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1 Introduction

Let S and G be finite groups of coprime order such that S acts on G. If S is
solvable, Glauberman [6] proves the existence of a bijection between the S—fixed
irreducible representations of G and the irreducible representations of GS. A
second proof using Brauer’s results in block theory was given by Alperin [1].
Boltje [5] assumes Glauberman’s theorem and gives an explicit version of the
correspondence using Explicit Brauer Induction (see [15]) in the case in which §
1S a p—group.

We shall use Explicit Brauer Induction to give another proof of Glauberman’s
result and also show how Boltje’s result follows immediately from our method.

Section Two gives some preliminary results: the ‘canonical’ extensions, Ex-
plicit Brauer Induction and results in Tate cohomology and non-abelian coho-
mology. Section Three contains a proof of Glauberman’s theorem, and Section
Four moves on to demonstrate how this extends to give Boltje’s explicit corre-
spondence.

It would be very interesting to explain the Shintani correspondence [9] (a
correspondence in which |S| and |G| are not coprime) in terms of Explicit Brauer
Induction.

2 Preliminary Results

Throughout this section let S and G be finite groups of coprime order such that
S is a solvable group acting on G. We denote the set of S-fixed points of a set

X on which S acts by X3,

2.1 Extensions of Representatiqns

For an irreducible complex representation p of G, which is fixed under the action
of S, the existence of a unique (canonical) extension j to the semi-direct product
S o« G is well known, and characterised by the following theorem (for example,

see [6]):



Theorem 2.1
Let p € Irr(G)S. Then there ezists a unique p € Irr(S « G) such that

Res?*C(p) = p and det(p(s)) = 1 for all s € S. Moreover, if p is such an
extension then Q(5) = Q(p) and j(s) € Q for all s € S (where Q(p) is the field
obtained by adjoining the character values of p to Q).

The second part of the theorem leads to the following observation:

Lemma 2.2
Let S be a cyclic group and p € Irr(G)5. If s € S and a an integer prime to
|S|, then the character values of j satisfy p(s,t) = p(s*,t) for allt € G°.

2.2 Explicit Brauer Induction

We briefly recall Explicit Brauer Induction from [15].

2.3 Let G be any finite group and let R(G) denote the complex representation
ring of G. Denote by Mg the poset of characters (or one-dimensional complex
representations) on subgroups, (H, ¢), where H < G and ¢ : H — C*. Then
Mg is a poset if we define the partial ordering by

(H,¢) < (H',¢') <> H < H' and Res (¢') = ¢.
In addition, ¢ € G acts on Mg by the formula
9(H,¢)=(9Hg™",(¢7")"(4)

where (¢71)*(¢)(ghg™!) = ¢(h) for all h € H.

Let R.(G) denote the free abelian group on the set (Mg)/G. Hence the
free generators are the G-conjugacy classes of characters ¢ : H — C* where
H < G. We shall denote this character by (H, ¢) and its G-conjugacy class by
(Ha ¢)G € R+(G)

If J < G we define a restriction homomorphism
Res§ : Ry(G) — Ry (J)
by the double coset formula
Res§(H,¢)) = Y (JnzHz (=) (4))".

z€J\G/H
If 7 :J — G is a surjection we may define an inflation homomorphism
Infg: Re(G) — Ry(J)

by the formula
Infi((H,)°) = («7}(H), ¢m)’.

[A]



By means of restriction and inflation we may define
[ Ry (G) — Ri(J)

for any homomorphism f : J — G by factorising f as f : J — im(f) C G
and setting :

fr= Infi{n(f) ) Re‘sgn.(j) : Ri(G) — Ri(im(f)) — Ry(J).
In addition, we may define a product on Ry(G) by the formula
(K, )¢ (H, %)= > ((z7'Kz)n H,z*(¢))C.

2€K\G/H

These definitions make R, (G) into a functor from the category of finite groups
to the category of commutative rings.
If J £ G one may also define an induction homomorphism

Ind§ : Ry(J) — R.(G)

by the formula Ind$((H, ¢)’) = (H, $)®. Asin the case of the representation ring
induction and restriction homomorphisms satisfy Frobenius reciprocity making
R, (G) into a ring-valued Mackey functor. There is a natural transformation of

ring-valued Mackey functors
be : R4 (G) — R(G)
defined on generators by the formula
be((H,9)%) = Indg(¢) € R(G).

The following result was first discovered in [11] (see also [10]), improved upon
in ({2],[3]) and developed and applied in ([4],[12],(13],[14],[15],[17]).

Theorem 2.4 (Ezplicit Brauer Induction; [15] Theorem 2.8.9)
Let G be any finite group then, there ezists an additive homomorphism

ag: R(G) — R4(G)
satisfying the following properties:
(i) For H < G the following diagram commutes:

R(G)-2%~ R,(G)

Res§, J Res§,

R(H)—Z. R.(H)



(ii) Let p: G —> GL,(C) be a representation and suppose that
p) =3 awmpo(H,¢)° € R(G)

then o g, 85 =< p, é > for each (H,9)C such that H = G. Here < p, ¢ > denotes
the Schur inner product (i.e. the multliplicity of the irreducible representatzon é
in p). In particular, if p is one-dimensional then ag(p) = (G, p)C.

(iti) The homomorphism, ag, is uniquely characterised by (1)-(ii) and satis-
fies bgag = 1.

(iv) In terms of the Schur inner product and the Mobius function of the
poset, Mg, ag(p) is given by the following formula:

ac(p) =G S HIS ey < 8 Resii(p) > (H,9)°.
(H._ab)sj(\fff'm')
mn G

2.3 Cohomological Results

Lemma 2.5
Let p be a prime not dividing |G| and let S be a p-group acting on G. Then

HY(S; G) = {*}, the set with one element.

Proof

If f: S — G is al—cocycle, define a homomorphism ® : § — § o< G by
&(s) = (s, f(s)) [13]. By Sylow’s Theorem Im(®) is conjugate to Sin S x G
and it follows that there exists g € G such that f(s) =gs(¢g~!) foralls € S. O

Lemma 2.6
Let § be a solvable group acting on G, with (|S|,|G]) = 1. Then

HY(S;G) = {x}.

Proof
Let T be an abelian normal subgroup of S. The result follows from lemma
2.5 and the following well-known exact sequence of pointed sets (see for example

[8]):
Hl(S/T; GT) N HI(S; G) N HI(T; G)s/T

O

2.7 Consider the Z[S ]-module given by R4 (G) where the action of s € S given
by setting so(H, ¢)¢ equal to the G’—conjugacy class of s(¢) : s(H) — C* given
by 5(4)(s(h)) = 6(h), for h € H.

Recall that ([16] Definition 1.1.2 p.3), 1f M is a Z[S]—module and Ns =
Yoes & € Z[S] is the norm element, the 0—th Tate cohomology group is defined
by:

H°(S; M) = M3 /(NsM).



For any Z[S]-permutation module of the form M = @;Indg (Z) we set

Mo = €p IndZ.(Z)
Si=S

and we have Z[5]-module homomorphisms:
My - M = M,

with j the inclusion map and 7§ = 1, which induce

ﬂ't

P2/ = H(S;M) 5. BO(S,M0) = @ Z/1S).

5:=S
Specifically, we shall apply this to:

R.(G) = D IndS(2).
(H,¢)G ,J=Stabs(H,¢)F

Hence, summing over the same elements as above,

H(S;R:(G)) = H(S; @D IndS(2))
J
~ P HO(S; Ind3(Z))
J

= @Z/IJI

From this we see;

(J.#)S€R4(G),5=Stabs(J,4)S

and )
B(S;R(G%)2 D 2/IS|.
(1.4)5° €R4 (GS)

Theorem 2.8
Let S be a p—group acting on G of coprime order as in §2.7. Then the
restriction and induction homomorphisms induce inverse isomorphisms
B Resls

H(S; R (G)o) 2o H(SiB4(G)) pue H°(S; Re(GF)).

Corollary 2.9
With S and G as Theorem 2.8, the restriction homomorphism induces an

isomorphism

Resgs : H°(S; R(G)o) — H°(S; R(GY)).
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Proof
Consider the following diagram (the summation is as in §2.7).

D710 B/|Stabs((,)°)] ®sey0s 2/1S]
HO(S; R4(G)) H°(S; R4 (G%))
ag bG bGs ags
H°(S; R(G)) H°(S; R(GS))

By naturality, each of the homomorphisms ag, bg, ags and bgs is a Z[S]-module
homomorphism. By Theorem 2.4 and functoriality of bs all these homomor-
phisms commute with the restriction homomorphisms. Theorem 2.8 implies that
Res&s induces an isomorphism of the form

H(S; By (G)o) = D Z/1S| = @D Z/IS|.

) (J:#)C €R4(G),S=Stabs(J,¢)° (J,9)6°
Since bgag = 1 and bgsags = 1, the restriction homomorphism on H °(S; R(G)o)
is a natural summand of the restriction homomorphism on H°(S; Ry (G)) and
is therefore an isomorphism modulo p, as required. O

A)

Theorem 2.8 will be proved in §2.12 after a series of preliminary results. Un-
less specified, S is assumed to be a solvable group acting on G with

(IGl,151) = 1.



Proposition 2.10
Suppose that J C G is a subgroup such that s(J) = J for all s € S. Then

(G\G/J)*=G®.1-J,
the identity double coset.

Proof

Assume S is cyclic of order m, generated by an element s. If S fixes a double
coset G° - z - J then there exists « € G5, 8 € J such that s(z) = azf. By
repeated action of s, we see that

z=5"(z) = a™z0s(8)s*(B) ... s™ ()

and so z~'a™™z € J. Since |S| is prime to the order of o we find that z-laz =
z71s(z)f~" € J and so z7's(z) € J. This holds for all elements of S which
means we may define a l-cocycle, f : S — J, by f(s) = z7's(z) for all s € S.
By Lemma 2.6 there exists j € J such that j71s(j) = f(s) = z71s(z) for all
s € S5 and so 257! € G°. Hence @z = a(zj~!)(58) and this implies that
G%-z-J=G%.1-J as required.

Assume now that S is non-cyclic and take S’ <1 S such that 575" is cyclic and
let

Xsr={G% -z-J|z € G'}.

We see 5/5" acts on Xsr and the proof follows by induction on [S|. O

Lemma 2.11
If J',J € G® and (J,4)° = (J',¢")¢ € Ry(G) then

(1,8)%° = (J',¢)%° € Ry(G5).

Proof

By definition, there exists g € G such that gJg=! = J' and ¢(j) = ¢'(g7¢™?)
for all j € J. Now consider the function, f : § — G, given by f(s) = g7 s(g).
Define the normaliser of (J, ¢) in G, Ng(J, ¢), to be the subgroup given by

Ne(J,¢) = {z € NeJ | $(2jz7") = ¢(j) for all j € J}.

Then f is a 1-cocycle with values in Ng(J, ¢) and the result follows by application
of Lemma 2.6. O

2.12 Proof of Theorem 2.8
Since the groups we are considering are both direct sums of copies of the cyclic
p-group Z/|S|, we have only to show that IndZs induces a modulo p inverse to

ResZs on Tate cohomology in dimension zero.
Given (H,%)% € R(G)®, Glauberman’s fixed point lemma (see for example

Lemma 13.8 of [7]) implies that we can find an element (J, ¢) such that (H,%)¢ =
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(J,)¢ and Stabs(J,6) =.S. Proposition 2.10 implies that (GS\G/J)? is the

identity double coset. The following composition

A ; A ResGs . IndGS N
HO(S; Re(G)o) 2 HY(S; R4(G)) =% H°(S; R4(G7)) — H(S;R+(G))
sends (H,%)%
IndGs(ResSs(H,¥)%) = IndSs(ResGs(J, ¢)%)

= I’ndgs (EZGGS\G/J(GS N ZJZ_]', (z_l)’(¢))GS)

= T.een\gu(G° NzJz7, (z71)*(4))°

The action of § permutes the terms in this sum so that we can separate the
fixed and non-fixed double-cosets and apply Proposition 2.10 to write

IndSs(ResSs(J, $)) = + 3 s3G5 n2Jz7t (271)(4))°)

€S z

where the final sum is taken over S-orbit representatives of non-fixed double
cosets. We see that all the terms in this sum are fixed by the action of S. Since
S is a p—group, all the S—orbits in the sum have orbit size a multiple of p, which
implies that
IndSs(ResSs(J,$)°%) = (J, )€ (modulo p).

Therefore IndZs induces a split surjection modulo p on H°. However Lemma
2.11 implies that IndGs is one-to-one (both integrally and modulo p) which
completes the proof. O

Corollary 2.13
Let S be a cyclic group acting on G with ({S|,|G]) = 1. Then

|Irr(G)®] = |Irr(G)).

Proof

Let S be a p—group, let Ay, ..., A denote the irreducible representations of the
fixed group G° and let p1,.. ., py denote the S-fixed irreducible representations
of G. Then t equals the rank of H°(S; R(G)o) and t' is the rank of H°(S; R(GS)).
By Corollary 2.9, these numbers are equal. If S is cyclic, let S = S5; x S; where
(|S1],]52]) = 1. Then, by induction,

Irr(@)°] = I(Irr(G)*)%| = [Irr(G%) | = Irr(GH %))



3 Proof of Glauberman’s Theorem

Let Ay,..., A denote the irreducible representations of the fixed group G5. By
Corollary 2.13, the set of S-fixed irreducible representations of G may be written
P1,--+,pt. Let p; be the canonical extension of p; to the semi-direct product
S o« G, as in §2.1. Let Cs(g) denote the centraliser of g in G so that the order
of the G-conjugacy class of g is equal to |G|/|C¢(g)]. From Glauberman ([6]
Lemma 2) we have the following result.

Lemma 3.1

Let T =< s > be a cyclic subgroup of S of order n, coprime to |G|.

(i) For any g € G the T «x G-conjugacy class of (s,g) contains an element
of the form (s,g¢") with ¢’ € GT.

(i) Let z,z' € GT. Then (s,z) and (s,2') are conjugate in T x G if and
only if z and 2z’ are conjugate in GT.

(iii) If H is a group and z € H, let Clg(z) denote the H-conjugacy class of
z. Suppose that z € GT. Then

(Clruc(s:)] = 15 1Cler ()

3.2 Let § =< s > be cyclic of order n where n = p{*p3?...p% for distinct
primes p; not dividing |G|. The irreducible representations of S are given by
powers of the one-dimensional representation y given by y(s) = e?™/™ = ¢,,.

We first consider the Galois orbits of elements of the set {y? | 0 < j < n}
under the action of elements of the Galois group Gal(Q(¢,)/Q). There are
(a1 +1)(az +1)...(a, + 1) such orbits. For 8 dividing n the “Galois orbit” of
y?, denoted by Gp, is defined by

Gi= Y 4

(k,3)=1, 1<k<F-1

We may use the Artin induction formula (see [15] Theorem 2.1.3) to rewrite each
Gp as a sum of induced representations

Gp=IndGy(1) = 3 pIndZ:(1)

C-,>Cg

where, for each v, g is an integer (calculated in terms of M6bius coefficients but
this is not necessary here) with ug = 1. Also the C, are cyclic groups. Using
Lemma 2.2, summing Gg over all § dividing n and gathering together terms, we
find
Resgygs(p:) = ; aip(Indgi(1) ® Aig)
Bin

for integers a;3 and some (yet to be determined) Az € R(G®).



Choose a such that (a,n) = 1. We see all the terms in the sum above vanish
on s® except the term B = n so that

Resgzgs(ﬁi)( a.’ g) = ainAin(g)-

Hence

257 oecs Resgngs(Bi)(s”, g9)Res33gs(5;)(s%,9)

= sy Zoecs QinAin(9)2jnAjn(9)

- ainajn.(Ain(g)v Ajn(g)>G5

Proposition 3.3
If § =< s > is a cyclic group order n and let a be an integer satisfying
1<a<n-1and (a n) = 1. Define T;; by the formula

Z Resgi‘gs ﬁt ,Q)Resﬁi‘gs(ﬁa)(s“,g)-
g€GS

Then T;; = 6;;, the Kronecker delta.

Proof

For A dividing n, let kg be an integer satisfying 1 < kg < 5—1and (ks,3) = 1.
Let S =< sP*¢ >, which is independent of the choice of kg. By Lemma 3.1, if
¢(m) denotes Euler’s totient function, we have

= (fi, Pj) SxG

n G 4
= o1 Toie 8 (5) 16957 Soects Besimaes (P77, 9) Res o, (i)(s7,9)

G - SgxG ~
= 1509 (5) 5 [G9] LeG®s Ress”:Gs,, (B:)(s°*, 9)Res 7, s (3)(s7%2, 9).

By induction, we can assume the result true for all cases above except the
case 8 =1, which implies that

8ij = d’( T + =% Z¢()

Bin
B#1

Thus the identity 3 g, $(8) = Zﬁln 1) (%) = n implies that Tj; = &;; as required.
O
From Proposition 3.3 we see that

,5!--:=rv fV..<A (g‘) 4 )
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Since ain and aj, are integers, we must have (4in, Ajn)gs = 6;; and o2 = 1.
By Corollary 2.13, the distinct irreducible representations {Aj,, ... Awm}, of G°
must be precisely {A,...A;} which implies that there exists a permutation, ¢,
and a sign ¢; € {£1} such that

Ain = €s(5)
for 1 < ¢ < t. If we choose a coprime to n and ¢t € G¥ we see that
Resgis(pi)(s%,1) = pi(s®, 1) = Aw(t) = €dogy)

This proves the following lemma, and is exactly Glauberman’s characterisa-
tion of the correspondence.

Lemma 3.4
Let S be a cyclic group and let p € Irr(G)S. Then there ezists a unique sign

€ = x1 and a unique A € Irr(G5) such that
pls,t) = eA(d),

for all s which generate S and allt € G°. Moreover, for every A € Irr(G%),
there exists a unique S—fized p € Irr(G) which corresponds to A in this manner.

From the above equations, we also obtain

n
ResSs(p;) = €ty + D (E) @igAip

fln
B#n
If S is a p—group we note that all terms except the first term disappear
modulo p. Hence we immediately obtain the following result.

Lemma 3.5
Let S be a cyclic p-group and p € Irr(G)>. Let

Resgs(p) =n1A1 + ... + Ay,

where A; are distinct irreducible representations. Then there ezists a unique 3
such that p fn;. Moreover, n; = £1 (modulo p).

This gives a complete characterisation of Glauberman’s correspondence for
cyclic groups. It is straightforward to extend Lemma 3.4 to all solvable S, using
the results above with a composition series (see [6], §4 pp.1477-1479). Similarly
the result of Lemma 3.5 is easily strengthened by induction on |S| to yield the
following:

Lemma 3.6
Lemma 8.5 holds for any finite p-group S.



4 Boltje’s Explicit Map
Let S be a p—group. Boltje [5] defines a map bol5C : R(G)S — R(G®) as a
composition of the following form
5G 5 oG s by’ sy bss s
bol5C : R(G)S =% RL(G)° — R4(G7) — R(G”).

We define the map bolf_’G : R(G)’ — Ry(G®). Let T = Stabs((H, A)®),
then the S-orbit sums

T so(d,N6  (H))€SxG\M(G)
seS/T

form a Z-basis of R.(G)®. By Glauberman’s fixed point lemma (see for example
Lemma 13.8 of [7)), there is a T-fixed point (H’, X') in the G-orbit of (H, ) and
we can define the map (Boltje [3] proves this map is well-defined):

) { (GS N H', ResHs rs(N))° if T =6,

bol$C ( Y so(H, A
0 if T<S.

s€S/T

We conclude this section by deducing the main theorem of [5] from the results
of §2 and §3.

Theorem 4.1
When S is a p-group with p prime then the homomorphism bol5C is congruent

to Glauberman’s correspondence modulo p.

Proof

If p € Irr(G)° then, by Lemma 3.6, ResGs(p) = e (modulo p) for some
irreducible representation A € I rr(GS). Applying ag and the formulae of §2.3
to this we obtain

ResSs(ac(p)) = ags(Resgs(p)) = ags(e)) (modulo p)
On the other hand, if ag(p) = ¥ ni(Hi, ¢:)¢ then
Resgs(ac(p)) = Ress(T:ni(Hi, 6:)°)
= ¥ Taeona/m (G N zHiz ™, (z71)"(8:))¢°
We can split ag(p) in the form ‘

ag(p) = > (Hi, :)° = (Vi $:)° + D> (K, ¥x)

s€S k

T
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where the (J;,9;)%’s are S-fixed, and the (Kk,%x)’s are not. Further from
Glauberman’s fixed point lemma, we may assume that s o (J5,85) = (J;,4;)
for all s € S and for each j. Applying Proposition 2.10, we have:

Resgs(ac(p)) =X;(G°NJj, Resop,; (65))°°
ro - . N 5
+ 2k Xses Laeas\o/k, S(G° N zKyz™t, (271)%(9))C°.

The non-fixed terms all restrict to subgroups and representations of G3, so
the action of s leaves the element unchanged in its G5 orbit and each term will
therefore appear a multiple of p times (cf. the argument of §2.12) so that

Resgs(as(p)) = 32(G° N Jj, Resgany,(8:))°° = b013%(ac(p)) (modulo p).

2

Applying bgs yields the following congruences modulo p
€A = bgs(ags(eN))

= bes(ResGs(ag(p)))

= bgs(bol$C (ag(p))),

as required. O
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