Explicit Brauer Induction and the Glauberman Correspondence

Adam Case and Victor Snaith

1 Introduction

Let S and G be finite groups of coprime order such that S acts on G. If S is solvable, Glauberman [6] proves the existence of a bijection between the S-fixed irreducible representations of G and the irreducible representations of G^S . A second proof using Brauer's results in block theory was given by Alperin [1]. Boltje [5] assumes Glauberman's theorem and gives an explicit version of the correspondence using Explicit Brauer Induction (see [15]) in the case in which S is a p-group.

We shall use Explicit Brauer Induction to give another proof of Glauberman's result and also show how Boltje's result follows immediately from our method.

Section Two gives some preliminary results: the 'canonical' extensions, Explicit Brauer Induction and results in Tate cohomology and non-abelian cohomology. Section Three contains a proof of Glauberman's theorem, and Section Four moves on to demonstrate how this extends to give Boltje's explicit correspondence.

It would be very interesting to explain the Shintani correspondence [9] (a correspondence in which |S| and |G| are not coprime) in terms of Explicit Brauer Induction.

2 Preliminary Results

Throughout this section let S and G be finite groups of coprime order such that S is a solvable group acting on G. We denote the set of S-fixed points of a set X on which S acts by X^S .

2.1 Extensions of Representations

For an irreducible complex representation ρ of G, which is fixed under the action of S, the existence of a unique (canonical) extension $\tilde{\rho}$ to the semi-direct product $S \propto G$ is well known, and characterised by the following theorem (for example, see [6]):

Theorem 2.1

Let $\rho \in Irr(G)^S$. Then there exists a unique $\tilde{\rho} \in Irr(S \propto G)$ such that $\operatorname{Res}_{G}^{S \propto G}(\tilde{\rho}) = \rho$ and $\det(\tilde{\rho}(s)) = 1$ for all $s \in S$. Moreover, if $\tilde{\rho}$ is such an extension then $\mathbf{Q}(\tilde{\rho}) = \mathbf{Q}(\rho)$ and $\tilde{\rho}(s) \in \mathbf{Q}$ for all $s \in S$ (where $\mathbf{Q}(\rho)$ is the field obtained by adjoining the character values of ρ to \mathbf{Q}).

The second part of the theorem leads to the following observation:

Lemma 2.2

Let S be a cyclic group and $\rho \in Irr(G)^S$. If $s \in S$ and a an integer prime to |S|, then the character values of $\tilde{\rho}$ satisfy $\tilde{\rho}(s,t) = \tilde{\rho}(s^a,t)$ for all $t \in G^S$.

2.2 Explicit Brauer Induction

We briefly recall Explicit Brauer Induction from [15].

2.3 Let G be any finite group and let R(G) denote the complex representation ring of G. Denote by \mathcal{M}_G the poset of characters (or one-dimensional complex representations) on subgroups, (H, ϕ) , where $H \leq G$ and $\phi : H \longrightarrow \mathbb{C}^*$. Then \mathcal{M}_G is a poset if we define the partial ordering by

$$(H,\phi) \leq (H',\phi') \iff H \leq H' \text{ and } \operatorname{Res}_{H}^{H'}(\phi') = \phi.$$

In addition, $g \in G$ acts on \mathcal{M}_G by the formula

$$g(H,\phi) = (gHg^{-1}, (g^{-1})^*(\phi))$$

where $(g^{-1})^*(\phi)(ghg^{-1}) = \phi(h)$ for all $h \in H$.

Let $R_+(G)$ denote the free abelian group on the set $(\mathcal{M}_G)/G$. Hence the free generators are the *G*-conjugacy classes of characters $\phi : H \longrightarrow \mathbb{C}^*$ where $H \leq G$. We shall denote this character by (H, ϕ) and its *G*-conjugacy class by $(H, \phi)^G \in R_+(G)$.

If $J \leq G$ we define a restriction homomorphism

$$Res_J^G : R_+(G) \longrightarrow R_+(J)$$

by the double coset formula

$$Res_{J}^{G}((H,\phi)^{G}) = \sum_{z \in J \setminus G/H} (J \cap zHz^{-1}, (z^{-1})^{*}(\phi))^{J}.$$

If $\pi: J \longrightarrow G$ is a surjection we may define an inflation homomorphism

$$Inf_G^J : R_+(G) \longrightarrow R_+(J)$$

by the formula

$$Inf_{G}^{J}((H,\phi)^{G}) = (\pi^{-1}(H), \phi\pi)^{J}.$$

By means of restriction and inflation we may define

$$f^*: R_+(G) \longrightarrow R_+(J)$$

for any homomorphism $f: J \longrightarrow G$ by factorising f as $f: J \longrightarrow im(f) \subseteq G$ and setting

$$f^* = Inf^J_{im(f)} \cdot Res^G_{im(f)} : R_+(G) \longrightarrow R_+(im(f)) \longrightarrow R_+(J).$$

In addition, we may define a product on $R_+(G)$ by the formula

$$(K,\phi)^G \cdot (H,\psi)^G = \sum_{z \in K \setminus G/H} ((z^{-1}Kz) \cap H, z^*(\phi)\psi)^G.$$

These definitions make $R_+(G)$ into a functor from the category of finite groups to the category of commutative rings.

If $J \leq G$ one may also define an induction homomorphism

$$Ind_J^G: R_+(J) \longrightarrow R_+(G)$$

by the formula $Ind_J^G((H,\phi)^J) = (H,\phi)^G$. As in the case of the representation ring induction and restriction homomorphisms satisfy Frobenius reciprocity making $R_+(G)$ into a ring-valued Mackey functor. There is a natural transformation of ring-valued Mackey functors

$$b_G: R_+(G) \longrightarrow R(G)$$

defined on generators by the formula

$$b_G((H,\phi)^G) = Ind_H^G(\phi) \in R(G).$$

The following result was first discovered in [11] (see also [10]), improved upon in ([2],[3]) and developed and applied in ([4],[12],[13],[14],[15],[17]).

Theorem 2.4 (Explicit Brauer Induction; [15] Theorem 2.3.9) Let G be any finite group then, there exists an additive homomorphism

$$a_G: R(G) \longrightarrow R_+(G)$$

satisfying the following properties:

(i) For $H \leq G$ the following diagram commutes:

$$R(G) \xrightarrow{a_G} R_+(G)$$

$$Res_H^G \downarrow \qquad \qquad \downarrow Res_H^G$$

$$R(H) \xrightarrow{a_H} R_+(H)$$

(ii) Let $\rho: G \longrightarrow GL_n(\mathbf{C})$ be a representation and suppose that

$$a_G(\rho) = \sum \alpha_{(H,\phi)^G} (H,\phi)^G \in R_+(G)$$

then $\alpha_{(G,\phi)^G} = \langle \rho, \phi \rangle$ for each $(H, \phi)^G$ such that H = G. Here $\langle \rho, \phi \rangle$ denotes the Schur inner product (i.e. the multiplicity of the irreducible representation ϕ in ρ). In particular, if ρ is one-dimensional then $a_G(\rho) = (G, \rho)^G$.

(iii) The homomorphism, a_G , is uniquely characterised by (i)-(ii) and satisfies $b_G a_G = 1$.

(iv) In terms of the Schur inner product and the Möbius function of the poset, \mathcal{M}_G , $a_G(\rho)$ is given by the following formula:

$$a_{G}(\rho) = |G|^{-1} \sum_{\substack{(H,\phi) \leq (H',\phi') \\ \text{in } \mathcal{M}_{G}}} |H| \mu_{(H,\phi),(H',\phi')}^{\mathcal{M}_{G}} < \phi', \operatorname{Res}_{H'}^{G}(\rho) > (H,\phi)^{G}.$$

2.3 Cohomological Results

Lemma 2.5

Let p be a prime not dividing |G| and let S be a p-group acting on G. Then $H^1(S;G) = \{*\}$, the set with one element.

Proof

If $f: S \to G$ is a 1-cocycle, define a homomorphism $\Phi: S \to S \propto G$ by $\Phi(s) = (s, f(s))$ [13]. By Sylow's Theorem $Im(\Phi)$ is conjugate to S in $S \propto G$ and it follows that there exists $g \in G$ such that $f(s) = gs(g^{-1})$ for all $s \in S$. \Box

Lemma 2.6

Let S be a solvable group acting on G, with (|S|, |G|) = 1. Then $H^1(S; G) = \{*\}$.

Proof

Let T be an abelian normal subgroup of S. The result follows from lemma 2.5 and the following well-known exact sequence of pointed sets (see for example [8]):

$$H^1(S/T; G^T) \longrightarrow H^1(S; G) \longrightarrow H^1(T; G)^{S/T}$$

2.7 Consider the $\mathbb{Z}[S]$ -module given by $R_+(G)$ where the action of $s \in S$ given by setting $so(H, \phi)^G$ equal to the G-conjugacy class of $s(\phi) : s(H) \longrightarrow C^*$ given by $s(\phi)(s(h)) = \phi(h)$, for $h \in H$.

Recall that ([16] Definition 1.1.2 p.3), if M is a $\mathbb{Z}[S]$ -module and $N_S = \sum_{s \in S} s \in \mathbb{Z}[S]$ is the norm element, the 0-th Tate cohomology group is defined by:

$$\hat{H}^0(S;M) = M^S / (N_S M).$$

For any $\mathbb{Z}[S]$ -permutation module of the form $M = \bigoplus_i Ind_{S_i}^S(\mathbb{Z})$ we set

$$M_0 = \bigoplus_{S_i = S} Ind_{S_i}^S(\mathbf{Z})$$

and we have Z[S]-module homomorphisms:

$$M_0 \xrightarrow{j} M \xrightarrow{\pi} M_0$$

with j the inclusion map and $\pi j = 1$, which induce

$$\bigoplus_{i} \mathbb{Z}/|S_{i}| \cong \hat{H}^{0}(S;M) \xrightarrow[j_{\star}]{\pi_{\star}} \hat{H}^{0}(S,M_{0}) \cong \bigoplus_{S_{i}=S} \mathbb{Z}/|S|.$$

Specifically, we shall apply this to:

$$R_{+}(G) \cong \bigoplus_{(H,\phi)^{G}, J=Stab_{S}(H,\phi)^{G}} Ind_{J}^{S}(\mathbb{Z}).$$

Hence, summing over the same elements as above,

$$\hat{H}^{0}(S; R_{+}(G)) \cong \hat{H}^{0}(S; \bigoplus_{J} Ind_{J}^{S}(\mathbb{Z}))$$
$$\cong \bigoplus_{J} \hat{H}^{0}(S; Ind_{J}^{S}(\mathbb{Z}))$$
$$\cong \bigoplus_{J} \mathbb{Z}/|J|$$

From this we see:

$$\hat{H}^{0}(S; R_{+}(G)_{0}) \cong \bigoplus_{(J,\phi)^{G} \in R_{+}(G), S = Stab_{S}(J,\phi)^{G}} \mathbb{Z}/|S|$$

and

$$\hat{H}^{0}(S; R_{+}(G^{S})) \cong \bigoplus_{(J,\phi)^{G^{S}} \in R_{+}(G^{S})} \mathbb{Z}/|S|.$$

Theorem 2.8

Let S be a p-group acting on G of coprime order as in §2.7. Then the restriction and induction homomorphisms induce inverse isomorphisms

$$\hat{H}^{0}(S; R_{+}(G)_{0}) \xrightarrow[\pi_{\bullet}]{j_{\bullet}} \hat{H}^{0}(S; R_{+}(G)) \xrightarrow[Ind_{GS}^{Res_{GS}^{G}}]{ind_{GS}^{G}} \hat{H}^{0}(S; R_{+}(G^{S})).$$

Corollary 2.9

With S and G as Theorem 2.8, the restriction homomorphism induces an isomorphism

$$Res_{G^S}^G: \hat{H}^0(S; R(G)_0) \longrightarrow \hat{H}^0(S; R(G^S)).$$

Proof

Consider the following diagram (the summation is as in $\S2.7$).

By naturality, each of the homomorphisms a_G, b_G, a_{GS} and b_{GS} is a Z[S]-module homomorphism. By Theorem 2.4 and functoriality of b_G all these homomorphisms commute with the restriction homomorphisms. Theorem 2.8 implies that Res_{GS}^G induces an isomorphism of the form

$$\hat{H}^{0}(S; R_{+}(G)_{0}) \cong \bigoplus_{(J,\phi)^{G} \in R_{+}(G), S = Stab_{S}(J,\phi)^{G}} \mathbb{Z}/|S| \xrightarrow{\cong} \bigoplus_{(J,\phi)^{G^{S}}} \mathbb{Z}/|S|.$$

Since $b_G a_G = 1$ and $b_G s a_G s = 1$, the restriction homomorphism on $\hat{H}^0(S; R(G)_0)$ is a natural summand of the restriction homomorphism on $\hat{H}^0(S; R_+(G)_0)$ and is therefore an isomorphism modulo p, as required. \Box

Theorem 2.8 will be proved in §2.12 after a series of preliminary results. Unless specified, S is assumed to be a solvable group acting on G with (|G|, |S|) = 1.

Proposition 2.10

Suppose that $J \subseteq G$ is a subgroup such that s(J) = J for all $s \in S$. Then

$$(G^S \backslash G/J)^S = G^S \cdot 1 \cdot J,$$

the identity double coset.

Proof

Assume S is cyclic of order m, generated by an element s. If S fixes a double coset $G^S \cdot z \cdot J$ then there exists $\alpha \in G^S$, $\beta \in J$ such that $s(z) = \alpha z \beta$. By repeated action of s, we see that

$$z = s^{m}(z) = \alpha^{m} z \beta s(\beta) s^{2}(\beta) \dots s^{m-1}(\beta)$$

and so $z^{-1}\alpha^{-m}z \in J$. Since |S| is prime to the order of α we find that $z^{-1}\alpha z = z^{-1}s(z)\beta^{-1} \in J$ and so $z^{-1}s(z) \in J$. This holds for all elements of S which means we may define a 1-cocycle, $f: S \longrightarrow J$, by $f(s) = z^{-1}s(z)$ for all $s \in S$. By Lemma 2.6 there exists $j \in J$ such that $j^{-1}s(j) = f(s) = z^{-1}s(z)$ for all $s \in S$ and so $zj^{-1} \in G^S$. Hence $\alpha z\beta = \alpha(zj^{-1})(j\beta)$ and this implies that $G^S \cdot z \cdot J = G^S \cdot 1 \cdot J$ as required.

Assume now that S is non-cyclic and take $S' \lhd S$ such that S/S' is cyclic and let

$$X_{S'} = \{ G^S \cdot z \cdot J | z \in G^{S'} \}.$$

We see S/S' acts on $X_{S'}$ and the proof follows by induction on $|S|_*$

Lemma 2.11

If $J', J \subseteq G^S$ and $(J, \phi)^G = (J', \phi')^G \in R_+(G)$ then $(J, \phi)^{G^S} = (J', \phi')^{G^S} \in R_+(G^S).$

Proof

By definition, there exists $g \in G$ such that $gJg^{-1} = J'$ and $\phi(j) = \phi'(gjg^{-1})$ for all $j \in J$. Now consider the function, $f: S \longrightarrow G$, given by $f(s) = g^{-1}s(g)$. Define the normaliser of (J, ϕ) in G, $N_G(J, \phi)$, to be the subgroup given by

$$N_G(J,\phi) = \{ \boldsymbol{z} \in N_G J \mid \phi(zjz^{-1}) = \phi(j) \text{ for all } j \in J \}.$$

Then f is a 1-cocycle with values in $N_G(J, \phi)$ and the result follows by application of Lemma 2.6. \Box

2.12 Proof of Theorem 2.8

Since the groups we are considering are both direct sums of copies of the cyclic p-group $\mathbb{Z}/|S|$, we have only to show that Ind_{GS}^{G} induces a modulo p inverse to Res_{GS}^{G} on Tate cohomology in dimension zero.

Given $(H, \psi)^G \in R_+(G)^S$, Glauberman's fixed point lemma (see for example Lemma 13.8 of [7]) implies that we can find an element (J, ϕ) such that $(H, \psi)^G =$

 $(J,\phi)^G$ and $Stab_S(J,\phi) = S$. Proposition 2.10 implies that $(G^S \setminus G/J)^S$ is the identity double coset. The following composition

$$\hat{H}^{0}(S; R_{+}(G)_{0}) \xrightarrow{j_{\bullet}} \hat{H}^{0}(S; R_{+}(G)) \xrightarrow{\operatorname{Res}_{GS}^{G}} \hat{H}^{0}(S; R_{+}(G^{S})) \xrightarrow{\operatorname{Ind}_{GS}^{G}} \hat{H}^{0}(S; R_{+}(G))$$

sends $(H,\psi)^G$ to

$$Ind_{G^{S}}^{G}(Res_{G^{S}}^{G}(H,\psi)^{G}) = Ind_{G^{S}}^{G}(Res_{G^{S}}^{G}(J,\phi)^{G})$$
$$= Ind_{G^{S}}^{G}\left(\sum_{z \in G^{S} \setminus G/J} (G^{S} \cap zJz^{-1}, (z^{-1})^{*}(\phi))^{G^{S}}\right)$$
$$= \sum_{z \in G^{S} \setminus G/J} (G^{S} \cap zJz^{-1}, (z^{-1})^{*}(\phi))^{G}$$

The action of S permutes the terms in this sum so that we can separate the fixed and non-fixed double-cosets and apply Proposition 2.10 to write

$$Ind_{G^{S}}^{G}(Res_{G^{S}}^{G}(J,\phi)^{G}) = (J,\phi)^{G} + \sum_{s \in S} s(\sum_{z} (G^{S} \cap zJz^{-1}, (z^{-1})^{*}(\phi))^{G})$$

where the final sum is taken over S-orbit representatives of non-fixed double cosets. We see that all the terms in this sum are fixed by the action of S. Since S is a p-group, all the S-orbits in the sum have orbit size a multiple of p, which implies that

$$Ind_{G^S}^G(Res_{G^S}^G(J,\phi)^G) \equiv (J,\phi)^G \pmod{p}.$$

Therefore Ind_{GS}^{G} induces a split surjection modulo p on \hat{H}^{0} . However Lemma 2.11 implies that Ind_{GS}^{G} is one-to-one (both integrally and modulo p) which completes the proof. \Box

Corollary 2.13

Let S be a cyclic group acting on G with (|S|, |G|) = 1. Then

$$|Irr(G)^S| = |Irr(G^S)|.$$

Proof

Let S be a p-group, let $\lambda_1, \ldots, \lambda_t$ denote the irreducible representations of the fixed group G^S and let $\rho_1, \ldots, \rho_{t'}$ denote the S-fixed irreducible representations of G. Then t equals the rank of $\hat{H}^0(S; R(G)_0)$ and t' is the rank of $\hat{H}^0(S; R(G^S))$. By Corollary 2.9, these numbers are equal. If S is cyclic, let $S = S_1 \times S_2$ where $(|S_1|, |S_2|) = 1$. Then, by induction,

$$Irr(G)^{S}| = |(Irr(G)^{S_{1}})^{S_{2}}| = |Irr(G^{S_{1}})^{S_{2}}| = |Irr(G^{S_{1} \times S_{2}})|.$$

3 Proof of Glauberman's Theorem

Let $\lambda_1, \ldots, \lambda_t$ denote the irreducible representations of the fixed group G^S . By Corollary 2.13, the set of S-fixed irreducible representations of G may be written ρ_1, \ldots, ρ_t . Let $\tilde{\rho}_i$ be the canonical extension of ρ_i to the semi-direct product $S \propto G$, as in §2.1. Let $C_G(g)$ denote the centraliser of g in G so that the order of the G-conjugacy class of g is equal to $|G|/|C_G(g)|$. From Glauberman ([6] Lemma 2) we have the following result.

Lemma 3.1

Let $T = \langle s \rangle$ be a cyclic subgroup of S of order n, coprime to |G|.

(i) For any $g \in G$ the $T \propto G$ -conjugacy class of (s,g) contains an element of the form (s,g') with $g' \in G^T$.

(ii) Let $z, z' \in G^T$. Then (s, z) and (s, z') are conjugate in $T \propto G$ if and only if z and z' are conjugate in G^T .

(iii) If H is a group and $z \in H$, let $Cl_H(z)$ denote the H-conjugacy class of z. Suppose that $z \in G^T$. Then

$$|Cl_{T \propto G}(s, z)| = \frac{|G|}{|G^T|} |Cl_{G^T}(z)|$$

3.2 Let $S = \langle s \rangle$ be cyclic of order *n* where $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$ for distinct primes p_i not dividing |G|. The irreducible representations of *S* are given by powers of the one-dimensional representation *y* given by $y(s) = e^{2\pi i/n} = \xi_n$.

We first consider the Galois orbits of elements of the set $\{y^j \mid 0 \leq j \leq n\}$ under the action of elements of the Galois group $Gal(\mathbf{Q}(\xi_n)/\mathbf{Q})$. There are $(\alpha_1 + 1)(\alpha_2 + 1)...(\alpha_r + 1)$ such orbits. For β dividing *n* the "Galois orbit" of y^{β} , denoted by G_{β} , is defined by

$$G_{\beta} = \sum_{\substack{(k, \frac{n}{\beta}) = 1, \ 1 \le k \le \frac{n}{\beta} - 1}} y^{\beta k}.$$

We may use the Artin induction formula (see [15] Theorem 2.1.3) to rewrite each G_{β} as a sum of induced representations

$$G_{\underline{\beta}} = Ind_{C_{\beta}}^{C_{n}}(1) - \sum_{C_{\gamma} > C_{\beta}} \mu_{\gamma} Ind_{C_{\gamma}}^{C_{n}}(1)$$

where, for each γ , μ_{γ} is an integer (calculated in terms of Möbius coefficients but this is not necessary here) with $\mu_{\beta} = 1$. Also the C_{γ} are cyclic groups. Using Lemma 2.2, summing G_{β} over all β dividing n and gathering together terms, we find

$$Res_{S\times GS}^{S \propto G}(\tilde{\rho}_i) = \sum_{\beta \mid n} \alpha_{i\beta}(Ind_{C_{\beta}}^{C_n}(1) \otimes A_{i\beta})$$

for integers $\alpha_{i\beta}$ and some (yet to be determined) $A_{i\beta} \in R(G^S)$.

Choose a such that (a, n) = 1. We see all the terms in the sum above vanish on s^a except the term $\beta = n$ so that

$$Res_{S\times G^S}^{S\propto G}(\tilde{\rho}_i)(s^a,g) = \alpha_{in}A_{in}(g).$$

Hence

$$\frac{1}{|G^{S}|} \sum_{g \in G^{S}} \operatorname{Res}_{S \times G^{S}}^{S \propto G}(\tilde{\rho}_{i})(s^{a}, g) \overline{\operatorname{Res}}_{S \times G^{S}}^{S \propto G}(\tilde{\rho}_{j})(s^{a}, g)$$
$$= \frac{1}{|G^{S}|} \sum_{g \in G^{S}} \alpha_{in} A_{in}(g) \alpha_{jn} \overline{A_{jn}(g)}$$
$$= \alpha_{in} \alpha_{jn} \langle A_{in}(g), A_{jn}(g) \rangle_{G^{S}}$$

Proposition 3.3

If $S = \langle s \rangle$ is a cyclic group order n and let a be an integer satisfying $1 \leq a \leq n-1$ and (a,n) = 1. Define T_{ij} by the formula

$$T_{ij} = \frac{1}{|G^S|} \sum_{g \in G^S} \operatorname{Res}_{S \times G^S}^{S \propto G}(\tilde{\rho}_i)(s^a, g) \overline{\operatorname{Res}_{S \times G^S}^{S \propto G}(\tilde{\rho}_j)(s^a, g)}.$$

Then $T_{ij} = \delta_{ij}$, the Kronecker delta.

Proof

For β dividing *n*, let k_{β} be an integer satisfying $1 \le k_{\beta} \le \frac{n}{\beta} - 1$ and $(k_{\beta}, \frac{n}{\beta}) = 1$. Let $S_{\beta} = \langle s^{\beta k_{\beta}} \rangle$, which is independent of the choice of k_{β} . By Lemma 3.1, if $\phi(m)$ denotes Euler's totient function, we have

 δ_{ij}

$$= \langle \tilde{\rho}_{i}, \tilde{\rho}_{j} \rangle_{S \propto G}$$

$$= \frac{1}{n|G|} \sum_{\beta|n} \phi\left(\frac{n}{\beta}\right) \frac{|G|}{|G^{S_{\beta}}|} \sum_{g \in G^{S_{\beta}}} \operatorname{Res}_{S_{\beta} \times G^{S_{\beta}}}^{S \propto G}(\tilde{\rho}_{i})(s^{\beta k_{\beta}}, g) \overline{\operatorname{Res}_{S_{\beta} \times G^{S_{\beta}}}^{S \propto G}(\tilde{\rho}_{j})(s^{\beta k_{\beta}}, g)}$$

$$= \frac{1}{n} \sum_{\beta|n} \phi\left(\frac{n}{\beta}\right) \frac{1}{|G^{S_{\beta}}|} \sum_{g \in G^{S_{\beta}}} \operatorname{Res}_{S_{\beta} \times G^{S_{\beta}}}^{S_{\beta} \propto G}(\tilde{\rho}_{i})(s^{\beta k_{\beta}}, g) \overline{\operatorname{Res}_{S_{\beta} \times G^{S_{\beta}}}^{S \propto G}(\tilde{\rho}_{j})(s^{\beta k_{\beta}}, g)}.$$

By induction, we can assume the result true for all cases above except the case $\beta = 1$, which implies that

$$\delta_{ij} = \frac{\phi(n)}{n} T_{ij} + \frac{\delta_{ij}}{n} \sum_{\substack{\beta \mid n \\ \beta \neq 1}} \phi\left(\frac{n}{\beta}\right).$$

Thus the identity $\sum_{\beta|n} \phi(\beta) = \sum_{\beta|n} \phi\left(\frac{n}{\beta}\right) = n$ implies that $T_{ij} = \delta_{ij}$ as required.

From Proposition 3.3 we see that

$$\delta_{ij} = \alpha_{in} \alpha_{jn} \langle A_{in}(g), A_{jn}(g) \rangle_G s.$$

Since α_{in} and α_{jn} are integers, we must have $\langle A_{in}, A_{jn} \rangle_{G^S} = \delta_{ij}$ and $\alpha_{in}^2 = 1$. By Corollary 2.13, the distinct irreducible representations $\{A_{1n}, \ldots, A_{in}\}$, of G^S must be precisely $\{\lambda_1, \ldots, \lambda_t\}$ which implies that there exists a permutation, σ , and a sign $\epsilon_i \in \{\pm 1\}$ such that

$$A_{in} = \epsilon_i \lambda_{\sigma(i)}$$

for $1 \leq i \leq t$. If we choose a coprime to n and $t \in G^S$ we see that

$$Res^{S \propto G}_{S \times G^S}(\tilde{\rho}_i)(s^a, t) = \tilde{\rho}_i(s^a, t) = A_{in}(t) = \epsilon_i \lambda_{\sigma(i)}$$

This proves the following lemma, and is exactly Glauberman's characterisation of the correspondence.

Lemma 3.4

Let S be a cyclic group and let $\rho \in Irr(G)^S$. Then there exists a unique sign $\epsilon = \pm 1$ and a unique $\lambda \in Irr(G^S)$ such that

$$\tilde{\rho}(s,t) = \epsilon \lambda(t),$$

for all s which generate S and all $t \in G^S$. Moreover, for every $\lambda \in Irr(G^S)$, there exists a unique S-fixed $\rho \in Irr(G)$ which corresponds to λ in this manner.

From the above equations, we also obtain

$$Res_{GS}^{G}(\rho_{i}) = \epsilon_{i}\lambda_{\sigma(i)} + \sum_{\substack{\beta \mid n \\ \beta \neq n}} \left(\frac{n}{\beta}\right)\alpha_{i\beta}A_{i\beta}$$

If S is a p-group we note that all terms except the first term disappear modulo p. Hence we immediately obtain the following result.

Lemma 3.5

Let S be a cyclic p-group and $\rho \in Irr(G)^S$. Let

$$Res_{G^S}^G(\rho) = n_1 \lambda_1 + \dots + n_t \lambda_t,$$

where λ_i are distinct irreducible representations. Then there exists a unique i such that $p \not| n_i$. Moreover, $n_i \equiv \pm 1 \pmod{p}$.

This gives a complete characterisation of Glauberman's correspondence for cyclic groups. It is straightforward to extend Lemma 3.4 to all solvable S, using the results above with a composition series (see [6], §4 pp.1477-1479). Similarly the result of Lemma 3.5 is easily strengthened by induction on |S| to yield the following:

Lemma 3.6 Lemma 3.5 holds for any finite p-group S.

Boltje's Explicit Map 4

Let S be a p-group. Boltje [5] defines a map $bol^{S,G}$: $R(G)^S \to R(G^S)$ as a composition of the following form

$$bol^{S,G}: R(G)^S \xrightarrow{a_G} R_+(G)^S \xrightarrow{bol_+^{S,G}} R_+(G^S) \xrightarrow{b_G^S} R(G^S).$$

We define the map $bol_+^{S,G} : R_+(G)^S \to R_+(G^S)$. Let $T = Stab_S((H,\lambda)^G)$, then the S-orbit sums

$$\sum_{s \in S/T} s \circ (H, \lambda)^G, \qquad (H, \lambda) \in S \propto G \backslash \mathcal{M}(G)$$

form a Z-basis of $R_+(G)^S$. By Glauberman's fixed point lemma (see for example Lemma 13.8 of [7]), there is a T-fixed point (H', λ') in the G-orbit of (H, λ) and we can define the map (Boltje [5] proves this map is well-defined):

$$bol_+^{S,G}\left(\sum_{s\in S/T} s\circ (H,\lambda)^G\right) = \begin{cases} (G^S\cap H', \operatorname{Res}^{H'}_{G^S\cap H'}(\lambda'))^{G^S} & \text{if } T=S, \\ 0 & \text{if } T$$

We conclude this section by deducing the main theorem of [5] from the results of §2 and §3.

Theorem 4.1

When S is a p-group with p prime then the homomorphism $bol^{S,G}$ is congruent to Glauberman's correspondence modulo p.

Proof

If $\rho \in Irr(G)^{S}$ then, by Lemma 3.6, $Res_{G^{S}}^{G}(\rho) \equiv \epsilon \lambda \pmod{p}$ for some irreducible representation $\lambda \in Irr(G^S)$. Applying a_G and the formulae of §2.3 to this we obtain

$$\operatorname{Res}_{G^S}^G(a_G(\rho)) = a_{G^S}(\operatorname{Res}_{G^S}^G(\rho)) \equiv a_{G^S}(\epsilon\lambda) \pmod{p}$$

On the other hand, if $a_G(\rho) = \sum_i n_i (H_i, \phi_i)^G$ then

$$\begin{aligned} \operatorname{Res}_{G^S}^G(a_G(\rho)) &= \operatorname{Res}_{G^S}^G(\sum_i n_i(H_i, \phi_i)^G) \\ &= \sum_i \sum_{z \in G^S \setminus G/H_i} (G^S \cap z H_i z^{-1}, (z^{-1})^*(\phi_i))^{G^S} \end{aligned}$$

We can split $a_G(\rho)$ in the form

$$a_G(\rho) = \sum_i (H_i, \phi_i)^G = \sum_j (J_j, \phi_j)^G + \sum_{s \in S} \sum_k s(K_k, \psi_k)$$

where the $(J_j, \phi_j)^G$'s are S-fixed, and the (K_k, ψ_k) 's are not. Further from Glauberman's fixed point lemma, we may assume that $s \circ (J_j, \phi_j) = (J_j, \phi_j)$ for all $s \in S$ and for each j. Applying Proposition 2.10, we have:

$$\begin{aligned} \operatorname{Res}_{G^{S}}^{G}(a_{G}(\rho)) &= \sum_{j} (G^{S} \cap J_{j}, \operatorname{Res}_{G^{S} \cap J_{j}}^{J_{j}}(\phi_{j}))^{G^{S}} \\ &+ \sum_{k} \sum_{s \in S} \sum_{z \in G^{S} \setminus G/K_{k}} s(G^{S} \cap zK_{k}z^{-1}, (z^{-1})^{*}(\psi_{k}))^{G^{S}}. \end{aligned}$$

The non-fixed terms all restrict to subgroups and representations of G^S , so the action of s leaves the element unchanged in its G^S orbit and each term will therefore appear a multiple of p times (cf. the argument of §2.12) so that

$$\operatorname{Res}_{G^{S}}^{G}(a_{G}(\rho)) \equiv \sum_{j} (G^{S} \cap J_{j}, \operatorname{Res}_{G^{S} \cap J_{j}}^{J_{j}}(\phi_{j}))^{G^{S}} \equiv \operatorname{bol}_{+}^{S,G}(a_{G}(\rho)) \; (\operatorname{modulo} p).$$

Applying b_{Gs} yields the following congruences modulo p

$$\epsilon \lambda = b_{G^S}(a_{G^S}(\epsilon \lambda))$$
$$\equiv b_{G^S}(Res_{G^S}^G(a_G(\rho)))$$
$$\equiv b_{G^S}(bol_+^{S,G}(a_G(\rho))),$$

as required. \Box

References

- J. L. Alperin: The Main Problem of Block Theory; Proc. Conf. on Finite Groups, W. R. Scott and F. Gross (1976) 341-365.
- [2] R. Boltje: A canonical Brauer induction formula; Astérisque t.181-182 (1990) 31-59.
- [3] R. Boltje: Canonical and explicit Brauer induction in the character ring of a finite group and a generalisation for Mackey functors; Augsburg Univ. thesis (1989).
- [4] R. Boltje, V. Snaith and P. Symonds: Algebraicisation of Explicit Brauer Induction; J. Alg. (2) 148 (1992) 504-527.
- [5] R. Boltje: Glauberman's Correspondence via Canonical Induction Formulae; Akad. gemein. Wiss. Erfurt, Sitzungsber. Math.-Nat. 7 (1996) 19-35.
- [6] G. Glauberman: Correspondences of characters for relatively prime operator groups; Can.J.Math. 20 (1968) 1465-1488.
- [7] I. M. Isaacs: Character Theory of Finite Groups; Mathematics # 69 (1976) Academic Press.

- [8] Jean-Pierre Serre: Cohomologie Galoisienne; Lecture Notes in Mathematics #5 (1997) Springer-Verlag".
- [9] T. Shintani: Two remarks on irreducible characters of finite general linear groups; J. Math. Soc. Japan 28 (1976) 396-414.
- [10] V.P. Snaith: Applications of Explicit Brauer Induction; A.M.Soc. Proc. Symp. Pure Math. 47 Part 2 (1987) 495-531.
- [11] V.P. Snaith: Explicit Brauer Induction; Inventiones Math. 94 (1988) 455-478.
- [12] V.P. Snaith: A local construction of the local root numbers; Proceedings of the 1987 Laval Number Theory Conference, de Gruyter (1989) 823-840.
- [13] V.P. Snaith: Topological Methods in Galois Representation Theory; C.M.Soc. Monographs (1989) Wiley.
- [14] V.P. Snaith: Invariants of Representations; NATO ASI Series # 279, Algebraic K-theory: Connections with Geometry and Topology 445-508 (1989) Kluwer.
- [15] V.P. Snaith: Explicit Brauer Induction (with applications to algebra and number theory); Cambridge Studies in Advanced Math. #40 (1994) Cambridge University Press.
- [16] V.P. Snaith: Galois Module Structure; Fields Institute Monograph Series #2, A.M.Soc. (1995).
- [17] P. Symonds: A splitting principle for group representations; Comm. Math. Helv. 66 (1991) 169-184.

- -