Stark’s Conjecture and new Stickelberger
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Victor P. Snaith

Abstract

We introduce a new conjecture concerning the construction of el-
ements in the annihilator ideal associated to a Galois action on the
higher-dimensional algebraic K-groups of rings of integers in number
fields. Our conjecture is motivic in the sense that it involves the
(transcental) Borel regulator as well as being related to l-adic étale
cohomology. In addition, the conjecture generalises the well-known
Coates-Sinnott conjecture. For example, for a totally real extension
when 7 = —2,—4,—6,... the Coates-Sinnott conjecture merely pre-
dicts that zero annihilates K_s, of the ring of S-integers while our
conjecture predicts a non-trivial annihilator. By way of supporting
evidence, we prove the corresponding (equivalent) conjecture for the
Galois action on the étale cohomology of the cyclotomic extensions of
the rationals.

1 Introduction

In 1890 Stickelberger [42] proved what might be called the first “equivariant
motivic” result in number theory. Needless to say this aspect of Stickel-
berger’s Theorem was heavily disguised! Recall ([48] p.94) that one may con-
struct, from the values of the Dirichlet L-function, a Stickelberger element in
the rational group-ring of the Galois group of a cyclotomic field. Then the
product of the annihilator ideal of the roots of unity with the principal frac-
tional ideal generated by the Stickelberger element is integral and annihilates
the class-group. Since Galois groups are involved it is clear how the adjective
“equivariant” might be associated with Stickelberger’s Theorem. The purpose
of this paper is to explain the association with “motivic” and to introduce,
with supporting evidence, new conjectural Stickelberger-like phenomena.

In what follows, by a Galois representation of a field £ we shall mean a
continuous, finite-dimensional complex representation of the absolute Galois
group of F, which amounts to saying that the representation factors through
a finite Galois group G(F/FE) of a Galois extension F/FE.
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We begin with the Stark conjecture, which asserts that the function as-
signing to a Galois representation of number fields the value of a regulator
map divided by the leading term of the Artin L-function at s = 0 is always
algebraic and is Galois equivariant. Stark’s regulator is defined on K; of the
ring of algebraic integers.

We assume that the higher-dimensional analogue of Stark’s conjecture is
true — that is, replace K; by Ko, for r = —1,-2, -3, ... and the Dirichlet
regulator by the Borel regulator. Having posed this higher-dimensional Stark
conjecture in an earlier version of this paper I learned from David Burns that
it long ago been mentioned by B. Gross [17].

For a Galois extension F/E of number fields with abelian Galois group
G(F/E) we construct a “fractional ideal”, a finitely generated Z[1/2][G(F/E)]-
submodule Jz of the rational group-ring Q[G(F/E)], for each
r = —1,-2,-3,.... The construction of Jz is “motivic” in the sense that
transcendental techniques (Borel’s regulator, Deligne cohomology etc) and
l-adic techniques are involved in its construction and the derivation of its
properties (for example, Theorem 7.7).

When F/E is totally real and r = —1,—3, —5, . .. the L-values at s = r are
non-zero and in this case JF is equal to the higher Stickelberger ideal which
appears in the Brumer-Coates-Sinnott conjectures. We conjecture that J7
participates in a new Stickelberger phenomenon. Namely, for each odd prime
!l and a suitable Galois invariant set of primes S,

Conjecture 1.1
(annz,[g(p/E)] (TorsKi—2,(Ors) @ Zi) - TF) NZ; [G(F/E)]

C anng,¢(r/e)(K_2-(OFs) ® Zy).
Here anng,[q(r/g) (M) denotes the annihilator ideal of M.
The Quillen-Lichtenbaum conjecture relates K-groups to étale cohomol-

ogy, predicting that the l-adic Chern classes yield natural isomorphisms of
the form
K. 5 (Ors) ® Zi 2 Hi *(Spec(Op,s); Zi(1 — 7))
whene=0,1,r=-1,-2,-3,... and ! is an odd prime.
I believe that the validity of this conjecture follows from recent work of
Rost, Suslin and Voevodsky in which case Conjecture 1.1 is equivalent to the
following similar one involving étale cohomology.

Conjecture 1.2
(anngz,(g(r/ ) (Tors H (Spec(Or,s); Zu(1 — 1)) - T5) N Zi[G(F/E))]

C anng,jc(r/E) (H%(Spec(OF,s); Zi(1 —1))).



In this paper we shall verify the second conjecture in the case of abelian
extensions of the rationals. In fact, for this it suffices to treat the case of
cyclotomic fields (Theorem 6.2). Even this simple case reveals a new phe-
nomenon. Suppose that F/Q is a totally real, abelian Galois extension
and that r = —1,-3,-5,.... In this case the Coates-Sinnott conjecture
would predict that the higher Stickelberger ideal times the annihilator of
TOTSKl_g-,-(OF,SI) ® Z; lies in the annihilator of K_QT(OF’SI) ® Z;. How-
ever, when r = —2, —4, —6, .. . the Stickelberger ideal is zero and the Coates-
Sinnott conjecture becomes trivial but the conjecture which I have just in-
troduced does not.

The paper is arranged in the following manner. In §2 we recall the Stark
conjecture concerning the leading term at s = 0 of the Artin L-function and
the Brumer conjecture, a generalisation of Stickelberger’s theorem, concern-
ing the relation between the value at s = 0 of the Artin L-function and
the annihilator ideal of the S-class-group in an abelian extension of number
fields. In §3 we describe the analogues of the Stark and Brumer conjectures -
conjectures of Gross and Coates-Sinnott respectively - in which the algebraic
K-groups K; and K are replaced by Ki_o, and K_y, forr =—-1,-2,-3,....
In §4, assuming the validity of the higher-dimensional Stark conjecture, we
construct a finitely generated, Galois invariant subgroup - the fractional ideal
Jr - of Q[G(F/E)] where G(F/E) is an abelian Galois group of number fields
with F a CM field and E totally real. We verify that J7 is well-defined and
coincides with the higher Stickelberger ideal when the latter is defined and
non-trivial. In §5 we introduce a new conjectural relationship between J%
and the annihilator ideals of higher-dimensional algebraic K-groups (or étale
cohomology groups) of algebraic integers. In §6 we prove Conjecture 1.2, the
étale cohomology version of Conjecture 1.1, for cyclotomic fields. This is suf-
ficient to verify the conjecture for any abelian CM or totally real extension
of the rationals. In §7 we use the technique of ([41]; see also [40] Chapter 6
and 7) together with results from [2] and [5] to establish the technical results
which are needed in §6. §8 contains some concluding remarks about possible
generalisations and the naturality of the fractional ideal.

I am very grateful to David Burns, Dick Gross, Bernhard Koéck, Cristian
Popescu and Al Weiss for helpful discussions (it requires a lot of patience
to discuss number theory with a homotopy theorist!) and for showing an
encouraging interest in these results.

2 Some well-kknown conjectures

2.1 Let (r(s) denote the Dedekind zeta function of a number field F. The
analytic class number formula ([45] p.21) gives the residue at s = 1 in terms
of the order of the class-group of Op, the algebraic integers of F’, and the



Dirichlet regulator Ry(F'). Let dr denote the discriminant of F. In terms
of algebraic K-groups of O the class-group is equal to the torsion subgroup
TorsKo(Or) of Ko(Or) and the formula has the form

C (s) B 2r1+T27rT2R0(F)lT0’I'SK0(0F)I
resemn (rl8) = T pr e G

The Dirichlet regulator Ro(F'), which is a real number, is the covolume of
the lattice given by the image of the Dirichlet regulator homomorphism ([45]
p.25)
RY : OF = K1(Op) — R1H727L,

Here r; and 2r; denote the number of real or complex embeddings of F
respectively. Equivalently, by Hecke’s functional equation ([27], [45] p.18),
(r(s) has a zero of order 71 + ro — 1 at s = 0. Let (3(sy) denote the first
non-zero coefficient in the Taylor series for (& at s = sg. Therefore at s = 0
the functional equation yields

srqy _ i GF(S)  Ro(F)|TorsKe(Op)|
0= fm gritrz=1 = |TorsK:(Op)]

This form of the analytic class number formula prompted Lichtenbaum
[26] to ask: Which number fields F satisfy the analogous equation for higher-
dimensional algebraic K-groups

(F)|TorsK_o.(OF)|

* — ERr
Cp(r) =£2 |TorsKi_o-(OF)]

for r = —1,-2,-3,... and some integer ¢? Here R,(F) is the covolume of
the Borel regulator homomorphism defined on Kj_5,.(OFr) and to which we
shall return shortly. This identity has become known as the Lichtenbaum
conjecture and is known to be true in many cases [22].

Next we shall recall how Stark [45] refined the analytic class number for-
mula into a conjecture dealing with L%(0,V), the leading coefficient of the
Taylor series at s = 0 of the Artin L-function associated to a Galois repre-
sentation V of F [27].

Let X(F) denote the set of embeddings of F into the complex numbers.
Forr = —1,-2,-3,... set

Y.(F) = [[ (2mi)"Z = Map(Z(F), (271"5)‘.’2)
=(F)

endowed with the G(C/R)-action diagonally on X(F) and on (27i)~". If ¢
denotes complex conjugation co((. . . , (275) "y, . . Joex(r)) has (—1)"(271) "n,
in the co - o-coordinate. Therefore the fixed points of Y;.(F) under cp, denoted
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by Y,(F)*, correspond to elements {(27%) "1, }oex(r) such that (—1)n, =
Tiep-o- Hence if o(F) C R and 7 is odd then n, = 0. When r = 0 we define
Yo(F)* as the co-fixed points of

Yo(F) = Ker(a: ([[ Z) — Z)
B(F)

where a is the homomorphism defined by a((. .., 7, - . .)oes(F)) = Loen(F) M-
This discussion shows that the rank of Y;.(F)* is given by

T if r is odd,
rankzg(Y.(F)Y) =4 ri+r if r > 0 is even
ri+ra—1 ifr=0.

where |S(F)| = r; + 2ry and 7y is the number of real embeddings of F'.

Now let G(F'/E) denote the Galois group of an extension of number fields
F/E. Then, for g € G(F/E), let g((...,(27)™n,, .. )oex(F)) € Yz(F) have
(278)""n, in the o --g~!-coordinate. This defines a left G(F/E)-action on
Y, (F) which commutes with that of ¢ so that Y;(F)* is a Z[G(F/E)]-lattice.
The Dirichlet regulator homomorphism induces an R[G(F/F)]-module iso-
morphism of the form

R : Ki(Op) ® R = 0 @R = Yo(F)* @ R = R+ 71,

The existence of this isomorphism implies that ([37] §12.1, [45] p.26) there
exists at least one Q[G(F/E)]-module isomorphism of the form

for: Ki(OF) ® Q = Yo(F)* 2 Q.
For any choice of for Stark forms the composition

Ry (for) L : Yo(F)F @ C S Yo(F)r @ C

which is an isomorphism of complex representations of G(F/E). Let V be
a finite-dimensional complex representation of G(F/E) whose contragredient
is denoted by VV. The Stark regulator is defined to be the exponential ho-
momorphism, (V — R(V, for)), from representations to non-zero complex
numbers given by

R(V, for) = det((Ry - fo )« € Autc(Homer/e)(VY, Yo(F)* © O)))

where (R} - fo. #)« is composition with R} - fo- £ _



Let R(G(F/E)) denote the complex representation ring of the finite group
G(F/E); that is, R(G(F/E)) = Ko(C[G(F/E)]). Since V determines a Ga-
lois representation of E, we have a non-zero complex number L}(0, V) given
the leading coefficient of the Taylor series at s = 0 of the Artin L-function
associated to V' [27]. We may modify R(V, for) to give another exponential

homomorphism
Rsr € Hom(R(G(F/E)), C")
defined by
R(V, for)
L0, V)"
Let Q denote the algebraic closure of the rationals in the complex numbers

and let {2q denote the absolute _(}alois group of the rationals, which acts
continuously on R(G(F/E)) and Q. The Stark conjecture asserts that

Rfo,F (V) =

Rfo» € Homg, (R(G(F/E)), Q") C Hom(R(G(F/E)), C).

In other words, Ry, (V') is an algebraic number for each V" and for all z € Qg
we have z(Rj, F(V)) R r(2(V)). Since any two choices of for differ by
multiplication by a Q[G(F/ E)]—automorphlsm the truth of the conjecture is
independent of the choice of fo r.

We shall be particularly interested in the case when G(F/E) is abelian
in which case the following observation is important. Let G = Hom(G, Q")
denote the set of characters on G and let Q(x) denote the field generated by
the character values of a representation y.

Proposition 2.2
Let G be a finite abelian group. Then there exists an isomorphism

de: HomQQ(R(G),a*) = Q[G]*

given by
de(h) = > h(x)ex
xeG
where
=1GI™' Y x(9)97" € Q(x)[G].
geG
Proof

This follows by combining the isomorphisms Q[G]* & K;(G) and K;(G) &
Homg,, (R(G),Q"), which are part of Frohlich’s Hom-description machinery
described in [10]. In fact the second lsomorphlsm proved originally in [32],
is true for arbitrary finite groups G.



When G is abelian the proof is very simple. There is a well-known iso-
morphism of rings ([24] p.648)

¥:Q[G] — J] Q=Map(G,Q)

xGC:’

given by (e Xe9)(X) = Loec Aox(g). If Qq acts on Q and G in the
canonical manner then 1 is Galois equivariant and induces an isomorphism

of Qq-fixed units of the form
Q[G]* = (QIG]")? = Mapq, (G, Q") = Homeo (R(G), Q).

It is straightforward to verify that this isomorphism is the inverse of A\g. O

2.3 Stickelberger elements and annihilators

Now we are going to turn our attention to some conjectures concerning
annihilator ideals which appear in [3], [8] and [50]. Suppose that F/F is a
Galois extension of number fields with G(F/E) abelian. Suppose also that E
is totally real and that F is totally real or is a CM field (i.e. F is a totally
imaginary quadratic extension of a totally real field (see [48] p.38)). Let S
be a finite set of primes of Og including those which ramify in F//E. The
reciprocity map of class field theory sends the class of a proper ideal prime to
S, A <1 Og, to its Artin symbol (A, F/E) € G(F/E). The associated partial
zeta function is defined for complex numbers s having Re(s) > 1 by

(es(g,8) = > NA~.

(A,F/E)=g, A prime to S

Here g € G(F/E) and the sum is over all ideals coprime to all primes in
S. These functions have a meromorphic continuation to the whole complex
plane and the corresponding Stickelberger elements are defined to be

eF/E,S(l —r)= Z - (eslg,T)- g_l € C[G(F/E)]

9EG(F/E)

for r =0,—1,—2,—3,.... These elements are characterised by the relation

x(©r/zs(1—7)) = Lgs(r,x ")

for all one-dimensional complex representations x of G(F/E), where
Lg s(r,x7!) is the Artin L-function with all the Euler factors associated to
elements of S removed. By a result of Klingen and Siegel [38] ©p/g s(1 — 1)
lies in Q[G(F/E)] for r=0,—-1,-2,-3,....

Let u(F') denote the roots of unity in F' so that u(F) = TorsK;(Op) in the
notation of §2.1. The Stickelberger elements ©r/g s(1) satisfy the integrality
relation

anngc(r/E) (M(F)) - Or/E,s(1) C Z[G(F/E)]
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where anngje(z/m)(14(F)) < Z|G(F/E)) denotes the annihilator ideal of u(F).
When £ = Q this was proved in [23], for K real quadratic in [9] and in
general in [6], [13].

The Brumer conjecture goes further than the mere integrality statement,
asserting that

annz[g(F/E)](TorsKl(Op’Sf)) - @F/E,S(l) g annz[G(F/E)](TO’I"SKO(OF,S:))

where S’ is the set of primes of F' above those of S and Opg denotes the
S'-integers of . When E = Q this is Stickelberger’s Theorem ([7] p.298; [48]
p-94). In general there are only partial results (for example, [16]).

3 Analogous conjectures for higher K-groups

3.1 Higher dimensional Stark conjectures
Lots of interesting progress has been made by simply taking some phe-
nomenon involving class-groups or Picard groups, such as the analytic class
number formula, and asking the question: What happens when K is replaced
by K,? The Lichtenbaum conjecture of §2.1 is a prime example. It was B.H.
Gross [17] who first asked this question about the Stark conjecture of §2.1.
For any negative integer r < 0 we have the Borel regulator ([4], [19])

Ry : K15 (OF) ® R 5 Y, (F)* ®R

which is an R[G(F/E)]-isomorphism. Now we mechanically imitate Stark’s
procedure with the Dirichlet regulator replaced by Borel’s. We choose a
Q[G(F/E)]-isomorphism of the form

frr: Ki_or(Op) © Q =5 Y, (F)*®Q
so that B
Ry (for) ™ Y(F) ®R 5 Y (F)* ®R

is an R[G(F/E)}-isomorphism. Then, as in §2.1, we form the Stark regulator
defined, for each representation V' of G(F/E), by

R(V, frF) = det((RE - f;3)« € Autc(Homeu g (VY, Y, (F)* ® C))).

Let S be a finite set of primes of £ which includes all the primes which
ramify in F/E. Let Lj ¢(r, V) denote the leading term of the Taylor expan-
sion of the Artin L-function associated to S ahd V at s = r. We define a
function Ry, . given on a finite-dimensional complex representation V' by

_ BV, frr)

Rfr,F (V) E‘ s(”', V)



Then the higher-dimensional analogue of the Stark conjecture of §2.1 as-
serts that

Ry, » € Homgo (R(G(F/E)), Q") € Hom(R(G(F/E)),C")

and the truth of this conjecture is independent of the choice of f, r.

The calculations of Beilinson ([2]; see also [5] §4.2, [19] and [30]) show
that the higher-dimensional analogue of the Stark conjecture is true when
F/E is a subextension of any abelian extension of the rationals (see Theorem
7.7(proof)).

3.2 Higher dimensional annihilator conjectures

In this section we study the case F//E when the subfield F is the rational
numbers. In this case it will be convenient to use Dirichlet L-functions [48].
For our purposes this is equivalent to the use of Artin L-functions Lq s(r, x)
when S is the set of primes dividing the conductor of F. '

Now let us examine the higher-dimensional analogues of the Brumer con-
jecture of §2.3. These analogues were first posed Coates and Sinnott in the
case of abelian extensions of the rationals and were expressed in terms of
Stickelberger elements constructed from the Dirichlet L-function. Since we
-are going to return to this case as a source of crucial examples in §6.1 and
Theorem 6.2 we shall recall the situation of [8].

Suppose that F/Q is a finite Galois extension of number fields with abelian
Galois group, G(F/Q), and F totally real. Then, for each negative integer
r = —1,—2,-3,..., there is a unique unit of the rational group-ring

OF/q(l—1) € QIG(F/Q)

such that ‘

x(€Fq(l = 7)) = Lq(r,x™")
for each one-dimensional complex representation x where Lq(s, x ) denotes
the Dirichlet L-function of the character x~! (more precisely, the Dirichlet
L-function of the primitive character associated to x~!; see [48] Ch.4). The
rationality of 9}3}6 (n) is seen by writing the L-function in terms of partial
zeta functions

Lq(r,x™ ") = > x(9)*¢alg,T)
gEG(LK()/Q)

and recalling that {q(g,r) is a rational number, by a result of Klingen and
Siegel [38].
Define p;_,(F) to be the Z|G(F/Q)]-module given by

p1—(F) = lm (u( M)®)CM/P)
M/Q g



where the limit is taken over Galois extensions M/Q containing F. Hence
m(F) = p(F) = TorsK,(Or) and the Quillen-Lichtenbaum conjectures in
algebraic K-theory predict that u;_(F) = TorsKi—o.(OF) ([22], [34]).

Inspired by Stickelberger’s Theorem ([48] p.94), the Coates-Sinnott con-
jecture ([8]; see also [9]) asserts that for any prime [

Opjq(1 — r) - annz,jc(r/q) (k1--(F) ® Zy)

C anng,je(r/q) (K-2r(OF) ® Zy).

Actually the conjecture in [8] incorporated an extra factor denoted by
wn11(Q) which we have omitted because it was unnecessary (at least when 1
is odd; see [41] §1). Also the annihilator of yy_,(F') is known ([40] Proposition
7.2.5 and [7]).

The higher-dimensional analogue of the Brumer conjecture, posed and
discussed in [40] Chapters 6 and 7), asserts for r = —1,—2,—3,... and
F/E;S,Opps(l —r) as in §2.3 that

annz(c(r/E)(TorsKi-2-(Ors)) - Or/e,s(1 — 7) € annzier gy (K-2r(OF,s'))

where S’ is the set of primes of F' above those in S and Oprs denotes the
S'-integers of F. When E = Q this is equivalent to the conjecture of [8]
mentioned above (see also [1]). Note that K_,,(Ops) = TorsK_o.(Org),
being a finite group.

4 The canonical fractional ideal

4.1 Asin §2.3, let F/E be a Galois extension of number fields with abelian
Galoup group G(F/E). Suppose also that F is totally real, F being arbitrary.
Let S be a finite set of primes of O including those which ramify in F/E.
Throughout this section we shall assume that the higher-dimensional Stark
conjecture of §3.1 is true. Therefore, by Proposition 2.2, we have an element

Rt,» € Homao (R(G(F/E)), Q") = Q[G(F/E)*

which depends upon the choice of a Q[G(F/E)|-isomorphism f,r in §3.1
where r = —1,-2,-3,.... ‘

The following result is an observation concerning the naturality of the
Stark conjecture.

Proposition 4.2

Suppose that F'/E is an abelian extension for which the higher-dimensional
Stark conjecture §3.1 holds and suppose that F/E is a subextension. If we
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choose for Fy the set of primes S; over those of S then the conjecture holds

for F/E, also.
Let M/ E be an intermediate Galois extension of F/E. Then the conjecture
is also true for M/E and S if it is true for F/E and S in §3.1.

Proof
Let x denote a character of G(F/E). We may choose the same f, r for E
and F; then

P
Liy,s, (7, Resgin o (0) = Le,s(r, x ® Indgin)on (1)
and
G(F/E ~
Homerysy (Resainm (00, Y2 (F)) & Homop) (x®Indgi my (1)), Ve (F)).

Therefore, since (R} - f,5)« is the same for F and F; we find that

G(F/E G(F/FE
Ry, o (Resgimron (X)) = Ry, o (x ® Indgeg) s (1)).

Therefore the conjecture §3.1 holds for F/E; if it holds for F/E because
Resgie)y - R(G(F/E)) — R(G(F/Ey)) is surjective.

The proof for intermediate extensions M/F is similar and will be left to
the reader. O

4.3 Detp(a)

Here is a simple, probably familiar, algebraic construction. Let [ be a
prime and G a finite abelian group. Suppose that P is a finitely generated
projective Z;[G]-module and that

a € E’rLdQ[[G](P® Q).

Choose a finitely generated projective Z;[G]-module R together with a Z;|G]-
module isomorphism of the form

¢: P®R = Z)[G]".
Tensoring with the l-adics we may form
¢ (@®1)¢™ : QICI" — (PO Q) ® (RO Qi) — QG

and taking the determinant with respect to any Z;|G]-basis for Z;[G]" yields
a well-defined element

det(¢- (@ ®1)¢™") € Q[G]/ =~
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where a ~ b in Q;[G] if and only if a = ub for some u € Z;|G]*. We shall
denote this determinant by

Detp(a) € Qi[G]/ =~ .

Sometimes it will be convenient to replace Z;[G], Q; and Q;[G] by Z[1/2][G],
Q and Q[G], respectively, in the construction of Detp(c).

Theorem 4.4
(i) In §7.1 Detp(a) depends only on a.
(it) If a is an automorphism that detp(a) defines an element of

QiG] /Zi[G]* = Ko(Zi[G), Qu)

corresponding to [P, ., P]. Here the isomorphism is the one described in ([41]
§2).

(i) If l is an odd prime and co € G has order two with P = ((1 %
c0)/2)Z[G)* =2 (Zi[G)/((1 F ¢0)/2))" then under the canonical map

Qi[G]/ =— (Qu[G)/((1 F c0)/2))/ =) x (Qu[GI/((1 £ c0)/2))/ =)

Detp(a) maps to (det(a), 1), where det(c) is the determinant of o computed
with respect to a (Zi[G]/((1 F co)/2))-basis for P.

(i) Parts (i) and (i) remain true if Zy[G], Qi and QiG] are replaced
by Z[1/2)[G], Q end Q[G)], respectively.

Proof
For part (i) we first observe that changing the Z;[G]-basis for Zi[G]"
changes the determinant by a unit factor in Z;[G]*. Next suppose that

¢ : POR = Z[G]™
is a second Z;[G]-module isomorphism. Form
$@¢: PORO® PSR = ZG" ® Z)[G]™

Clearly we may compute a determinant by tensoring with the l-adic field and
using the endomorphism « on the first or the third summand. The difference
of these deteminants will be a factor +1 since the resulting automorphisms
differ by the involution which switches the two copies of P. However, using
the first factor is the same as using o and ¢ to commute Detp(a) while
using the second factor is the same as using o and ¢’. Hence Detp(a) is also
independent of ¢, as required.

Part (ii) is clear from the definition of the isomorphism described in ([41]
§2). Part (iii) follows.from the naturality of the construction with respect to
homomorphisms of rings. Part (iv) is obvious. O
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Definition 4.5 The fractional ideal Jg

Let F/E be a Galois extension of number fields with E totally real and
abelian Galois group G(F/FE). Whenr = —1,—-2,—3,... the lattice Y,(F) is a
free Z|G(F/E)-module as is seen by identifying Y, (F') with the G(L/F)-fixed
elements of Y, (L) for some Galois extension of the rationals L containing F'.
Therefore Y, (F)* ® Z[1/2] is a finitely generated, projective Z[1/2]G(F/E)]-
module. By the construction of §4.3, each Q[G(F/E)]-endomorphism of
Y,.(F)* ® Q gives rise to an element Dety,(r)+gz[1/2(a) € Q[G(F/E)] which
is well-defined up to multiplication by a unit of Z[1/2]G(F/E)].

Define Zy, . to be the (finitely generated) Z[1/2][G(F/E)]-submodule of
Q[G(F/E)] generated by all the elements Dety, (r)+gz[1/2(cr) where a €
Endqier/m)(Y-(F)t ® Q) satisfies the integrality condition

a- frr(Ki-2.(OF)) CY(F)".

Define J% to be the finitely generated Z[1/2][G(F/E)]-submodule of
Q[G(F/E)] given by
Ir= Ltr T(Rj_'rlp)
where 7 is the automorphism of the group-ring induced by sending each g €
G(F/E) to its inverse. Recall that throughout this section (see §4.1) we are
assuming the validity of the higher-dimensional Stark conjecture of §3.1 in
order for Ry, . € Q[G(F/E)]* to be defined.

Example 4.6 (i) In the situation of §4.1 and Definition 4.5 suppose that F is
totally real and r = —1,—2, —3,.... In this case Y;.(F)* is a free Z[|G(F/FE)]-
module of rank equal to [E : Q] when 7 is even and is trivial when r is
odd.

Assume for the moment that r = —1,—3,—5,.... Bearing in mind that
the determinant of the zero automorphism of the zero module is 1, for each
character x we have

1= R(x, fr,r) = det((RE - f; )« = det(0) € Autc(Homer/m)(x",0)).

Next we form
_ R(X7 fT,F) _

= =Lgs(r,x)™",
E,S(T: X) )

Rfr,F (X)

since Lg s(r, ) is non-zero.
Therefore Jf is the Z[1/2][{G(F/E)}-submodule of Q[G(F/E)] given by

Tk =Z[1/2[G(F/E)] - 7(R7.,.) = Z[1/2[G(F/E)] - (x = Le,s(r,x™")).

Hence JF is the principal Z[1/2][G(F/ E)]-submodule generated by the Stick-
elberger element ©p/g s(1 — ) of §2.3

Jr = Z[1)2)[G(F/E)(Or/e,s(1 —7)):€ Q[G(F/E)].
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This fact can also be deduced directly from Theorem 4.4 (iii) and (iv).

(ii) In the situation of §4.1 and Definition 4.3 suppose that F is a CM field
and ¢y € G(F/E) denotes complex conjugation. Then co acts on Y, (F)* like
multiplication by (—1)". Hence ((1 — (—1)"¢)/2)Y,(F)* = 0. Remembering
once again that the determinant of the zero automorphism of the zero module
is 1 or by means of Theorem 4.4 (iii) and (iv) we find that

Zrrr (1 = (—1)70)/2) = Z[1/2[G(F/E)((1 - (—1)"co)/2).

Therefore, since 1 = R(x, fr,r) for all characters x such that x(co) =
(—1)"+!, we find that

TF(1 = (=1)e0)/2) =7T4,((1 = (1) e0)/2) - 7(R7,,)
= Z[1/2[G(F/E)((1 - (1) c0)/2) - 7(R.,)

= Z[1/2][G(F/E)((1 = (=1)"c0)/2) - Opyp,s(1 — 1))

Notice that Op/g s(1 —7))((1 — (—1)¢o)/2) € Q[G(F/E)] is characterised
by the relation that x(©r/g,s(1 — 7))((1 — (=1)"¢o)/2) = Lg,s(r, x™?) for all
characters of G(F/E) satisfying x(co) = (—1)"*! and is zero otherwise.

4.7 Suppose that F is totally real, that r < 0 is even and that Y,(F)* has
a Z[G(F/E)]-basis vy, v, - . - , s
Now suppose that we change f. r by composition with
U € Autqewr/m)(Y-(F)* ® Q)

so that there is an invertible matrix U = (U,,,) € GL,Q[G(F/E)] given by

t
'U(’Ui) = Z Us,i’Us.
s=1

Now let x : G(F/E) — C* be a one-dimensional representation. The
subspace of Y,(F)* ® C on which G(F/FE) acts via x™! is

e Yo(F)* @ C = &L, CIG(F/E)jex-1i
and :
Uley—1v;) = z X_I(Us,i)ex_lvs
s=1
so that
Ry, ru(X) = Ry, £ (X) - det(x "1 (U)) ™.

Observe that x~1(U) = x(7(U)) where 7 is the involution of Q[G(F/E)]
sending each group element to its inverse. :
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Suppose now that F is a CM field and that wq,...,w, is a
Z[1/2]|G(F/E)]/(co + (—1)+1)-basis for ¥, (F)* ® Z[1/2].

Since ¢ acts like (—1)", if  is a one-dimensional representation such that
x(co) = (—1)"! then Homgr/py(x 1, Y:(F)* ® C) = 0 and R(x, frr) = 1.
Since Lg s(r, x) is zero if and only if x(co) = (—1)" we find that

1

Rfr,F (X) = LE',S(T, X) y

which is independent of f; r.
On the other hand, suppose that we change f, r by composition with

V € Autqorm) (Y (F)T ® Q) = Autqier/m)/(cor (-1 (Y (F)Y © Q).

There is a matrix V = (V,3) € GL,Q[G(F/E)/(¢co + (—1)"*!)] given by
V(w;) = Y ¥, Vaswa. If x(co) = (—1)" then the subspace of ¥,(F)* @ C on

a=1

which G(F/E) acts via x7! is
ex1Y-(F)* ® C= o}, C[G(F/E)/(co + (—=1)*")|ex-1w.

and "
V(ey-1v;) = Z x"l(‘/;,,-)ex‘lwa

a=1
so that
Ry, pv(x) =Ry, p(x) - det(x (V)L

As in the totally real case, we have x (V) = x(7(V)) where 7 is the involu-
tion of Q[G(F/E)] sending each group elements to its inverse.

Via the homomorphism Ag(r/E) of Proposition 2.2 we may consider Ry, ..v
and Ry, , as elements of Q[G(F/E)] given by

Rfr,F'V =er@(F/E), x(co)=(—1)r-1 Rfr,p(X)ex

+ e/ E), xieo)=(=1)r Rofrp COX(T(det(V))) ey
Next we observe that
1+ (=1 eo)/2 + (1 +(=1)"co) /2)7(det(V)) ™
is a well-defined element of Q[G(F/E)] since the difference between any two

liftings of 7(det(V)) ™! € Q[G(F/E)]/(co+(—1)"") lies in (co+(—1)")Q[G(F/ E)]
and ((1+ (~1)'c0)/2)(co + (~1)"+) = 0.
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Furthermore, calculating in C[G(F/E)] using the relation ze, = x(2)ey
we find that

Riop (14 (1) e0)/2+ (1 + (=1)7co) /2)7(det(V)) ™)
= (Creawrmy Rer(ex) - 1+ (=1)""0)/2

+ (s ecaw/p) Rinr(0e)((1 4 (=1)7co)/2)7(det(V)) ™)

Exeé(F/E), x(co)=(—1)r—1 Rfr,F(X)ex
+ Exe(:'(F/E), x(co)=(—1)7 Rf.r OOx(r (det(V)))_lex

= Rfr,F'V'
Therefore
Rivev = Rip - (L4 (=1)""e0)/2 + (1 + (=1)"co) /2)7(det(V)) ).
We have proved the following result.

Lemma 4.8

Let F/E be a Galois extension of number fields with abelian Galois group
G(F/E). Assume that the higher-dimensional Stark conjecture §3.1 holds for
F/E.

(i) If F is totally real and r < 0 is even then

Rf.pU = Ry, - T(det(U))™" € Q[G(F/E))

in §4.5.
(i) If E is totally real and F is a CM field then, in §4.5,

Rppev = Rpp - (14 (=1)"c0)/2+ (1 + (=1)"co) /2)7(det(V)) ).

Proposition 4.9

Let F/E be a Galois extension of number fields with abelian Galois group
G(F/E). Suppose also that E is totally real and that F is totally real or
is a CM field. Then, assuming that the higher-dimensional Stark conjecture
of §3.1 holds for F/E, the finitely generated Z[1/2]|G(F/E)]-submodule of
QIG(F/E)), Jt defined in §4.3, is independent of the choice of frF.

Proof

Let 7 < 0 be even and assume that F is totally real. If we change f,.p
to frp - U as in Lemma 4.8 then Zj, . changes to Iy, .det(U)™! and 7Ry, .
changes to
T(Rf, - T(det(U)) ™) = 7(Ry, p)det(U) !
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and JF is remains unchanged, as required.

The case when F' is totally real and r < 0 is odd is trivial by Example
4.6(1).

Now consider the case when F is a CM field. In the situation and notation
of Definition 4.5, and Example 4.6(ii) we have

Itev =L pv((1— (=1)7c0)/2) + Ip, pv (1 + (—1)7c0)/2)
=724, (1 = (=1)c0)/2) + L, v ((1 + (—1)c0) /2)
=I5, (1 = (—1)c0)/2) + L5, - (1 + (=1)"co) /2)det (V)
=I5, o (1 + (=1)""c0)/2+ (1 + (—1)co)/2)det(V) ).
while, by Lemma 4.8,
TRy, pv) = T(Rp pv (1 + (=1)c0)/2 + (1 + (= 1)7co) /2)det(V) 1),

as required. O

5 Annihilators, a new conjecture

5.1 Asin §2.3, let F//E be a Galois extension of number fields with abelian
Galois group G(F/E). Suppose also that E is totally real and that F is
totally real or is a CM field. Let S be a finite set of primes of Of including
those which ramify in F//E and let S’ denote the primes of F above those
of S. Throughout this section we shall assume that the higher-dimensional
Stark conjecture of §3.1 is true. Therefore from §4.3 we have a “fractional
ideal” (that is, a well-defined, finitely generated Z[1/2]|G(F/E)]-module)

Jr € QIG(F/E)]
for each negative integer r = —1,—2,-3,....
Now we come to the most important part of the paper, a conjecture for

which some supporting evidence will be presented in §6.1 and Theorem 6.2.

Conjecture 5.2 Let [ be an odd prime. Then, in the situation and notation
of §5.1,

(annz,[g(p/E)] (TO’r‘SKl_z.,-(OF,Sl) & Zz) . ._71';:) NZ; [G(F/E)]

C anng,(¢(r/E) (K-2r-(OFs') ® Zy).
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Remark 5.3 In Conjecture 5.2 when F'is totally real and » = —1, -3, —5, . ..
then, by Example 4.6(i),

T = Z[G(F/E)|(Or/e,s(1 —1)).

In addition, the Quillen-Lichtenbaum conjecture (see §6.1; known to be true
when ! = 3 for example!) predicts that

p1—r(F) @ Zy = TorsKi_o(Ors) ® Zy

so that
anng,(c(r/e)(TorsKi-2-(Ors) ® Zy) - Ti

is expected to contain
OP/q(l — r) - annz,jo(r Q) (b1 (F) ® Zy)

of §3.2. By ([13]; see also [7]) this finitely generated Z;|G(F/E)}-submodule
of Q[G(F/FE)] actually lies in Z;|G(F/E)].

In- any case, this discussion shows that Conjecture 5.2 coincides with.
one of the well-known conjecture of §2.2 when F is totally real and r =
—-1,-3,-5,....

On the other hand, if F is totally real in §5.1 and r = —2, —4, —6, . .. then
p1—r(F) is trivial because the action of complex conjecture on the Z;-module
p(M)® " ® Z; of §3.2 is multiplication by (—1)'~". In this case the Quillen-
Lichtenbaum conjecture predicts that TorsKi_o,(Ors) ® Z; is trivial and
Conjecture 5.2 reduces to

Tr (N Zi|G(F/E)] € annz,cr/m)(K—2r(Op,s) ® Zi).

Question 5.4 Integrality .
Perhaps, by analogy with the totally real case when r is odd,

anng, io(r/E)(TorsK1_o(Ors) ® Zy) - Tf A Zi[G(F/E))]

in general?
Perhaps
’ Jr C anng,e(r/E)(K-2r(OFs) ® Zy)

when F is totally real in §5.1 and r = -2, —4, —6,...7

" 11 understand that the Quillen-Lichtenbaum conjecture follows for all odd primes from
the results of Voevodsky, Suslin and Rost.
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6 Supporting evidence

6.1 Throughout this section let I be an odd prime, m a positive integer prime
tol and r = —1,-2,-3,—4,-5,.... We are going to study Conjecture 5.2
for the cyclotomic extension Q(&ys+1)/Q where s > 0 and &; = e V=1/t We
shall study the case where Op g is equal to Z(&ms+1)[1/ml], to get from this
case to a larger set S is straightforward using the localisation exact sequence.

For € = 1,2 there are étale cohomology Chern classes ([11], [12]) of the
form

Ky gt e(Z(Emues)[1/ml]) ® Z =5 H(Spec(Z(Emsrr)[1/mi]); Zo(1 — 7))

which the Quillen-Lichtenbaum conjecture predicts to be isomorphisms. This
was proved for K in [44] and for K3 in ([25], [29]). As a corollary of the funda-
mental results of Voevodsky [46] [47], the corresponding Chern classes when
! = 2 are nearly isomorphisms in all dimensions [34]. Voevodsky’s method
requires the existence of suitable “norm varieties” which is not yet established
for all odd primes. However many partial results are known at odd primes
(see footnote in Remark 5.3). For example, recent work by Rost combined
with that of Suslin-Voevodsky shows that c;_, . is always an isomorphism for
[=3.
Observe that, if c;—,,1 is an isomorphism, we have

Tors(Ki—ar(Z[Emie+1]) ® Z)
= TorsHg,(Spec(Z(Ems+1)[1/mi]); Zy(1 — 1))
= Hg (Spec(Z(&mi+1)[1/mi]); (Qu/Zi)(1 — 1))

~ py—r (Q(&mist+1))

where p1_.(F) is as in §3.2 and Question 5.3.

We are now almost ready to state our main result. Since we are studying
cyclotomic fields I shall follow the example of [8] and state the result in terms
of Dirichlet L-functions. We shall need to recall the corresponding higher
Stickelberger elements and leading terms.

Suppose that L/Q is a finite Galois extension of number fields with abelian
Galois group, G(L/Q). Then, for each negative integer r = —1,—-2,-3,...,
there is a unique element of the rational group-ring (cf. §2.3)

oPin(1—r) € QIG(L/Q))

such that _
x(©2jg(1 — 1)) = Lo(r,x")
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for each one-dimensional complex representation x where Lq(s, x ) denotes
the Dirichlet L-function of the character x~! ([48] Ch.4). The rationality of
©1/q(n) is seen by writing the L-function in terms of partial zeta functions

Lo(r,x™!) = > x(9)¢alg,7)
9EG(LK0)/Q)

and recalling that {q(g,7) is a rational number, by a result of Klingen and
Siegel (cf. [38]).

We have 0 = Lq(r, x™!) precisely when x(co) = (—1)", cp being complex
conjugation as in Question 5.3. In this case there is a zero of order one and
the leading term is defined by the formula

. d L
LQ(Ta X) = d_Z'LQ(z:X)Iz:r : H (1~ x(op) 'p )-
p prime

piml, (p,f(x))=1

Now let fr.qe_,.41) It q, ooy 20d R(x, fra, . w_q)) be as in §2, §4.1 and
Definition 4.5. Imitating Definition 4.5, set -

Dir ( ) _ R(X7 f"yQ(fmz.e+1))
fr,Q(Emls+1) - L’a ('r, X)

and
T _ 7Dir -1
jDiT’Q(Em”“) o Ifr'Q(Emst)'T((Rfr,Q(fmzsﬂ) )

It is important to realise that, although in general the fractional ideal of
Definition 4.5 was constructed under the assumption of the higher-dimensional
Stark conjecture of §3.1, in the case of abelian extensions of the rationals the
calculations of [2] (see also [5] and [19]) show 985 that the higher-dimensional
Stark conjecture is true (see the proofs of Theorem 7.7 and [41] Theorem 4.9).

Theorem 6.2
Let I be an odd prime. Then, in the situation and notation of §6.1,

(annz,(c(qee, o1 )/1 (1) * Thirqe, orn)) N ZUG(Q(Emis+1)/ Q)]

C anng,[6(Q(e, o41)/Q (HE (SPec(Z[Emisra][1/ml]); Zy(1 — 7))
where py_r = p1-r(Q(€nis+1)) ® Zy as in §6.1.

Remark 6.3 It is possible to deduce from Theorem 6.2 the corresponding

result in which 77, is replaced by J§ , in the spirit of Conjec-
Dir,Q(¢ [.!+1) . _Q(5m18+1) . )

ture 5.2. The passage from Dirichlet L-functions to Artin L-functions seems

fairly straightforward [22], if a little delicate.
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6.4 Proof of Theorem 6.2
Arguing as in Example 4.6(ii) we have

Tbirae, o) = LI1/2[G(QEme+1)/Q)((1 — (—1)"c0)/ 2)98'22".,,“)/(:(1 —7)

r Dir -
+Ifr,Q(§mls+1)((1 + (_1) CO)/2) ) T(Rfr,q(fmls+1)) 1.

Furthermore it is shown in Theorem 7.7(proof) that frQe,, .41) May be
chosen so that

Rg’fg(emzsﬂ)(l + (__1)7'60)/2 = (1 + (_1)TCO)/2'

Making this choice ensures that
Thiaeny = BI1/2ICQUEms)/ QUM — (~1)7c0)/208% a1 =)

e, e (L+ (=1)720)/2).
Since ¢y acts on 1, like multiplication by (—1)"+! we have
BNNZ,(G(Q(E,yy0+1)/ Q) (1)
= Zi[G(F/E)((1+ (-1)"c0)/2)

+ annz,je(q(e,;41)/Q) (B1-+) (1 = (—=1)"c0)/2)

and therefore
(annz,a@e,, 1)/ (B1-r) * Thirq(e, poin) [V LlG(F/ E)]
is generated by
(1= (~1)"c0)/2)9G._,..1)7@(1 —T)annz, 6, oi /@ (B1-r)) () Zi[G(F/ E)]

and
(Thrte .0 (L (-170)/2) N ZC(F/E)]

which both lie in annzllg(q(gm,m)/q)](Hézt(Spec(Z[gmlsH][1/ml]); Zi(1 —1))),
by §7.6 and Theorem 7.7. O

7 Annihilators and K(Z[G], Q;)

The results of this section extend the results for the totally real subfield of a
cyclotomic field, proved in [41], to the full cyclotomic field in order to establish
the results which were required in the proof of Theorem 6.2.

21



7.1 Let [ be a prime, G a finite group and let f : Z;|G] — Q;[G] denote the
homomorphism of group-rings induced by the inclusion of the l-adic integers
into the fraction field, the l-adic rationals. Write Ko(Z;[G], Q;) for the relative
K-group of f, denoted by Ko(Z;[G], f) in ([43] p.214; see also [40] Definition
2.1.5). By ([43] Lemma 15.6) elements of Ko(Z;[G], Q;) are represented by
triples [A, g, B] where A, B are finitely generated, projective Z;[G]-modules
and g is a Q;[G]-module isomorphism of the form g : A ®z, Q; 5B ®z, Q.
Defining an exact sequence of triples in the obvious manner, the relations

between these elements are generated by the following two types:
(i) [A,g,B]=[A,¢,B]+[A",¢" B"] if there exists an exact sequence

0 —s (A';g', B/) N (A, g, B) — (A”,g", Bll) —50

and

(i) [A,gh,C]=[A,h, B]+[B,g,C].

This group fits into a localisation sequence of the form ([33] §5 Theorem
5; see also [15] p.233)

Ki(Zi[G)) 2 Ky(QUG]) -2 Ko(ZlG], Qi) > Ko(Z[C)) 2 Ko(QIC)).

Assume now that G is abelian. In this case K;3(Qi[G]) = Qi[G]* because
Qi[G] is a product of fields and K1(Z[G]) = Z;[G]* ([10]I p.179 Theorem
(46.24)). Under these isomorphisms f, is identified with the canonical inclu-
sion.

The homomorphism, Ko(Z;[G]) LN Ko(Qu[G]), is injective for all finite
groups G ([37] Theorem 34 p.131; [10]II p.47 Theorem 39.10). Thus the
localisation sequence yields an isomorphism of the form

Q[G]*
Z[G]*

when G is abelian. From the explicit description of @ ([43] p.216) this iso-
morphism sends the coset of a € Q;[G]* to [Z[G], (a- —), Zi[G]]. The inverse
isomorphism sends [A, g, B], where A and B may be assumed to be free
Z;|G]-modules, to the coset of det(g) € Q;[G]* with respect to any choice of
Z,[G}-bases for A and B.

We shall be particularly interested in the following source of elements of
Ko(Zi[G), Q). Let I be a prime and let G be a finite abelian group. Suppose
that

Ko(Zi[G], Qi) =

d dr—1 d d
0—>Fk—k>Fk_1——>...-—2)F1—l—>Fo—->0

is a bounded complex of finitely generated, projective Z;[G]-modules (i.e. a
perfect complex of Z,[G]-modules), having all its homology groups finite. As
usual, let Z; = Ker(d; : F; — F;—1) and B, = di41(Fiy1) € F; denote the
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7Z.:[G)-modules of t-dimensional cycles and boundaries, respectively. We have
short exact sequences of the form

0— B; % 7, — Hy(F.) — 0

and " N
0 — Zipy -5 Fiyg — B; — 0.

Applying (— ® Q;) we obtain isomorphisms
¢ Bi®Q — Z;®Q
and we may choose Q;[G]-module splittings of the form
7:Bi®Q — Fij1 Q9 Q

such that (d;;; @ 1)m; = 1: B;®Q; — B;®Q,. Then, using these splittings,
we form a Q;[G]-module isomorphism of the form

X :@;Fp @ Q — ®;Fa11 ® Q.

This construction defines a class, [®;F2;, X, ®;F2;41], in Ko(Z;[G], Qi) which
is well-known to be independent of the choices of the splittings used to define
X ([43] Ch. 15; see also [40] Propositions 2.5.35 and 7.1.8).
We shall denote by
QG

Z[G]*

the element which corresponds to [®;Faj, X, ®;Faj41] € Ko(Zi[G], Q:) under
the isomorphism mentioned above. We may modify the F; to be free finitely
generated Z;[G]-modules without changing the homology modules or the class
in Ko(Zi[G}, Qi). Then det(X) is explicitly represented by the determinant
of the Q;[G]-isomorphism X with respect any Z;[G]-basis for Fi.

Let us recall from ([28] Appendix; see also [49]) the properties of the
Fitting ideal (referred to as the initial Fitting invariant in [31]). Let R be a
commutative ring with identity and let M be a finitely presented R-module, in
our applications M will actually be finite. Suppose that M has a presentation
of the form

det(X) €

LR —M—0

with @ > b then the Fitting ideal of the R-module M, denoted by Fr(M), is
the ideal of R generated by all b x b minors of any matrix representing f.

The Fitting ideal Fr(M) is independent of the presentation chosen for M
and is contained in the annihilator ideal of M, Fr(M) C anng(M). If M is
generated by n elements then anng(M)* C Fp(M) andif 7 : M — M’ is a
surjection of finitely presented R-modules then Fr(M) C Fr(M’).

The following result yields relations between the annihilator ideals and
Fitting ideals of the homology modules in previous example in the special
case when each H;(F,) is finite and zero except for 7 =0, 1.
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Theorem 7.2 ([41] Theorem 2.4)
Let G be a finite abelian group and l a prime. Suppose that

d dx—1 d d
0'—-)Fk—k->Fk_1——)...—2—>F1—1)Fo-——)0

is a bounded, perfect complex of Z,|G]-modules, as in Ezample 2.2, having
H;(F,) finite for i = 0,1 and zero otherwise. Let

QG
Z)[G]*

[®;F3, X, ®jFaj1] € Ko(Zi[G], Qi) &

be as in §7.1. Then:
(i) ift; € anng,(g)(H(F.)),

det(X) D™ € anng, o (Hi—i(F,)) < Zi[G]

for i =0,1. Here mg,m, is the minimal number of generators required for
the Z,|G)-module Hy(F,), Hom(H(F.), Qu/Z;), respectively,

(i) if the Sylow l-subgroup of G is cyclic then in (i) anng,c)(Hy—i(F,))
may be replaced by Fz,ic)(H1—i(F.)).

7.3 Now we shall apply Theorem 7.2 to a very important perfect complex
constructed in [5].

If F, is a bounded, perfect-complex of R-modules, with R commutative
and reduced, let Dg(F,) denote the determinant of F,, as developed in [21].
Hence Dg(F,) is a graded invertible R-module (i.e. projective of rank one).
For every distinguished triangle of perfect complexes C; — Cy — C3 — Ci[1]
there is a canonical isomorphism of the form

DR(Cl) ® DR(C3) E’ DR(Cz)

which is functorial in the triangle ([21] Proposition 7). Also, if C is an acyclic
perfect complex, there exists a canonical isomorphism of the form

Dr(C) =5 R.

If G is a finite abelian group and F, is a bounded perfect complex of
Z,[G)-modules with finite homology groups, as in §7.1 and Theorem 7.2, we
have the relation ([41] §4.1)

Dz,[G](F*) =7Z;|G] < clet(X)_l >C QiG] = Dq,iq) (F, ® Q).

We recall now some crucial results from [5]. Let [ be an odd prime,
m & positive integer not divisible by I and r a strictly negative integer. If
& = e®™/ we have a canonical projection of the:form G(Q(&m=+1)/Q) —
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G(Q(&mis)/Q) and, taking the inverse limit over the induced homomorphisms
of l-adic group-rings, we define

AZ = lim Zi[G(QEmm1)/Q)).

Write Q(A%) for the total quotient ring of AS? ([14] p.60). In ([5] §7 (48))
a bounded perfect complex of AZ2-modules, denoted by C,,(r), is constructed
for which ([5] Lemma 7.2) Cr(r) Qs Q(AZ) is acyclic. Therefore we have a
canonical isomorphism of the form

Dz (Crm(r)) ®ase QAZ) =5 Q(AD).

We shall recall the definition of C,,(r) presently. Furthermore ([5] Theorem
7.1) calculates a A%-basis for the free, rank one Age-module Dpe (Crr(r)) by
showing that the image of Dace (Cin(7)) under the canonical homomorphism
into Q(AZ) is Ay, {(ex + e— - gm)) in the notation of [5]. Fix an integer s > 0
and a topological generator 7y, € G(Q(&mice/Q(€mis+1)) and form the bounded
perfect complex of Z;[G(Q(&mi=+1)/Q)]-modules’

Com(r) = O(r) ®Foe Zi[G(Q(€mir+1)/Q)]-

so that .
Con(r) =5 Cra(r) — Com(r) — Cr(r)[1]

is a distinguished triangle in the derived category of the homotopy category
of AZ-modules.

In addition, the cohomology groups of Cop,(r) are finite so that we have
a canonical isomorphism

Dz,(6(Q(t, es1)/1 (Com(T)) Bziic(qie,r1)/Q)) QG (Q(Emio+1)/ Q)]

= QUG(Q(Eme+1)/Q)]-

As in Example 4.6(ii), let ¢y denote complex conjugation and let

X : G(Q&m=)/Q) — Q;

denote an l-adic character. Suppose that z,,, is a basis element for the free
rank one Z;[G(Q(&mns+1)/Q)]-module

Dzjeq,041)/1(Com(r)) C QUG(Q(&mis+1)/Q)]-

By the descent lemma ([5] Lemma 8.1) with C replaced by Cp,(7)) 2, may
be chosen to satisfy

X(2Zmy) = x((14(=1)7c0)/2) + x((1 + (=1)"""c0)/2)x(gm(r))
= (14 (=1)"x(c0))/2 — (1 + (=1) " x(c0)/2) Lq(r, X)
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since —x(gm(r)) = Lq(r, X), by ([5] Proposition 5.5), the Dirichlet L-function
at s = r of the primitive Dirichlet character X associated to x 1.

Let X; = Spec(Z[€n=+1][1/ml]) denote the spectrum of the S,,-integers
of Q(&nis+1), where S,,; equals the set of primes dividing ml.

Now we must examine the construction of C,,(r) prior to applying The-
orem 7.2. Following [5] let Xz denote the set of embeddings of Q(&ne)
into the complex numbers. Then complex conjugation acts diagonally on
Hng‘o Z;(—r) so that the fixed points (HEL;,“O Z;(—r))* naturally form a
projective Aj>-module generated by e, (Ggcr;y) in the notation of ([5] §7). In
([5] §7 (48)) a A%®-module homomorphism ¢, (r) from (s Zi(—7))* to
H}(X1; Zy(1 — 7)) sending e, (6%°1;,) to a “cyclotomic element” denoted by
Tm (7). This uniquely determines a homomorphism in the derived category

m(r) € Hompagy(IT Zu(—r))*=1], RD(X; Zu(1 — 7))

EL%

and Cp,(r) is the bounded perfect complex of A2°-modules given by the map-
ping cone of ¢,,(r). Hence there is a distinguished triangle of perfect com-
plexes in D(A°) of the form

(I Zu(—r))"[-1] =8 RO(X}; Zi(1 - 7)) —> Cm(r).

S0

The complex Cy,,(r) is obtained by applying (— ®% Zi[G(Q(&me+1)/Q))).
Complex conjugation acts on Z;(—r) as multiplication by (—1)" so that
(IIz,ee Zi(—7))*[—1] gives rise to a projective module abstractly isomorphic

to Y (Qms+ )t @ Z; & Zl[G(Q(fmlsﬂ)/Q)]/(l + (_1)r+160) in dimension
one. Therefore there is a short exact sequence of the form

0 — Zy[G(Q(Emis1)/ Q)N (1 + (1) o) (e4 (621,)) T2 HY (X3 Z4(1 — 1))

— HY(Com(r)) — 0
and a Z;[G(Q(&mns+1)/Q)]-module isomorphism
H*(Com(r)) = Ha(X;; Zi(1 ~ 1))

while H*(Co(r)) = 0 otherwise.
For e = &1,

O, ry/a(l — 7)1 — €c0)/2) € QIG(Q6mi+1)/Q)]
is the unique element of the (—¢)-eigenspace which satisfies

La(r,%) if x(co) = —¢,
X(OQ i)/l = T)(1 = €c0)/2))) = {
0 : if x(co) =€
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for all characters x, where Lq(r, X) is the value of the Dirichlet L-function at
s = 7 of the primitive character ¥ associated to x~!. Therefore the class in

Ko(Zi[G(Q(&mis+1)/Q)), Qi) = QuG(Q(&mus+1)/ Q)Y Zo[G(Q(Ermie+1) / Q)]
is represented by the unit 2, , € Qi[G(Q(&mnis+1)/Q)]* given by
Zme = (14 (=1)"¢0)/2 = O3¢,,,.11)/a(l = 7)((1 = (=1)"c0) /2).

In the notation of Theorem 7.2 z,,, , = det(X )™ where [®;Fy;, X, ®;Fs11] €
Ko(Zi[G(Q(&ms+1)/Q)), Qi) is the class associated to the- perfect complex
F, = (Com(r))** by the construction given in §7.1. Hence Theorem 7.2
yields parts (i) and (ii) of the following result.

Theorem 7.4 _

Let | be an odd prime, m a positive integer prime to 1l and
r=—1,-2,-3,—4,-5,... as in §6.1. Then, in the notation of §7.1 and
§7.3:

(i) Ift; € anng,c(qe, o)/ (H>(Com(r))), the element

(14 (-1)c0)/2 = OFfe .0yl = (1 = (=1)7eo)/2) 0 87

lies in amnze(qe, i)/ QI(H F(Com(r))) for ¢ = 0,1 Here
my = max(my 4, m1,—) and mg, my + is the minimal number of generators re-
quired for the Zy[G(Q(§mis+1)/ Q)]-module H*(Co (7)), Hom(H (Com(r))*, Qu/ Z1),
respectively, and AT is the +1-eigenspace of complex conjugation.

(ii) If1 does not divide m—1 then in (i) annz,(c(q(. .41)/Q) (H (Com(r)))
may be replaced by the Fitting ideal Fz,c(q(e, . ,ui1)/Q) (H H(Com(r)))-

(#4i) Furthermore m; = 1.

Proof

Parts (i) and (ii) are immediate from Theorem 7.2, applied to each of the
+1-eigenspaces of complex conjugation, so it remains to prove (iii).

Since [ is odd, it suffices to show that each of the eigenspaces of complex
conjugation ¢y are generated by one element. From the long exact étale
cohomology sequence associated to Z;(1—r) — Qi(1—7) — (Q:/Z;)(1—7)
we see that

TorsHy(X1; Zo(1 — 1)) & He(Xi; (Qu/Zi)(1 — 1)) £ py o (Q(6mier1)) ® Zy

on which ¢y acts as multiplication by (—1)!~". Dividing out the short exact
sequence of §7.3 by TorsH} (Xi; Zi(1 — 7)) we obtain a short exact sequence
of the form

H (X1;24(1-7))

0 —> Zi[G(Q(Em+)/Q/ (1 + (~1) o) (€4 (551)) ™ oatitZild

orsH,

R H1(Co,m(r))
" TorsH}, (Xi;Z(1-1))

—0.
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Since ¢y acts like multiplication by (—1)" on the left-hand module it must
also act by (—1)" on the central module, since c,,(r) induces a rational iso-
morphism. Hence if we set

H'(Com(r))
TorsHL(X1i; Zu(1 — 1))

Hgyclo (Xl) =

then H ,,(Xi) is the (—1)" eigenspace of the finite group H'(Cp (7)) and

the finite cyclic group pi1—r(Q(&mis+1)) ® Z; is the (—1)'"-eigenspace. Of
course, the Pontrjagin dual of a finite cyclic group is again a cyclic group so
it remains to show that

E:Et%’ (Hiyclo(Xl)7 Zl) = Hom(Htl:yc]o(Xl): Ql/zl)

is generated by one element.
We have a short exact sequence of Zi[G(Q(&nis+1)/Q)]/(1 + (=1)"co)-
modules

O —_— HMZI(%}{%%, Zl) —_—
Homz, (Zi[G(Q(&mi=+1)/Q))/ (1 + (1) co) (e (Gievr)), Zt) —
Emtlzl (Hl (Xl), Zz) — 0

cyclo

in which the central module is cyclic, because Z;[G(Q(&mnis+1)/Q)]/(1+(—1)"cp)
is self-dual. Hence the right-hand module is cyclic, as required. O

Corollary 7.5
In the situation and notation of Theorem 7.4

{t5° | to € anng,e(que,,er1)/Q (H*(Com(r)))
C Zm,r - AMNZ,(G(Q(E, e41)/Q) (H (Com (7))
C annz,(6(Q(,,,41)/Q) (H(Com(7)))
where, in Qu[G(Q({mi+1)/Q)]*,
Zmr = (14 (=1)¢0)/2 = O .1yl — 7)1 = (—1)7co)/2).
7.6 From the proof of Theorem 7.4

Hl(co,m('r)) = Hiyclo(-Xl) ® ll’l—r(Q(gml*"H)) R Z

where co acts like multiplication by (—1)" on the first summand and by
(=1)"*! on the second. :
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Now suppose that ¢ € anng,j¢(Q(,.41)/Q)] (B1-r (Q(Emie+1)) ® Z;) then

t-(1—(—1)"co) € anng,(q(e, ei1)/Q) (H' (Com(r)))
and, by Corollary 7.5, ‘
t- (1= (=1)reo)/2)((L + (=1)"c0)/2— OB _..1)q1 = )((1 = (=1)"c0)/2))

=t (1= (1Y) /208 el =7)
lies in anng,c(q(,,.41)/Q) (H?(Com(r))). Therefore

NNz, 6(Q(, 4 )/Q)) (1—r(QEmi+1)) ® Z1) - O . .1y/q(1—)((1—(=1)7c0)/2)

C anng,je(q(e, o )/ (H& (X1; Za(1 — 7))

Similarly, if ¢’ € aNNZ, [G(QE, 0+1)/Q)] (Hiyczo(Xl_))_ then

t'- (1= (=1)""co) € anng,ie(que, pi1)/Q)) (H (Com(T)))
and
- (1= (=1)""eo)/2) (1 + (—1)7c0)/2 = ©8f%_,.1y7a(l = 7)((1 = (=1)7c0)/2))

=1 ((1 = (-1)""c0)/2)

lies in anng,¢(q(e, p41)/Q) (H*(Com(r))). Therefore
anNZ, Qe 1)/ D) Heyeto (K1) - (1 + (—1)7c0) /2)

C annz,g(qe,,es1)/Q) (HE (X1; Zi(1 — 1))).

The following result explains the relation between the fractional ideal of
Definition 4.5 and the annihilator ideal of H., ;. (X;).

cyclo

Theorem 7.7
In the notation of §4.3 and §§7.4-7.6

jBiT,Q(§m1s+1) ﬂ Zl[G(Q(gml"'H)/Q)] ) (1 + (—l)rco)/z

C annz,¢(Q(e, e+1)/Q) (Hayao(X1))-

Proof
Firstly we show that f.q_,..,) may be chosen so that

Rf%f;(fmzs+1)(1 == (—l)rco)/z = (1 + (—I)TCO)/Z
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in (Q[G(Q(Emi+1)/Q))/ (1 + (—1)7c0) /2)".

It is known that Kj_5(X;) ® Q is the free Q[G(Q(&ms+1)t/Q)]/(1 —
(=1)"co)-module on the Beilinson element, which is denoted by
(=) (mi**1)="h,(mi**) in the notation of [5]. Therefore we may choose

fr to satisfy
Fr (=) (ml**) b (ml*H)) = 4, € Y, (Q(émn)) T @ Q

where, in the notation of ([5] §8), Y;(Q(&mi+1))* ® Z[1/2] is a free
Z[1/2)[G(Q(&mi=+1)/Q)]/((1 — (—1)"¢co)/2)-module of rank one with a gen-
erator y,. '

However, as recapitulated in ([5] §4.2), Beilinson proved ([30] Part I The-
orem 4.3(ii) and Part II Theorem 1.1) that

Ry (W) = Bge, e+ (COUmI™ ) 7on (misH))

= Zx(m);(—l)" L*Q(T7 X_l)exyr

which establishes the claim concerning R?f; (e: +1)(1 +(—=1)"cp)/2.
’ mls

For the remainder of the proof, assume that f,qe .,,) has been chosen
in this manner. Hence

. _ ELKam(r)
Hcyclo(Xl) - TarsH.lt()g;zl(l—r))-l-fm(cm(r))

€

~ HL (X5Z(1—n))((1+(=1)"c0) /2)
= Im(cm(r))

and, by Definition 4.5,
TDir Qe ern) (1 + (=1)7€0)/2 =T o (1 +(=1)"c0)/2

is generated as a Z[1/2][G(Q(&ns+1)/Q)]-module by the elements
a € Q[G(Q(&mis+1)/Q)(1 + (—=1)"¢o)/2 such that

@ fr,Q i) (K1-20(X1)) € Yo (Q(€miea)) ™

Let z € HAL(X;';Zi(1 — 7)) satisfy co(z) = (—1)"z, every element in
H},0(X1) may be represented by such an z, and let

& € Tpirqie, o) [V ZUC(QEmis+1)/Q)] - (1 + (=1)"co)/2.
We must show that az € Im(c,(r)) € HL(Xy; Zi(1 — 7). The image of the

Chern class
C1-r1 ¢+ Kioar (X)) — He(X0;Zi(1 - 1))
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(denoted by c’('a(gmls+ ) in ([5] Lemma 8.16)) is dense. Choose z,, € K1—2-(Xi)
so that lim-c;_.1(zZm) = . Then f,q(, .41)(0Tm) lies in

Yo (Q(€mtr))* = Frateyor) (BIG(Qmien )/ QU (=) (i) b, (mie*)))

so that
AT € ZIG(Q(Emir+1 )/ QU (=r)(ml=H) b, (mI*H)).

However ([5] Lemma 8.16; [19] Theorem 6.4 (proof)))
c1—r1((—7)!(mi**1)~"b.(ml*t)) is equal to an element 7,(r) which gener-
ates Im(cm(r)). Hence limoacy_r1(zm) = az € Im(cn(r)), since cn(r) is
continuous in the [-adic topology. O

8 Concluding observations

8.1 Galois Descent

Whenever one predicts a new phenomenon concerning Galois actions on
some number theoretic Mackey functor such as a cohomology group or an
algebraic K-group the question of Galois descent arises. For example, in the
case of the Brumer conjecture Hayes, Popescu and Sands ([18], [35], [36])
have shown that the Stickelberger ideal is natural with respect to passing
from F'/E to a subextension F/L.

As explained in ([40] Chapters VI and VII, particularly p.287) the method
of proof of Theorem 6.2, given in §7, would predict nice functorial behaviour
for Conjecture 5.2 under all types of passage to Galois subextensions. This
is because the perfect complexes from which the annihilator relations were
derived arose first in the construction of Chinburg-type invariants (see [40]
Chapter III) and are natural with respect to change of fields.

I do not know very much about the functorial behaviour of the fractional
ideal J%. Here is a modest example of the difficulties.

Consider the special case when F = Q(&,s+1)Y, E=Q and E; C F is
quadratic over Q. Suppose also that r = —2, —4, —6, . .. since otherwise the
fractional ideal is just one of the higher Stickelberger ideals. In this case we
may choose f.p so that Ry, .(x) = 1 for all characters x of G(F/Q) (see
Theorem 7.7(proof)). Hence, using the same f, r for F//E; we see that Ry, .
is trivial for F/E; also.

There exists g € G(F/Q) such that g? € G(F/E,) and

Y.(F)" = Z[G(F/Q)l(o0) = Z[G(F/ E4)|{00) & Z[G(F/ Ey)){(go0)-

Now suppose that a;1,a; 2,021,022 € Q[G(F/E,)] are such that for all 2z €
KI_QT(OF) with fT'F(Z) B f](Z)O'o @D fz(Z)gU() and fi(Z) c Z[G(F/E])] both
yl(z) = aLlf] (z)+a1,2f2(z) and yz(Z) = a2,1f1 (Z)—i-:ag,gfg(z) liein Z[G(F/El)]
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In other words, the Q[G(F/E\)}-module endomorphism of Y;(F)* ® Q with

matrix
a1 412
a1 G272

satisfies the integrality condition of Definition 4.5 for the extension F/E;.
Therefore we have

(a1,189,2 — a12021) [1(2) = ag2y1(2) — a1 212(2),

(01,102,2 — 01,202,1)f2(z) = —a2a41 (Z) + al,ly2(z)'

In this totally real situation Conjecture 5.2 for F//E; (see [41] Theorem 4.9)
predicts, in the notation of Theorem 6.2, that when (a1,1a22 — a12a2,) lies
in Z;|G(F/E,)] it annihilates HZ(Spec(Of[1/ml]); Z;(1 — 7). If we could
show for all 2 that the expressions for (a11a22 — a1,209,1) f1(2) and (a31a22 —
41,202 1)f2(2!) both lie in Z[G(F/El)] then (a1 102, 2— 01,202 1)f,-,F(K1 2r(OF)) €
Y.(F)* and then (a1092 — 012021) € Q[G(F/Q)] is one of the generators
for J5 for F/Q. Then, by Theorem 6.2, if (a1,1a92 — a12821) € Zi[G(F/Q]
it would- annihilate HZ (Spec(Op[1/ml]); Zi(1 —7)).

However, such integrality does not happen automatically. Here is a purely
algebraic example.

Let G = Z/2 = (g) and let f, € Autqe(Q[G]) be f, = ((a +bg)™! - —)
where a + bg € Z[G]N Q|G]*. Hence we clearly have

T={acQ[G]| af((2,1-g)) S ZIG]} = (a +bg, (a-+bg)(1 — 5)/2).

Now let 3 : Q[G] — Q[G] be a homomorphism of Z-modules satisfying
Bf(Z[G]) € (2,1 — g) and suppose that

U w
B =
v oz
meaning G(1) = u+vg, B(g) = w+ zg. Taking the values a = 1,b = 2 with
u=1v=29/2,w = 3/2 = —z one finds that [ satisfies the integrality condition

but det(8) = —27/2 which does not lie in Z = (1 + 2g, (1 + 29)(1 — ¢)/2)
because ZNZ = 3Z.

8.2 The non-CM case

In §5.1 and in the formulation of Conjecture 5.2 we have concentrated on
the case when F/E is an Galois extension of number fields with E totally real
and F' a CM field. This is something of a tradition in the Brumer-Coates-
Sinnott conjectures. It has the convenience, away from 2, that one can use
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the eigenspaces of complex conjugation to study the fractional ideal J5. On
the other hand the higher dimensional Stark conjecture is not restricted to
the CM case nor is the construction of Jf and the same should be true about
Conjecture 5.2.

Despite the fact that the fractional ideal may not enjoy good descent
properties, say, in this totally real cyclotomic example Q= FE C Ey C F =
Q(&ms+1)T of §8.1 1 believe the statement of Theorem 6.2 is still true in this
case, because the proof does “descend”.
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