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Abstract

A hitherto open probiem of the mathematics of foams asks : are the
cell pressures in a (structurally) periodic foam in equilibrium necessarily
periodic 7 We supply a proof that this is so. We also describe a model in
which external forces can introduce a pressure gradient.

Introduction Among a long list of oper problems of the mathematics
of foams which has been compiled by F. Morgan, J. Sullivan and collab-
orators [1], one concerns the cell pressures in periodic foams. It seems
obvious that if the structure of a foam in equilibrium is periodic, so that
in particular differences of pressures between periodic cells are periodic,
then the pressures themselves must be periodic. But it appears that a
proof of this reasonable assertion has not yet been provided. We do so
here. For reasons which will become clear, we should add to the conjecture
“in the absence of external forces such as gravity”.

Periodic foam We shall use the language of three dimensions, but
the analysis does not really depend upon the dimension of the foam. We
consider a foam whose unit cluster, which contains bubbles ¢ = 1...N,
is repeated periodically with lattice vectors @y, d3, @s, thus tiling space.
The bubble pressures are not taken to be periodic, so that they may be
written

pi(n1,n2,n3). (1)
Here n1, na, ns define the unit cluster in which bubble ¢ resides, according
to the translation by a combination of lattice vectors d;:

n1d1 + ne ds + ns ds (2)

of the reference unit cluster {0,0,0). We seek to prove that p; is inde-
pendent of {n1,n2,n3), that is, it is periodic, We do this by deriving an
expression for the total force on a unit cluster, which must be zero in
equilibrium.



Locally, all pressure differences must accord with the Laplace Law,
that is the pressure difference between two bubbles is given by

40
Ap= — (3)
r
where 7 is the radius of mean curvature of the boundary which separates
two neighbouring bubbles. Since r is a structural constant, it is periodic
and so all such pressure differences are periodic.

Proof of conjecture Consider the set of pressures in the reference
cell (0,0,0) and some other cell (n1,n2,ns). By focusing attention on two
neighbouring bubbles, indexed by ¢ and 7, we can see that their pressures
must differ from one unit cluster to the other by the same constant

p,‘(0,0,0) - pi(n17n21n3)+c(n1,n27n3) (4)
pi(0,0,0) = p;(n1,n2,n3) + c(n1,n2,n3) (8)

by the Laplace condition, provided that bubbles ¢ and j are neighbours.

But by “stepping” through the unit cluster it is clear that this extends to
all of its constituent bubbles (which are assumed to be connected). We
write ¢; = ¢(1,0,0),c2 = ¢(0,1,0) etc.

It is convenient at this point to consider a particular construction for
the unit cluster. We take the primitive {Bravais) cell of the lattice, and
assign those bubbles that overlap the boundary to a primitive cell. To
make contact with the above, the unit cluster of bubbles is defined in
such a way that all bubbles in cell (0, 0,0) which intersect the boundaries
are assigned to cell (0,0,0), (1,0,0), (0,1,0) or (0,0,1) consistently (cf.
Figure 1).

We now consider the total force on the contents of the primitive cell
by examining the forces which act on its surface. By periodicity, surface
terms make zero contribution, the individual contributions cancelling on
opposite faces. By the above result for pressures, pressures on opposing
faces of the ceil differ by a constant ¢;, ¢z or cs. Hence the total force due

to these is . . .

F = e1by + egba +c3bs (6
where b; are the reciprocal lattice vectors which correspond to @;, accord-
ing to

b = (_l'j X t_l'k. (7)
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Figure 1: Equivalent bubbles on opposite sides of the cell are related through
translation by a lattice vector @;. Their pressures are related by an additive
constant ¢; which depends, a priori, on the lattice vector.



Figure 2: Two-dimensional example of a foam “loaded” by the weight of its
Plateau borders.

Now the contents of this primitive cell are entirely in local equilibrium,
that is they are in equilibrium under the total external force. So their
combination must be so. There is no other external force to balance F,
therefore the force is zero:

F=40. (8)
Since the B; are linearly independent, we must have that ¢, co and cs are
zero; therefore pressures of equivalent bubbles are equal in neighbouring
cells, and hence in all cells. This is what we were required to prove.

Remarks Despite this result, it is interesting to consider the hypothet-
ical case in which ¢, c2, ca are not zero, and there is a constant pressure
gradient defining the variation from one cell or unit cluster to the next,
so that

e(n1,nz,n3) = c1 n1 + cana + cana. (9)

We have shown that a foam which is in equilibrium in the absence of
external forces cannot have this property, but an external force may be
introduced to make it possible. In particular, our own work on drainage
has led us to define the following (“loaded foam”) model.

In the loaded foam, a uniform gravitational force (per unit length)
acts downward on all of the edges which represent Plateau borders. In
this case, the total weight force per unit volume may be balanced by
a pressure gradient of the kind discussed above. The effect upon the
structure is to change the angles at which the films intersect, with respect
to their equilibrium values. A simple 2d example is shown in Figure
2. We believe this model will be useful in the context of drainage, and
particularly in relation to drainage instabilities. We will present such an
analysis in a forthcoming paper [2].
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