.
22 In Minkowski signature ¥4 = ¥4I°. In Euclidean signature ¢4 and v are treated as

independent fields.
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where the harmonic fluxes g(,),p = 0,...,4 were defined in (5.16). These harmonic fields
couple to differential p-forms X(,,),X’(p) constructed out of fermi bilinears. We now give

explicit formulae for X,

Xy = —T4 T4BWES) - W T4Bw() 4 i/ZA P raw (D (7.15)
—iVAWS TAAD) 4 v2E P pAw ) — ivaE | IrAn)
+IOTAR ) — STITAO) 4+ S pOrAW ) - SWIrue)

7+ A 4 lﬁ(+)l~(+)

AT PN AT n+) _
2

1

2
(X@) ey = Tt TATINTEIWS) 1+ W TATyn TR+ (7.16)

VIR DTy n AW = iV2W Y TAT v A + Va5 Ty 4

+iVITTATaN S + ST ATy ® ) + ST T a4

S EOTATa W — WO Tan T4 + 45 ry At
130
2

where ’([J‘(A:b) = % (116 + f‘) 1 a,etc. and we use the combinations of 8D fields

+4K(+)FMNE(+) _ T — % ﬁ(+)pMNl'(+)

2 2
‘I’A=¢A+’i§FAA, WA='}7A—’L'§FAE

to make the expressions for X (o), X(2) have nicer coefficients.
The forms X(o),f((z) can be obtained from Xg), X(2y by exchange of 8D chiralities
(=) < (+)-

Under the T-duality generator S the above forms transform as

(X0 X} = e { X0 X} {ZXop X} = &*{ X X2} (7.17)

Ilmp (nop + n1)X(p), ﬁ(noﬁ + nl)X'(p) for p = 0,2 which

appear in the action (7.13) are invariant under S.
Also we have defined the 1-form

so that the combinations

m m[5() ) -
(XE),, = o [T5 THT, TPWE) - W riar, roe ) (7.18)
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~iVIRILTAWE 4 iaWITAD A — iv2E Ty T4 e )
+ivZETAT 20O - ;4 'rAD, W 4 2\11‘”1“ AL
—%ﬁ“)rArMWf;) + %Wf;)erAp,(-) 450 A
+R T, 30 - %ﬁ(ﬂFMl(_) + %l_(_)FM,u(J')] +e™ [(+) © (—)]
and the 3-form

(XE) ywp = €T [—q: U TAT N P BIWD - W,V TIAT T Bl ) (7.19)

+ivIR T pTAWSD 4 iV BW ST ATy p A — iR Ty A€ )

o — + -
/2B T4 Tanp B — I DAy ~ SBTyy pDAT)

+%ﬁ(_)F AFMNPW§4—) + %W;—)FMNPFAI-‘(_) — 45 FMNPA(+)

—(+) 1 1
— 48Ty pn ) + Eﬂ(-i-)I‘MNPl(_) L El_(_)T‘MNPM("'ﬂ! + el [(+) A (—)]

where we denote e’ = ef" F ieg’.

The forms X77) and X773 transform in the 2 of SL(2,Z),. Also from (7.18),(7.19) we
find that Xz’f) and X '(’g) are invariant under SL(2,Z), if we accompany the action of the
generator S by the U(1) rotation of e

el — etieem (7.20)

Since there are no local Lorentz anomalies, we can make this transformation.

123

The most important objects in (7.14) are the self-dual®’ form X4 and the anti-self-

dual form X'(4) which couple to the flux g). X(4) is defined by
(Xew) = — B TAT yypTEWED + WS Ty por BB (7.21)
VIR TN pTAWEH + VEW S TAT y y po A
—\/Eg(_)FMNpQFA‘I’fA+) + \/i_(+)PAFMNPQZ( ) — —l_(+)PAPMNleI’( )

1—- 1 _ —(
+§T(A )FMNPQFAI(+) - §ﬁ(+)FAFMNPQWE; )+ §Wfq )FMNPQPAH(+)

23 : 1 B1BaBgBaf
In our conventions I'a; 4,434, = — €A1 43434481 B3BsB, [+ 2774

41



=(-)

(e - i~ ) P 3
+4’i2( )FMNPQA(_) - 4iA( )FMNPQZ(_) — §l I‘MNPQ;J,(_) + %,u( )FMNPQZ(—)

and X(4) can be obtained from X4y by the exchange of 8D chiralities (4) < ().

Under the T-duality generator S these forms transform as
Xy — eiaX(4), X4 — e_iaX(4) (7.22)

We have also checked using Appendix(C) that the 4-fermion terms in the 8D action

can be written as

D Ll - & 7
S(s ) = Stll—fe'r'm + :ll—fe-rmv SL’l—fe-rm = m A € 2Et8 [X(4)/\ * X(4) + X(4)/\ * X(4)]

4— ferm
(7.23)

While S is manifestly invariant under T-duality, we will see that the non-invariant

4— ferm

term Sj_ is required for T-duality invariance of the total partition sum Z(F,p) of

(1.32).

ferm

7.5. T-duality invariance of the ghost interactions

The classical 8D action obtained from the reduction of 10D ITA supergravity on T2
is invariant under local supersymmetry (all 32 components survive the reduction ). To

construct the quantum action we have to impose a gauge fixing condition on the gravitino

Tz(SD) = (:l;j

there is a potential T-duality anomaly from the ghost sector. In fact no such anomaly will

and include ghosts. Since the susy transformation laws involve fluxes,

occur as we now demonstrate. There are two generic properties of supergravity theories:
1 .) In addition to a pair of Faddeev-Popov ghosts associated to the local susy gauge
transformation 1,3(3 D) — 'zﬁé byt 6g1ﬁ(‘% p) @ “third ghost,” the Nielsen-Kallosh ghost,
appears [32].
2 .) Terms quartic in Faddeev-Popov ghosts are required [33].
Let us recall first how the “third ghost” appears. Following the standard procedure
we fix the local susy gauge by inserting ¢ ( f-T A’(,Bé D)) into the path integral. Then we

also insert the unit?*

1= ! / dfle? Jx < b itV Dy (7.24)

Jae (gD

24 We use the measure f[df]ei fx 1.
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and integrate over [df]. (If D has zeromodes this expression is formally 0/0, but (7.27)
below still makes sense.)

As a result we first find that the gravitino kinetic term gets modified to
] _ - _
—5 / e Zfﬂ{wMAwB + nAMABnB} (7.25)
X
where the operator M 4p acts on sections of the bundle ?° Spin(X) ® T'X as

Mag = (SABi].—‘MDM —2i'4Dp (7.26)

where D4 = EX Dps. The determinant in (7.24) is expressed as the partition function for
the “third ghost” T with action

Si=—+ / e % TDT (7.27)
2 J/x
T is a bosonic 32 component spinor, which we decompose into 16 component spinors

o [Ty
- (1)

Now we come to the most interesting part of quantum action which involves Faddeev-

as

Popov ghosts 13, é.

Spe = 52 + 58 (7.28)

where S,Sf) (S,Si)) denotes the parts of the action quadratic (quartic) in FP ghosts. Let us
discuss the quadratic part first. According to the standard FP procedure we have

52 = / t7e™ bl 403 ) (7.29)
Xs
We decompose bosonic 32 component spinors b, & as
P c1 T b1
=(a) +=(n)
We can write the action as a sum of two pieces

50 = 52+ 52"

a5 Spin(X) and TX are spinor and tangent bundles on X
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Here Ség)o does not contain fermionic matter fields while ,5’153)2 is quadratic in fermions.

We now present S’ég)o and put Ség)z in Appendix(D).

= A 2 o[nop + Ny NP + Ny 5
(2)0 __ 7 —€hf _iPNA_ . —E) 2,8[T0P iygh 0P 1 $gh
5820 = /X tTet(-iD)e e { ot [—m Xy =~ ==t x| (30)

2 1 2 = 1
2P T 902, , xor _I2P I, xg)
\/Imp (2 A/ imp (2)

1 5 h
+§t g(3)m/\ * Xé) m}

1 7 gh m 1 6

where we define forms bilinear in FP ghosts as

1) (0 (o) () (=) 1 (mya(=
R L S
1) —(- -y -y —(= T N _
(szh))MN=§{bz( )FMNc§ ) e T by )45, )FMN6§ ) 425 Tyl )} (7.32)
m 1 o [ O —(m —(-) . _
(Xg; )M= 56+ [bz Tarc )fC1( TprbS =81 'TareST + 70 )] (7.33)

+zer [ o ()]
(X ™) yywp = %e’f [E(HFMNPCY) + T npbsH + 5 T pel?  (7.34)
+6(+)FMNPbg_)] + %er_" [(+) o ('“)]
The forms X (90’;, X (9,3 can be obtained from X foh)’ X ("2’3 by exchange of 8D chiralities (—) «
(+). Note, that b,é do not couple to the flux g(y).
Let us now present the part of the quantum 8D action which is quartic in ghosts (as

obtained by following the procedure of [33]):
@ _ —2e,8f 1 (TraBc,) (in 2 oL frran (Gr A)}
S = e { = (6842%) (bf apot) + 5 (b04e) (6ac (7.35)
The presence of this quartic action is due to the fact that gauge symmetry algebra is open

in supergravity: [fe,, 0] 1,7)2% D) contains a term proportional to the equation of motion of
A
Yep)-

The T-duality invariance of Séi), S,Ez)o and S is manifest and we have also checked
that Séi) % is T-duality invariant, so we conclude that the part of the 8D quantum action

which contains ghosts is T-duality invariant.
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7.6. Computation of the determinants

We can now compute the fermionic quantum determinants including ghosts. Let us
expand the fields A, X%, [, I, Wy f, b1, b2, 1,2, T1, T and 14, 774 in the full orthonormal basis
of the operators D =4iT¥Dy and M respectively, where the operator M was defined in
(7.26). Note that since we are assuming that background fluxes are harmonic, fermionic
non-zero rmodes do not couple to them. Moreover,we can rescale non-zero modes by a
factor of e§¢7/2 so that kinetic terms appear without any dependence on ¢ and ¢, but
four-fermionic terms are supressed as e*¢~% with respect to the kinetic terms. Since
kinetic terms are manifestly T-duality invariant the integration over nonzero modes wili
just give a factor Det depending only on the Ricci flat metric gpsy and the constants ¢

and £, all of which are T-duality invariant. Detp has the form
Dety = rp(¢,t)det’ M (7.36)
where det’ M is determinant of the operator M defined in (7.26) regularized in a way that
rr(€,t) = const (e %t") T (7.37)

where n a4 denotes the number of zero modes of M.

Note, that determinants of nonzero modes of the fermions ¥, A, [, u, L, i and bosons
1, T2,b1,b2,c1,ca cancel each other and do not contribute to Det’s.

The situation is quite different for zero-modes: the kinetic terms are zero but there is
nonzero coupling to harmonic fluxes, so that if we rescale fermion zeromodes by e~ %4t we
make both the fermion coupling to g(4) and the fermion quartic terms independent of £ and
t. We will also rescale ghost zeromodes by e~%¢¢2 and include the factor (e‘575‘1)nM which
comes from the rescaling of fermion and ghost zeromodes into the definition of Det’s, i.e.

we define new rp:
e (€,t) =rr(&,t) (e_5t4)nM = const(t) 3mM (ef)"M (7.38)

From (6.28) and (7.38) we find that the full quantum determinants depend on t and

¢ in the following way
(5_3)11,/\4 —nig—ba—2b1—4bp (739)
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where we recall that ¢ = te¢/3 is the U-duality invariant combination.?® Note that the
dependence on % in (7.39) comes entirely from the volume of the space of zero modes.
The volume of bosonic zero modes is blowing up in the limit ¢ — oo, but the volume of
fermion zero modes is shrinking. Since (7.39) is an overall factor in the partition sum, it is
a question of a net balance between fermion and boson zero modes whether the partition

sum blows up or vanishes in the limit £ — oo.

7.7. Integration over the space of fermion zeromodes

We can split the action of the rescaled fermion and ghost zeromodes as
S(zm) — S(zm)-inv + S(zm)'ninv'

Here the part §(*™) is invariant under T-duality and includes all the ghost zeromode

interactions, the coupling of the fermion zeromodes to all RR fluxes except for g(4) and
S(zm)

the invariant part of the 4-fermion zeromode couplings, denoted S, Form-

S(zm)ninv transforms non-trivially under the generator S of T-duality and can be

recast in the following way:
Glzm)niny _ / {471'Impg(4)/\ * Y(q) + 2nImpY A * Y(4)} (7.40)
X

where we define the harmonic 4-form Y(4) as

Yo = [X (o) 4. X(’m)] . (7.41)

16 F (4 4)
This object transforms under S as
S - Y4y = —RepY(yy + ilmp * V4. (7.42)
We now expand the harmonic 4-forms in the basis w; of H%(X, Z)

9(a) = (n* + &)w;, Y = y'wi, B=Fw

where the chracteristics &, 8 are given in (5.21). Next, we define

8(F,p) = [ dufhe>5%0 [%] @) (7.43)

26 For any Ricci-flat spin 8-manifold the numbers naq and nx can be expressed in terms of

topological invariants.
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where the shifted characterstics are defined as a¢ = & + ¥, Ei =G+ 8-y, and
d,u%m) denotes the measure of the rescaled fermion and ghost zeromodes. Recall that
Q(p) = [HImp — iRep|I. In (7.43) h = e=S"™"™" is a T-duality invariant expression
which depends on 7, p, t, gasv as well as fermion and ghost zeromodes. The dependence on
7,p,t, gy comes entirely from the coupling of the rescaled zeromodes (of fermions and

ghosts) to the fluxes g(;),p = 0,1,2,3. Finally, we have also defined
—— _~ 1 —_
AD(F,p,9) = AdD — EQ’IS -g—gIp (7.44)

where A® was defined in (5.24).
O(F, p) is invariant under SL(2,Z), and transforms under SL(2,Z), as

8(S - F,~1/p) = spu(S)(~ip) ¥ (ip) ¥4 8(F, p) (7.45)

(T -F,p+1)=u(TO(F,p) (7.46)

We do Poisson ressumation to find (7.45) and the extra phase s is due to the transfor-

mation?” of duz™
op= (e"“)I(M) = )" M) (—ip)~ 11 (M) (137 (M) (7.47)

where I(M) is the index of the operator M defined in (7.26). As in the standard com-
putation of the chiral anomaly [34], only the zeromodes contribute to the transformation
of fermionic measure. Indeed, the contribution of the bosonic ghosts ¢1,b1, Ty to the

transformation of the measure cancels that of the contribution of the fermions p, fi, A, I, I.

8. T-duality invariance
8.1. Transformation laws for Zp+r(F,T,p)

Now we study the transformation laws for
Zp,r(F,7,p) = DetgDet'pe 58 FIQ(F, p) (8.1)

where ©(F,p) is defined in (7.43), while Detp and Det', are defined in (6.26) and
(7.36),(7.38) respectively. We also recall that Sp(F) is the real part of the classical action

evaluated on the background field configuration.

27 Here we use the fact that the 10D fermions are Majorana fermions in Minkowski signature.
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First, we note that Zg r(F, 7, p) is invariant under SL(2, Z).. Second, we learn how
Zp4+r(F,T,p) transforms under SL(2, Z), by using the transformation rules of Detp (6.30)
and 8(F, p) (7.45),(7.46). We find:

Zp45(S - F,m,~1/p) = spspu(S)(~ip) 1% (p) 14 Zp,p(F,, p) (8.2)
ZB+F(T -F,1,p+ 1) = I‘L(T)ZB‘FF(-F: 7, P) (83)

where sp is taken from the transformation of Dpg.

Now, using the definition of x and ¢
1 1
E(bo_bl +by — b3 +bz:1t)=Z(X:tU): 0’=bi—b4_ (8.4)
as well as the index theorem:
I(M) + / A= / 2484
b's X
we obtain the final result for the transformation under the generator S
Zp+r(S- Fyr,—1/p) = (=ip) P = b [ g 0y (85)

From (8.3) and (8.5) we find that there is a T-duality anomaly.
Let us note in passing that the transformations (8.3),(8.5) are consistent for any 8-

dimensional spin manifold. This can be seen by computing 2%
Zpsr((ST) - Fy1,p) = 3 xP P 7 (7 7 ) (8.6)
Zpyr(S*- F,7,0) = Zpyr(F,7,p)
and then noting that the index theorem for 8-dimensional spin manifolds implies

/X (7TA2 — py) € 1440Z. (8.7)

Incidentally, when X admits a nowhere-vanishing Majorana spinor of + chirality the

Euler characteristic is given by [35]:

1
x=2 / (p2 — 22) (8:8)
X
and the transformation rule (8.5) simplifies to:
Zp+p(S - Fim,—1/p) = (=ip) ¥ Zp1r(F, 7, p) (8.9)
Zpr(S - Fo1,-1/p) = (ip) ¥ Zp4r(F,7,p) (8.10)

for positive and negative chirality, respectively.

28 The branches for the 8 — th roots of unity are chosen in such a way that §2 = (=)FR, where

Fr is a space-time fermion number in right-moving sector of type IIA string
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8.2. Including quantum corrections

Now we recall that there is a 1-loop correction to the effective 8D action:

S1—toop = 7rImp/ (uA? 4 vps) + 3’,—rRep/ (p2 — 2?) (8.11)
X 24 X

where we recall that 7Imp [, (uA? + vpz) comes from the regularization of ¢(Imp) in(6.5)
and the numbers v and v depend on the regularization.
We now demonstrate that to construct a T-duality invariant partition function this

term should be replaced with

1 1 1 1 -
Swant = [+ 7 [ 2 =) ]tog ln(e)] + [5x = [ n =3 ]togln(-p)]  (312)
2 4 [x 2 4 Jx J
where 1(p) is Dedekind function. Taking the limit Imp — co one can uniquely determine
uw=—Z and v = o in (8.11).

7 has the following transformation laws:
n(=1/p) = (=ip)3n(p), n(p+1)=eTin(p) (8.13)
so that e~Sauent transforms as
e=Swwont (—1/p) = (—ip) DT8P (im0 (e o Suene () (8.1)
e Swuant (o4 1) = et fx(m_'\z)e_s"““"‘ (p) (8.15)

Finally, we find that the total partition function

Z(F,p) == e Savent Zp p(F, p) (8.16)

is invariant:
Z(T-F,p+1) =Z(F,p), (8.17)
Z(S-F,~1/p) = Z(F,,p). (8.18)

This is our main result.
As a consistency check consider( for simplicity) the case when X admits a nowehere-

vanishing spinor of positive chirality and take the limit Imp =V — oo

i 1 5.
Squant — (1—2-p + Z Z Eez"’"m”) X (8.19)

n>21m2>1

We recognize the multiple cover formula for world-sheet instantons on 7 from [18].
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9. Application: Hull’s proposal for interpreting the Romans mass in the frame-

work of M-theory

As a by-product of the above results we will make some comments on an interesting
open problem concerning the relation of M-theory to ITA string theory.

It is well known that IIA supergravity admits a massive deformation, leading to the
Romans theory. The proper interpretation of this massive deformation in 11-dimensional
terms is an intriguing open problem. In [9] C. Hull suggested an 11-dimensional interpre-
tation of certain backgrounds in the Romans theory. His interpretation involved T-duality
in an essential way, and in the light of the above discussion we will make some comments
on his proposal. ( For a quite different proposal for interpreting this massive deformation
see [36]. )

9.1. Review of the relation of M-theory to IIA supergravity

Naive Kaluza-Klein reduction says that for an appropriate transformation of fields

{gr—theory, CM—theory } — {9114, Hr14,114,C114} We have

SM—theory = S114 (9.1)

One of the main points of 7] was that, in the presence of topologically nontrivial
fluxes equation (9.1) is not true! Indeed, given our current understanding of these fields,
there is not even a 1-1 correspondence between classical M-theory field configurations and
classical ITA field configurations. Rather, certain sums of IIA-theoretic field configurations
were asserted to be equal to certain sums of M-theoretic field configurations. In this sense,
the equivalence of type IIA string theory to M-theory on a circle fibration is a quantum
equivalence.

To be more precise, in [7] it was shown that for product manifolds Y = X9 x S, the
sum over K-theory lifts z(a) of a class 4 € H*(X10;2Z) is proportional to the sum over
torsion shifts of the M-theory 4-form of Y. We have:

S et = eap (—[[Gr-meon@F) Y (-1 (09)

:E(ﬁ.) éEH?ara(XIU:Z)

N(=)Arf(9)+7(@0)
v N2 Nk

The above formula is the main technical result of [7]. We recall that [Gar—theory(@)] =

2m (c’i— %/\) and the equivalence class of a is defined to contain M-theory field configurations

with fixed kinetic energy

. 1 ay , N
”GM—theory(a)||2 = E /X GM—theory(a)/\*GM—theory(a);
10
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from which follows that these fields are characterized by &’ = aé+é&, ¢ée¢€ HE,  (X10,2).
Also, in (9.2) Nk and N is the order of K  (X10) and Hp,  (X10;Z) respectively,
N, stands for the number of elements in the quotient L” = L/L’, where L =
H: (X10;Z)/2HL,,(X10;Z) and L' = {c €L, S¢% = 0}. Finally, Arf(q) is the Arf
invariant of the quadratic form ¢(&) = f(&) + [, éU Sq?ao on L”. The identity (9.2)
extends to the case where Y is a nontrivial circle bundle over Xiq [7].

As we have mentioned, we interpret the fact that we must sum over field configurations
in (9.2) as a statement that IIA-theory on X;o and M-theory on ¥ = X719 x S? are really
only quantum-equivalent. This point might seem somewhat tenuous, relying, as it does,
on the fact that the torsion groups in cohomology and K-theory are generally different.
Nevertheless, as we will now show, a precise version of Hull’s proposal again requires
equating sums over ITA and M-theory field configurations. In this case, however, the sums
are over non-torsion cohomology classes, and in this sense the claim that [IA-theory and

M-theory are only quantum equivalent becomes somewhat more dramatic.

9.2. Review of Hull’s proposal

One version of Hull’s proposal states that massive IIA string theory on T2 x X is
equivalent to M-theory on a certain 3-manifold which is a nontrivial circle bundle over a
torus. The proposal is based on T-duality invariance, which allows one to transform away
Gg at the expense of introducing G2 along the torus, combined with the interpretation of
G, flux as the first Chern class of a nontrivial M-theory circle bundle [7]. We now describe
this in more detail.

Hull’s proposal is based on the result [12] that dimensional reduction of massive ITA
supergravity with mass m on a circle of radius R, (denoted S}), gives the same theory as

Scherk-Schwarz reduction of IIB supergravity on S] /R The IIB fields are twisted by

a(0) = ( : "{9) 93)

where the coordinate on S% /R isz= 2%9, 6 € [0,1] and the monodromy is

s = (5 ) €502 9.9

Schematically:
I1IA, IIB
= | 5—= (9.5)
S}zxXg (S%/RXXQ)Q(G)
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where Xj is an arbitrary 9-manifold. Note, in particular, that the twist acts on the IIB
axiodil 7 = Co + i~ %5 as

78(0) = 78(0) + mé (9.6)
which implies that the IIB RR field G; has a nonzero period.

Let us also recall the duality between IIB on a circle and M-theory on T2

j17: I M
Sk x S%/R xX T2 (ra, Am) ¥ S%/R x X

(9.7)

where the T2(7ps, Apr) on the M-theory side has complex structure 7as = 75(0) and area
Ay = F(R)8.

Now, invoking the adiabatic argument we have:

IIB B M o
SiaxShxX) ,~ BmRR)xX (98)

where B(m; R, R) is a 3-manifold with metric:

2
ds® = (%T) (d0)? + Ay [ (dz + (Reras + mB)aly)2 + Im7prdy? (9.9)

Imms

where z,y are periodicz ~z+1and y ~y+1. ?°

Combining (9.5) with (9.8) we get the basic statement of Hull’s proposal:

HA. M
SLxSL xX B(mR,R)xX

(9.10)

We can now see the connection between Hull’s proposal and T-duality. A duality trans-
formation exchanges Gy for a flux of G2 through the torus. Then we can interpret the

nontrivial flux G2 as the first chern class of a line bundle in the M-theory setting.

9.3. A modified proposal

In view of what we have discussed in the present paper, the equivalence of classical
actions - when proper account is taken of the various phases of the supergravity action -

cannot be true. This is reflected, for example, in the asymmetry of the phase (5.12) in

29 Tt is not entirely obvious that the invocation is justified, since for a large M-theory torus the

twist is carried out over a small radius on the IIB side.
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exchanging ng for ny. However, we follow the lead of (9.2) and therefore modifv Hull’s
proposal by identifying sums over certain geometries on the ITA and M-theory side. 3°

A modified proposal identifies Z(F, p,7) defined in (8.1),(8.16) with a sum over M-
theorv geometries as follows. Recall first that in the 8D theory there is a doublet of
zeroforms gz’(‘]), arising from Go and G2. Next, let us factor gy = £ (Z ) where p, g are

relatively prime integers and £ is an integer. Then we take a matrix N € SL(2,Z),

N = (_’rq _p'g) rp—sqg=1 (9.11)
such that
£
Ny = (0> (9.12)

This is the T-duality transformation that eliminates Romans flux.
Now, thanks to the invariance of Z(F,,p) under T-duality transformations (see

(8.17)(8.18) above) we find:

Z(F,p)=2 (N-J-', 52::) (9.13)

By the results of [7] the right hand side of (9.13), having Go = 0, does have an interpretation
as a sum over M-theory geometries. The M-theory geometry is indeed a circle bundle over
T2 x X defined by c; = feg + pe — ge” + ymdo™ (as in Hull’s proposal), but in addition
it is necessary to sum over Eg bundles on the 11-manifold B x X. While it is essential to
sum over g(4), all other fluxes F may be treated as classical - that is, they may be fixed
and it is not necessary to sum over them.

Both sides of (9.13) should be regarded as wavefunctions in the quantization of self-
dual fields. For this reason we propose that there is only an intrinsically quantum mechan-

ical equivalence between ITA theory and M-theory in the presence of Gy.

30 In making these statements we are including the K-theoretic phase as part of the “classical”
action. Since the phase is formally at 1-loop order it is possible that one could associate it with

a 1-loop effect in such a way that classical equivalence does hold.
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10. Comments on the U-duality invariant partition function

The present paper has been based on weakly coupled string theory. However, our
motivation was understanding the relationship between K-theory and U-duality. In gener-
alizing our considerations to the full U-duality group D = SL(3,Z)xSL(2, Z), of toroidally
compactified ITA theory it is necessary to go beyond the weak coupling expansion. Thus,
it is appropriate to start with the M-theory formulation. In the present section we make
a few remarks on the U-duality of the M-theory partition function and its relation to
the K-theory partition functions of type IIA strings. In particular, we will address the
following points:

a.) The invariance of the M-theory partition function under the nongeometrical
SL(2,Z), is not obvious and appears to require surprising properties of 7 invariants. In
section 10.2 we state this open problem in precise terms.

b.) We will sketch how one can recover “twisted K-theory theta functions,” at weak
coupling cusps when the H-flux is nonzero in section 10.3.

We believe that one can clarify the relation between K-theory and U-duality by study-
ing the behavior of the M-theory partition function at different cusps of the M-theory
moduli space. At a given cusp the summation over fluxes is supported on fluxes which can
be related to K-theory. (See, for example, (9.2).) A U-duality invariant formulation of
the theory must map the equations defining the support at one cusp to those at any other

cusp. This should define the U-duality invariant extension of the K-theory constraints.

10.1. The M-theory partition function

Let us consider the contribution to the M-theory partition function from a background
Y which is a T fibration over X.

ds?; = V- 3BgyndzMda? + V3 G 6™0° (10.1)

where ™ = dz™ +AE‘1‘) and z™ € [0, 1]. #2gpsyv is an 8D Einstein metric with detgasy = 1.
Gmn and V are the shape and the volume of the T3 fiber. We denote world indices on 73
by m = (m,11),m = 8,9 and M =0,...,7 as before.

Topologically, one can specify the 7% fibration over X by a triplet of line bundles
L™ which transform in the representation 3 of SL(3,Z) and have first Chern classes
ci(L™) = F () where F 5y = df™. Such a specification is valid up to possible monodromies.

These are characterized by a homomorphism 71 (X) — SL(3, Z).
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On a manifold Y of the type (10.1) we reduce the M-theory 4-form G ps—theory 88

G- eor m 1 m gn
ZMIors = Glay + Com™ + 5 (Flaymn + cmnic BoFl, ) 60 (10.2)

U“e also include the ﬁat pOtentia].
C(p) — —B()Emnkg 0 0 10.3

in the Kaluza-Klein reduction.3! (We will list the full set of flat potentials in this back-

ground below.)

From the Bianchi identity dGs—theory = 0 We have

which implies that fluxes G(4) and G(3)m, are in general not closed forms.32

Let us recall how the various fields transform under D = SL(3,Z) x SL(2,Z), [14].

o t gun are U-duality invariant.

e SL(2,Z), acts on p = By + iV € 'H by fractional linear transformations.

o SL(3,Z) acts on the scalars §m, parametrizing SL(3, R)/SO(3) via the mapping
class group of T°.

e F3f= if(%,l)) transform in the (3, 2) of D, where F(’;) = %em“kF(z)nk.

® G(3)m transform in the (3/,1) of D

e Gy is singled out among all the other fields since according to conventional su-

pergravity [14] SL(2,Z), mixes G(4) with its Hodge dual *G(4). More concretely,

—Rep G4y +ilmp * Gy
( Gy (10.5)

transforms in the (1,2) of D. Due to this non-trivial transformation the classical bosonic

8D action is not manifestly invariant under SL(2,Z),. In detail, the action has real part:

Re(SsD) =7l'/ {ImpG(4)/\*G(4)+f2§m“G(3)m/\*G(3)n+f4§mngaﬁF’(“2‘5’/\*F?£} (106)
X

31 .11,8,9

€ =é€11,89 = L.
32 In ITA at weak coupling we assumed G3)11 =0 and .7:&) =0,n = 8,9, so that all background

fluxes are closed forms.

55



1 1
+27T iE{R + 28 20t0MT + —aMpaMp + 3gmngk13Mgmk5 gnl}

where Gop is defined in (1.6), g is inverse of Gk and R is the Ricci-scalar of the metric
gMN-

The imaginary part of the 8D bosonic action follows from the reduction of the M-
theory phase Qs(C). This phase is subtle to define in topologically nontrivial field con-
figurations of the G-field. It may be formulated in two ways. The first formulation was
given in [37]. It uses Stong’s result that the spin-cobordism group Q4;(K(Z,4)) = 0 [38].
That is, given a spin 11-manifold Y and a 4-form flux % one can always find a bounding
spin 12-menifold Z and an extension G of the the flux to Z. In these terms the M-theory
phase Qs(C) is given as:

Qu(C) _eexp[ /G3 27”/ G(pg—/\z] (10.7)

Here ¢ is the sign of the Rarita-Schwinger determinant. The phase does not depend on
the choice of bounding manifold Z, but does depend on the “trivializing” C-field at the
boundary Y.

A second formulation [7,39,40] proceeds from the observation of [37] that the integrand
of (10.7) may be identified as the index density for a Dirac operator coupled to an Eg vector
bundle. The M-theory 4-form can be formulated in the following terms [7,39,40]. We set:

Gum —theory __ A~
S = G+ de (10.8)
where G = Tr248 87 +—2-T7'R2 F'is the curvature of a connection A on an Fg bundle V

onY and R is the curvature of the metric connection on TY. G p1—theory is a real differential
form, and ¢ € Q3(Y; R)/Q%(Y), where Q3 (Y) are 3-forms with integral periods. The pair
(A, ¢) is subject to an equivalence relation. In these terms the M-theory phase is expressed

as:

(Dv)+h(Dv)  n(Drs)+h (DRS))] w(e) (10.9)

Qum(C) = exp [2711'(77 1 + 3

where Dy is the Dirac operator coupled to the connection A, Dgg is the Rarita-Schwinger
operator, k(D) is the number of zeromodes of the operator D on Y, and n(D) is the n
invariant of Atiyah-Patodi-Singer. The phase w(c) is given by

(e) = eapli /Y (G + Xs) + cdeC+ %c(dc)z)} (10.10)
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10.2. The semiclassical expansion

For large t there is a well-defined semiclassical expansion of the M-theory partition
function, which follows from the appearance of kinetic terms in the action (10.6) scaling as
2k for k = 0,1,2, 3. In the leading approximation we can fix all the fields except G (4), but
this last field must be treated quantum mechanically. Note that this semiclassical expan-
sion can differ from that desecribed in the previous sections because we do not necessarily
require weak string coupling. In the second approximation we treat G4y and G(3)n as
quantum fields, and so on.

In the leading approximation in addition to the sum over fluxes G4y we must integrate
over the flat potentials. These include flat connection .A’(“l‘) of the T fibration and potentials

coming from the KK reduction of ¢
1
c=Cgy+ Clioym?™ + 50(1),,“19"‘0“ + ¢(0) (10.11)

where Clyy, = Czym — %C(l)pmA'(’l) and Cg) = C(3) — Clo), ARy, and ¢(q) is defined
in (10.3). C(gy is invariant under U-duality, C(2)m transforms in the (3,1) of D. We can
combine the flat potentials C(1ymn and Aﬁ‘) in a U-duality multiplet of D transforming as

(3,2) by writing
1Emnkc(1) Kk
ma _ (2 Clm ) (10.12)

The duality invariance in the leading approximation is straightforward to check. We
keep only G(4). The flux is quantized by [G(4)] = a — 1A, where a € H4(X,Z) is the
characteristic class of the Eg bundle and A is the characteristic class of the spin bundle.
We sum over a € H*(X,Z). The 8D action, including the imaginary part is SL(3,Z)
invariant. The imaginary part of the 8D effective action in this case takes a simple form
which can be found from (10.9):

Im(Ssp) = - / (aur+Bo (a - %,\) 2) (10.13)

X

The invariance under SL(2,Z), then follows in the same way as in our discussion in the
weak string coupling regime.

Let us now try to go beyond the first approximation. In the second approximation
Gy = a— %)\ + [AE‘I‘)G(;;,)m]. We allow nonzero fluxes G (3)m, but still set to zero the
fieldstrengths F(3) and F (). We thus have a family of tori with flat connections. Already in
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the second approximation, when we switch on nonzero fluxes G(3ym there does not appear
to be a simple expression for the M-theory phase.

Nevertheless, one can get some information about the M-theory phase from the re-
quirement of U-duality invariance. We know that SL(3,Z) invariance is again manifest
from the definition of 2,(C) and Re(Ssp). But the expected SL(2,Z), invariance is non-
trivial. We would simply like to state this precisely. To do that we write M-theory partition

function in the second approximation as

ZM—theory(gmnap) = /d,ufflat Z ZM—theo'ry(gmn,G(s)m,P) (1014)
C;'(S)m

where Zaf— theory(Gmn; G(3)m, p) is the partition function with fixed, but nonzero, flux,

G(3)m, dpfiat stands for the integration over

H3X)  (HAXONY  (HAO\®
H(X) (Haoc)) X (Ham) ’ (10.15)

where HP(X) is a space of harmonic p-forms on X and H%(X) is the lattice of integrally
normalized harmonic p-forms on X. The first factor is for C(3), the second factor for Caym
and the third factor is for the fields Afy* transforming in the (3,2) of D. The integration
measure dy fia¢ is U-duality invariant.

The summand in (10.14) with fixed G 3y, is given by

ZM—theory(From; G@ym P) = Y Det(Gay, G(zym)e Swmente™Sel (10.16)
acHA(X,Z)

where

—7I'fx (Im(p)G(4)A*G(4)+f‘2§m“G(3)m/\*G(s)n>
e™%¢ = Qs (Ga), Gaym, Bo) €

and Det(G 4, G (3)m) denotes 1-loop determinants. These depend implicitly on the scalars
P, Gmn, t as well as on the metric gasn. We include 1-loop corrections in Sgyan: (see below).

The M-theory phase {2 in (10.16) depends on the fieldstrenths G 4), G(3)m and the
flat potentials, but it is metric-independent, and hence should be a topological invariant.
The dependence of s on flat potentials is explicit from (10.10) for ¢ as in (10.11). For

example dependence of 237 on By has the form
¢ Jx BoGwCw (10.17)
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It is conveneient to include 1-loop corrections |. y BoXs together with effect of membrane
instantons in Sgyuant. The nontrivial question is dependence on G4y and G(3)y Which also
comes from n(Dv) + h(Dv).

The independence of 37 on the metric on Y = X x T (in the second approximation)
follows from the standard variation formula for n-invariant. To show this let us fix the
connection on the Eg bundle V' with curvature F' and consider the family of veilbeins e(s)
on Y = X x T® parametrized by s € [0, 1] such that the metric on 7" remains flat and
independent of the coordinates on X. The corresponding family of Rieman tensors R(s)
gives an A-roof genus A{s) which is a pullback from X x [0,1]. Now we can write the
standard formula for the change in n-invariant under the variation of veilbein [41]:

n(e(1)) —n(e(0)) =4 + / ch(V)A(s) (10.18)
Y x[0,1]
where integer j is a topological invariant of Y x [0,1] and ch(V) := %[TT2488%]. In the
second approximation we only switch on G = G(4) + Gaymdz™ so that neither chao(V) =
—2(G + 1)) nor chy(V) = (G + 3))? have a piece ~ dzdzdz'! and integral in (10.18)
vanishes.

Now we come to the main point. The requirement of the invariance under the standard

generators S,T of SL(2,Z),

ZM—theory (gmn; —1/P) = ZM—theO'ry (émn, P) (10- 19)

ZM—theo'ry (gmn, p+ 1) = ZM—theory (gmn, P) (1020)

gives a nontrivial statement about the properties of the function Q(G(4), G(3)m, Bo)-
The sum over fluxes G3ym € H3(X,Z) in (10.14) might be entirely supported by
classes which satisfy a system of SL(3,Z) invariant constraints. These constraints can in
principle be determined by summing over torsion classes once the phase {23 is known in
sufficently explicit terms. In the simple case when G 3)y, are all 2-torsion classes, one can

act by the generators of SL(3,Z) on the constraint
59°(G(sye) + S¢*(G(3)11) + G(3)9 U G(z)11 = 0 (10.21)

which follows from [7]. If we assume that this constraint is part of SL{3,Z) invariant

system of constraints then we find
G(3)m U G(3)n = 0, m,n= 8, 9, 11 (1022)
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10.8. Comment on the connection with twisted K-theory

In this section we discuss the behavior of the partition function near a weak-coupling
cusp. There is a twisted version of K-theory which is thought to be related to the classifica-
tion of D-brane charges in the presence of nonzero NSNS H-flux [2,42,43,44]. It is natural
to ask if the contributions to the M-theory partition function Zns—iheory(Gmn,p) from
fluxes with nonzero Hgy := G311 € H 3(X,Z) are related, in the weak string-coupling
cusp, to some kind of twisted K-theory theta function.

The weak-coupling cusp may be described by relating the fields in (10.1) to the fields
in ITA theory. First, the scale # is related to the expansion parameter used in our previous

sections by £2 = e~3¢t2. Next, we parametrize the shape of T3 as fmn = €2 €P Ja1, Where

e—t/3

=m0 0 1 7 Cops
e, = 0 et /m 0 0 1 Cpp (10.23)
0 0 e26/3 0 0 1

We denote frame indices by a = (a,11),a = 8,9. The weak coupling cusp may be written

R x R? x SL(2,R)/SO(2) (10.24)

where the first factor is for the dilaton £, the second for C(g)s, C(0)9,33 and the third for
the modular parameter 7 of the ITA torus.
As far as we know, nobody has precisely defined what should be meant by the “
Ky theta function.” Since the Chern character has recently been formulated in [22][23],
this should be possible. Nevertheless, even without a precise definition we do expect it
to be a sum over a “Lagrangian” sublattice of Kx(X x T?). At the level of DeRham
cohomology, this should be a “maximal Lagrangian” sublattice of ker d3/Imds where d3 :
H*(X10,Z) — H*(X10,Z) is the differential d3(w) = w A [H(g)]. Using the filtration
implied by the semiclassical expansion, and working to the approximation of e~ this
means that we should first define a sublattice of the cohomology lattice by the set of
integral cohomology classes (a, G(3)s, G(3)9) such that (G(4), G(3)s, G(3)e) are in the kernel
of ds:
H(g) A G(4) =0, H(3) A G(g)m =0, m=8§,9 (10.25)

33 These are related to the RR potentials é'(o)m transforming in the 2’ of SL(2,Z), as Cgys =
et v72Cos, Clop = € Clae
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Then the theta function should be a sum over the quotient lattice obtained by modding
out by the image of ds

Geays~ Gays ~PHa), G~ Gap —sHe), Gy ~ G —waHe.  (10.26)

Here p,s € Z and w(;) € H 1(X,Z). Thus, our exercise is to describe how a sum over this
quotient lattice emerges from (10.14).

Let us consider the couplings of flat potentials C(1ys9 and C(3),, to the fluxes which
follow from (10.10):

27 [ CasoHs G 27 [ ™" CaymGayn Hes) (10.27)
Integrating over C(1ygg and C(2), gives Hi3)AG(4) = 0 and €™" H(3)AG(3),, = O respectively.

Next, we note that, due to the SL(3,Z) invariance of the M-theory action we have

(suppressing many irrelevant variables)
ZM—theory(C(0ym» G (3ym — PmH(s), Ally, Gy — wyHs)) = (10.28)

ZM—theory (C(O)m + Pm, G(3)m: A:(lil) + wW(1), G(4))

Now we use (10.28) to write the sum over all fluxes G4y, G(3)m, ™ = 8,9 in the

kernel of d3 as

Zg = Z ZM——theory(C(O)ma G(3)maA%%)a G(4)) = Z w (1029)

ds—kernel Miund

where M ¢,nq stands for the fluxes in the fundamental domain for the image of ds within
the kernel of dz and

W= Z Z ZM—theory (C(O)m + Pm,; G(3)m, -A%ll) + w(1), G(4)) (1030)
PmEZL2 w(IJEHl(X,Z)

Now, we can recognize that Z descends naturally to the quotient of the weak-coupling

cusp.
I\ [R x R? x SL(2, R)/SO(Z)] (10.31)
where I = Z? is the subgroup of the parabolic group I'o, consisting of elements of the
form
1 0 p
L*=101 s), pseZ (10.32)
0 0 1
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Written this way, Zg is clearly a sum over a Lagrangian sublattice of the Kz (X x T?)
lattice. (Recall that we are working in the DeRham theory, with the filtration appropriate
to the second approximation.)

The interesting point that we learn from this exercise is that in formulating the Ky
theta function, the weighting factor for the contribution of a class in Ky should be given
by (10.30). The dependence of the action on the integers pr, and w(;y € H(X, Z) behaves
like exp[—Q(Pm,w(1))] where Q is quadratic form. Therefore W is itself already a theta
function. This follows because the dependence on Cg),, and A%ll) comes entirely from the
real part of the classical action (10.6), since, as we have shown, the phase is independent
of the metric on X x 7. The dependence on C(0ym comes from f, Ezgm“G(g,)m/\ * G(3)n
and the dependence on .A%ll) from [ x ImpG A * G(4), where we recall that [G(y] =
a— X+ [.A?I‘)G(:g)m].

It would be very interesting to see if the function Zg defined in (10.29) is in accord
with a mathematically natural definition of a theta function for twisted K-theory. But we
will leave this for future work.

As an example, let us consider X = SU(3). Let 23 generate H3(X,Z). Then fixing
H(3y = kx3 we find that the fundamental domain of the image of d3 within the kernel of
ds is given by

G =rrs, G@p=prs, 0<rp<k-1 (10.33)

so that the sum over RR fluxes in (10.29) is finite and it is in this sense that RR fluxes
are k-torsion. This example of X = SU(3) is especially interesting since it is well known
[45,46,44] that at weak string coupling D-brane charges on SU(3) in the presence of H gy =
kx3 are classified by twisted K-theory groups of SU(3), and these groups are k-torsion.
As argued in [5], from Gauss’s law it is then natural to expect that RR fluxes are also
k-torsion. This is indeed what we find in (10.33). 34 On the other hand, the M-theory
sum is indeed a full sum over all fluxes. This is in harmony with the result of [47] for brane

charges. Clearly, there is much more to understand here.

Acknowledgements:

34 In fact, from [44] we know the order of the torsion group is actually k or k/2, according to
the parity of k. However, given the crude level at which we are working we do not expect to see
that distinction. We expect that a more accurate account of the phases in the partition function

will reproduce this result.
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Appendix A. Duality transformations as symplectic transformations

Here we give the explicit expressions for representations of S and T in Sp(2N, Z). Let

us choose the following basis of the lattice T’
%= (sel, sez) (A.1)

% = (y¢1,y, ® (L(eo) — 1), (L(es) = 1), (L(es) — 1) @ (L(eo) — 1), (L(rdo™) — 1),
(A.2)

o (fudo™) 2z (wx))
2y = (m(w,-) ® (L(eo) — 1),z (dpdo™) , z (wrdo™) , 2(us), 2(us) @ (L{eo) — 1),  (A.3)

o(hu), 2(l) ® (L(eo) ~ 1))

where we introduce
Yy € HO(X,Z), h € HS(X,Z), l=1,...,b

v € HY(X,Z), w,€ H(X,Z), r=1,...h
es € H*(X,Z), u, € HS(X,Z) s=1,...,bs,
fr € H3(X,Z), dy € H*(X,Z),k=1,...,bs, w; € HYX,Z),i=1,...,bs,

where by, is the rank of H?(X,Z) and bg is the rank of the sublattice of H*(X,Z) which
is span by classes f such that S¢®f = 0.

In the above basis the generators S and T are represented by

A(S) B(S A(T) B(T
0= (43 89 w-(4B 5B) o
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1z,

—14,
1,
A(S) = —1p, B(S) =
12p,
1op,
05, 1p,
(A.5)
—11,4 01,4
1op,
12,
C(S) = D(S) = 1p,
~14,
1y,
—13,
(A.6)
1p,
=1y, s
1,
A(T) = —1p, 1y, B(T) =0y (A7)
12,
1op,
1,
1y,
1op,
12,
C(T)=0n, D(T)= 1s, (A.8)
—1, 1,
1y,
=1y, 1,
Appendix B. Supergravity conventions
The 10D fields that we use are related to the fields in [19]as:
G 34 G 94 B 3 15
_\/Q_‘% = ¢~ T Ffiom, \/_22=7r = —e 1 Fffom, \/Tz_ = —eT¢Bf°m, m= Goe_“é,

J’A _ e_%¢§i&m)’ A= e—%—’)\(Rom),gMN _ e%q&g}(\;]%m)
We also remind that we set k13 = 7 while in [19] k11 = v/27 was assumed.
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Appendix C. 4-Fermion terms

Below we collect 4-fermionic terms in D=10 ITA supergravity action which are obtained

from circle reduction of the D=11 action of [48].

T —oxfr 17 A S[AT A
Szil_o}e'rm = 5/\/%6 2¢i_6_4[XEPABCDEFXF+12X[APBCXD]]X[AFBCXD] (Cl)

+% (XEf'ABCEFXF) ()_CAf‘BXc) + i ()ZAf‘AXc) (XBf‘ BXC)

—% (XAfBXc) ()ZBf‘AXC) - 1_16 ()?Af‘BXC) ()‘(Af'BXC)}

where

and A = (4,11).
Recall that the graviton Efy and the gravitino ¢§1) of 11D supergravity are related
to 10D fields as [48]:

Efalze_% Aﬂ‘%, Eﬂ=eT, E}&,:eSC’M
11 1
"/JEA )_ \/2—7]_66XA

Appendix B. Quartic couplings of ghosts and fermions

Below we collect terms in the 8D quantum action which are bilinear in FP ghosts and

bilinear in fermions:

Slg)z = g/};tse_zs{% ()_(Bf‘AXC -+ 2)2Af‘BXC) (gf‘Af‘BCé) + (B.l)
 (welaxc + 2xalmxc) (B°15C)
+% (XAf'BcXD) (gf‘ABCDé) + g ()Zaf‘BcXD) (Zf‘aBCDé)

171~ - A a- . N
_Eb[FAl—:ABCDE n gPﬁFaBCDE] 8 ()_CBF CDXE)
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~ (&P xa) (i0%xm) - 5 (EPxa) (B0%x8) + 5 (850 [B0%%a + 360%x]

+Laz (gfoXa) + %La]) (zf‘aXD) +

1 i (PAPDE 453 pDE
7 LoEb(PATPEy, 1 S19TPRy, )

where we now split indices as A = (4,a), A=0,...7, @=(a,11), a=8,9. Nonzero

components of Lpg are given by:
Lag=-axg Lai=—-&axn

Slgg) ? is obtained by relating 8D gauge field 'zﬁé D)( gauge parameter €) to 11D gravitino

fj” (gauge parameter e(11) ) as
Phoy = VEre§ [0+ Eal(Y], &= Vamet et
Let us also remind a standard fact that to keep the gauge
Ef =0, EA=0

used in reduction from 11D one has to accompany supersymmetry transformations of (48]
with field dependent Lorentz transformations.
The last line in the action Sg)z originates from such Lorentz transformations.

To write out S{Eg)z in terms of 8D fields

() b= (5. 0= (1) =)
'l)b(SD) : (T]A) s (8D) - A (8D) - I y VD) : ﬁ'

one should substitute

~ 1 A " ﬁa ~
XA = ’lﬁép) + EFAG(SD) + ?FAA(SD), A=0,...,7

1 lag/a " 1. lag/a u
8 - 8 ~
X = 5”(8D) + §F (H(SD) + \/§A(8D)), Xg = EFSQU(SD) + 51-‘9 (9(31)) =+ \/EA(gD))
Wianri V2
X1 = _TF (A(SD) - Ta(sD))

We do not present the final expression but we have checked that 553)2 is T-duality

invariant.
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Appendix E. Measures for path integrals

Here we explain why det’ A, are divided by V}, in (6.4) This is related to the integration

over zeromodes.

Introducing a basis a,’('p), i=1,...,07 in HE let us denote
Vi = /X alpyAral,y,  Vp = deti;Vy’ (E.1)

Note, that V,, is invariant under the choice of basis in H%,.
To explain integration over fermionic zero modes let us consider the following path-

integral over fermionic p-forms u and v.

/v e_(”’A"") (E.2)

where ;,4 =1,...b is a basis of H,(X,Z).

In (E.2) we have inserted Hf;l oy U Hg:l f%_ v, to get non-zero answer, i.e. to saturate
fermion zero modes.

To perform the integration in (E.2) we expand u and v in an orthonormal basis {#,}

of eigen p-forms of A,
U= Zun"/)m V= Z'Un'lpm (";bnv "p'm) = én,m (E3)

Let us choose the basis afp), i=1,...,b7 of the lattice HY,, dual to the basis ; €

Hy(X,Z),i.e
/ apy = 0ij
Vi

Then, orthonormal zero-modes are expressed as

im =ty (W), (E-4)

7

where W1 is the inverse of the vielbein for the metric on Hj: (V)i = (WT Wp)ij .

Now, we integrate (E.2) and obtain

<5
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In the case of bosonic p-forms v and v we do not need to insert anything to get a

/DuDve_(”’A””) = [dEtlAp]_l (E.6)

Vo

nOoN-zZero answer:

where (E.6) the integration over bosonic zero-modes was performed

LP

P
. . 1
Dui, I Dvi = =V (E.7)
/1,1;—-11 _7=]:[1 (deti,j f’Yi ’(,bzm)2 i

Appendix F. Super-K-theory theta function

Here we explain why 8(F, p) defined in (1.28) is a supertheta function for a family of
principally polarized superabelian varieties. To show this we use the results of [49], where
supertheta functions were studied.

A generic complex supertorus is defined as a quotient of the affine superspace with
even coordinates z;, i =1,..., Neyen and odd coordinates £&,, a =1,...,Nygq by the

action of the abelian group generated by {A;, Aixn.....}
Ai :zj—>zj+6.,'j, £, — &, (Fl)

A”:‘}'Neven : zj - Zj + (Qeven)‘ij7 £a - é‘a + (QOdd)za (F‘2)

We will restrict to the special case (£o44);, = 0 relevant for our discussion. Let us also
assume that the reduced torus (obtained from the supertorus by forgetting all odd coor-
dinates) has a structure of a principally polarized abelian variety and denote its Kahler
form by w.

It follows from the results of [49], that a complex line bundle L on the supertorus with
c1(L) = w has a unique section (up to constant multiple) iff QT = = Q.yen together with
the positivity of the imaginary part of the reduced matrix. This section is a supertheta
function.

Now we can find a family of principally polarized superabelian varieties relevant to
our case simply by setting Neyen = N and Nogg = Nferm..m and by defining symmetric
Qeven as

Re(Qeven);; = Retr (24, 75), (F.3)
Im(Qeven)ij = Imtg(z;, z;)+ (F.9)
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;i%/xm (GZP (z:) + Gzp(l'j)) A& Jap(zm) + 8, F (zm)

where z;,7=1,..., N is a basis of I'1. In (F.3) Jap(2m) is a 2p-form on X0 constructed as
a bilinear expression in fermion(and ghosts) zeromodes and F'(zm) is a functional quartic in
fermion( and ghosts) zeromodes, both J5,(zm) and F(zm) can in principle be found from
the 10D fermion action (7.10),(}4.1) as well as from the ghost action (7.35),(7.40),(15.1).
The modified characteristics &, 3 and prefactor A®(F) in (1.28) all originate from the shift
of the imaginary part of the period matrix described in (F.4). It would be very nice if one
could formulate this superabelian variety in a more natural way, without reference to a

Lagrangian splitting of T'k.
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