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Abstract

A superembedding construction of general non-abelian Born-Infeld actions in three dimensions
is described. These actions have rigid target space and local worldvolume supersymmetry (i.e.
kappa-symmetry). The standard abelian Born-Infeld gauge multiplet is augmented with an
additional worldvolume SU(N) gauge supermultiplet. It is shown how to construct single-trace
actions and in particular a kappa-supersymmetric extension of the symmetrised trace action.



1 Introduction

In this paper we use the superembedding method to give a construction of non-abelian brane
actions of Born-Infeld type. The superembedding construction guarantees that these actions
have manifest local worldvolume supersymmetry (or kappa-symmetry) as well as the rigid su-
persymmetry of the flat target space. One such action has been constructed before for the case
of coincident D-particles [1]. In this case the worldvolume gauge field strength vanishes since
the worldvolume is only a one-dimensional worldline.

There has been much discussion in the literature of possible generalisations of abelian Born-Infeld
theory to the non-abelian case. This has largely been motivated by the fact that the effective
action of coincident D-branes in type II superstring theories is some non-abelian generalisation
of the Born-Infeld action. One proposal for this generalisation is to keep the form of the abelian
action but replace the U(1) field strengths with U(NV) field strengths and then take a symmetrised
trace over the orderings of the different field strengths at each order [2]. This correctly reproduces
the F* terms calculated from string scattering amplitudes but fails at higher orders in the field
strengths [3, 4, 5]. In [6] another approach to constructing non-abelian Born-Infeld actions
was considered using a generalisation of the partially broken global supersymmetry approach to
constructing abelian Born-Infeld actions with linear and non-linear supersymmetry [7, 8, 9].

A different approach to constructing the non-abelian Born-Infeld action has been developed in
refs [10, 11, 12] while attempts to find it using ten-dimensional supersymmetry have been given
in refs [13, 14, 15] and in ref [16].

Space-filling branes have been considered from the perspective of superembeddings in [17, 18,
19, 20]. The Green-Schwarz action for the space-filling membrane was constructed in [19]. In
section 2 we give a brief summary of this method applied to the construction of the abelian
Born-Infeld action. In section 3 we show how to generalise this action in the presence of a non-
abelian worldvolume SU(N) gauge supermultiplet. By assumption this multiplet is described by
a 2-form, F, satisfying the standard Bianchi identity DF = 0. We then consider actions which
involve the U(1) and SU(N) fields in such a way that they combine into a single U(N) field
strength. We concentrate on Lagrangians which have the form a single trace of some function of
these field strengths. Our method is similar to that used in [21] to construct kappa-symmetric
higher derivative terms in brane actions. The essential idea is to construct a closed worldvolume
Lagrangian form using the abelian and non-abelian worldvolume fields.

2 Abelian action

In this section we give a brief review of the superembedding construction of the abelian Born-
Infeld action for a supermembrane in flat N = 2 three dimensional superspace [19].



2.1 Superembedding formalism

We consider a superembedding, f : M — M. For the purposes of this paper the target space,
M, will always be flat. Our index conventions are as follows; coordinate indices are taken from
the middle of the alphabet with capitals for all, Latin for bosonic and Greek for fermionic,
M = (m,u), tangent space indices are taken in a similar fashion from the beginning of the
alphabet so that A = (a,a). The distinguished tangent space bases are related to coordinate
bases by means of the supervielbein, Ep*, and its inverse E4M. Coordinates are denoted
zM = (z™,6*). We use exactly the same notation for the target space but with all of the indices
underlined. Target space forms are written with an underline, e.g. H. Their pullbacks are
written without an underline, f*H = H.

The embedding matrix is the derivative of f referred to the preferred tangent frames, thus
EAA = EAMBMZMEMA. (1)
This tells us how to pull back target space forms onto the worldvolume,

f*EA=EAE 4 (2)

The basic embedding condition is

E2=0. 3)
Geometrically, this says that at each point on the brane the odd tangent space of the brane is a
subspace of the odd tangent space of the target space. In general, this condition gives constraints
on the superfields describing the worldvolume theory. For codimension zero, however, it can be
enforced without loss of generality as discussed in [19].

The worldvolume multiplet is described by the transverse target space coordinates considered as
superfields on the worldvolume. For the space-filling membrane we embed an N = 1 superspace
into an N = 2 superspace of the same bosonic dimension. Thus, in the absence of further
constraints, our worldvolume multiplet is an unconstrained spinor superfield. This superfield,
being associated with the breaking of one of the supersymmetries, is referred to as the Goldstone
superfield.

The dimensions of the coordinates z and € are —1 and —% respectively while the worldvolume
superspace derivatives D,, D, have dimensions +1 and —i—-é- respectively. In the superembedding
context it is natural to take the bosonic component of the gauge connection A, to have dimension
—1 so that the non-abelian field strength two-form should be defined by F = dA + 51,-A2 (where
o' has dimension minus two). The purely even component, Fy;, has dimension zero.

2.2 Space-filling membrane

We now specialise to the membrane in flat three-dimensional N = 2 superspace [19]. The
bosonic indices for the worldvolume and target space may be identified since we are considering
a space-filling brane. The fermionic target space indices are written o = ai where i = 1, 2 since
we embed an N = 1 superspace into an N = 2 superspace. The index « is a real, two-component
Majorana spinor index. The internal index 4 is an SO(2) index.



Background forms

The Neveu-Schwarz 3-form field strength H and the Ramond field strengths G, and G, satisfy

the Bianchi identities,
dH = 0, dg2 =0, dg4 = Q2ﬂ (4)

A solution to these equations in flat space is given by forms whose non-zero components are
Hoigje = —1(Ye)ap(m)ijs  Gaigi = —t€aptijs  Gaipjed = —4(Ved)op(T3)ij- (5)
The field strengths G, and G, are related to the potentials C; and C5 by

G, =dC,, G,=dC3—C;H. (6)

The components of the Ramond potentials C'; and C5 depend on the target space coordinates
and can be expressed, in a particular gauge, in terms of 22 only. When the brane is embedded
into the N = 2 target superspace #°2 becomes the Goldstone superfield in the static gauge.

Worldvolume Supergeometry
We parametrise the odd-odd part of the embedding matrix as follows

E/f' =68 and E,P?=h/°. (7

where hqg = keqg+ha(7®)ap In addition we can set the even-even part of the embedding matrix
to be trivial, E,% = 6,°, since the bosonic dimensions of the brane and the target space are the
same. We denote the worldvolume superspace derivatives in the embedding basis by

Dy = EAMBM (8)

We can now calculate the worldvolume torsion by pulling back the standard flat target space
torsion. As noted previously for the case of space-filling branes, we do not have to introduce a
worldvolume connection [19, 17, 18] so that

[D4,Dp] = ~TasDc . (9)

The dimension zero component of the worldvolume torsion is

Top® = =i(1")apmms”, (10)

where
map = (1 + K + h*)ap — 2hahs, — 2eabckh’. (11)

The other components of T,4g€ can be found straightforwardly but we shall not need them in
this paper.



To describe the worldvolume multiplet we introduce a worldvolume 2-form F (the modified field
strength). This is satisfies the Bianchi identity

dF = —H, (12)

where H is the pullback of H onto the worldvolume. To get the required worldvolume N = 1
Maxwell multiplet we impose the standard F-constraint Fog = Fop = 0. The constraint Fap =10
tells us that we have an N = 1 Maxwell multiplet on the brane as well as the Goldstone fermion
of the embedding, while the constraint F,; = 0 eliminates one of these spinor superfields in
terms of the other. This leaves us with just the degrees of freedom associated with the (off-shell)
Maxwell multiplet. The Bianchi identity then gives a formula for F,;, in terms of the degrees of
freedom of the embedding. We find that k = 0 and Fup = €pF€, where

Fa= 14 A2

(13)

The h,” field in the embedding matrix is therefore related to the field strength tensor of the
Maxwell multiplet in a non-linear fashion.

Action

To construct an action we start with the closed Wess-Zumino 4-form [22], defined on the world-
volume by Wy = G4+ G2F, where G2 = f*G, and G4 = f*G,. By construction we can write the
Wess-Zumino form explicitly as W, = dZ3 where Z3 = C3 + C1.F and C; = f*C;, Cs = f*C;.
The components of Z3 depend explicitly on the target space coordinates.

Since W} is a form of degree one higher than the bosonic dimension of the worldvolume, the fact
that it is. closed implies it is exact and we can write Wy = dK3. The components of K3 do not
explicitly depend on the target space coordinates. The Lagrangian form for the abelian action

is then
¥ = gy — z,, (14)

and is closed by construction. We can solve Wy = dKj3 for K3. We find its only non-zero
component is given by

1—h2
Kape = €ape K, where K = 17w (15)
Given the relation (13) between h, and F, we find that K has the standard Born-Infeld form,
K = \/—det (nas + Fap) = V1 — 72, (16)

where F2 := F°F,. The top component of the Lagrangian form is Lgb(cl) = €apc LU where

LY = (K — Z). The first term, K, is the Born-Infeld part and the second, Z, is the Wess-
Zumino term. We convert into the coordinate basis using the even-even component of the
worldvolume vielbein E,,%.

Finally, the Green-Schwarz action for the brane is defined by

§U) = / d3z (det B)LV™), (17)
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The superfields in the integrand are evaluated at & = 0. The closure of Lg () ensures that this
action is invariant under general diffeomorphisms of the worldvolume. The odd diffeomorphisms
are identified with kappa-symmetry as described in [22].

3 Non-abelian actions

In this section we consider ways of generalising the approach of the previous section in the
presence of non-abelian worldvolume fields. We start by considering the general structure of
such Lagrangians and then show how to construct non-abelian Born-Infeld Lagrangians.

3.1 General structure of non-abelian actions

We now discuss possible generalisations to the abelian Born-Infeld action. We look for La-
grangians which are functions of a non-abelian field strength, F', taking values in the Lie algebra
of U(N). We take a similar point of view to [1] whereby we look for actions which are in-
variant under a single kappa-symmetry and regard any other kappa-symmetries to have been
gauge-fixed. This is in contrast to [23] where the parameter of the kappa-symmetry is taken to
trasform under the adjoint representation of U(N) adjoint. This adjoint kappa-symmetry was
shown to be inconsistent after a certain order in the field strengths [24]. Accordingly, we keep
the picture of a single brane embedded in a flat target space but introduce an extra worldvolume
SU(N) field strength, F and construct Lagrangians which are functions of # = F1 + F.

Our main interest in these actions arises from the fact that the effective action of coincident
D-branes in type II string theories is some generalisation of the abelian Born-Infeld action which
is invariant under two target space supersymmetries and one local worldvolume supersymmetry
(kappa-symmetry). As such we shall restrict our attention to actions which take the form of a
single trace of some function of the worldvolume fields.

We recall that in three dimensions we can write the pure F terms of the (super) Born-Infeld
Lagrangian as (16),

o0
V=det (as + Fap) = V1= FaFo = Y caFo, FO... oy Fon. (18)

n=0

This Lagrangian can be defined as the effective Lagrangian given by open strings ending on
a D-brane excluding derivative corrections. One ambiguity in passing to the non-abelian case
is that one can exchange terms with antisymmetric pairs of covariant derivatives with terms
involving commutators of the field strength, using the relation o' V[aVb]ﬁ’cd ~ [Fap, Frg]. (The
explicit o' is a consequence of our definition of F' in section 2.1.) We use the term derivative
corrections to refer to terms with derivatives which cannot be cast into commutator form. The
pure F terms in any non-abelian generalisation can then be written as

Stry/ 1L — FFre + commutator terms + derivative corrections, (19)



where the U(NN) field strengths are denoted by Fyp = €gp. ¢ and Str denotes the symmetrised
trace. The symmetrised trace part can be written as

[ ¢}
Y cpfuRifRe  ponlan-iflape po (20)
n=0

where the coefficients c,, are the same as those in the abelian case and Dg, .. g,, = Str(TR,....Tg, ).

Any terms with commutators, including any pure F' terms of odd powers, vanish in the abelian
limit, while the symmetrised trace part reduces to the usual abelian Lagrangian.

3.2 Superembedding construction of non-abelian actions

To construct actions of the type discussed above, we use a similar method to that used to
construct kappa symmetric higher derivative terms in brane actions [21]. We introduce non-
abelian fields onto the worldvolume and construct another closed Lagrangian 3-form L3 out of
these fields by specifying its lower-dimensional components and solving dL3 = 0 [25, 26].

The U(1) multiplet is given by a 2-form field strength F satisfying the modified Bianchi identity
dF = —H. We shall assume that the non-abelian fields are given by a worldvolume SU(N)
2-form field strength F = dA + %AZ, F = FEtg, where the tp are the generators of the Lie
algebra of SU(N). The 2-form F satisfies the standard Bianchi identity,

DF =0. (21)

We construct the Lagrangian form from the components of this 2-form along with the abelian
field 7 introduced in the previous section. We shall combine these in such a way as to define a
Lagrangian whose purely bosonic part is a function of Fy, = F,,1 + F,;. For this reason we drop
any terms with fermions in the action but it is possible to calculate these terms straightforwardly
from the equations given below.

In components the Bianchi identity for F' (21) reads

ViaFsc) + Tas Fipjo) = 0. (22)
where V4 =Dy + A, is the SU(N) gauge covariant derivative, with A4 being the components
of the gauge potential one form, A.

We can take F,g = 0 without loss of generality by shifting the bosonic part of the potential.
The solution to the Bianchi identity is then

Fop =0, (23)
Fop = m—1b6(7c1/))a’ (24)
Fy = im_lacm_lbdecde(fye)“ﬁVa'zlz,s + 1) terms (25)

where we have used the fact that the dimension zero component of the worldvolume torsion is
given by
Tog® = —ima®(1Nap  With  mgs = (1 + h%)70s — 2hahe. (26)



We can use the field 1, = ¥tg to construct the closed Lagrangian three form L3 which we
require for our action.

The top component of Lg, i.e. L4, can be written as Ly, = €gp.L. This defines a kappa-
invariant action in the same way as (17),

S= / # (det E)L. (27)
A shift of the form Ly — L3 + dX5 leaves the action S unchanged and this allows us to set
Lagy =0. We can also use this freedom to set the antisymmetric part of ('Yb)aﬂ Lagc to zero.

In components dL3 = 0 reads
DiaLpop) + 3Tia8" Ligicp) = 0- (28)
Using this and the above constraints on L3 we find that

Laﬂc = ’im_lcd(")’d)aﬂLo. (29)

The idea is then to choose L, to be a suitable function of the abelian and non-abelian world-
volume fields and use the closure of L3 (28) to compute the remaining components of L3 and
hence the action (27).

For now we ignore derivative corrections in the action. We therefore include no explicit a's in
L,. Since L, has dimension —1 and the only negative dimension field on the worldvolume is %%,
with dimension —%, we can take L, to be given by the formula

Lo = itpfh (Jose® + Ths(12)P) + pipp0y.... (30)

Here J3g,J5¢ are functions of the dimension zero worldvolume fields, Fp, Fop-

The other components of Lz are then given by (28). We obtain

Logy =0, (31)
Laﬂc = im_—lcd('Yd)aﬁLoa (32)
Labe = m™%m ™ feqea (7)o’ D Lo + 1p terms, (33)
Labe = i€apc(det m ™) Dy DL, + 1 terms. (34)

We see from the final equation that the Lagrangian L is then determined up to v terms by
acting with derivatives on L,. We ignore the 1) terms for now as we are interested in the pure
F contribution to the Lagrangian. The terms which have only Fgp = €34 F ¢ and Fgp = €45 F€
are those where the two derivatives in (34) each act on one of the y)s in L,. To calculate the
Lagrangian the relevant equations are

L = i(det m~1)D,D*L, + 1 terms, (35)
F® = i(det m™)my®(v?)* Vaipp + ¢ terms. (36)



We can absorb the factors of det m~! into L, and ¢ at the expense of generating more 1) terms
by defining the quantities

Yo = (detm ™ )eho (37)
and ) i
Lo = (det m™")Lo = ithgnp (Jh5€™ + Ts(7a)*P) + Popepd... (38)
The equations now read
L =iDyDLy + ... (39)
Fem1b = i(v") Vot + 9... (40)

Since L, is a gauge scalar we can replace D with V in the above equation (39). Employing (40)
and noting that the antisymmetric part of V415 gives rise to fermion terms we find

L= F“RFbSm_lacm_lbd(ncdjﬁs - ecdejﬁs) + 1/; (41)

The second term involves commutators of F'* since the anti-symmetric contraction of the Lorentz
indices on the F's implies antisymmetry of the gauge indices. We call this term L4. The first
term is symmetric in Lorentz and gauge indices and we call this Lg. We shall combine Lg with
pure F part of the abelian Lagrangian, K, to give the symmetrised trace term of the non-abelian
Born-Infeld Lagrangian. The second term, L4, can be used to construct arbitrary commutator
terms.

The full kappa-invariant action for the non-abelian brane is
SUMN) = ST 4 g, (42)

each term being separately kappa symmetric.

Expanding these terms we have

SV = /dam (det B)(N(K — Z) + Ls + L4 + % terms). (43)

We now explain how the two terms, Lg and L4, can be used to construct respectively the sym-
metrised trace part and arbitrary commutator terms in the non-abelian Born-Infeld Lagrangian.

Symmetrised trace Lagrangian

The first term in (41) is

LS — FaRFbSm_lacm_lbd"]cdjloaS (44)
dhahy Y =
_ paRpbs 1 alp 2,
= PP oy (e + ) s (45)
1 FuFo \ -
__ reR bS a’b 0
= Ry (e + ) Ths (46)
= FeRF (ngy(1 - F) + FoFy ) Ans. (47)



In the last line we have absorbed a factor of (1 — h2)~2 by defining Ags = Jgg(1 — h?)~2
To look for a symmetrised trace solution we require

NK + Lg = Stry/—~det (11 + Fp), (48)
ie.

NVI— 72 +5tr (F“F” (na,,(1 -7+ fa]-'b)A) = Stry/1 — (Foll + Fy)(FoL + F9). (49)

The first term on the left hand side is the purely abelian contribution, the second being the new
non-abelian parts of the Lagrangian. A is an N x N matrix which will be a power series in the
SU(N) generators tg. We have

A = Agll + AStg + ATttty + ...

(50)
where each coefficient function is symmetric. The tensor Ags is then given by
Aps = 6psAo + drsT AT + dpsTu ATV + ... (51)
Equation (49) can now be solved for A. We introduce the variables
X = FoF°1, Y = /P Z =F,F°. (52)
The equation now reads

Str (\/ﬂ + (Z(]l - X) + Y2)A) = Stry/1 — (X +2Y + Z). (53)

If we expand out the square root on the right hand side we notice that the trace will kill terms
which are linear in Y and have no Z. These terms can be written explicitly as

(54)
If we explicitly remove these terms from the equation we find that A is given by

VI-X+ (Z(n—X)+Y2)A=\/11—(X+2Y+Z)+Y(11—X)—%.

(55)

We do not have to worry about the ordering of the non-abelian quantities Y and Z because

under the symmetric trace operation everything effectively commutes. This equation defines A
as a Taylor expansion in X,Y, Z about X =0,Y =0,Z =0,

o0
A= Y amaXY™Z"

I,m,n=0

(56)



Note that this would not be the case if the relative value of the coefficients in equation (49) were
different. The existence of a non-singular solution to this equation shows that this construc-
tion can be used to obtain a supersymmetric, kappa-invariant action whose pure ¥' terms give
the symmetrised trace non-abelian Born-Infeld Lagrangian. The first few terms in the Taylor
expansion of A are

— 1 3 1 1 15 v 2 5
A=-l1-3x-1ly_1lz_Bbx?_ Sxy

9 9 (67)
—W?-EXxz-3vZ-£7%+ ..
This solution corresponds to the following expression for Apg in equation (47):
1 3.0 15 _,
Apg = 2{5Rs(1+2.7:+8.7: +)
5
+ drsT (faF“T + E.szaF“T +.. )
1 5
+ drsTU (ZF[{‘ FoU 4 ZfaF“T.FbF”U + gﬂF;-”FaU +.. ) (58)
+drsTUv (%faF“TFbU FV oy . )
1
+drsTuvw (gFEFaUF;/FbW +.. ) +.. }
where drgr = Str(trisir) etc. are the SU(N) d-symbols.
Commutator terms
To obtain commutator terms we use the second term in equation (41),
La=—FBFSm=1 om e 4o d%s. (59)
If we define A%g by J&g = (det m)m~1,2A% . then we find
La=—FRpbSe, A% (60)

We can now choose A% to be any function of the U(N) field strength £ = F¢ + F°1 so as to
incorporate any desired commutator terms in the Lagrangian. For example at order £ in the
Lagrangian we can have

Ags = —F7 frsr, (61)
which gives a term in the Lagrangian of the form,
TeFeFb Feyp, = TrEoEt Foe,y,. (62)

At order F** in the Lagrangian we can have

fis = —<““F] F frsrf uv, (63)
which gives a term in the Lagrangian of the following type,
Tx[Fe, FO)[F,, Fy) = Tx[F®, Fb)[F,, Fy). (64)
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Full action

In summary the full action we have constructed is as follows:

SUW) — /dsz(det E) (NLU(I) + Lg + L4 + 9 terms). (65)

We have shown that Lg can be chosen such that the purely bosonic parts of the first and second
terms combine to give the symmetrised trace Lagrangian and that L4 can give any choice of
commutator terms for ¥ including those with odd powers of F'. We therefore have

SUWN) = / d3z(det E) (Str\/ —det (9gp1l + Fyp) — NZ + commutator terms + 3 terms), (66)

where the superfield integrand is evaluated at & = 0 as usual. The kappa-symmetry of this
action is guaranteed by the fact that it is constructed from the sum of two closed forms (the
abelian one and the new one).

4 Conclusions

In this paper we have shown how to construct a manifestly kappa-symmetric non-abelian action
for the space-filling brane in three dimensions. The invariance under a single kappa-symmetry
is equivalent to the local worldvolume supersymmetry of the system in the superembedding
picture.

The basic idea is to extend the abelian action by adding a new invariant involving an SU(N)
worldvolume gauge supermultiplet in such a way that the resulting action is a single trace over
a function of the U(NN) field strength. The SU(N) field strength multiplet is described by a
spinorial superfield % of dimension —1/2 which allows one to construct a closed Lagrangian
3-form from a scalar superfield, L,, of dimension —1. Note that, in three dimensions, the
Wess-Zumino term is the same as in the abelian case. This means that the SU(N) part of the
non-abelian Born-Infeld action comes entirely from L, and is not determined by the WZ term.
In higher dimensions the latter will have non-abelian contributions and this will necessitate a
slightly modified approach to the problem.

We note that kappa symmetry (and target space supersymmetry) does not determine the non-
abelian action uniquely, at least in the model under consideration. The symmetrised trace
contribution seems to be fixed but it is possible to add many different commutator terms as we
have seen. For each of these actions our method guarantees supersymmetry and the fermion
contributions could be worked out straightforwardly. However, we have not worked these out
in detail. It might be that the structure of these terms could imply further restrictions on the
form of the action.

If we include derivative terms in the functions Agrs of equation (47) and A%g of equation
(60) we can produce derivative corrections in the Lagrangian. Such terms would be invariant
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independently of the action constructed above in equation (66)and would in some sense be
analogous to those found in [21] using a similar procedure.

It should be easy to generalise the discussion in this paper to a 2-brane embedded in a curved
N = 2,D = 3 supergravity background. This would modify the background curvatures but
would not substantially alter the procedure for obtaining the non-abelian Born-Infeld action,
althought there would clearly be couplings to the supergravity fields. We could also look for
terms involving higher derivatives of the background curvature [27]. However, the dimension of
spacetime is too low for there to be background curvature corrections to the Wess-Zumino term
of the type found in [28, 29].

It should also be possible to dimensionally reduce the action (66) in different ways. For example,
reducing the worldvolume to a worldline would give an action describing a D-particle moving in
three spacetime dimensions while double dimensional reduction followed by a reduction of the
worldvolume to a worldline would allow a comparison with the results of [1].

Acknowledgements

This article represents work carried out under EU contract HPNR-CT-2000-0122 and which was
also supported in part by PPARC through SPG grant 68 and by VR grant 5102-20005711.

References

[1] D. Sorokin, Coincident (Super)-Dp-Branes of Codimension One, hep-th/0106212.

[2] A. A. Tseytlin, On non-abelian generalization of Born-Infeld action in string theory, Nucl.
Phys B501 (1997) 41, hep-th/9701125.

[3] A. Hashimoto, W. Taylor Fluctuation Spectra of Tilted and Intersecting D-branes from the
Born-Infeld Action, Nucl.Phys. B503 (1997) 193-219, hep-th/9703217.

[4] E. A. Bergshoeff, M. de Roo, A. Sevrin, On the supersymmetric non-abelian Born-Infeld
action, Fortsch.Phys. 49 (2001) 433-440; Nucl.Phys.Proc.Suppl. 102 (2001) 50-55, hep-
th/0011264.

[5] A. Sevrin, J. Troost, W. Troost, The non-abelian Born-Infeld action at order F8, Nucl.Phys.
B603 (2001) 389-412, hep-th/0101192.

[6] S. Ketov, N=1 and N=2 Supersymmetric Non-Abelian Born-Infeld Actions from Super-
space, Phys.Lett. B491 (2000) 207-213, hep-th/0005265.

(7] J. Bagger and A. Galperin, A new Goldstone multiplet for partially broken supersymmetry,
Phys. Rev. D 55 (1997) 1091, hep-th/9608177.

(8] M. Rocek and A. A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained
superfields, and 3-brane actions, Phys. Rev. D 59 (1999) 106001, hep-th/9811232.

12



[9] E. Ivanov and S. Krivonos, N = 1 D = 4 supermembrane in the coset approach, Phys. Lett.
B 453 (1999) 237, hep-th/9901003.

[10] P. Koerber and A. Sevrin, The non-Abelian Born-Infeld action through order o3, JHEP
0110 (2001) 003, hep-th/0108169.

[11] P. Koerber and A. Sevrin, Testing the o3 term in the non-abelian open superstring effective
action, JHEP 0109 (2001) 009, hep-th/0109030.

[12] P. Koerber and A. Sevrin, Getting the D-brane effective action from BPS configurations,
hep-th/0112210.

[13] M. Cederwall, B. E. Nilsson and D. Tsimpis, D = 10 super-Yang-Mills at O(c/?), JHEP
0107 (2001) 042, hep-th/0104236.

[14] M. Cederwall, B. E. Nilsson and D. Tsimpis, Spinorial cohomology and maximally super-
symmetric theories, JHEP 0202 (2002) 009, hep-th/0110069.

[15] M. Cederwall, B. E. Nilsson and D. Tsimpis, Spinorial cohomology of abelian d = 10 super-
Yang-Mills at O(c'3), hep-th/0205165.

[16] A. Collinucci, M. De Roo and M. G. Eenink, Supersymmetric Yang-Mills theory at order
o3, hep-th/0205150.

[17] I. Bandos, P. Pasti, A. Pokotilov, D. Sorokin, M. Tonin, The space-filling Dirichlet 3-brane
in N=2, D=4 Superspace, Nucl.Phys.Proc.Suppl. 102 (2001) 18-25, hep-th/0103152.

[18] V. Akulov, I. Bandos, W. Kummer and V. Zima, D=10 super-D9-brane Nucl.Phys. B527
(1998) 61-94, hep-th/9802032.

[19] J. M. Drummond and P. S. Howe, Codimension Zero Superembeddings, Class. Quantum
Grav. 18 (2001) 4477-4492, hep-th/0103191.

[20] S. F. Kerstan, Supersymmetric Born-Infeld from the D9-brane, hep-th/0204225.

[21] P. S. Howe and U. Lindstrém, Kappa-symmetric higher derivative terms in brane actions,
Class. Quant. Grav. 19 (2002) 2813-2824. hep-th/0111036.

[22] P.S. Howe, O. Raetzel and E. Sezgin On brane actions and superembeddings JHEP 9808
(1998) 011, hep-th/9804051.

[23] E. A. Bergshoeff, M. de Roo, A. Sevrin, Non-abelian Born-Infeld and kappa-symmetry,
J.Math.Phys. 42 (2001) 2872-2888, hep-th/0011018.

[24] E. A. Bergshoeff, A. Bilal, M. de Roo, A. Sevrin, Supersymmetric non-abelian Born-Infeld
revisited, JHEP 0107 (2001) 029, hep-th/0105274.

[25] S. J. Gates, Ectoplasm has no topology: The prelude, hep-th/9709104.

13



[26] S. J. Gates, M. T. Grisaru, M. E. Knutt-Wehlau and W. Siegel, Component actions from
curved superspace: Normal coordinates and ectoplasm, Phys. Lett. B 421 (1998) 203, hep-
th/9711151.

[27] C. P. Bachas, P. Bain and M. B. Green, Curvature terms in D-brane actions and their
M-theory origin, JHEP 9905 (1999) 011, hep-th/9903210.

[28] M. B. Green, J. A. Harvey and G. W. Moore, I-brane inflow and anomalous couplings on
D-branes, Class. Quant. Grav. 14 (1997) 47, hep-th/9605033.

[29] Y. K. Cheung and Z. Yin, Anomalies, branes, and currents, Nucl. Phys. B 517 (1998) 69,
hep-th/9710206.

14






