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Abstract

We show that gravitational Chern-Simons corrections, associated with the
sigma-model anomaly on the M5-brane world-volume, can resolve the singular-
ity of the M2-brane solution with Ricci-flat, special holonomy transverse space.
We explicitly find smooth solutions in the cases when the transverse space is
a manifold of Spin(7) holonomy and SU(4) holonomy. We comment on the
consequences of these results for the holographically related three-dimensional
theories living on the world volume of a stack of such resolved M2-branes.

1 Introduction

The original AdS/CFT correspondence is an equivalence between Type IIB strings
moving in the near horizon geometry created by a stack of N D3 branes and N = 4
SU(N) gauge theory which is the infra-red limit of the theory living on the world
volume of the branes [1]. In the large NV limit, with ¢2,,N fixed but large, tree level
supergravity is a good approximation to string theory. The o' and g, expansions in
string theory map to 1/1/¢%, N and 1/N expansions in the gauge theory. Stringy
effects in AdS spaces are hard to compute since it is difficult to quantize strings in RR
backgrounds. However, we know some o’ corrections to the low energy space-time
effective action in the form of higher curvature corrections.of the form o/®* R%. Such
an o' expansion should contain information about the strong coupling expansion of
the gauge theory [2].

We can study similar questions in the context of M-theory on AdSs; x X7 with
AdS scale R ~ [,N*/%. In this setup, [,/ R corrections to supergravity go like 1 /NS,
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In this paper, we consider higher curvature corrections to 11 dimensional supergrav-
ity action which are the gravitational Chern-Simons terms arising from the o-model
anomaly on the M5 brane world volume, thereby modifying the Bianchi identity for
the five brane. Such corrections, schematically go like lgR4 and hence correspond
to 1/N effects in the corresponding holographic field theories. Specifically, we con-
sider the correction to classical M2-brane solutions arising from such gravitational
Chern-Simons terms, when such M2-branes have transverse spaces which are Ricci-
flat deformations of cones over seven dimensional Einstein manifolds. Branes at such
conical singularities have been studied extensively for the past few years and we briefly
recap some of the features salient for our study.

In the search of a string dual for four dimensional gauge theories with lesser
supersymmetry, variations of the original correspondence involve placing D3 branes
at the apex of a Ricci flat six dimensional cone whose base is a five dimensional
Einstein manifold X® [3]. This leads to the conjecture that type IIB string theory
on AdSs x X® is dual to the low energy limit of the theory on the D3 branes at
the singularity. For the conifold singularity, X® is the Einstein space T*!. Adding
fractional D3 branes, (D5 branes wrapped over two-cycles of X;5) introduces a non-
zero three-form RR flux through the three-cycle of 71! and results in a non-AdS
bulk solution. Correspondingly, on the gauge theory side, fractional branes lead to a
non-conformal gauge theory with running couplings. Supergravity solutions for such
configurations of D3 branes were considered in [4, 5]. The solution in [5] that includes
fractional D3-brane, was singular. In [6], the singularity was resolved by replacing
the singuiar conifold by a (smooth) deformed conifold [7]. This regular supergravity
solution realized the chiral symmetry breaking and confinement of the dual N’ = 1
supersymmetric four-dimensional gauge theory geometrically.

It is possible to generalize the above setup to other p-branes placed at tips of
other cones, i.e. the transverse space to the p-branes is a cone ds? = dr? + r’ds%,
where ds% is the metric on an Einstein manifold X, which is called the base of the
cone [8]. Turning on additional Fs_, field strengths corresponds to deforming the
holographically related field theory. In [9, 10] (for a review see [11]), it was shown
that after addition of such fluxes regular solutions can be obtained which have the
feature that the singular conical transverse space is resolved in the IR region of the
field theory. Also, these solutions generically do not have horizons, implying that a
mass gap has been generated in the dual field theory.

In finding smooth, non-singular solutions, a crucial role is played by the Chern-
Simons tvpe terms with additional field strengths which modify the Bianchi identities
and/or equations of motions for the original field strength. Note that the additional
field strengths Fg_, are supported by harmonic forms on the special holonomy space,
and in particular the L? normalizability of these harmonic forms ensures that the
solutions are regular both in the interior and at large radial coordinate r. For most of
the cases and in particular for resolved M2-branes and D2 branes [9, 10, 12, 13], with
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the transverse space asymptotically conical (AC) Spin(7) and with G holonomy, the
asymptotic form of the field strength was such that it did not produce any new flux
at infinity. As such, these configurations do not describe gravity dual of fractional
branes [14, 13] but perturbations of the boundary field theory living on a large stack
of regular branes by relevant operators. The power law fall-off of the field strength
determines the dimension of the operator to be added to the gauge theory action.

In this paper we focus on another aspect of resolved brane solutions which is due to
the gravitational Chern-Simons type corrections. These terms, first established within
Type II string theory [15], have their M-theory analog due to o-model anomaly on
Mb5-brane. Within eieven dimensional supergravity we shall find explicit solutions for
resolved M2-brane due to these higher derivative corrections. ?

Some of the aspects in connection with M2-branes and gravitational Chern-Simons
terms were studied earlier in [16, 19]. We extend this analysis by finding explicit
solutions for such M2-branes whose eight-dimensional transverse space is a Ricci-flat
deformation of cones over seven dimensional Einstein manifolds. These are non-
compact, smooth spaces with special Spin(7) and SU(4) holonomy, i.e. Ricci flat
spaces with at least one covariantly constant spinor, and whose metrics are explicitly
known.

The starting point is the Ansatz for the original M2-brane solution:

ds?, = H‘z/sn,,,,, dz*dz” + HY3ds?,
Forosr = 6.H,

where ds3 is a Ricci-flat transverse metric of Spin(7) or SU(4) holonomy. Without
taking into account higher curvature corrections, the function H is harmonic, satisfy-
ing the equation OH = 0 where O is the Laplacian on the Ricci-flat transverse space.
H turns out to be singular at the inner boundary of the transverse space. We shall
however see that the inclusion of the gravitational Chern-Simons-type corrections,
which are of the type o< Tr(R*) — $Tr(R?%)?, the singularity of the solution can be
resolved. No inclusion of the four-form G4 supported by the special holonomy trans-
verse space is needed. In addition, the gravitational Chern-Simons term induces a
bulk M2 brane charge and the solution asymptotically approaches AdSs x X7 where
X7 is the base of the transverse cone. However, since the only scale in the problem is
Iy, the solution has a characteristic curvature scale of order [, and thus supergravity
approximation cannot be trusted. As we will see later, to get a good supergravity
description, we indeed need to turn on four-form field strength G4 in such a way that
the curvature of the solution is everywhere much smaller than [,

The paper is organized as follows. In section 2, we discuss generalities about
the gravitational Chern-Simons eight-form ¢ model anomaly. In section 3 ,taking

IThere are of course other higher derivative corrections which we are not considering in this
paper. However, since the gravitational Chern Simons term is associated with an anomaly, ard is
topological in nature, it plays a special role.



into account the correction to the M2-brane equations of motion from this term,
we explicitly construct smooth M2-brane solutions for the case with the transverse
space is one of two different metrics of Spin(7) holonomy, one originally constructed
in [20, 21, 22] and the other recently found in [23, 24, 25] which is asymptotically
locally conical (ALC). The corresponding dual (2+1)-dimensional field theories have
N = 1 supersymmetry. In section 4, we repeat the analysis when the transverse
space is T*S*, with Stenzel metric which has SU(4) holonomy. The holographically
dual (2+1)-dimensional field theory on the world volume of the M2-brane has N = 2
supersymmetry. In concluding section 5, we comment on the interpretation of our
result in the dual field theory. In Appendix A we present the details of the calculation
for the Ricci tensor and curvature for a class of Spin(7) holonomy metric and in
Appendix B we collected the details for the calculation of the harmonic functions.

2 Gravitational Chern-Simons corrections and M2-
branes

The bosonic sector of d = 11 supergravity [26] is given by

where gprn is the space time metric and A is a three form with field strength F' = dA.
The field strength obeys the Bianchi identity dF' = 0 and its equation of motion is

d*Fz—%F/\F.

The gravitational Chern-Simons corrections associated with the o-model anomaly on
the M5-brane [16, 15], modify the equation:

1
diF = —2FAF + (2m)40 Xs, (2)
where 3 is related to the five-brane tension as Ts = 3/(27)® and the eight-form anomaly

Xy can be expressed in terms of the curvature two-form ©:
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The equation of motion (3) can be derived from the action (1) with the addition of
the following term:
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We look for solutions with (2+1)-dimensional Lorentz invariance:

s}, = H™Pdgtdz¥n,, + HY3ds?,
= dzAdH™' +mG,. (5)

Here, we have also added a harmonic four-form G4 on the transverse eight-manifold.
With this Ansatz, eq(2) yields

1
OH = —4—877~B|G(4)|2 + (2m)*6 Xs, (6)

where Ay = Xgdvolg, dvolg is the volume form and O is the Laplacian on the eight-
fold. Such solutions were studied in [9, 10]. For vacuum solutions m = 0 and if Xj
is trivial, we can choose H to be a harmonic function on the eight-fold. In fact, a
constant H will then be a solution, whence we get a product manifold with metric
ds® = dz*dz"n),, +dsi. However, if the holonomy of the eight-manifold is non-trivial,
the anomaly term may not vanish, and H = constant is not a solution anymore. This
can be interpreted as a distribution of background charge over the eight-fold, induced
by the anomaly term.

As we will see, a smooth solution for H can be found even when the four-form Gy
15 not turned on. However, such solutions fail to have a good AdS/CFT interpretation
since the solution has a curvature scale of order I, and supergravity is not a good
description. To get a good gravity description, we can turn on background fluxes
through G4 which is an (anti) self-dual four-form, supported on the special holonomy
space, such that the length scale associated with the metric is everywhere >> [,,.

In what follows, we will study specific examples of transverse eight manifolds to be
(i) two different manifolds of Spin(7) holonomy (one is the original one [20, 21] with
AC structure and another set, recently constructed in (23, 24], has ALC structure)
where the (2+1)-dimensional field theory has N/ = 1 SUSY, (ii) 7*S*, with Stenzel
metric, which has SU(4) holonomy, and the (2+1)-dimensional field theory on the
world volume of the M2-brane has N/ = 2 SUSY.

3 Resolved M2-brane and Spin(7) holonomy

In this section, we will find explicit M2-brane solutions when the transverse space is
a manifold of Spin(7) holonomy. As such, there is one covariantly constant spinor
on the manifold and the corresponding holographic (2+1)-dimensional field theory
has N = 1 supersymmetry. We consider the general Ansatz for a Spin(7) manifold
introduced in [23], with special cases yielding metrics constructed in |20, 21):

dsg = K2 dr® + a®(Dp')? + b20® + 2d03, i=1,2,3 (7)



where h, a, b and c are functions of a radial coordinate r, u; parameterize an S? and
satisfy piut=1,
u1 = sinfsinp, s = sin 6 cos b, u3 = cos . (8)
and
Dui=du; + epAv*,  o=dp+A,  A=cosbdy— A (9)

The 1-form A is the SU(2) Yang-Mills instanton on S In terms of coordinates
(6,) on S%, we have

Z(D;ﬂ)z — (df — Alcostp + A2siny)?

+sin® §(dyp + Al cot fsinyp + A%cotOcosyp — A%)% (10)

The Vielbeine are given by

&0 = hdr, €% = ce?,

¢! = a(df — A'cosyp + AZsine),

&2 = asinf(dy + A cotfsinp + A% cotfcosp — A3),

&3 = bo, (11)

where e%, with =4, 5,6,7, is an orthonormal basis of the tangent-space 1-forms on
the unit S*.

The spin connection wgy; satisfying de® + w®, A e® = 0 and the curvature two form
Oup = dwap +we’ Awg for this are given in Appendix A. In what follows, we will study
two cases of such manifolds with Spin{7) holonomy.

3.1 Old Spin(7) holonomy space
For the special case when a = b, the Ansatz given in (7) reduces to [20, 21, 22]:
dsi = h*dr® + a®(o; — A*)? + ¢2dQ3, (12)
where we have used the relation
D (o= AN =D (D) + o> (13)
Conditions for Ricci flatness and Spin(7) holonomy for this Ansatz have the following
solution[20, 21, 22]:
[10/3 1 9 J10/3 9
20\ _ 20\ — 2200 — 2 20 — 2
h*(r) = (1—7—"-1—(%) , a*(r) =20 (T)_mr (1—m): C(T)—%""- (14)

This metric is a resolution of a cone with a squashed seven sphere base. (Indeed,
when | = 0, (14) becomes ds§ = dr? 4 r?ds?_,,p.q 57-) The space is asymptotically
conical (AC) with the principal orbits S7, viewed as an S® bundle over S*.
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Singular cone (I =0): By placing M2-branes at the tip of this cone and taking
an appropriate scaling limit, we can arrive at a correspondence between M-theory
on AdSs X S aenea and the N = 1 field theory living on the world volume of such
M2-branes. The scaling limit corresponds to looking for the solution to the equation
of motion OH = c¢é(r) which approaches zero asymptotically. Notice that there is a &
function source term on the right hand side of the EOM. The solution thus obtained

is H= 32”:? b for N M2-branes placed at the singularity. The space-time metric is
AdS4 X ST asnear With the AdS scale given by R = (32w2N)Y/1,,.

Resolved cone with Spin(7) holonomy (I # 0): We will now find M2-branes
solutions with transverse space a smooth Spin(7) holonomy manifold given by (14),
arising from resolution of the conical singularity by replacing the singular "tip” of
the cone by a bolt. As we will discuss later, such smooth solutions are gravity dual
of N =1 field theory living on the world volume of the M2-branes perturbed with
relevant operators (associated with the pseudoscalar fields of the dual field theory
14)).

We will first look for vacuum solutions, i.e. solutions with no four-form flux turned
on (m = 0). There is, however, a four-form bulk charge induced by the anomaly term
Xz which is now non-zero:

2013
(2m)* X = %(1530 r20/3 [31/3 1 312071017 — 1228 ¢50/3 |1/3 _ 607 117

—1185 ,’,4[)-/3 l11/3 — 1540 l41/3 7.10/3)/,’,.64/3(_7.10/3 + 110/3)2, (15)

The equation of motion (6) can be solved explicitly and details are given in Appendix
B. The solution is in general is singular at » = [. However, we can remove this
singularity and find a smooth solution if we choose a specific integration constant as
discussed in Appendix B. The full regular solution is

_B
34904520

—834309 11 r%/3 — 5501349 13%/3 %) / 1235073 (p103 _J10/3) Loy (16)

H{r) = (—5758444 1* r32/* 1 2394292614 [*/3 — 11848824 [2%/3 y22/3

Asymptotically, as r — oo we have

90011 B = 53171 B0/3
™ 131220 % T 102060 127
As is usual in the AdS/CFT correspondence, we will choose ca = 0. The space is
asymptotically AdS, x ST The length scale of AdS is O(l,) so we cannot trust

squashed’

H(r)

+ ...+ cCo. (17)

supergravity.
We can, however, get an AdS radius > [, by turning on an anti-self-dual harmonic
four-form [9)]:
35840000 14/
729 728/3

7
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Now the equation of motion (6) for H has a source term arising from G4 as well as X3.
Solving for H [9], we find a smooth solution which near r =2 [ and r — oo behaves:
1. Asr — [ we find
8500 8 112 x 103 m? 383750 8 952 x 103 m?
H(r)~c— = — | (r— = — | (r =D~
(r)~e [729 T 17] (r=0+ [ R Ay A

The function H approaches a constant at r = [.

2. Asr — oo
90011 2 x 10° 1 28 x10%143m? 53171 (11043
H = 2 & ase
(r) [131220ﬂ to ™ ] 76 2673 122/ | 102060 2573 (19)

This solution is supposed to describe the gravity dual of the theory living on the
world volume of N M2-branes placed at the conical singularity perturbed by relevant
operators, whose conformal dimension is determined by the subleading term [14] in
the harmonic function. Note that the term proportional to 8 does not contribute at
this subleading order. On the other hand the leading term in the harmonic function
indeed gives an AdSy x S:quashed. To get the right AdS scale, we need

90011 2 x 10°
B+
131220 37
The metric has no horizon, implying the existence of a mass gap in the dual field

theory.

m? = 321’ NI (20)

3.2 New Spin(7) holonomy space: Bg

In (23, 24], new metrics of Spin(7) holonomy, whose structure is asymptotically locally
conical (ALC), were found by starting with the Ansatz (7), and allowing for the S3
fibers of the old Spin(7) construction themselves to be “squashed”. Namely, the S3
bundle is itself written as a U(1) bundle over $?. The general two-parameter metrics
were given analytically (up to quadratures) and analyzed in [23, 24]. We will use one
explicit example from these new metrics, namely the manifold labeled Bg in [23]. For
this manifold, solution to the Spin(7) conditions is:

B(r) = % @(r) = 3 —81)(r + 1),
o BOr—30)(r+1)
b (T') - (’I‘ _ l)2 »

(r) = %(r2 -2, (21)

We calculate the spin connection wy, and the curvature two form ©,; in Appendix A.
The anomaly eight-form, A5 is non-zero. In fact

2
(27)* Xg = —3—;(—55 r7 + 491781 — 179575 12 + 187174 2 + 25793 |4

543172 (5 — 13697 {6 + 473317) / (r + 1) (= + )5, (22)
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In addition, we turn on a self-dual four-form [23]?:

96 (75 r% — 35075 + 82974 — 93273 + 88512 — 4147 + 99)
(r—18(r+1)8

Gl* = (23)

The explicit solution for the harmonic function A can be found in Appendix B. Its
limits are:

1. Asr — 3l we have

141 . 33 ,
A(r)~e- [8192ﬂ ] (r=38)+ [8192ﬂ g1z ™" ] (r—3)"+..(24)
2. Asr — o0,
10323 1 /3441 1
ar) = (985605 ) I~ (19712ﬂ 7 ) 6
134199 317 2\ 1, (34675, 953 L\ 1
(137984ﬂ+ " ) 7 (197126 ) &t ()

Some field theory aspects of the original M2-brane solution with this Spin(7) holon-
omy transverse space were studied in [17]. In [23] the fractional M2-brane (m # 0,
B = 0) and a relation to the fractional D2-brane, which is obtained via a reduc-
tion along the S* isometery of the Spin(7) holonomy space, was discussed. Namely,
due to the ALC structure of the space there is now a conserved magnetic M2-brane
charge fs4 G4. With 8 # 0 our results for the harmonic function demonstrate that
the gravitational Chern-Simons corrections contribute to the leading as well as the
subleading terms, along with the terms o« m?2, but with the alternating relative signs.

4 M2-branes with transverse space T*S*

Ricci-flat Kahler metrics on T*S™! were constructed for general n by Stenzel [18].
Those are asymptotically conical spaces with the principal orbits described by a coset
space SO(n + 2)/S0O(n).

The case of n = 2 corresponds to the deformed conifold with metric given originally
by Candelas and de la Ossa [7]. Such spaces are asymptotically conical. We will
specifically be interested in the case n = 3 when the Einstein Sasakian seven manifold
is Vs2 = SO(5)/SO(3). The (2+1)-dimensional field theory living on the world
volume of M2-branes with transverse space 7*S* with SU(4) holonomy Stenzel metric
has N = 2 supersymmetry in three dimensions. In the following, we find explicit M2-
brane solutions with transverse space T*S*, taking into account the gravitational

2In the remainder of this section, we have set | =1



Chern-Simons o-model anomaly corrections. We follow closely the notation and the
explicit form of the metric for the eight-manifold as given in [10].

We define left invariant 1-forms L 4p on the group manifold SO(n+2). By splitting
the index as A = (1, 2,1), we have that L;; are the left-invariant 1-forms are the SO(n)
subgroup, and so the 1-forms in the coset SO(n + 2)/SO(n) will be

o; = Ly, G; = Loy, v = Lis. (26)
The metric takes the form (for n = 4):
dsi = h?dr? + a®o? + 052 + 212, i=1,2,3. (27)
We define the Vielbeine:
e® = hdr, e =ao;, e;=b&i, eﬁ=cz/, (28)
The functions a, b, ¢ and A are given by
a® = %(2 + cosh 2r)Y4coshr, b = %(2 + cosh 2r)/4sinh 7 tanhr,
h? = ¢? = (2 + cosh 2r) 34 cosh® ., (29)
As r approaches zero, the metric takes the form
ds? ~ dr? + 1252 + o2 + 12

which has the structure locally of the product R* x S%, with R* corresponding to the
"cotangent directions”. As r tends to infinity, the metric becomes
ds® ~ dp® + ,02(%112 + 3%(01-2 + &f)),
representing a cone over the seven-dimensional Einstein space V52 = SO(5)/SO(3).
The spin connection wag and the curvature two-form ©,p were given in [10]. Then,
using the expression for ©,4 in (3), the o-model anomaly correction to the equations
of motion X5 can be calculated (Appendix B):

(2m)t Xg= —15—6(2385 cosh® r 4 10467 cosh'®r + 21966 cosh'®r + 28296 cosh'4r

+24687 cosh'?r 4 15300 cosh® r + 6880 cosh® r + 2216 cosh® r
+486 cosh’ r + 65 cosh®r + 4) /[cosh® 7 (1 + 2 cosh®r)®] . (30)

In addition, we can turn on a harmonic four-form G4, which was explicitly derived in
[10] and its magnitude is given by

360
cosh® 7’
The solution to the equation of motion (6) for H can be found exactly and is given
explicitly in Appendix B. One of the two integration constants has been chosen to
yield a non-singular solution. H has the following properties:

1G)? = (31)
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1. 7—0

5m? | 1450 L0, (35m2 53658 i 4
~C— -~ 2
H(r)y~c ( TR )3 "+l T = 34t 4+, (32)

2. 1 — 00
640m> 2058 1 20480213 m?
H(r) ~ LI BY1 2048027 m”
37 243 ) p8  2843132/3 p26/3
1031806%/° 396800 413 .\ 1
B+ = m?) ==
1003833 1003833 3 03473

+.. (33)

where p is the proper distance defined as hdr = dp. Again note, that this
solution describes a the gravity dual of the theory living on the world volume of
N M2-branes placed at the conical singularity perturbed by relevant cperators,
whose conformal dimension is determined by the subleading term. Note that
the term proportional to § does not contribute at this subleading order.

5 Conclusions

We have studied M2-brane solutions with special holonomy transverse space, taking
into account the gravitational Chern-Simons corrections arising from the o-model
anomaly on the M5 brane world volume. For the cases when the transverse space
has the (i) original AC Spin(7) holonomy space and (ii) Stenzel metric with SU(4)
holonomy on T*S*, we have a clear interpretation as a deformation of the field theory
on M2-branes placed at a conical singularity. Field theory living on the world volume
of M2-branes placed at the tip of these cones is known for the Stenzel case [27, 28].
The M2-brane solution with the resolved cone as the transverse space is perfectly
smooth, and corresponds to adding a relevant operator to the dual field theory [14].
The solution has no horizon implying the existence of a mass gap in the field theory.
The gravitational Chern-Simons term effectively generates a bulk M2-brane charge.
So for the asymptotically flat cases, the solution still approaches AdS, x X7. The
AdS scale is set by the strength of the background four form turned on (m?) and by
the bulk charge generated through the eight-form anomaly. The leading correction to
AdS, x X" asymptotically still arises from the background four-form. The gravita-
tional Chern-Simons term contributes at higher order. Hence the interpretation of the
gravity solution in terms of relevant operators remains as in [14]. The gravitational
Chern-Simons term effects should correspond to 1/N effects in the renormalization
group flow driven by addition of the relevant operator in the dual field theory.
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A Spin connection, curvature and Ricci tensor for
Spin(7) holonomy metric

In this appendix we calculate the spin connection, curvature two-form and the Ricci
tensor components for the metric in (7) with the veilbein given by {11).

Wab

The spin connection g satisfying dé® + &% A &° = 0 is given by:

! ! 4 /

. a N a .o N b ~3 N C L
W = ——€ Woz=——7¢€ Wog=—7,¢€ Wog=——7¢€

ah ’ ah ' bh '’ ch ’
. b ., wprAl4p2A%? cotf ,
O = ¢ —5 = €,

2a sin® 8 a
~ b ~2 ~ b A1
D = 5@t Gn=gaf

N a .. 1 \a
Wia = QEE(smngzﬁ—costag)eﬂ,

I ;Lz (— sin 6’F§'ﬁ + cos @ sin '(pFDl‘ﬂ + cos 6 cos 1/1Fa2ﬂ> &
¢

. boini s

W3a = _Z—CQ#in;ﬂeﬁ,

- a . . b, .

G = @(—s1n¢F§ﬂ+cost§ﬂ>el+2—c2u’ age

+% (sin OF2; — cosfsineF,5 — cosf cos z,bF‘fﬁ) €2 +was. (A1)

where wq, is the spin connection on the S%.
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G")ab

The curvature two-form O,y = dw,p + Wae A Wep can be computed by using the spin
connection calculated above:

~ a’ a'h'\ , . b rd VN, . a acd
B¢ = _(m—ah3)60/\el+ azh(———b—) 2/\63—(E——)(—costl—}-smz,bF2)
~ a’ a'k’ 2 b a v A3 a1
O = (37~ ag) 1+ g (G 5) e
!
+(%—gc—l)(—sin1/z cos OF! — costp cosf F? +sin 6 F3),
. B bll blhl 0 .3 b al bl 2 a1 b/ bC i
O = (57~ )" ne +m(“z) Nt (5 - Cp )T
~ d K
S = (G- )
ch?
1 rac’ «a
Y (i I _ 58
2c2(ch h)( smxpcosﬁFﬂ cos ¥ cos OF, ﬁ+s1n9Faﬁ)e Né
ac a’ 1 /v b
_ =08 —(Z _ it 53 B
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—I—%ui F;, (sinvpcos 6 g + costp cos 6 Fop — sin 6 F. ﬁ)] 82 A

. b P ay a n
Hs— 5 — )u Fizét né? +23MZD7F;ﬂe'7/\e3.
Fi= 1F" of e*Aef and D, F? a3 = Vo aﬂ+eUkA Faﬁ is the gauge-covariant derivative of
E (2) V is the Riemannian covariant derivative on S*. Oup = e*A P is the curvature

two-form on S*.
The non-zero components of the Ricci tensor in the orthonormal basis Rgp = Rt

are
—~ a/l al hl b/l b/ h/ cll c/hl
Bo = ~2(;m=aw) = G =) —4G o)
~ o’  dh 32 1 o’ b? a'b’ a? a'd
Bu=-(ip-om)Ga-wtem)t wam) " (@ wm)
~ b
Ris = Z a(—sma,b +cos¢F,})
Ry = ﬁn,
Ros = :—iy"F’ (—sint cos 6 Fy, — costp cos 6 Fr, + sin 6 F3,),
R b” b/ h/ b2 a/b/ 4b’ / b2 o
- (X _Z" = == = F" J i
Fag (bh2 th) 2(40,4 ath) poiz Tz Faa) W Flo),
-~ a .
Ry = @(—smquﬁFgﬂ + cospDpFop),
Rye = 2‘; (sintp cos§ DgFpg + costpcos @ DgFas — sint DaFlg),
~ b _
Roa = —55#'DaFlp,
PS & W a® 2 W 3P Rog
Rap = (‘m+m+@" ach? ~ bol? - )8t

2
- R W F) + 3% (~sim g + cos ) sin Bl — cos 6y

2
+%g(— sinzbcosHF;& — cosy cosf Fz,; + Sinng&) x

(siny cos § Fg; + cosp cos 6 Fa; — sin 0 Fg). (A.3)

Two of the Ricci flat metrics with cohomogeneity one [10, 21], are

110/3 -1 g llo/3 9
20y (1 8 _ 12 r2(1— 2 R
W) = (1= 55) @0 =80) = = (1- 55), ¢ =51 (A9)

obtained in [21] and

K (r) = %, a*(r) = i(r = 30)(r+1),
B (r) = P(r (_7»3—1)l()r+ l), E(r) = %(rz _ )y, (A5)
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obtained recently for the Bg manifold [23]. Here r is a radial coordinate defined as
r > { and r > 3/, where [ > 0, for the first and second solutions respectively. Also,
in our conventions,

Fl=—(®AeP+etAnel), F2=—(efnet+eSneT), F3P=—(e*Aed +ef AeT),

where e® = (e4, €5, €8, e7) is the basis of the tangent-space 1-forms on the unit S4.

B Detailed Calculations

In this appendix we provide details for the calculation of the harmonic function H
which is the solution to eq. (6).

Old Spin(7) holonomy metric

For the metric [20, 21] given in (12), X3 is given in (15). Then, with m = 0 in {6),
we have

B 37 ll[)/S
(\/-gh ZH],_), = (27!')4,8)(8\/5 = (27!')4,6)(3 m <1 (== m) 7'7. (Bl)

which can be solved:

-1
4% 10° (103
H(’r‘) = T/I]_(T‘) [(1 — r1—0/3'> 7'7 dr. (B2)
where I1(r) is given by

ney = SEEE T “)J Xs dr.

4 x 105 - 1073
-1 Xﬁ o (—8B641°0/% — 33555 140/° 1072 4 72390 170/% 10 4 73680 140/% [10/2
—14140 110 r29/3 4+ 73680 7°0/3) / /3 4 ¢, (B.3)

As r — [, we have

1 32 x 102 [ 163691

B+ cl] In(r —1)

4x108 [ 1 1
H(r) ~ x 10 [ 6369

(4 x 106)ﬂ+cl] (r—1) 7290

24375 (4 > 10°) ]
437 x 103 234467033 731500 8970520067 ! 9
656117 [Cl T 1748 x 1050 } (r =0~ Togeass [cl " B2 X 105 J (r=10)
+..+c (B.4)
The solution is regular at = [ if we choose the integration constant ¢; = —(163691/4x

10%)8, and it then tends to a finite constant. In fact the full regular solution is given
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ﬂ 4,32
H = —F (—57584441* r?¥/3 1 2304202614 [2/3 _ 11848824 [22/3 22/3
1 (r) 21901520 (~ 5758 r3%/3 12394292671 | 848824 1%2/% ¢

—834309 11 7%/ — 5501349 13%/3 1) / 123 8073 (2073 _[10/3y L ¢, (B.5)

The asymptotic behavior, as 7 — oo, is

90011 g = 53171 B110/3
13122076 ° 102060 r28/3

H(r) S, (B.6)

Bg-metric

The ALC Spin(7) holonomy metric on Bs [23, 24] is given in (A.5) and Xj is found
in (22). Eq. (6), with m = 0 then takes the form:

(vgh2H'Y = (2m)*6Xs\/g = (2m)*BXs (1/16) (r —31) (r + 1) (r? = 1%)%1. (B.7)

This equation can be solved to yield

H(r) =16 / L) [1r = 302 (r + )] " dr, (B.8)
where [;(r) is the first integration of H; and is given by
2 4
e = 7 [l =306 +06" - 221 Xedr
l3
= - 9§5 5 (1837308 1* r° + 35300101° r* — 2019600 1% 3 — 48836041" 2
+2013318 18 r — 4423651 r® + 42350 ° + 1914528 1% r™ — 3768996 [° r®
+2565531 1) / (r—D2+¢. (B.9)

At short distance, i.e., as r— 31, we have

1 [103235 1 1 [103238 ]
H ~ _ _ 1 -
(r)~ e~ 15 | 315392 +CIJ (r—310)  161¢ [315392 ta J a(r —30)
5 [ 635978 5 [2727777
- (r — 31) - — 302+ .(B.
12877 | 315392 “1} R RANSTIE [1576960ﬂ cl] (r =31+ {B.10)

We can see that this solution is regular at r =31 for ¢; = —(10323/315392)3 and
tends to a finite constant. The regular solution is given by

‘ﬁ%ﬂ% r13 1 205750648 119 — 27625320712 [ + 87480180 7 12

— 11970972071% 13 — 1223408772 I* + 285056136 12 I5 — 414630720 " °
+ 25297358478 17 — 12114323375 18 + 2142175127% [° — 107560436 3 11°
— 18483500072 I*! — 95831007 ['2) / 15 (r+ 13 (r — M
76737 8 r+1
1 .
* 157696005 (r — l) s (B.11)
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The asymptotic behavior, i.e., at 7 — o0, is

10323 8 3441 8 13419918 = 34675 1%8
H ~ 3 oy s e e . .
")~ 8560175 T ToTizss | Iresart T qomiz s Tt (B12)

Stenzel metric

The Stenzel metric on 7*S* is given in the main text by eq.(27) and Xj is given by eq.
(30). We now look for solutions to (6), with m = 0 Assuming that H only depends
on the coordinate r, we find that eq. (6) takes the form:

(Vgh 2H'Y = (2m)*BXs\/g = (2m)*BXs sinh® 2r/216, (B.13)
This equation can be solved for H:
2 + cosh 2r) %4 cosh® r
H(r) = 216/]1(7') [( sinh}3 5 dr, (B.14)

where I1(r) is the first integration of H; and is given by

sinh® 2r
(27T)4ﬂ/ W Xg dr.

5
_—276ﬁ48 (—715906 cosh? 2r — 1660504 cosh 27 + 72432 cosh® 2r

489417 cosh® 2r + 7660840 cosh® 2r 4 4778536 cosh® 2r

1920696 cosh” 2r + 7506142 cosh* 2r + 3485960 cosh® 2r

4770 cosh™ 2r — 587631) /[(cosh 2r + 2)*(cosh 2r + 1)°]

+ a (B.15)

Il(’f')

+ + +

The solution Eq.(B.14) for H has a small r expansion:
2053 31/4 2053 14 -
Hr)~{ - (1024 ) AT R
20583 145 ﬂ] yan [ 641 (2050 536587 11/4 4
[40 (1024 te ) 21 | 3T | "1es0 \To2a T Tz } ST
...}+c. (B.16)

Note that the solution at r =0 is regular if ¢; = —2055/1024 and tends to a finite
constant. We also see that this exactly agrees with the condition I;(0) = 0. Indeed,
for this specific choice of ¢; the integration in Eq.(B.14), can be performed exactly
by redefining the coordinate r as 2 + cosh 2r = y*. In terms of the new coordinate y
we find

7995v/2
H(y) =62———123\/2_—ﬂF(ar sin (— )|—1\+5\g;§5

+ 9224385 3% — 16750755 32 + 18533340 y2® — 12563700 y2* + 4910886 3y*°
— 850770 y*® —29300y? + 293404 — 141759 + 6237) / (y* —1)1/2415 (B.17)

(383760 yy** — 2839824 y*°
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where c¢; is an integration constant, and F'(¢|m) is the incomplete elliptic integral of
the first kind, i.e.,

F(lm) = /0 ®(1 = m sin® )1/ . (B.18)

For large r the solution can be expressed as

205 6 1031806%*° g

(r) ~ 243-10—6 1003833 53473 + ... + c2, (B.19)

where p is the proper distance defined as hdr = dp. We can see that there is no
divergence at large distance and the M2-brane has a well-defined ADM mass.
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