Explicit Brauer Induction for symplectic and
orthogonal representations
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1 Topological motivation

1.1 Let G, denote one of the classical compact Lie groups, U(n), Sp(n) or O(2n), of
. unitary, symplectic or orthogonal matrices. Since G,-; embeds canonically into G,
(by adding 1 € G; at the bottom right-hand corner) we may form the mapping cone,
BGn/BGy-1, of the induced map between classifying spaces. When n = 0 we set
BGy/BG_; = S° the zero-dimensional sphere. Let X, denote the disjoint union of
the space X and a base-point. In the stable homotopy category [Ad] there is a homotopy
equivalence of the form

(BGOO).*. o~ szoBG};/BGk_l

which was first proved in [Sn2]). In fact, from this equivalence one can easily deduce
equivalences of the form

(BG,-,,)+ o~ VOSkSnBGk/BGk—l-

Stable decompositions of classifying spaces are important [Pr] because the factors are
much simpler to work with than the whole. For example, BU(n)/BU(n — 1) is just the
Thom space, MU(n), of the universal n-plane bundle on BU(n).

In this section we shall show how Explicit Brauer Induction may be used to derive

these stable decompositions.

1.2 Let RY(G), R{P(G) and R2(G) denote, respectively, the free abelian group on the
G-conjugacy classes of representations ¢ : H — G where H is a subgroup of G. Hence
RY(G) (denoted by R, (G) in [SnEBI]) is the free abelian group on the G-conjugacy classes
of homomorphisms ¢ : H — U(1) = S'. However, in the symplectic and orthogonal
cases, because a. representation into G is a Gy-conjugacy class of a homomorphism, a
free generator ¢ : H — G is equivalent to X¢(g — g™ 1) X' : H — G, for any g € G,
X € Gy. The equivalence class of (H,¢) will be denoted by (H, ¢)°.
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If J € G we have a restriction homomorphism
Res§ : RZ(G) — RE(J)
for Z = U, Sp, O defined by
Resj((H,¢)%) = > (J(2Hz™Y(z7")¢)’

z€J\G/H

where (27!)*¢(zhz"!) = ¢(h). If 1 : G — K is a surjection there is an inflation
homomorphism
Inf§ : RZ(K) — RZ(G)
given by Inf&(H, ¢)% = (x1(H), ¢ - 7)°.
By means of these maps RZ(—) gives a functor from finite groups to abelian groups
when Z = U, Sp,0. When Z = U, we even obtain a Mackey functor from finite groups
to the category of rings ([Bo2], [Bol], [BSS], [Sn4], [Sn8], [SnEBI)).

1.3 RY(G) and stable homomotopy decompositions
Let R(G) denote the complex representation ring of G, so R(G) = K¢(CG), and let
IR(G) = Ker(e : R(G) — Z) denote the augmentation ideal given by the kernel of
the homomorphism which sends a virtual representation to its dimension. Henceforth,
following [SnEBI], we shall abbreviate RY(G) to R..(G).
The central result of Explicit Brauer Induction is the existence of natural transforma-

tions from representations of G to R, (G) which are right inverse to the map

be : R4 (G) — R(G)

given by be(H,¢)¢ = Ind§(¢) € R(G). The formula of ([Bo2], [SnEBI], [Sy]) gives a
natural homomorphism
ag: R(G) — R, (G)

such that ag(¢ : G — U(1)) = (G, ¢)C. There is only one such homomorphism and it
satisfies bgag = 1.

Now let p be a prime and consider the case when G = GL,F, with q a power of p. In
[Qu] the canonical modular representations of G are used, by means of the Brauer lifting
technique of [Gr], to construct a canonical element

op € lim IR(GL.F,;) C lim R(GL.F,).

n,q g
By naturality of the homomorphisms, {acz,r,}, we obtain

n.g n,g

Here F, is an algebraic closure of F, and IR, (G) is the kernel of the homomorphism to
the Burnside ring given by e(H, ¢)¢ = [G/H] ([Sn4], [SnEBI}).
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If X and Y are base-pointed spaces let {X,Y} denote the stable homotopy classes of
maps from X to Y’; that is, the morphisms from X to Y in the stable homotopy category
[Ad]. If G is a finite group there exists a natural transformation

T:IR(G) — {BG+,BU(1)+}
given by sending (H, $)¢ — (H,1)€ to the composition
BG, s BH, 2% BU(1),

where 7 is the stable homotopy transfer ([Sn7] pp.163-4; see also [BeGo], [BeSch], [KP],
[MSZ]). In fact, if TA(G) is the augmentation ideal of the Burnside ring, A(G), then the
T'A(G)-adic completion of T is an isomorphism. We shall not need this result, which was
first proved (with U(1) replaced by any torus) in ([Sn7] Ch.V Theorem 1.17) and was
extended to all Lie groups in [MSZ].

Hence we have a canonical element

T(agsz, (05)) € lim {(BGL,F,)+, BU(1)4} = {(BGLF,),, BU(1)4}.

Let Q(X4) denote the iterated loopspace @(X;) = lim, Q"E™*(X,). Then, if Y is a
base-pointed space there is an adjunction isomorphism of the form

adj : {Y, BU(1)+} — [Y, Q(BU(1)4)]

whose range is the set of based homotopy classes of maps from Y to Q(BU(1),.). Therefore
we obtain a (homotopy class of a) map of the form

T, = adj(T(agyy,(05))) : (BGLF,), — Q(BU(1),).

Now we shall examine how the properties of ag translate into useful properties of f’p.
Direct sum of matrices makes BGLF, into an H-space with multiplication

m : BGLF, x BGLF, — BGLF,.

The iterated loopspace Q(BU(1),.) is also an H-space and additivity of the Brauer lifting
together with the fact that ac is a homomorphism implies that 7, is an H-map so that

m(Tp x T,) ~ T, - m : BGLF, x BGLF, — Q(BU(1),).

On the other hand, in the stable homotopy category, there is a Snaith splitting ([Sn1],
[Sn3]; see also [CMT1], [CMT2]) of the form

V sk QBUQML) =V (BE: [U)/(BEe [U()

k>0 k>0



where X [ U(1) is the wreath product given by the normaliser of the diagonal maximal
torus in U(k). As usual, when k£ = 0 we adopt the convention that mapping cone of
BX_; fU(1) — BX, JU(1) is the zero-sphere, S°. Composing with the map

(BEx [ U(W)/(BSk-s [U() — BU(K)/BU(k—1) = MU(K)

induced by the inclusion of X f U(1) into U(k) we obtain a stable map of the form
V .;k : QBU(1)4) — V MU (k).

x>0 k>0

Furthermore, as explained in ([Sn3]; see also [CMT1], [CMT2]), the maps V>0 Jjk and
Viso Jx are exponential with respect to the pairings

(BZe JU(1))/(BEk-1 JU1)) A (BE: JU(1))/(BEy-1 J U(1))
!

(BZky JUL))/(BZkpu-1 S U(1))

and
MUk AMU() — MUk +1)

induced by direct sum of matrices. That is, we have a homotopy-commutative diagram
of stable maps of the following form.

QBU(L)s x QBU(1), ~ —2kIENIck g A MU — E)

QBU(1), Je MU (%)

Now we come to our motivating topological result.

Theorem 1.4 ([Sn3] Theorem 2.2; [Sn2] Theorem 4.3)
There ezists a stable homotopy equivalence of the form

Oy = VE"U,/C: BU+—=—> \/ MU(k)

k>0 k>0



In addition, Gy is an ezponential map in the sense that, for eacht > 0, the diagram

20Uk NCUs—k

A

BU, Jt MU(t)

commutes in the stable homotopy category.

Proof

It suffices to construct an H-map, 7, from BU to QBU(1); which restricts to the
canonical map on BU(1). Then we set oy equal to the composition with 32, k- The
map T}, has the right properties except that its domain is (BGL,Fp)+ rather than BU.
However by the technique of localisation and completion in homotopy theory ([Boul],
[Bou2], [MST], [Su]) it suffices to construct 7 on the rationalisation of BU and on its
completion at each prime, !. Since BU and QBU(1); are rationally equivalent we may
take the rationalisation of 7 to be the identity map. The completion of BU at the prime
! equal to the l-adic completion of (BGL,F,) where p is chosen to generate (Z/I?)* if [ is
odd and p = 3 when | = 2. Therefore we may choose the l-adic completion of a suitable
T, as the completion of 7 at I, which completes the proof.

Remark 1.5 We have used the Explicit Brauer Induction map to prove Theorem 1.4.
The naturality of the map is required to in order to turn Quillen’s element, o, of §1.3,
into a map from BGLF, to @QBU(1),. It is the fact that ag is a homomorphism which
yileds an H-map and hence the exponential property of the splitting.

The Explicit Brauer Induction formulae of [Sn4] are natural in the symplectic and
orthognal case, too. Using this one could give a proof of the stable decompositions of

[Sn2]

BSp ~ v MSp(n), BO ~ v BO(2k)/BO(2k — 2).

k=0 k=0

similar to that of Theorem 1.4.



In ([Sn3] Theorem 2.2; see also [Sn2] Theorem 3.2) it is claimed that BSp admits
an exponential stable decomposition of the above form. However there is a gap in the
proposed proof since the cavalier reference to the existence of “an analogous symplectic
vector field” in ([Sn2] Example 2.13) is not true. For a time this gap did not seem serious
in view of the fact that [MP] offered an alternative construction of an exponential stable
decomposition of BSp.

On Friday, 18 July 1997 one of us (VPS) learned of the argument of [Ri] which showed
that none of the stable decompositions of BSp which were then in the literature were
exponential. The way around this gap then seemed clear. We believed that one could use
the topological approach to symplectic Explicit Brauer Induction described in ([Sy] §6)
to construct a natural homomorphism of the form

off : RSp(G) — R (G)

and then imitate the proof of Theorem 1.4. After all, in ([Sy] p.180) one finds the remark
that “the symplectic case presents no new difficulties; one simply the complex projective
space by the quaternionic version.” Unfortunately, as we studied the symplectic and
orthogonal more closely we discovered that this remark is unfortunately false. As a
result, at the moment, we do not know whether or not there is an exponential stable
decomposition for BSp. In fact, our analysis, together with the topological results of [Ri]
strongly suggest that no such exponential stable decomposition for BSp exists.



2 Induction formula for unitary representations

2.1 Brauer Induction formula In this section we recall briefly the natural explicit Brauer
induction formula in the complex case.

Let G be a finite group. Let R(G) denote the Grothendieck group of the category of
finite-dimensional left CG-modules. Every such module yields a matrix representation
G — Gl(n, C) which is conjugated to a unitary representation G — U(n). Since such a
representation is determined by its character, we may identify R(G) with the character
ring of G, the free abelian group on the set of irreducible characters on G. The subgroup
of R(G) generated by the set of linear characters G — U(1) = S? will be denoted by
L(G). Brauer proved [Br] that every unitary representation p : G — U(n) is a sum of
representations which are induced from linear characters on subgroups of G, so

p=> mInd§ (¢:) with H; <G, ¢i: H; — UQ1)

Canonical explicit Brauer induction formulae with various properties were given by Boltje
[Bol], Snaith [Sn4] etc. We are going to use the formula which is trivial on one-dimensional
representations and natural with respect to restriction and inflation, namely

p= X (-lrhim(Rest, o), 8)nds, (40)
(Ho,#0)<. <(Hr r)
where H; < G, ¢; : H; — U(1) and m(6, ¢) = (6; )y denotes the multiplicity of ¢ : HU(1)
in € R(H).

In order to work with this formula we denote R, (G) the free abelian group on the
G-conjucacy classes of linear characters on subgroups of G. More precisely, let G act on
the set M(G) of pairs (H,¢) with H < G and ¢ : H — U(1), and let (H, )€ denotes the
G-orbit of (H,¢) in M(G), then those orbits, collected in a set denotes M(G)/g, form a
Z-basis of R, (G). This is an example of a general method called the | -construction (see
[Bo3]). There are, for J < G, homomorphisms

Res§ : R (G) = R.(J)

and
Ind§ : Ry (J) = R4(G)

and a natural conjugation map, giving the functor R, the structure of a G-Mackey functor.

Theorem 2.2 [SnEBI, 2.2.45]
The map

Wi R@) 3o ¥ (1) el miRest, (5), ) (Ho, 60)°

(Ho,p0)<-<(Hr,br)

takes values in R, (G) and this is a homomorphism.
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This homomorphism ag : R(G) — R.(G) satisfies the following natural properties:

Proposition 2.3 [SnEBI, 2.5.2]
1) For J < G the following diagram commutes

R(G) —%= R4(G)
Rm_c,;l Rs?l
R(J) — R.(J)
ii) For ¢ € L(G), ac(4) = (G,¢)°.

iii) For N < G the following diagram commutes

R(G/N) =22, R.(G/N)
Infig /”J, Infig /Nl

R(G) —% R.(G)
Theorem 2.4 [SnEBI, 2.8.2]
Ifbg : Ri.(G) — R(G) is the homomorphism defined by
(H,¢)¢ = IndG(4)
that ag is a splitting, that is bg o ag = id : R(G) — R(G).

2.5 Ezample
Let Q4, denote the generalised quaternion group

Qun=(z,y|c" =9 ¢* =Lyay ' =27")
and let ¥ denote the symplectic representation
¥ : Q4 — Sp(l) c H*

given by ¥(z) = &, and ¥(y) = j. Here &, = €>™V~1/" and j is the usual quaternion.
We wish to evaluate

aQ4n(C(‘IJ))
= ) <(Hup) <<t (1) B < c(T), ¢, >, -(H,$)? € Ri(Qun)-

If the multiplicity < ¢(¥), ¢» >p, is non-zero then Resgi" (c(¥)) = ¢, @ @, so that ¢,
must be injective on H,, because ¥ is. Hence H, must be cyclic. The cyclic subgroups
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contained in < z >= Z/2n are given by < z™ >= Z/(2n/m) for each m dividing 2n.
Otkarwise each z'y satisfies (z'y)? = y* and generators a cyclic subgroup of order four.
When n is odd, all the subgroups, < z'y >, are conjugate in Qq, but when n is even,
there are two conjugacy classes, < y > and < zy >. Also ¥(y?) = —1 so that, if x is
the non-trivial character on < 32 >, < 32,x) >< (H, ¢) for any (H, $)? which has a
non-zero coeflicient in ag,, (c(¥)) ([SnEBI] Corollary 2.2.40).

Now consider the coefficient of (H, )9 when < 3 >C H C< z > with |H| =1 > 2.
In this case (H,$) # (H,¢) but (H,$)% = (H,$)%". If A € {¢,#} then we have
1 =< ¢(¥), ¢ >p, for any chain of the form (H,\) < (Hy,¢1) < ... < (H,,¢,). The
chains starting with ¢ are distinct from those starting with ¢ so that the coefficient of

(H,¢)%n is equal to
> (-1

{1}<A1<A2<...< A E<>/H

2-|H|
4dn

Here the sum of taken over all proper chains of subgroups, A; = H;/H C< z > /H or,
when < x >= H, just the trivial chain. By ([SnEBI] Exercise 2.5.1)
2-|H|

> =" T e

{1}<A1<As<..<A, <<z>/H N g |<z>/H]|

2-|H]|
4in

where u(n) denotes the classical Mobius function. This expression is zero unless H =<
x > in which case it equals one.

Now consider the possibly non-trivial coefficients of the basis elements o(< y >, ¢)%n
and (< zy >,$)?~. If g has order four let p, denote the character on < g > given
by ps(9) = +/—1. When n is odd we must evaluate the coefficients of (< y >, p, )%~
and (< y >,ﬁy)Q4". These coefficients are both equal to one since < y > is a maximal
cyclic subgroup of Q4 and, for example, there are 2n (H,¢)’s which are conjugate to
(< y >,py). When n is even the distinct (H, ¢)%’s with H =< z'y > are (< y >, p,) %~
and (< zy >, pzy) 94", each of which has coefficient equal to one.

Finally we must evaluate the coefficient of (< y? >, x)%, which is given by

) (- 1),1 I<c(x1/) b >n. .

(<y?>,x)<(H1,61)<...<(Hr,dr)

The 2n chains of length one of the form (< ¢ >,x) < (< z*y >, ¢;) contribute —1 to
this coefficient. The remaining terms contribute zero, as is seen by the argument used
on (H,$)?"’s with H C< x > together with the observation that, in this case, for the
trivial chain, the multiplicity < ¢(¥), x ><y2>= 2.

The precedlng discussion establishes the following result:



Proposition 2.6
In the notation of 2.5

(< 2>,¢2)% + (< y>,p)% + (< y>,5,)% — (<92 >, x) %
if n is odd,

aQ,, (c(¥)) = <
(T >,¢2)% + (< y >, )% + (< TY >, o) — (< y? >, x) U

if n is even

where p.(x) = &on.

Remark 2.7 The formula for ag,, (c(¥)) is determined by the projective representation
associated to ¢(¥) [Sy] which is the same projection representation as the one associated
to the dihedral representation

v: Dy, — GL,C

& O 01
V(x)=( _),V(y)=( )
0 E, 10

Dypp={z,y| 2" =1=y* yzy=2""}.

given by

where

This implies that ap, (v) is given by the formulae of Proposition 2.6.
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3 Induction formula for symplectic representations

3.1 Symplectic representations
Let G be a finite group. Let R*(G) denote the Grothendieck group of finite-dimensional
HG-modules, or in language of matrix representations, the Grothendieck group of equiv-
alent classes of symplectic representations

p: G — Sp(n) := Sp(n,H).

By an induction theorem of Martinet, every such symplectic representation p is a Z-linear
combination of representations induced from one-dimensionals; that is p : G — Sp(n) can

be written as
p =" mInd§ (¥)

with H; < G, ¥; : H; — Sp(1) and n; € Z. In order to make this formula explicit, we
apply the machinery of Mackey functors as described in [Bo3]. Endowed with the usual
conjugation, restriction and induction maps, H — R*P(H) is a Z-Mackey functor on G.
In R*?(H) (with H < G) we study the free abelian group L*(H) generated by the classes
of one-dimensional HH-modules, that is by Sp(1)-conjugacy classes of homomorphisms

¥: H —sSp(l) = S

Let H — RPF(H) denote the Mackey functor obtained by the ,-construction on the
subfunctor H — L*?(H). So RP(G) is the free abelian group of G — Sp(1)-conjugacy
classes of elements in L*P(H) for H < G, these classes correspond to G-conjugacy classes
of a one-dimensional symplectic representation (up to isomorphisms) of the subgroup, H,
and will be denoted by (H, ¥)¢ € RF(G). For J < G define homomorphisms

Res§ : RT(G) — RF(J)

and
IndS : R¥(J) — RE(G)

in a manner which is analogous to the complex case (or given by the | -construction). For
N a G we have the inflation map

Infy : RY(G/N) — RE(G)
defined by mapping (HN/N, )¢/~ to (HN, ¥)C. Let
be : RF(G) — RP(G)

be the homomorphism defined by bF ((H, ¥)¢) = Ind$(¥). Our aim is to define a map
ag : R®(G) — R¥(G) which is a splitting of b¢F, that is bF 0aZ =id : RP(G) — R?(G),
and behaves naturally with respect to restriction. But this will not be possible in this
integral form, as we will see.
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3.2 One-dimensional symplectic representations
Besides the cyclic and the quaternion type groups there are three more types of finite
subgroups in the unit group Sp(1) of length 1 in H*, namely the binary tetrahedral,
octahedral and icosahedral groups. They arise from finite groups in SO(3) given by rigid
solids centered in the origin. These groups can be pulled back via 7 : Sp(1) — SO(3),
the map defined by letting Sp(1) act on the pure quaternion space (a 3-dimensional real
space with standard inner product) via conjugation. The kernel of this map is {+1}.

The binary tetrahedral group By is the preimage of the group of motions of a regular
tetrahedron, which is isomorphic to the alternating group As4. So By is an extension of a
cyclic group of order 2 with A,. In fact, Bo4 turns out to be SLy(3), and can be expressed
as the semidirect product of the quaternion group @s of order 8 and a cyclic group of
order 3 acting faithfully on Qs, so

By =< .’E,y,CiIB‘l = lay2 = x2,c3 = 1,27 =x—1,xc=y,yc =zy > .

(x— (:} "11), Yy (_01 (1)) and ¢c— (é i) defines an isomorphism Byy — SLy(3).)

The lattice of subgroups can be pictured as follows:

With this notation let ¥ denote the representation

¥ .824 — Sp(l) c H*

defined by
1, y—j, cn—»—%(l—i—j—k) .

This is, up to Sp(1)-conjugation, the unique faithful symplectic representation of Bo,.

The binary octahedral group Byg is the preimage of the group of motions of a regular
cube, which is isomorphic to the symmetric group Sy. So Bys is an extension of a cyclic
group of order 2 with S,. This group of order 48 appears as the nonsplit extension of the
quaternion group of order 8 with the symmetric group Ss acting as the full automorphism
group. We can describe Bys as an extension of the binary tetrahedral group with a cyclic
group (d) of order 2, acting as described in this group presentation:

Bi =< z,y,¢,d|lz*=c=1,d2=9y? =22, 2¥=2°,2°=y, y* =zy, 2% =23y, y? =9, ?=c > .
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The maximal subgroups of B, are the normal subgroup B4 of index 2 (the binary
tetrahedral group), three conjugate groups of quaternion type Q16 of order 16 and four
¢ onjugate groups of quaternion type ¢2 of order 12.

With this notation let ¥ denote the (up to Sp(1)-conjugation) unique faithful symplectic

representation
VU : Bys — Sp(1) c H*

given by

wei, yg, cm—3(—imj—k) d»—-»g(i—k) .

The binary icosahedral group Bjs is the preimage of the group of motions of a regular
icosahedron, which is isomorphic to the alternation group As. In fact, Bjs is isomorphic
to SLy(5), and can be described as [CCNW]

By =< 7‘,s,tlr2 =P =t =rst>

Bio has order 120. The maximal subgroups of Bja are six conjugate groups of quaternion
type Q20 of order 20, five conjugate groups of type binary tetrahedral group of order 24
and ten conjugate groups of quaternion type @12 of order 12.

There are actually two types of faithful symplectic representations

v Bmo — Sp(l) c B~
given by

T o= 1

s 2= (G i (2 + )
to G- (@R
depending on the choice of {5 (e.5. {5 = exp(g—?) or (s = eXP@%'i))-

3.3 Complezification
There is an obvious homomorphism

c=cg: R?(G) — R(G)
given by complexifying; so ¥ : G — Sp(1) in R*?(G) maps to
(c(¥) : G— Sp(1) — U(2)) € R(G).
Of course this homomorphism c is injective. Define the homomorphism

cy =ci¢: RY(G) — R,.(G)
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by the formula
c,¢((H,9)%) = Ind§ (an(c(¥))) € R+(G).

The homomorphism was first defined in ([SnEBI] §5.4.40 p.213). There is an ay missing
in the formula of ([SnEBI] §5.4.41) but not in the proof of the following result, which
is part of the proof of Theorem 5.4.42 of [SnEBI]. Obviously bs and bg are naturally
connected via complexification, so that bg o ¢y = co bF : R¥(G) — R(G).

Proposition 3.4
The homomorphism c, ¢ is natural with respect to restriction so that, if J < G,

Res§ ocy ¢ = cq 70 Res§ : RF(G) — R.(J).

Proof
We recall that there is a double coset formula for the composition

Res$Ind§ : R.(H) — R.(J)
if H,J < G. Explicitly we have

Res§(IndZ (K, U)¥)) = 3°  Indjny,pu-1 (W (Resfry-15,((K, ©)F)))
wEJ\G/H

whose proof is similar to the proof of the product formula of ([SnEBI] Exercise 2.5.7).
Hence, if (H, ¥)¢ € R¥(G) with ¥ : H — Sp(1), then

Res§ (c+.6((H, ¥)%))

= Res§(Ind§(an(c(¥) : H — U(2))))

= Svene/i I s (" (Res-s o @z (c())))

= Twene/a I -1 (W (@ ruru-: (c(ResEng-14(¥)))))

= Cuenc/s IdInupu-1 (@rnwmu1 (C(Res -1 (W) (¥)))))
= ¢, s(Res§ ((H, 1)),

which completes the proof. H

Proposition 3.5
Suppose that

T = Zni(Hi)’wi)G € KGT(C.{.,G)

and that each image. y;(H;), is abelian. Then z = 0.
In particular, for G abelian c, ¢ is injective.
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Proof

Amongst the H;’s which appear in z, choose an H which is maximal in the poset of
conjugacy classes of subgroups of G. Then we may write

= Z:ni(H,lﬁi)G + Z"j(Hj,¢j)G

where the (H,1);)%’s are all distinct and where none of the Hj in the second sum satisfies
H; > gHg™! for any g € G. Then, if c(¥;) = ¢: ® ¢,

0=cya(z) = 2 n((H,¢:)° + (H,8,)°) + >_n;Ind§ (am, (c(45))) € R+(G)

and it is clear that no term from the second sum can cancel any term from the first sum,
so that

0= an((H’ ¢'i)G + (H7 ai)c) € R+(G)

This can only happen if, for distinct 4,41, (H, ¢:,)¢ = (H,¢:,)¢ or (H, ¢:,)€ = (H,¢;,)°.
In turn, this can only happen if there exists ¢ € NgH such that ¢;, = g*(¢i,) or ¢s, =
g*(4;,)- Both these relations imply that 1;, = ¢*(3;,) and so (H, %)% = (H,%:,)¢, which
is a contradiction. Il

3.6 Ezample
We calculate explicitly the complexification of the faithful irreducible representations
U of the binary tetrahedral, octahedral and icosahedral groups as described in (3.2).

With the notation of (3.2), for the binary tetrahedral group Bag,

eml(e®)) = (e, G + (), )% + (), )™ + (), T +
R au), G + (), TP + ({01, 60)™ + (=), T +

T, o)+ 5 (2 T + F((=ep), 60) P + 7 ((~c), T +

~((—ezy), o)+ 3 (—emy), )P + 52 — (324 4 2))((7), )%
= (Cy,¢a)P" + (Cs, (6) P + (Cs, (6) P — (Cay6) P

Here C; denotes one of the cyclic groups of order 4 (e.g. Cy = (z)) and (4 one of the
faithful unitary representation on C, sending a generator to a primitive fourth root of
unity, Cs denotes one of the cyclic groups of order 6 (e.g. Cs = {z’c)) and (s one of
the faithful unitary representation on Cs sending a generator to a primitive sixth root of
unity, and Cs = (z?) denotes the unique cyclic subgroup of order 2, with representation
¢ defined by &(z?) = —1.

For the binary octahedral group Byg

QBys (C(‘I‘)) = (CS’ CS)B48 + (CS’ CG)B“ + (04) <4)B48 - (C2a5)348
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Here Cy denotes one of the three cyclic groups of order 8 (e.g. Cs = (zd)) and (s one of
the faithful unitary representation on Cs sending a generator to a primitive eighth root
of unity, Cs denotes one of the four cyclic groups of order 6 (e.g. Cs = {(x2c)) and (s
one of the faithful unitary representation on Cs sending a generator to a primitive sixth
root of unity, Cy denotes one of the six cyclic groups of order 4which are not in N (e.g.
Cy = (d)) and (4 one of the faithful unitary representation on C; sending a generator to a
primitive fourth root of unity, and C> = (z?) the unique cyclic subgroup of order 2 with
representation € defined by (z?) = —1.
For the two symplectic representations on the binary icosahedral Bjyo we derive

UB120 (c(\II)) = (ClOvCIO)Buo = (CG; CG)BmO + (045 C4)B120 - (C2a 6)3120 .

Here Cip denotes one of the six cyclic groups of order 10 (e.g. Cio = (t)) and (5o one of
the faithful unitary representation on Cjo sending a generator to a primitive tenth root
of unity such that the square is the fifth root of unity choosen to define ¥, Cs denotes
one of the ten cyclic groups of order 6 (e.g. Cs = (s)) and (s one of the faithful unitary
representation on Cg sending a generator to a primitive sixth root of unity, C, denotes
one of the fifteen cyclic groups of order 4 (e.g. C; = (r)) and {4 one of the faithful
unitary representation on C; sending a generator to a primitive fourth root of unity,
and Cy = (rst) the unique cyclic subgroup of order 2 with representation ¢ defined by
g(rst) = —1.

3.7 Some elements in Ker(cy,g)

Type 7:

If HC G and ¥ : H — Sp(1) has non-abelian image which is isomorphic to a
generalised quaternion group, @4, for some n. Then, by the formula of (2.2),

an(c(¥)) = Zma(Ha, ¢a)H = zma(Ha,?&a)H € R, (H)

in which each image, ¢a(Ho), is abelian. Also there exists 1o : Ho — Sp(1), unique up
to H — Sp(1)-conjugation, such that c¢(¥,) = ¢o ® ¢,. Then

¢+,6(2(H,$)¢ = Lo ma(Ha,%a)®)
= 2Ya Mo(Ha: $a)® — TaMa((He ¢a)® + (Ha, $a)°)
=0 € R (G).
Denote by 7¢(H, ) the element
16(H, %) = 2(H,9)¢ = 3 (Ha-%a)® € Ker(cy,6) € RZ(G).
Notice that each of the images, 1¥,(H,) is abelian.
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Type f3:

Let B4, Bus, Bi2o denote the binary tetrahedral, octahedral and icosahedral groups,
respectively. Let ¥, : B, — Sp(1) denote the faithful representation described in 3.2.

From 3.6, we have an inclusion Qg C Ba4 under which all Cy’s are conjugate. Therefore

IndZ2(cy 0 (Qs, ¥)?8) = 3(Ci, Ca) P2 — (Cy ) P24,

If 4, : C, — Sp(1) satisfies c(¢f,) = (n @ (. then, from 3.6,
C1,B24 (B2, ¥24)%2) + 1,3, ((Ca, ¥4) ) = 4,80 ((Co, ¥6)®*) = Ind 52 (c4,05(Qs, ¥)%*)
and therefore

Boa = (Bas, ¥20)®* + (Ca, 904)* — (Cs,%6) P — (Qs, ¥)®* € Ker(c4,,,)-

Now consider By =< z,y,¢,d | ... > as in 3.2. This case is a little more delicate
because there are two conjugacy classes of Cy, namely Cy =< d > and C} =< y >C
N =< z,y,c > <4 Byg. We have

C+,Bus((Bas, Yas)P2) = (Cs, ()P + (Ci, Gs) ™2 + (Cy, Ca) *® — (G, €) P2,
Also Qs =< zd,d > and Cy =< zd > so that
ct,8: (@16, U16) %) = (Cs, ()% + (C, ()% + (C,y ()P4 — (G, )P
Furthermore @12 =< ¢,d > so that
CBas (@12, ¥12) %) = (Cs, ()% + 2(Cy, (0) B — (Co,y )P,
Also we have Qf =< z,y > and Qs =< d,y > so that
c+,B.s ((Qf, ¥s) ) = 3(Cy, (o) B8 — (Ca, €) e

and
C+,B48((Q8a ‘1’8)348) = 2(C4’ CAﬂ)B48 + (C‘ia (.:4)348 - (02)6)348'

Therefore

Bis = (Bus, Vag) B — (Q16, V16) 5% — (Q12, U12) 5 — (Qf, Us)P € Ker(cy ps)-

Next consider By =< 1,8,t | 2 = r® = t% = rst >. The relations

C+.Bizo (B120, ¥120)812°) = (Cho, (10) B2 + (Cs, (5) 5120 + (Cy, () B120 — (Ca, ) Br2o,
C4,Biao((Qa0 =< 7,8 >, Us0)P120) = (Clp, (10)B122 + 2(Cy, (1) Br20 — (Cy, €) B0,
Ci,Biao (Qr2 =< 7,8 >, U15)B120) = (G5, (5) 8120 + 2(Cy, () 512 — (C2, €) P10,

Ct,Bua0 ((Qs, ¥a)P120) = 3(Cy, () B120 — (Cy, ) Breo
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imply that
Brz2o = (B120, ¥120) 72 — (Qa0, ¥20)P12° — (Q1a, U12) 5% + (Qs, ¥s)P1™ € Ker(cy myy)-

The elements of Ker(cyg) of Type § are defined to be those of the form Ind§(x* (Bn)
where 7 : H — B, is a surjective homomorphism and n = 24, 48 or 120.

Type o:

Elements, & € Ker(c, g), of Type o are defined to be those which satisfy a relation

of the form
2Y = Z Tg(Ha,’lﬁa).

Here are two examples of elements of Type o.
i) Let
Qun=<z,ylz" =y yzy =z 9y*=1>

denote the generalised quaternion group of order 4n and let z have order two. Set G =
QanX < z > so that G contains four copies of Qs given by Q1 =< z,y >, Q; =< 2,y >,
Qs =< z,yz > and Q4 =< zz,yz >. Each of these subgroups has a homomorphism,
¥ : Q, — Sp(1), sending the generator zz° to €™/™ and yz* to j for appropriate s,t.
Setting

Zn =(Q1,Y)° +(Q2, V)¢ + (Q3,9)% + (Qu, 1)°
+2(<y? >,92)% = (< 2>,%2)° ~ (< y >,9)% = (< 7y >,94)°
—(< 22 >,192)¢ — (< yz >,%4)C — (< 2y2 >,4)¢
we find that ¢, (Z,) = 0 and

2%, =16(Q1,9) + 16(Q2, V) + 76(Qs, ¥) + 76(Q4, T).

ii) If z,w have order two set G = C3 X (Qgx < z >)x < w > where Qs =< z,y > and
the generator, A, of the left-hand C; acts by A(z) = zz, A(y) = yz. Then

Y =(<z,y> ¥+ (< 22,9 >, V)¢ + (< 4% >,1,)¢ — (< z >,9%)°
—(<y>,%)° = (< zy >,9%)% — (< zyz >, 1) + (< 2w, yw >, ¥)C
+(< zwz,yw >, V) + (< 12 >,9)° — (< zw >, 1%)C — (< yw >,194)C

satisfies c,.(X') = 0 and
2 =r1e(< 2,y >, V) + 16(< 22,y >, 7)

+1o(< 2w, yw >, ¥) + 16(< z2w, yw >, ¥).
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Proposition 3.8
In the notation of 8.7, Ker(c4+ ) is generated by elements of Types 7,0 and o.

Proof
Suppose that

z =3 n(H;,9:)° € Ker(cy,6) : RSp4(G) — R4(G)).

For all the terms with n; # 0 we may subtract a Z-linear combination of the r¢(H,)’s
and Ind% (7*(3.))’s to ensure that either ;(H;) C Sp(1) is abelian or n; = 1 and «;(H;)
is isomorphic to a generalised quaternion group. Under these circumstances write

@ = > (How)*+ Y (Hy)®
¥;(H;) non—abelian ¥;(H;) abelian
then
2z - > T6(Hiy ) = am(Hm, ¥m)° € Ker(ct,g)

¥;(H;) non—abelian
with every image, v¥,,(H,,) abelian in the right-hand sum. Hence
2z — > T6(Hi, %) =0,

¥;(H;) non—abelian
by Lemma 3.5, and z is of Type c. R

3.9 A symplectic induction formula
Let QR*(G) := R?(G) ®z Q and QRYT(G) := R¥(G) ®z Q. All homomorphims on
R*®(G) and R¥(G), especially Res$ and Ind$, extend in a natural way to homomorphisms
between these Q-vectorspaces. Define the map

ag : QR7(G) = QRY(G)
by the formula

- H
ascp(p) = E (-1 IIGOIIm(ReS?I,(P)yqlr)(HOs \I’O)G
(HO"I‘O)<"<(HT1‘I’T)

with m(6, ) = <<g(<;>;;<(“§>)>m for §,% € R*?(H), H < G.
This is a homomorphism since m is linear in the first argument as both, the restriction

map and the scalar product on characters, are linear.
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3.10 Ezample: G = Cp x Qs

Let p be an odd prime and let G denote the group
Co X Qs=<uz,y,zlz* =y =27 =1,

2z = xz,2y = Yz, 22 =y, yz = 2%y >. So
G={zyz*|0<i<3,0<j<1,0<k<p-1}
is a group of order 8p.

To shorten notation set —1 := z2.
The lattice of subgroups of G is as pictured.

Qg

z

Let ¢ denote a primitive root of unity of order p.

The character table of G is given by

f1] =12z | 2y oy | 2z | —z | a2 | +yz | £xyz tzyzr! |
1 1] 1 1 1 1 1 1 1 1 1 1
€z 1] 1 1 -1 -1 1 1 1 -1 -1 -1
Ey 1] 1 -1 1 -1 1 1 -1 1 -1 -1
e 11 11 T2 T | 1T [ 1 |1 1] 1 1
ez 1] 1 {1 }-1] -1 ¢ ¢ ¢ | € ¢ (7
Cp—lszy 1 4 -1 -1 1 C-l C_l 'C—l 'C_l C—l C
% 12l 200l 02| 200 0 0
x T2l2o ol o0 2 X [0 0] 0 0
x2 12120 0] 0 [2Z [ 22|00 | 0 0
o 12120 0] 0 (2 [2T| 00 ] 0 . 0

We calculate the explicit symplectic induction formula for the symplectic irreducible
character x; + Xp—1. In fact, this is the complexified character of the symplectic represen-
tation given by p : G — Sp(2) sending z to (32), y to (3 2) and z to (_ﬁéﬂ Chimt )

2 2
Furthermore p is irreducible because x; is not real-valued and hence does not arrise from
a symplectic representation.

To calculate the formula one has to study the restriction of p on the subgroups H of

G. In the following table we give all the nonzero multiplicities m = m(Res$ (p), ¥):

H,c(¥) | {x2), ;’C+E | <xz>,-2ic+% | (—z>,;<+¥ | <z>,4<+2 | Qsz,x | () ;z'+f I <—1>8, 2 | 1,21
2 2 2 1 2 1

T

m | 2 2 | 2 2 S
Here +i (resp. +() denotes a complex linear representation sending the generator to £
(resp. £¢), x the faithful irreducible representation on Qs and ¢ the faithful linear repre-
sentation on a group of order 2. In the list we have taken (zz) resp. (z) as representatives
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for the groups of order 4p resp. 4, as the other groups behave in the same way. Observe
furthermore that the representions i{(+:¢ and :(+:{ on (zz) are conjugate by G. Now

02(0) = ()2, G+ + ;(§>(<xz> )+ 2 (2 () i) +

l((yz>,-i4-*':i_C)G§ + 5(5)((9?.@2), i(+i()¢ + 5(5)((xyz),-i§+-i§)

2

1.4 2 2 — 1,4 2 2 4 2 2 -

165 =05 3P0+ GG -(0g + 35+ (65 +5 D

Z3)@a 0% + 3G~ GG+ 5 + D(eh 4D+
2;(§—<§+3+—))<<y>,z‘+z‘)c 2= G+ 5+ 2D )% +

—(--(3§-+3-2-+‘21+f+34)+(3 22 1322 +82))((2),2° +

1.8 2 2 4 4 2 4 2 2 4 2

& Z_(3 +32+2+2+1+32+ )+(342+342+22+4T+3 =)+
(@5 + 85 +30)((1),21)°

= ({zz),i¢+10)° + ((yz>, it+10)% + ((zyz), i(+iC)€ — ((-2),-¢+-¢)¢ +
%(Qs,x)c - %«:c),m)@ - %«y),zﬂ)" - },((xw, o }7(<-1>, 2)°

As this example shows, the symplectic induction formula may have non-integral coeffi-
cients.

3.11 Ezample: G = Con X Qg

Let n € N, Z =< z > the cyclic group of order 2" and Qs =< z,y > the quaternion
group of order 8, as before. Let G, = Z x Qg be the direct product of these groups and
: G — Sp(2) the symplectic representation given by sending z to (0 z), y to (é g) and z

i c C-l - . - . . . 13
to| ;’Q_l _1 , ¢ a primitive 2™-th root of unity. This is an irreducible representation

for n > 2 a.nd for n = 1 it is twice the one-dimensional symplectic representation ¥
deﬁnedbnyi,ij and z — —1.

Now let n > 2 and G = Gy, and let H; be the subgroup generated by z,y and 22",
0 €t < n. Notice that H; = G is normal in G, with cyclic factor group, all the
intermediate groups are the groups H; (1 < t < n — 1), being isomorphic to G;. Thus
ResH’; (p) stays lrredumble for t > 2, while ResH1 (p) = 2¥. Hence the coefficient of
(H1,9)¢ inad(p)is &£ -2 = 2,,1_

As this example shows, the denominators of the coefficients in the symplectic induction
formula may contain arbitrarily large 2-powers.
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Proposition 3.12
The homomorphisms af is natural with respect to restriction so that, if J < G,

aF o Res§ = Res§ 0 o : QR?(G) — QRF(J) .

Proof

This is a consequence of an adjointness property of certain functors proved in [Bo3,
Prop.1.4.1(ii)], applied to py QR*(H) — QL*?(H) sending p : H — Sp(n) to
Y g:H-sp1) o, ¥) V. In fact (z.7)m<c is natural with respect to conjugation, and hence
yields a restriction functor which composed with the Mackey functor given in [Bo3, 1.3.2]
turns out to be the homomorphism sending p: G — Sp(n) to

P 3 'lgll (K : H)(K,Res( Y m(Resg(p), 1)T))°
K<H<G W:H—Sp(1)
- > ',f;,' (KU, 5 mBes (o) DResk ()’
- K§G||IG{|| W) 5 miBeso) D R (9)°
<H<L ¥:H—Sp(1
| Hol

= )z( = u(Ho : Hym(Res (p), ¥)(Ho, ¥o)¢
(Ho,To)<(H,¥)<C
= ag(p) -

Thus ac¢ is a restriction functor in the sense of [Bo3], and in particular it is natural with
respect to restriction. H :

|G|

Proposition 3.13
Let p: G — Sp(1) then
ag(p) = (G,p)° .

Proof

Since (G, p) is the only element in (G, p)¢ and m(p, p) = 1, the coefficient of (G, p)¢
in af(p) is 1. Now let (H,¥) < (G p). Only those elements may give other nontrivial
contributions to aZ(p). Since Res§; (p) = ¥, for (H,, ¥,) < (G, p), the multiplicities turn
out to be 1. Thus we have to show that

2 (=17 =0.

(H¥)<(Hy, ¥ K. <(Hr ¥r)
(Hr ¥r)E(Gip)

Consider the set, R, of chains the sum runs over. Let P < R denote the subset of those
chains which will not end in (G, p). Then

((H¥) <...<(H,¥,)) — ((H¥)<...<(H,T,) < (G,p))

gives a bijection P — R \ P, where chains of length r are in correspondence to chains of
length 7 + 1. So the terms cancel in pairs, and indeed the sum above equals 0. l
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Proposition 3.14
The h.momorphism ad : QRP(G) — QRY(G) is the only homomorphism being
natural with respect to restriction and satisfies Prop. 3.13 when p is one-dimensional.

The proof is similar to the one of theorem 2.2.15 in [SnEBI].

Proposition 3.15
The homomorphisms ag is natural with respect to inflation so that, for N 1 G,

af o Infig )y = Infigy 0 4y : QR7(G/N) — QRY(G)

Proof

We have to show that the coefficients of a basis element (H, ¥)¢ in aZ (Inﬁg/N @)
and Inﬁg/N(ag’/N(ﬁ)) for p : G — Sp(n) with N < kerp coincide. Since all maps are
morphisms, we can assume p being irreducible. In case p : G — Sp(1) the statement
follows directly from 3.13.
Now we assume n > 2 and argue using induction on |G|. If H = G, the formula 3.9 tells
that the coefficient of (G, ¥)€ in ag’(lnﬂg/N(ﬁ)) is zero, as p = Inﬂg/N (p) is irreducible,
and on the other hand the coefficient of (G, ¥)€ in Infl /N(aG /(7)) also vanishes, because

InﬂG/N( Z C(HN/N,W)G/N (HN/N, @)G/N)
(HN/N,®)G/N

contributes to this coefficient only from the base elements with HN = G, and for those
the coefficient Cg/ygye/n = 0 since ¥ is irreducible. Now we suppose H < G and use

induction on [G : H]. The coefficient of (H,¥)¥ in Res (¥ x,, 2016 Clto,90)6 (Ho, ¥o)€)
is determined by Cy,wo¢ with (H, T)%¢ < (Ho,\Ilo)G Since by induction on [G : Hj
we know that the coefficients coincide for (H, ¥)¢ < (Ho, \Ilo) it suffices to proof that
the coefficients of (H, ¥)¥ in Resg(af;"(Inﬂg/N(f)‘))) and ResH(Inﬂ n(agn(P))) are the
same. But in fact

Resg(aZ(Inflg /v (7)) = af(Resi(Infig,n(p)))

H/NAH ;1 G/N
= o (nff/mm (LHN/g (ReSH%N ™))

H/NNH G/N
= InﬂH/(HnN) (a'H/(HnN) (LH§V/?I (R'eSHé\I/N ®)))

= InﬁH/(HnN)(LgazH(agN/N(ReS%vj\;N(_ﬁ))))

InﬂH/(HnN) (Lgév/zv (ReSHN/N (ag/n(®)))

= R,esH(Inﬂ /N(G,G/N(,D)))

Here Lgf\(,%? H) denotes the canonical isomorphism induced by the canonical group isomor-

phism HN/N = H/(N N H), and we have induced the hypotheses on G/N which is of
smaller order than G because the statement is trivial for N =1. B
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Definition 3.16 Let y G — Sp(n) be a symplectic representation of a finite group,
G. The centre of p is the maximal subgroup, Z(p), such that Resg(q,) (p) = nx for some
homomorphism of the form x : Z(p) — {*1} C Sp(1). Since {*1} is central of Sp(1)
it is easy to see that such a maximal Z(p) exists and is unique (cf. [SnEBI] Corollary
2.2.40).

Proposition 3.17
In the notation of Definition 8.16, the coefficient of (H,¥)C in ag (p) is zero unless

Proof
Since aZ commutes with inflation by 3.15 we may assume that p is injective.
Recall the formula for agZ (p)

oo B 1 Hy| {c(Res, () e(¥,)),, . "
aG(p)—(Ho.‘Ilo)g;(H,.\P,)( 1) IC| (T, (T g, (Ho, ¥0)” € QRY(G).

If H contains Z(p) then (Z(p),x) < (H, ¥) because Rescz;(p) (p) = nx. Therefore we must
show that the coefficient of (H, ¥)¢ is zero when H does not contain Z(p). In this case
Z(p) is not trivial and we may choose g € Z(p) such that x(g) = —1, since p (and hence

x) is injective on Z(p).
Ifg¢ Hand ‘Il H — Sp(1) is a homomorphism then there exists a unique extension,

T, of ¥ to H =< H, g > such that T(g) = x(g9) = —1. Now consider the set, R, of chains
(H,9) < (H,¥) < .. < (H,¥,) appearing in the formula with <c(Reer( )); c(\Il,)>H
non-zero. Let P C R denote the subset consisting of those chains for which no H; = B,

and H; # H. For each chain in P there exists a smallest integer, j, such that g & H;_,
but g € H;. If there is no such H; we set j = r + 1. For each such chain we have
(Hj—1,¥j-1) < (HJ L, ¥ii1) < (H;,9;) or (H,,¥,) < (H,,¥,) if j = r + 1. Furthermore,
when 7 = r+1 the multiplicities of \IJ and ¥, in Res§ 7(»(p) are equal and hence non-zero.

Associating to each chain in P the unique chain obtained by interpolating (H,_l, J_1)
gives a multiplicity-preserving bijection between chains of length r in P and length 7 + 1
in R\ P. This bijection shows that the terms in the coefficient of (H, )¢ cancel in pairs,
as required. H

Proposition 3.18
The homomorphisms ag and al are connected via complezification, that is

agocg = cygoag : QR?(G) — QR4 (G)

Proof
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Let p : G — Sp(n) and let (J,$)° be a base element of QR (G). We have to show
that the coefficients of (J,¢)€ in ag(c(p)) and cy(aZ(p)) coincide. The first one is easy
to express, namely

J
Uy cor(Rescloin),
Gl (Jo.# ’

0)E(J,$)C (Jo,0)<. < (Jr,Br)

Now we calculate the coefficient, denoted C, of (J, $)¢

G = Y (-1 ',C;’l'mmesy,(p) ) ¢ ((Ho, ¥0)©)
(Ho,‘Ilo)<..<(H¢,\I/¢)

Only those summands will have a contribution to C which have a non-zero term (J, ¢)€ in
c+((Ho, ¥o)). If c(¥o) = ¢o + do, then cy((Ho, ¥o)¢) = (Ho, $0)® + (Ho, $o)€, and this
can only contributes to C, if (Hy, ¢0)® = (J, )% or (Hp, )€ = (J,$)C. If ¢(¥y) = vy is
irreducible, then

col(Ho, 00)°) = Indf (am () = 3 (<170 (Resfeli ), (7o, 60)°,

(Jo . $0)X<-<(Jg,d¢)

and this contributes

il S (~DReso o) de),

J N/ Yo XK J, P
( 0 O)G( ,¢) (Jo 0t< (Jt.91)

Therefore, C' can be expressed as

c = ) (1)l Resg, (), ) +
(Ho,\l’o)<.-<(Ht,\I’t) I I
<(¥0)=bg+b0 , (Ho.$0)xor(Hp,$0)E(J,$)C

| Ho|
(=1)* o ar2m(Resg, (o), Tr) +
(Ho,¥o)<-<(Hg,¥y) l I
(¥g)=do+g , (Ho,¢0)and(Ho,$0)€(J,4)C

S ) mResf o), 8) | S 1y (Resoe o),

(Ho WoX. <(H¢,¥y) (Jo.p0)<. <(Jrdr)
e(¥g)=+g irred. (Jo.$0)E(1,$)C , Ir<Hp

Note that in each summand the factor % appears and thus can be factored out. We

expand the three subsums of C' according to the type of decomposition of ¢(¥;), namely
c(U;) = ¢ + ¢; or c(¥;) = 1; irreducible. The first subsum

> Y. (-1)'m(Resg,(p), ¥s)

(Hg,¥q) .c(\I’0)=¢0+¢—0 (Ho, ¥oX.<(Hp ¥¢)
(Ho,$0)E(1,$)C | (Hg,90)8(J,6)C
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splits into C) + C» with
C, = > > (—1)'m(Resg,(p), ¥2)

(Hp,%q) ,c(‘II0)=¢0+¢_0' (Ho,\llo)<._<(H£‘1‘g)
(Hob0)e(J$)C , (Ho d)E(J,$)C  c(¥e)=dt+ét

-y Y (~1)*(Resg, (c(0)); 1)),

(Hg.#0)E(J¢)C (Ho,do)<-<(Hp,be)
(Ho #0)¢(J.)C

because (c(¥s); c(¥s))y, = 2 and (Res, (c(p)); ¢r),,, = (Resf (c(0); &)y, and
Co = > > (=D'm(Resf, (o), )

(H0,%0) , e(¥0)=d0+%0 (Hg ¥o)<.<(Hy,¥¢)
(Ho90)EWHC , (Ho,80)2(J.$)C (Fe)=ve
— t G
= > > > (-1)'m(Resg,(p), ¥:)
(Hg,%q), c(\IIO)=¢0+% (HO:WOK--<(H1'_,W1') (Hep1 Vg1 K <(H ¥3)
(Hob0)E(1.$)C  (Hp $0)€(1$)C  e(¥r)=értdr  (Hrd¥r)(Hri1¥ri1) e(Vrtl)=driy
p— t Hr+1 . G
= > > (—1)*(Resir* (¢h,11); 61 ), m(ResF, (o), W)
(Jo,80)<-<(JIr #r) (Hpg1,¥pp 1 )<-<(He, ¥p) "

(J0.40)5(78)C . (J0.90)E(1,6)C Jr<Hpy1,e(¥ri1)=vria
The second subsum

2 > (=1)'2-m(Resg, (p), T:)

(Hg,%o) , e(¥g)=do+o0 (Hg, o)< <(H¢,Vy)
(Ho,$0)€(J,#)C and (Ho,#0)€(1,4)C

splits into Cs + Cy with
Cs = > >, (=1)'2-m(Resg,(p), ¥

(Ho,%0) , e(¥0)=do+¢0 (Ho, W) <(Hy, %)
(Ho$0)E(18)C , (Ho $0)e(J,8)C  (Te)=detée

= X Y (~1)H(Res§, (c(0)); b))y, »

(HO:¢O>E(J-¢)G (Hp,$0)X<. <(Hy,#1)
with (Ho,$g)€(J,4)C

and
— t G
Cy = Z Z (_1) 2. m(R‘eSHg (,0), ‘Ilr)
(Hg,Wg), c(¥o)=do+P0 (Hp,¥g)<. <(Ht,¥¢)

(Ho,$0)(1.$)C , (Hp,$0)€(J,)C (Fe)=ve

— . t G

= > > > (—1)'2-m(Resg,(p), )
(Hg,¥0) ,c(\II0)=¢0+¢—0 (Ho.\Ilo)<..<(H:,_‘1’r) (Hpp1,Ypp1 < <(He, Ty}

(Hg#0)€(1$)C , (Ho B0)EW$)C  c(¥r)=drtér  (Hr¥r)<(Hey1 ¥rp1), el¥rtl)=vriy

_ Wt Hrya . G

= > > (=1 <ReSJ: (Yra1); ¢r>J m(Resg, (0), ¥:)

(. bQX< < (JIr br) (Hpp1 W1 )<< (Hy W) i

(Jo$0)E(.)C and (Jg,80) (1, )G Tr<Hri1,e(¥ri1)=¥ri1

In fact, for the calculation of Cs we notice that if ¢g = o then either in case ¢, = ¢, the
factor 2 cancels because of

(Resg, (c(0)); 26r),,
(2¢:; 2¢‘)He
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or in case ¢ # ¢; each chain (Hy, ¥o).<(H;, ¥,) yields two chains (Ho, ¢o)<.<(Hz, ¢:)

and @
(Resf, (c(o))s  + B2),
<¢t + @e; b + E>Ht

and that if ¢y # ¢o then the factor 2 vanishes because each chain (Ho, Yo)X<.<(Hz, ¥y)
yields two chains (Hy, ¢o)<.<(H:, ¢:) starting in either (Hy, ¢o) or (Ho, ¢o), and again

<Res§, (c(p)); e + a)H
0+ Bt ),

For the calculation of Cy the same arguments hold for the subchains (Hp, ¥o ). <(H,, ¥, ),
where in case ¢, = ¢, we have <Res§{'+1(¢,+1); ¢,>J =2.
Finally C; + Cy add up to il

> > (= 1) (Resr (441); 61 ), m(Res§, (o), o)

(J0,80)<-<(Jr $r) (Ho, L0} <(Hz, ¥s) "
(J0.$0)E(J,$)C  Jr<Hp,e(¥p)=vr41

m(Res§, (o), ¥:) = t = (Res§;, (c()); 1),

m(Res$, (p), Us) = t = (Res, (c(p)); ¢t>H¢ .

which now turns out to be the negative of the third subsum above, and C} + C; add up

to
2 > (DH(Resg,(c(p))i dr)), »

(Ho,$0)€(1,$)C (Ho.$0)< <(Hebe)
and this indeed coincides with the coefficient of (J, ¢)€ in ag(c(p)). W
3.19 Ezample 3.10: G = Cp x Qs
We will apply the complexification maps c, to the formula above:
cr(ac®(p)) = ({z2), i) + ({x2),%)° + ({y2), i) + ({y2), () + ((zy2),i()° +
({zy2),70)° = ((-2),-0¢ = ({-2), Q)¢ + ;(((x),i)c +((y),9)° +

(), i) = ((1),6)°) — %<<x>,i)G—§(<x>,aG—1—1,(<y>,i>G— 1—1)(<y>,f>°‘—

;—((xy),i)0+11,(<xy>ﬁ)c+§(<-1>,e)“

= ((z2),10)° + ({z2),%0)¢ + ({y2},10)° + ({y2),10)€ + ((wyz),i()¢ +
((zy2),70)¢ —({-2),-¢)% — ({-2),-0)¢
= ac(x1) + ac(Xp-1) = ac(c(p))

Theorem 3.20
The map ag induced an induction formula, that is

bFad =id: R¥(G) — R¥(G) .
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Proof
By 3.1 and 3.18 the diagram

QR7(G) <% QRY(G) —<— QR7(C)
L el |
QR(G) —%+ QR.(G) =%~ QR(G)
is commutative. Hence, for p: G — Sp(n), we use 2.1 to calculate
c(bZ (a () = belac(c(p))) = clp) ,
and since ¢ is injective, we conclude p = bZ (af(p)). W

Theorem 3.21
Let K/Q,, (p odd), and let L/K be a finite, totally ramified Galois extension with

group G. Then, for p: G — Sp(n), a& (p) € R¥(G).

Proof

First we observe that the structure of G is restricted; G is a semidirect product of a
p-group by a cyclic group of order prime to p. Especially the 2-Sylow-subgroup of G has
to be cyclic. Hence, if p : G — Sp(n) is irreducible, then c(p) will not be irreducible.
In fact, if ¢(p) would be irreducible, its character would be real-valued and therefore of
Schur index 2 (over R). By the Brauer-Witt theorem (CR74.38) there would be a (R, 2)-
elementary subgroup H of G loaded with an irreducible character of Schur index 2. But
H, a semidirect product of an odd cyclic normal subgroup with a 2-group, which is cyclic
by itself, does not admit such a character.
Thus ¢(p) = 8 + @ for some irreducible unitary representation ¢ : G — U(n). Since

aZ(p) = > omwe(p) (H,¥)° with
(H¥)¢
|H|

e (p) = A7 > (=1)"m(Resg_p, ¥r) ,

|GI (Hg,¥o).<(Hr,¥r)
(Ho, ¥o)e(H,¥)C

we have to show that aqg e)e(p) € Z. This we do by showing that these coefficients equal
to coefficients of the canonical unitary induction formula of c(p) or 8, which by Boltje’s
results are known to be integral.

Case 1: ¢(¥) = A+ X with X # A.

In this case all one-dimension representations ¥; split into ¢(P;) = A; + A; with A; # A,
Hence m(Res$ (p), ¥r) = <0 + 6; /\,>H .

If (H,\)€ # (H, X)°, we receive

H _ _
o) = 1 S (e BN, =D,
0,40

¥.<{(Hr,Ar)
(Hpho)e(H NC
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the coefficient of (H, M€ in ag(6 + 6).
If (H,\)¢ = (H,)\)°, each symplectic chain gives two unitary chains. Thus the same
equation shows that a(me)e(p) = Fome(8 + 6). But as

e (0 +6) = e (8) + aaxne (0) = amne6) + ogxe @) = 20 ne6)

we conclude oz gy (p) = urc(0) € Z.
Case 2: ¢(¥) = 2.
We show that o(g,e)c(p) = o, ne(0) € Z. Therefore we take a chain

(*) (Ho,¥Yox.<(H,,¥,)

and study the corresponding multiplicity. Let c(¥,) = A, + Ar.

If A = A, then m(Res§_(p), ¥r) = iRes§ (0 + O) A H, = Res§_(§)A\-H;, and there is ex-
actly one unitary chain derived from (*), namely (Hp, A\o)<.<(H,, A.). On the other side, if
A # A, then m(Res§ _(p), ¥,) = iRes§ (0 + 0) A, H, and (x) affords the two unitary chains
(Ho, Xo)<.<(H,, ;) and (Ho,do)<.<(H,,),). Since Res§ (O))\H, = Res§ (§)X H, we

conclude

> (—1)'m(Resf_(p),¥,) = > (—1)"m(Resg, (6), Ar) ,
(Hp,¥g)<..<(Hr,¥r) (HgAo)<<(Hp Ar)
(Ho Tg)e(H, )G (Hg,2g)E(H,N)EC

and this finishes the proof. l
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4 Symplectic Adams operations

4.1 We may represent Sp(1) = SU(2) by matrices in U(2) of the form

(%)

where a and b are complex numbers which satisfy the relation |a|?+|b|* = 1. The standard
rnaximal torus in Sp(1) is the circle corresponding to a = €*,b = 0. Writing S* for this
circle, the normaliser is given by

a 0 0 b
‘N.Sp(l)S1 = { ’ _ I Ial =1= |b|}
0 @ -b 0

Hence Nsp(1)S* =< S, w > where
0 1
w= .
-1 0

Consider a finite subgroup, H C Ngp(1)S?, then H may be conjugated by an element of
NspyS* so that H = HNS' or H =< HNS",w >, such a subgroup A will temporarily be
called standard. Write C,,, C S! for the cyclic subgroup of order m and Q4 =< Cp, w >.
These are all the standard finite subgroups, H C Ngp1)S'. The inclusion, i : H € Sp(1),
of a finite, standard subgroup yields a one-dimensional symplectic representation which is
determined by the Sp(1)-conjugacy class of i. However, if H = H N S* any automorphism
of H induced by conjugation in Sp(1) may also be realised by conjugation in Nsp1yS*. The
same is true for ary standard subgroup of the form H =< H N S',w > of order strictly
larger than eight. The cyclic group Cy of order four in S* may, however, be conjugated
within Sp(1), onto < w >= Q. In fact, if A(X) is given by

1/v2 i/ﬁ) ( 1/v2 —Wé)
X
i/vV2 1/V2 —i/v2 1/V2

t 0 -t 0
() (]
0 — 0 =1

Also A induces an automorphism of the standard subgroup isomorphic to Qs, the
quaternion group of order eight.

Up to conjugation in Ngy1)S* these are the only Sp(1)-conjugation automorphisms
between standard subgroups which are not induced by conjugation in Ngp1yS?.

A(X) = (

then

30



Let p be an odd prime. Then we may define a homomorphism
TP : Nep(n)S' — Nspy S

by the formulae

a O a 0 0 b 0 b
|2 = , PP = (_1)(?-1)/2 .
0 a 0 @ -5 0 -F 0

Proposition 4.2
Let G be a finite solvable group which is isomorphic to the group of a Galois extension
of local fields of odd residue characteristic. Let p be an odd prime. Then there is a natural
homomorphism
¥ : R¥(G) — R¥(G)
given by WP((H, %)) = (H, U7 - 4)¢ when Y(H) C Nsp)S* is standard in the sense of
§4.1.

Proof

The hypothesis on G is inherited by H and by #(H). This means that 1(H) is
solvable and not isomorphic to the binary tetrahedral group of order twenty-four, which
implies that we may conjugate in Sp(1) to get make ¢/(H) standard. The element, (H,)°,
depends only on the G — Sp(1)-conjugacy class of (H, ). Varying (H,) by G— Ngp(1)S*-
conjugation does not alter (H,¥? - ). By the discussion of §4.1, this means that ¥?
is well-defined on (H,1)% except possibly if 9(H) = Cy,Q4,Qs. However it is easily
verified that the Sp(l)-conjugation, A, commutes with ¥? in these exceptional cases,
which completes the proof. B

Proposition 4.3

As in ([SnEBI] p.109), define VP : R (G) — R.(G) by V?((H, ¢)%) = (H,¢P)C. Let
G be a finite solvable group which is isomorphic to the group of a Galois extension of local
fields of odd residue characteristic. Let p be an odd prime. Then

UP.c, =c, - TP : RP(G) — R.(G).

Proof

If 1 (H) is abelian and standard with c(¢)) = ¢ ¢ then c(¥P-1)) = ¢* & ¢ as complex
representations of H so that

lI’p(c+(-[{’ ¢)G) = (Ha ¢P)G + (H’EP)G = C+(\PP(H’ ¢)G)

Otherwise, being standard, ¢/(H) is Q4 for some n > 1 and the result follows from the
formulae of Proposition 2.6 for ag,, (Q4n, ¥)%*"). ag,, (Qun,?¥)%*". More precisely, from

31



Proposition 2.6 , we have

(<2 >,¢:)% + (<Y >,p00)% + (< y>,5,)% — (<2 >, x)%

if n is odd,

Q. (c(¥)) = 4
(< z>,4:)% + (< y >, p)% + (< 2y >, p0y) 9" — (<Y >, )%

| if n is even

where p;(z) = £2,. Therefore, if n is odd, we have
UP(cy (H, %))

=VP((<z>,¢:)¢ + (< y > )¢ + (< ¥ >,7,)¢ — (< ¥* >, %))

=((<z> @) +(<y>/m°+(<y>m)° - (< >xP)°

On the other hand, if the symplectic representation % : H — Sp(1) satisfies c¢(¢) =
IndZ" (¢) then c(¥?(%)) = Ind&in (¢?) so that

e+ (UP(H, %))
=((<z>,¢)°+(<y >,/ +(<y>m%)° - (<¢? >x")°

= UP(c,.(H,)%).
The case when n is even is similar. W

Corollary 4.4 Let G be a finite solvable group which is isomorphic to the group of a
Galois extension of local fields of odd residue characteristic. Let p be an odd prime. Then
the composition

sp a:-’? sp P YPR1 rsp bc2l psp
R*(G) = R¥(G)2Q — R{(G)®Q — R¥(G)oQ
sends z to YP(z) ® 1, where YP is the usual Adams operation.

Proof
It suffices to show that c(be ® 1(¥? ® 1(ag(2)))) is equal to Y*(c(z)) @ 1. However

clbe @ (TP @ 1(aZ(2)))) = b ® L4 (¥? @ 1(aZ(2))))
=be ® 1(¥7 @ 1{cy(a (2))))
= be ® 1(TP @ 1(ac(c(2))))

=9P(c(2)) ® 1
by ([SnEBI] Theorem 4.1.6).
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Remark 4.5 Orthogonal representations and U2

We continue to assume that G is a finite solvable group which is isomorphic to the
group of a Galois extension of local fields of odd residue characteristic.

Ncw we turn to the orthogonal group, O(2), whose maximal torus is the circle,

cos(8) sin(6)
50(2)={( ) | 6 € R}.
—sin(@) cos(6)

This is normal is O(2) which may be written as a semi-direct product, Z/2 x S?, given in
terms of generators and relations as

012 ={r,e? (e R) |2 =1, re¥r = 7%},
The formulae ‘
ezo 0 |
V3 (w) =7, T( ) = e
0 e®
defines a homomorphism
P2 : NgppyS' — 0(2)

since ¥3(w?) = 7% = 1 = U¥(—]) and 7e*¥r = ¢~%¢,

However
i1 0
\112(( ))=—1, Vi(w) =7

0 —2

which are two elements of order two which are not conjugate in O(2). This means that we
cannot define a homomorphism ¥? by the formula of Proposition 4.2, in the light of the
discussion of §4.1 of Sp(1)-conjugacy of standard subgroups. The difficulty occurs with
the standard subgroups Cjy, @4, @s. The following result is the best we can do.

Proposition 4.6
Let G be a finite solvable group which is isomorphic to the group of a Galotis extension
of local fields of odd residue characteristic. Then there is a homomorphism

¥ : R¥(G) — R3(G)

given by W3((H,¥)®) = (H, V2 - %)° when Y(H) C Nsp)S! is standard and different
from Cy, Q4, Qs. When y(H) C Nsp1yS? is standard and H is one of Cy, Q4, Qg set

V((H, %)) = (H, ¥ -4)° + (H, 2. ¢)®

where

(1/\/5 i/ﬁ) ( 1/v2 —i/\/i)
Y = , Y= -
i/v2 1/v2 —i/V2 1/V2
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5 Symplectic Local Root Numbers

5.1 Local root numbers
Now suppose that L/K is a Galois extension of p-adic local fields with group G(L/K).
An important invariant of a finite dimensional, complex representation p of G(L/K) is the
local root number Wx(p), which is a complex number of unit norm ([SnGMS] §§1.4.10-
1.4.14). When p is one-dimensional Wx(p) is given by a Gauss sum/Artin conductor
formula which extends uniquely to an exponential homomorphism on the representation
ring R(G(L/K)) of the form

Wk : R(G(L/K)) — S'={z€C* | |z| =1}

which satisfies the following properties:
(i) If K C L C N is a chain of finite Galois extensions and G(N/K) — G(L/K) is
the canonical map then
Wi (Inflg(z./xc) (7)) = Wi (p).

(ii) If F is an intermediate field of L/K and p : G(L/F) — GL(V) is a representation

then o
Wi (Indg{z/ (p — dim(p))) = Wr(p).

Note that Wi (1) = 1.
When p is the complexification of an orthogonal (i.e. real) representation, p = c(p1),
then we have a formula of Deligne ([De]; see also [Sn5], [Sn7] Theorem 2.26 p.270)

Wik (p) = SWa(p1) - Wk (det(p1))-

Here SWy(p1) € H?*(K;Z/2) = {£1} is the second Stiefel-Whitney class of p; and
Wi (det(p1)) is a fourth root of unity given by the quadratic Gauss sum/Artin con-
ductor formula, since det(p;) is a one-dimensional representation given by a quadratic
character. In particular, this formula applies to the case of permuation representations
p = Indg(/r)(1).

The case when p is the underlying complex representation of a symplectic (i.e. quater-

nionic) representation, p = ¢(p2), is particularly important in number theory (for example,
see [Fr] and [SnGMS]). In this case Wk (p) € {£1}. On the other hand, the authors know
of no formula for symplectic root numbers in general. When p, is one-dimensional of <he
form p; : G(L/K) — Sp(1) and K has odd residue characteristic the results of [PR1],
[PR2] amount to a formula for Wk (p).

Let G{L/K') denote the Galois group of a finite extension of local fields of odd residue
characteristic. Suppose that p : G(L/K) — Sp(n) is a symplectic representation and
that, in R (G(L/K)) ®z Q,

ag k) (P) = > e Fywew - (G(L/F), ¥)SEH
(G(L/F), %)GUL/K)
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is the symplectic Explicit Brauer Induction formula of 3.9. If each of the rational numbers
n(g(L/F)w)cx actually lies in the 2-adic integers then Wk (p) would be given by the
formula

Wk(p) = Wk(p—n)= IT WK(IndgEZﬁ) (¥ — 1))*cw/nw)CE/o
(G(L/F),%)G(L/K)
= H Wi () @w/ruSL/K)
(G(L/F),¥)CEL/K)

which makes sense because Wr(¥) € {1} and nig(r/m g)o0ix) € Z2.
The above formula for local symplectic roots numbers is the motivation for the follow-
ing integrality conjecture.

Conjecture 5.2 Let G be a finite solvable group which is isomorphic to the group of a
Galois extension of local fields of odd residue characteristic. Then, in §3.9,

acx) () € RE(G(L/K)) ®z Zs.

Remark 5.3 Evidence for Conjecture 5.2

We have explained the motivation for Conjecture 5.2 in 5.1. Here are two pieces of
evidence in its favour.

(i) In 3.11 we gave an example of a symplectic representation p, of G = Qg x Ca» for
which aZ (pn) was not 2-adically integral.

When can G = Qg x Can occur as the Galois group of an extension of p-adic local
fields?

If p=2 one can take L/Q; as in Case B or Case C of [HSvT]. Namely either

L = Qa(v2,V3)(0x)
where o = £(v6/6)(1 + v2)(v2 + v/3) or
L= Q2(\/—m) \/g) (a:!:)

where o = £(1 + v/3 4+ v/10/10 4+ +/30/10). In all these four cases Q7", the maximal
unramified extension of Qa, satisfies Q3™ N L = Q2. Therefore if we take K/Q; to be the
unique unramified extension of degree 2" then LK /Q is Galois with group G(LK/Qg) =
Qg X an.

On the other hand, if p is odd and F is a p-adic local field then F* ® Z/2 has four
elements. Hence if L/F is Galois with G(L/F) = Qs then Np/rp(L*) is equal to the
squares in F*. If E/L is such that E/F is Galois with group Qs x Cy» then there is an
intermediate field M/F with F*/Ny/pr(M*) = Cy x Cy x C, but then the surjection F*
onto Cy x Cp x Cy must factor through F* ® Z/2 which has only four elements. Thus the
expected counterexample to Conjecture 5.1 coming from 3.11 cannot exist when p is odd.

(ii) The prototypical integrality argument for an Explicit Brauer Induction formula
is due to Boltje ([SnEBI] Theorem 2.3.43). The symplectic modification of that argument
is rather more involved but can be used to establish 2-adic integrality in almost all cases.

In addition, 2-adic integrality holds under the conditions of Theorem 3.21.
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6 Induction formula for orthogonal representations

6.1 Orthogonal representations

Let G be a finite group. Let R°(G) denote the Grothendieck group of even-dimensional
RG-modules. By definition, this is the quotient group of the free abelian group F°(G)
over the isomorphism classes of the category of even-dimensional RG-modules, factored
out by the subgroup generated by expressions coming from short exact sequences. This
gives a canonical surjective morphism

ke : F°(G) — R°(G) .

We identify R°(G) (resp. F°(G)) with the Grothendieck group of (resp. free abelian
group generated by) equivalent classes of even-dimensional orthogonal representations

p: G — 0O(2n) :=0(2n,R)

for some n € N, and with the group of (resp. free abelian group generated by) R-
characters on G. Endowed with the standard maps

Res§ : R°(G) — R°(J) (resp. Res§ : F°(G) — .7-'°(J)>

and
Ind§ : R°(J) = R°(G) (resp. Ind§: F°(J) — F°(G))

for J < G, this defines a Mackey functor structure on H — R°(H). But H — F°(H) is
not a Mackey functor because the Mackey formula does not hold.

Deligne [Ma] has shown that every representation p : G — O(2n) is a Z-linear com-
bination of two-dimensional orthogonal representations on subgroups induced to G. So
there exist H; < G, ¥; : H; — O(2) and n; € Z such that

p= Z n;Indg (¥;) .

Thus let L°(G) (resp. 7°(G)) denote the subgroup in R°(G) (resp. F°(G)) generated
by the classes of two-dimensional orthogonal RH-modules, that is the O(2)-conjugacy

classes of homomorphisms
¥:H—-0(2).

These two groups are canonically isomorphic via k¢.

6.2 The y-construction

Let RS (G) denote the Mackey functor obtained by the ,-construction on H — L°(H).
More precisely, let (H, V) be a pair consisting of a subgroup H < G and the equivalent
class of an orthogonal representation ¥ : H — O(2), and let M°(G) be the set of all those
pairs. There is an obvious action of G on M°(G). Let (H, ¥)® denote the G-orbit of
(H,¥) in M°(G), and let M°(G)/¢ denote the set of those orbits. Then RS (G) is defined
as the free abelian group generated by the elements of M°(G)/¢. Indeed H — RS (H) is
the Mackey functor induced by H — L°(H), and this comes with homomorphisms
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ResJ : B3,(G) — R2(J)
and
Ind§ : B(J) — R3(C)
for J £ G. For N « G we have the inflation map
Infig v : R3.(G/N) — R5.(G)

defined by Infig v ((HN/N,¥)¢) = (HN,¥)¢ for ¥ : HN — O(2) with N < ker 0.
Let b% : RS (G) — R°(G) be the homomorphism defined by

e : (H,¥)¢ — Ind$ (¥) .
This map behaves naturally with respect to restriction, induction and inflation.

6.3 Complezification
Let ¢ denote the natural homomorphism

c=cg: R°(G) — R(G)
given by embedding R into C, that is by tensoring with C, so that for p: G — O(2n),
c(p) : G 2 g+ p(g) € O(2n) CU(2n) .

For ¥ : G — O(2) we will have to distinguish between the behaviours of ¢(¥). Either c(¥)
stays irreducible or it splits into a sum of two one-dimensional unitary representations. If
c(¥) = is irreducible, we will indicate this by writing v instead of ¥. If ¢(¥) = A + A
with A : G — U(1) not real-valued and A the complex conjugated character, we will
write A + . If ¢(¥) = 2¢ is twice a linear character, we use the notation 24, and finally
in case ¢(¥) is the sum of two different linear characters ¢ + ¢’ taking values in +1 we
will indicate this by writing ¢ + ¢’. So & will aiways denote a one-dimensional real-
valued representation, A a one-dimensional representation which differs from its complex
conjugate denoted ), and 7 a two-dimensional irreducible representation.
Define the homomorphism

ct = cy,¢ 1 BL(G) — R (G)
by the formula
c+((H, 9)¢) = IndF(an(c(¥))) -
This definition does not depend on the choice of (H, ¥) in (H, ¥)€. Since we will have to
apply this formula we will give it in detail:
2-(H,¢)° ifo(¥) =2¢

cr((H,0)%) = { (H,9)° + (H,¢)° ifc(¥)=¢+¢
(H NG + (H NS ifc(T) = A+ X
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in case c¢(¥) is not irreducible, and in case ¢(¥) = ¥ is irreducible we choose a represen-
tative (H, ¥) of (H, V)¢ and define

> (1 Res () 0, )k, 0)° +

(K $)X.<(Ks,ds) IHI
in M(H)

BV = Y (0B Res (02K, 6 +

(K, ¢)X.<(Kgs,Ms) lHl
in M(H)

5 0Bl Rest (9,0, )0k, )©

(KA. <(Ks.As) IHI
in M(H)

Observe that b and b% are naturally connected via complexification, which means that
bgoc, =cq 0b : RL(G) — R(G).

6.4 An orthogonal induction formula

Let QR’(G) = R°(G) ®=z Q and QRS (G) R3(G) ®z Q. All homomorphims on
R°(G) and R%(G), especially Res§ and Indg, extend in a natural way to homomorphisms
between these Q-vectorspaces.

The homomorphism a% : F°(G) — QR%(G) is defined by mapping an orthogonal
representation p : G — O(2n) to

B = S (U g o) ) o 90)°

(HO"IIO)<"<(H"1 1‘

with multiplicity m given by the formula

(c@)v)y Hc(O)=v
(c(®); Ny ifc(¥)=Ar+N
m(8,¥) := ¢ [(c(8); p)y/2] if C(‘Ilg = Zﬁ ,

1 if c(¥
0 else

+ ¢, (c(6); p)y odd and {c(8); ¢'); 0dd

for § : H — O(2n), ¥ : H — O(2), where [z] denotes the integral part of a rational
number z. Notice that (c(6); \)y = <c(9);X>H.

Note that m(¥,¥) = 1 in all cases.

The following examples will show that in general this homomorphism doesn’t factor
through R°(G) and does not take values in RS (G). But first we give an analogue of 3.13.

Proposition 6.5

Let p: G — O(2) then
az(p) = (G, )¢
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Proof

Since (G, p) is the only element in (G, p)¢ and m(p, p) = 1, the coefficient of (G, p)¢
in a%(p) is 1. Now let (H,¥) < (G, p). Only those elements may give other nontrivial
contributions to a%(p). Since Resgr (p) =Y, for (H,,¥,) < (G, p), the multiplicities turn
out to be 1. Thus we have to show that

2 (-)"=0.

(HW)<(H1, Y1 )<.<(Hr ,¥s)
(Hr ¥r)S(G)p)

Cuonsider the set, R, of chains the sum runs over. Let P < R denote the subset of those
chains which will not end in (G, p). Then

((H, ) <...<(H.,T,)) = (H,¥)<...<(H, 7)< (Cp)

gives a bijection P — R \ P, where chains of length r are in correspondence to chains of
length r + 1. So the terms cancel in pairs, and indeed the sum above equals 0. Il

6.6 Ezamplel: G=Cy x Cp

Let G = (A, B|A? = B? = AB? = 1) be the Kleinian 4-Group. Let 1 denote the trivial
character on G and ex the linear character on G with kernel < X > for X = A, B, AB.
By 6.5

aZ(l +e4) +a‘c’;(63 +ea)=(G,1 +EA)G + (G,ep +EAB)G ;

But for the regular p =1 + €4 + €p + €4p an easy but lengthy calculation gives
a%(p) = (G,1+ea)C+(G,1+ep)°+(G,1+e48)°+

(Gyea+€8)° + (G,ea+€4)® + (G,ep +€48)° — 2({(A), 1 + (1)) —
2((B),1 + (<I))¢ — 2({AB), 1 + (-1))¢ +2({1),21)

Since the element (1 +¢€4) + (g +€48) — (L + €4+ +£48) € F°(G) will not be killed
by a%, a& does not factor through R°(G) .
The situation is the same after applying ¢ because

ac(c(p)) = (G, 1)® + (G,e4)® + (G,e)¢ + (G, e45)°,
while

c+(a%(p)) = 3(G,1)° +3(G,e4)® + 3(G,e5)° +3(G,e45)¢ +
> (~2((X), 1)€ ~ 2((X), (1)) + 4({1), 1)° .

X#1
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6.7 Fzample?2: G = Cp X S3

Let p > 5 be an odd prime and let
G be the direct product of a cyclic
group of order p and the sym-
metric group on three letters, so
G=<z01|P=03=72=1,
20 = 02,2T = T2,T0 = 0°T >.
The lattice of subgroups of G

is as pictured.

Let ¢ denote a primitive p-th root of unity. The table of irreducible complex characters

is giben by
1| o,6°| r,0m,0%r| 2z |z0,20° | z7, 207, 202 | 22
1 1 1 1 1 1 1 1
€ 11 1 -1 1 il -1 i
¢ 1] 1 1 ¢ ¢ ¢ ¢
ECP—I 1 1 -1 c—l C_l _C—l <—2
x 2] -2 0 2 2 0 2
xC |2 -2 0 2C | —2¢ 0 22
X2 —2 0 20T —2¢-1 0 2.
We calculate a2(p) for the orthogonal representation p : G — O(4) defined by
=zl -v3 ¢+¢~1 ¢=¢~t
B oo o 0500 ==
plo) = o 0 F =8| pPT)=[0010 | Pl&)= ¢=¢=l A el o
0 0 =£8 ; 0 00-1 5 =gt 3 st

whick. :s irreducible as an orthogonal representation, because c(p) = x¢ +x¢?~! splits into
two irreducible non-orthogonal representations.

To calculate the formula one has to know the multiplicities m = m(Res$(p), ¥) for all
subgroups H < G and all ¥ : H — O(2). This can be taken out from the following table.

H,c(®) | N, (G | N, CG+CE | S3,x | (0),¢s+ G | (2),¢HC
m 1 1 2 2 2
H,c(W) | (27),(+C | {27),e¢+eC | (r),21 | (r),2¢ | 1,21
m 1 1 1 1 2

Here (3 denotes a fixed primitive third root of unity resp. the corresponding representation
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defined by z — (3, x : S3 — O(2) the faithful irreducible representation on S; and € the
character on (()7) sending 7 — —1. Now

(e) = ST + 5O, CHTDC + ~(@)(50)°
4352 = @ 1+ D)), G+ )° + 3O, G + () (Ge7), o¢HQ)°
+2(0)((z0m), GHT)° + %(1)1(<zar>, o+20)° + 5)((z0%r), ¢+
+3()((20% ), eGHED) + 22— (3 (1 +1) + D)((2), (+D)°

+'31;(1 - 1)(<T>’21)G + '515(1 - 1)((7-)726)0 + '31—1)(0 - 2)(<T>a 1+ E)G

+%(1 _ 1)((or),20)C + %(1 ~1)((o),26)C + %(0 —2)({er), 1 +£)°
+3lp(1 —1)({0r),21)° + %(1 ~1)({0*r),2)° + 5113(0 ~9)((o*),1 +€)°
+-;;(2 — (2+ 2431+ IH- (I IH-3(1+ 1)4+2) + (424+2(1+ 13 2(1+1)) ((1), 21)¢

= (V.GGHTG)° + 25,0 = (0, (o) + (o), GHD)° + (o), D)
~(2) GO = 2, T+ ) = Z(1), 2°

Proposition 6.8
The homomorphisms ag is natural with respect to restriction so that, if J < G,

a% o Res§ = Res§ 0 a% : 7°(G) — QR.(J) .

Proof
Similar to the proof of 3.12.

Proposition 6.9
Let G be a finite group. For p: G — O(2n), the defect for commutativity in

Fo(G) —5 QRY(G)
concl C+l
R(G) — QR,(G)
is given by
r@20) - aclelp) = 3 <—1)’% s, () — 2)(Ho, 60)° |

(Hp ¢ ). <(Hr,dr)
¢r odd
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where the sum runs over all chains ending in some pair (H,, ¢.) with linear character ¢,
(taking values in £1) such that <Resgr(c(p)); ¢T>H is an odd number, and ng_(p) denotes
the number of such characters on H,.

The proof is of this fact follows directly from lemma 6.11 and lemma 6.12. It is
straightforward, but one has to keep book on lots of cases. Therefore we have to introduce
some more notation and will prepare the proof in two lemmata.

6.10 Notation

Recall the convention explained in 6.3 to denote a base element (H, ¥)¢ of QR%.(G)
by (H,c(¥))¢ and to use ¥, A and ¢ to indicate the type of splitting of c(¥).
Since we will have to compare coefficients, we use for each for each base element (H, ¥)¢ €
M?(G)/g the homomorphism 7z ¢)c : QRL(G) — Q defined by

1 if (H,0)C = (H', )¢

7r(l‘if,‘l')‘s((H,’\II’)G) = { 0 else

To abbreviate notation we denote for (H, ¥) € M°(G)
MO(H,¥) = {(H', ¥) e M(G)|(H',¥) < (H,¥)}

and

M(H, ¥) := {(H',¢) € M(G)|H' < H, (Resfz.(c(¥));¢),, > 0} .
Furthermore, for (H, ¢) € M(G) and (K, V) € M°(G) we will write (H, ¢) X (K, V), if
H < K and <Res§(c(‘1’));¢>H > 0. If additionally H < K we write (H,¢) < (K, ¥). For
(H,9)¢ € M(G)/g and (K, ¥)¢ € M°(G)/c we use (H,$)¢ = (K, ¥)° (resp. (H, )¢ <
(K, ¥)%) to express the fact that there exist (Ho, ¢o) € (H, )¢ and (Ko, ¥o) € (K, ¥)°
such that (Ho,¢0) =< (Ko, \I’o) (resp. (Ho,d)o) < (Ko,‘I/o)).
Since p will not be changed through our calculations, we will write briefly (x) instead of
<Res§(c(p)); 5>H, where ¢ is an irreducible complex representation on a subgroup H of G.
For ¢ : H — {*1} we will say "¢ is odd” or briefly "¢ odd” , if (¢) = <Res§(p ® C); ¢>H
is an odd number.

Lemma 6.11
Let (H,))¢ € M(G)/¢ for some A\: H — U(1) with A\ # X. Then

T(H,\)G (ag(c(p))) = = (H,,\)G(C+(ag;(.0)) )

Proof
Let (H,\)¢ € M(G)/c. The coefficient B of (H, A)¢ in ag(c(p)) is, according to 2.2,
_ |H|

|G| (Hg 20X . <(Hr,Ar)
(Hp Ag)E(HN)C

B (=17 (M) -
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The calculation of the coefficient C of (H, A)€ in ¢, (a%(p)) takes some more effort. Since
c;+ is a homomorphism, it is the coefficient of (H, X)€ i

Y Rl Resg (), 9,) o) (Ho, 209

(Ho ¥o)<.<(Hr,¥r) IGl

But (H, A)¢ can only have a nontrivial contributions from c, ((H, %)) if either (H, ¥)¢ =
(H,A+X)€ or (H, )¢ = (K, )¢ with (H, A+ N)°<(K,¢)C. So, if for (H,T) € M°(G)

r | Ho|

Cqg = mmxNe > (=17 I m(Resf, (p), ¥,) i (H, T)°)
(Ho, %o)<.<(Hr,¥r)
(Hg,Wo)=(H,¥)
then C can be expressed as
C= Z CHo,z\o+-Xo + E Ckp-
(Ho.‘\o_+xo)€M°(G_) (Kyg)GM"(G_) e
(Ho,2o+2x0)C=(HA+N)C (K W)Yo >(H,A+A)

We will calculate these coefficients in each case, starting with Cyy g+%0° Without loss
of generality we may suppose that Ay is such that (Hy, A)¢ = (H, A)®. With this fixed
Ao we change notation and write briefly H for Hy and A for Ag. This will not cause any
confusion. We decompose Cp, , 5 into the sum of the coefficient of (H, A)€ in

S UG OEN + (D)

(H AN <(Hp Ar+Ar)

and the coefficient of (H,\)€

> (—1)*+~*'|—Z|'<ws><(ﬂ, N + (H,N°) .

(H A2 <(Hr Ar+Ar )X
<(K1,91X.<(Kq,9s)

Any long chain ((Hp, Ag + Ao)<.<(H,, A, + )\,)<(K1,¢1)< <(Ks,1s)) of length r + s can
be broken up uniquely into the lower chain ((Ho, Ao + Ao)<-<(Hy, Ar + Ar)) in MO(K1, 1)
of length r and the upper chain ((K;, 91 )<.<(Kj,%s)) of length s — 1, and on the other
side any such lower and upper chain define a unique long chain. Hence the second sum
turns out to be the coefficient of (H, A)¢ in

H -
> > > o8l e+ @ ne).
(K, 0)> (H A+R) (H,.\+7\')<..<(H$)»\,-+X,-) (K )<(K1 1)K <(Ks,a) l |
in M(K,

Now, for (H;, A + A;) > (H, A+ X), we choose ); such that Resi¥(\;) = A, and distinguish
two cases.
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If (H,\)¢ # (H,\)®, then every chain ((H, A + \<.<(H;, A\ + X)) starting in (H, A+ X)
determines the unique chain ((H, A\X.<(H,, \;)) starting in an element of (H, \)¢, and
the other way arround. Thus, in this case,

|H]|
CH,,\+X = "la

2 O+ X > > (=) ()

(HAX. <(Hr,Ar) (KW)>(HAX) (H < <(HrAr) (KWK <(Ks,¥s)
in M(K4)

If (H,\)¢ = (H, )%, then every chain ((H, A4+ AK.<(Hy, A\ +]};)) determines uniquely
the two chains ((H, A\X.<(H,, A+)) and ((H, Ax.<(H,, A.)) starting in elements of (H, \)€,
and the other way arround. Therefore, in this case

|| .
Cara=1g | X U0+ T 0|+
(H,M)<. <(Hr A7) (H,X)<.<(HrAr)
lHl - T T8
L 2 > D)+ (=1 )
I lx,¢)>(a,.\+'x) (KW} <(Ks,¥s) | (HAK.Z(HrAr) (HN)<. <(Hrr)
in M(K ) in M(K.%)

Next we express Cky with (K,%)¢ > (H,A+ X)€ for some (K,7) € M°(G). By
definition, the coefficient of (H, A)¢ in c,((K,%)¢) is

H
2 2 (‘1)T|K—I<RGS§, ()3 Ar)
(Ho2o)E(H,MG  (HoAoX.<(Hr Ar) |K|
(Ho,2o+R0)< (K ) in M(K¥)

Since <Res§i(¢); )\,-> = 1, the coefficient Ck 4 of (H, A)€ in

T 0 (Resleloi o), ol ()
KYK.<(Ka¥s
turns out to be

K| - H|

(K )<< (Katbs) (Hp.Ao) (HoApXK-<(HrAr)
e(H,NC in M(K,)

Crw = 3 (gl = ¥ (I

H s s T oyt

|G| (K W)X.<(Kqs¥s) (Hprp) (HoMgX. <(Hr)Ar)
e(H,NC in M(K,¥)

Using these three expressions for C( F3)e the formula for C turns into

¢ = E CHo,z\o+Xo + E CK,y
(Hg,A0+%0) (K. $)EMO(G)
€(H X +X)C (K, )8 >(H A NG

44



1H]
|G

> > U+

(HoA0)E(H,MNG (Horp)< <(Hr Ar)

2 > > (=1 ) +

(KEMO(C)  (KK.<(Kasbs) (Hoho)X.<(Hyp Ar)
(K)C>(HAM+X)C in M(K,p),(HoMg)C=(H,NC

Z Z E Z (_1)s+r(¢s>

(K)EMP(C) (K W).<(Ksba) (Hgrg) (HgAgX.<(Hr,Ar)
(K)C>(HA+X)C eH NG in M(K,¥)

The two last terms cancel out, and we finally get

H .
c - > 1)
1G] (Ho,20)EM(G) (HosMoX-<(Hr Ar)
(Ho,xo+30)C=(HA+X)C
= B
as claimed in 6.11.
Lemma 6.12
Let (H,$)° € M(G)/c with ¢ : H — {£1} an orthogonal representation. Then
o H T
rmoe(er(@b) - asel)) = ¥ By -,

(Ho,#oX - <(Hr,br)
(Ho.$0)YE(H,$)C , ér0dd

where ng, denote the number of elements in the set {¢, : H, — {£1}|¢, odd}.

Proof
Let (H,$)% € M(G)/g. The coefficient B of (H, $)€ in ag(c(p)) is

|H| r r
B = al Z (=1)"(¢r) + 2 (=1)"(Ar)
| I (Hg,¢0)<. < (Hr,ér) (Hg, o). <(Hr,Ar)
(Ho,$0)€(H,$)C (Ho.$0)E(H,$)C
The coefficient C of (H,$)€ in ci(a%(p)) turns out to be the sum of a lot of parial sums
coming from different kinds of chains. Since ¢, is a homomorphism, C is the coefficient
of (H,$)¢ in

> (—1)f%m(aes§, (0), 0, s (Ho, Wo)F)

(Ho, Po)X.<(Hr, ¥r)

Since (H, )€ can only have a nontrivial contribution from elements of the form ¢, (( Hp, ¥,))
if (Ho, o) is either (H,2¢)¢ or (H,¢ + ¢')¢ or (K,v)€ with (H, $)¢ < (K,%)C, we can
expresse C' as

C= E CH0,2¢0 + Z CH0,¢0+¢6 + Z CHO.'*/JO
(Ho,240)EMO(G) (Hp b0+ €M?(G) (Ho.90)EM?(G)
(Ho,260)C =(H 2¢)C (Hobo+#0)C=(H,4+4C (Howo)C<(H.$)C
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where the second subsum runs over all possible pairs ¢ + ¢, and, for (H, ¥) € M°(G),

Crgmmamoe| X (- EmEeg (), ) e(F.9)°)

(Ho,Wo)<-<(Hr ¥r)
(Ho,¥0)=(H, %)

Now we calculate these coeflicients Cﬁ g in each of the three cases.

We begin with the case (H,¥)¢ = (H,2¢)¢ = (H,2¢)¢ and can, without causing
confusion, change notation back to H instead of H and ¢ instead of ¢. Using the explicit
formula for the multiplicities, we split Cy 24 into lGI o1 Ci(H,2¢), where

Ci(H,2¢) = > (=1)2[{¢n)/2]

(H2¢)<.<(Hr 2¢7)

Cy(H,2¢) := > (-D2-1
(H.2¢)<..<(Hi»2¢i)<(5i+1.¢i+1+¢2+1)<
<.<(Hp,pr+oh), r.é} 0dd

Cs3(H,2¢) = > (—1)72(A)
(H,26)<. < (H3,26:)<
<(H,‘_+1 ,A“+1 +x"+1)<..<(Hr,Xr+A‘-)

Cis(H,2¢) := ST (=1)2(as)
(H 26X <(Hp 26r)<
<(K1,¢1)<--<(Ka.¢l)

Cs(H,2¢) = 3 (=1)""2(xhs)
(H20)<.<(H;,28)<(Hip 1.8i41+¢; K<
<(Hr $r+dp (K191 <. <(Ka,$a)

Co(H,2¢) = > (—1)7"°2(ths)

(H2¢).<(H; 26 )< (Hip 1 A Hhip1)K<
<(Hp Ar+Ar) (K7 91 <. <(Ka1¥s)

Now we will modify these terms using the following observations.

1) Of course we can identify any chain of the form ((H,2¢).<(H’,2¢')) in M°(G) with
the corresponding chain ((H, ¢)<.<(H',¢')) in M(G).

2) Clearly 2 [(¢,)/2] equals {¢,) — 1, if ¢, odd, and coincides with {¢,) otherwise.

3) Any chain ((H,2¢)<.<(H, s + Ar)) in M°(G) corresponds uniquely to the pair of
chains given by ((H, ¢)<.<(H,, ),)) and ((H,¢)<.<(H,,?;)). Thus, taking the sum over
all chains ((H,¢)}<.<(H,, ),)) instead of ((H,2¢)<.<(H,, A + X)) gives twice as much
summands, and this will take care of the factor 2.

4) A chain ((H, 2¢)<.<(H,,2¢, }<(K1, % )<.<(Ks,9s)) of length r + s breaks uniquely up
into the lower chain ((H, 2¢)<.<(H,,2¢,)) in M°(Ky,11) of length r and the upper chain
(K1, Y1)<.<(Ks,¥,)) of length s — 1.

5) A chain ((H,2¢)&.<(H,, ¢, + $L<(K1, 1 )<.<(K;,15)) of length r + s breaks up
uniquely into the lower chain ((H,2¢)<.<(H,, ¢, + ¢.)) in M°(Ky,%,) of length r and
the upper chain ((K;,91)<.<(Ks,1s)) of length s — 1.

6) A chain ((H,2¢).<(Hy, A + Ar)<(K1,91)<.<(Ks,1s)) of length 7 + s breaks up
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uniquely into the lower chain ((H,2¢)<.<(H,, A + A;)) in M°(K1,%1) of length r and
the upper chain ((K, 91 )<.<(K5s,15)) of length s — 1.

Thus we have

CH2¢) = ¥ (- X (-1
(H,¢)X<.<(Hr,¢r) (H.'#)::i‘(dgr.eﬁr)
Ca(H,2¢) = 2 Y (<11

(H,2¢)<. <(Hp ,dr+d))
ér,¢} odd

Cs(H,2¢) = 3 (=1)(M)

(H,¢X.<(Hp\Ar)

Cy(H,2¢) = 2 ) > >, (L)t y,)
(K.w)>(H,2¢) (H,¢)<.<(Hr,¢r) (KWX.<(Ks,¥a)
in M(K,9)
05(H)2¢) = 2 Z Z z (_1)r+s+l(¢s>
(K¥)>(H\2¢) (H,2¢)..<(Hr $r+¢5) (KWK.<(Ksts)
in MO(K )
Ce(H,2¢) = > > > ()Y
(K)>(H,2¢) (H$).<(Hp, 2} (K@) . <(Ka,%s)
in M({K,¢)

Next we study the case (H,¥)¢ = (H,+¢)C = (H, ¢+ ¢)° for some ¢ # ¢.
Again we change notation and write H instead of H and ¢,¢’ instead of ¢,¢’. The
explicit formula for the multiplicities transform Cp 4,4 into

| H|
Crg+e = Tellikiatd > ()T + > (=
(H,¢+¢' W.<(Hr,ér+d7)< (H.¢+¢’)<--<(Hr,¢r+¢;-)
<(K141)K.<(Ks %) ér.¢h odd

with my gy = 2, if (H, ) = (H,#')¢, and my 4,4 = 1 otherwise.

We split any chain ((H, ¢ + ¢')<.<(H:, ¢, + ¢, )<(K1, Y1 )<-< (K, %)) of length r+ 5 into
the lower chain ((H,¢ + ¢')<.<(H,, ¢, + ¢.)) in M°(K;,%,) of length r and the upper
chain ((Ki,¥1)<.<(Kjs,%s)) of length s — 1. So, if

Cri(H,¢p+¢) = mupre D, > > (=1 )
(K\W)>(H,$+¢") (H ¢p+¢'<.<(Hp,dr+¢p) (KW)X.<(Ks,%s)
in M2(K,¥)
and
CB(H,¢+ ¢’) = MHp+e! Z (_l)r )
(H,p+ ¢/ )< <(Hr dr+ol)
¢,-,¢’,.odd

then CH,¢+¢I = *ll-gjl' ( C7(H,¢ + ¢I) + CS(H)¢+ ¢’) )

47



Finally we expand Cf 3 in the case (H,9)¢ = (K, )¢ > (H,¢)C for some (K,9) €
Mo(G).
By definition of c,, the coefficient of (H,¢)€ in c, ((K,%)%) is

> Bl CypReE@no) + T (-1 (Res ()i )

|
(Hp,$g)E(H,$)C ‘KI (Hp ,90)<.<(Hr,ér) (Hp,90)X-<(Hr,Ar)
(Ho o)< (K %) n M(K.¥) in M(K.¥)

Therefore, the coefficient Ck  of (H,¢)¢ in

Yy ElnResg (o), v) (@00, 9)%)

(K. <(Ks¥a) |G|

is given by

Ckyp = Z (-1)° ||IG{|| {1s) E % :

(K, 9)<.<(Ks,¥a) (Hg,$0)E(H ¢)C
(Hp,90)<(K %)

S (-1 (Resf (@)idr) + 3 (—1)"(Res (¥); 1)
(Hp o)< <(Hr,¢r) (Ho #0)< . <(Hp,Ar)
in M(K ,¢) in M(K,v¥)

This we split into several subsums and obtain Cx , = 'I%II i—4 Ci(K, %), where

CiK,9) = > > > (=17 () -

(K\W)<.<(Ks\¥a) (Hp,d0)E(H,$)C (Ho.do)X. ~<(Hr ér) in M(K )
(Ho,90)=<(K,¥) Re-H (¥)=2¢r

Cs(K,9) = > > > (—1)7+* (3hs)

(K ¥)<.<(Kas,%8) (Hp,éq)E(H $)C (Ho ¢0)X<..<(Hr,ér) in M(K )
(Howb0)<(K$) Resfy ($)=dr+ép.Resfl (#)=20

> > ) (=1)™** (1)

(K. <(Kq:¥s) (Hq,d0)E(H,0)C (Ho, ¢o)< <(Hr Ar)in M{K )
(Ho,$)<(K¥) H (¥)=2¢¢

Ci(K,Y) = 3 3> . > (=1)"** (1)

(K, ¥)<.<(Ks,¥as) (Hp,d0)E(H,$)C (Hoibo)<. <(Hr ér)in M(K,9)
(Ho,é0)<(K ) Resf{ (¥)=do+4,

[\V]

CS<K) d))

Bringing all these expressions together, we conclude

C = E CH012¢0 + Z Z CH0,¢0+¢'0 + Z CK,d,

(Ho.2d0) (H,¢+¢")C (Ho$0+43) (K ¥)EMPO(G)
€(H,2¢)6 E(H $+¢)C (K$)C-(H,C

_ H > STCi(Ho2¢0)+Y. > >_Ci(Ho, ¢o + ¢b)

IGI i=1 (Hg,2¢q) i=7 (H.e+¢")C (Hp.$o+ép)
€(H29)¢ €(H,6+4)C
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i=4 (K,$)EMO(G)
(K, 9)C~(H,$)C

Some of these terms cancel against each other. The terms involving Cy vanish, as

> Cu(Ho,2¢0) + > CuK,¥) =

(Ho,2¢9) (K $)EMP(G)
€(H,2¢)C (K)C~(H,8)C

2.2 ) 2 > () ) +

(Ho:240) (K.$)>(Hp,240) (Hoibo)<-<(Hr.br) (K} <(Ks ¥a)

€(H,2¢)C in M(K,¢)
Z 2(—1)r+s<¢5) =0

(K)EMO(G) (K W)R.<(Kasi¥a) (Hy,é0)E(H,$)C (HpoidoX.<(Hr,ér)in M(K,9)
(K)C~(H,$)C (Ho$0)=<(K %) Resfl (¥)=24r

The Cs-terms add up to 0, because
> Cs(Ho,2d0) + Y. Cs(K,9) =

(Ho.2¢0) (K, $)EMO(G)
€(H,2¢)C (K$)C-(H,)C

> 2 > > (CD)T ) +

(Ho2¢0) (Ka)>(Ho.240) (Hp,260)< <(Hr r+dh) (KX . <(Kaibs)
€(H24)C in MO(K )

> > > (=1)™+*(abs)

(K$)EMO(G) (K )<-<(Ke W) (Hg,d0)e(H.$)C (Hgbo).<(Hr ér)in M(K,¥)
(K,9)C—(H,$)C (Ho,¢0)=<(K.¥) Ruﬁrw)=¢r+¢',,nugo(¢)=2¢o

Indeed, every chain (Ho<.<H,) of subgroups in K determine exactly two chains in
M(K, ), namely ((Ho, ¢o)<.<(H, ¢-)) and ((Ho, do)}<.<(Hr, ¢])).

Also the Cg-terms cancel each other, as

> Cs(Ho,200) + Y Cs(K,9) =

{Ho.240) (X, $)EMO(G)
€(H,24)C (K)C~(H,$)C

> 2 > > (=1 ) +

(Hg,2¢p) (K¢)>(Hp2¢0) (Hp,bgl.<(Hr,Ar) (K¥X.<(Ks,¥a)
€(H,2¢)C in MO (K,¢)

> 2 2 > (D)™ =0

(K )EMO(G)  (KW).<(Kaibs) (Hp,d0)e(H,$)C (Hoi$0X-<(Hr Ar)in M(K,$)
(K4)Cr(H,$)C (Ho,$0)~<(K %) Res§0(¢)=2¢o

Finally, the terms with C7 go off, since
> X CiHu¢o+d)+ Y CiKy)=

(Hi$+¢')C (Ho d0+40) (KW)EMO(G)
(K)C-(H,$)C

E(H,6+4")C

> D My go+a > > S (=1t y,) +

(Hé+4")C (Ho.do+4p) (K4)>(Ho ¢0+4,) (Howbo+ep)<.<(Hr dr+éy) (K)<.<(Kade)
€(H,¢+4¢")C in MO (K %)

> > > =)

(K $)EMO(G) (K WX.<(Ksba) (Hg,bg)E(H,$)C (HodgX . <(Hrdr)in M(K,¥)
(K.9)Cw(HHC (Ho,¢0)<(K,¥) M§0(¢)=¢o+¢g
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In fact this is 0, because if we have a pair (K,v¥) > (Ho, o + ¢p) with (Hop,¢0)¢ =
(H,$)¢ # (Ho,#p)C , the myg, g0+, = 1, and taking sums over chains in M°(K,)
starting in (Hp, o + ¢5) is the same as taking sums over chains in M(K, ) starting in
(Ho, ¢o). Otherwise, if a pair (K,%) > (Ho, ¢o + ¢h) satisfies (Ho, $0)¢ = (H,¢)¢ =
(Ho, ¢5)€, then mpy, .44, = 2, and taking sums over chains in M(K, ) starting in
(Ho, ¢o) or (Ho, ) is twice as much as taking sums over chains in M°(K, 1)) starting in
(HO’ ¢0 + ¢6)

So C reduces to

H 3
||Gl| S S Ci(Ho,240) + D > Cs(Ho, do + &)
i=1 (Hp,240) (H,$+4M)C (Ho.éo+6()
€(H,2¢)6 €(H,$+¢/)C

Now we can compare B and C, which is the coefficient of (H, ¢)€ in cy(a%(p)) — ac(c(p)-
We notice that, taking the expressions for B and C into account,

5] LI sy,

|G| IG| (Hg ¢0)E(H $)C (Ho o). <(Hr dr)
¢r odd

Z (C1(Ho, 2¢0) + C3(Ho, 2¢0)) =

(Ho,¢0)E(H,$)C

Thus we have to compute

2 PO o VD S e

(Ho #0)E(H )G | (Ho,260)-<(Hr,dr+e}) (Ho, ¢o)< <(Hp,ér)
ér, b} 0dd #rodd
and
/
Z Z Cs(Ho, ¢o + ¢p)-

(H,¢+4)C (Ho,p0+¢))E(H o+4)

The first term can be simplified by the following observation. Let (Hp,¢o) € (H,¢)¢
fixed and, for Hy < H, < G, let Xg, 4, := {¢» : Hr — £1|Resi’(¢,) = o, ¢- 0dd} and
n = npy, 4, denote the number of elements in Xp, 4,. Then there are precisely n elements
(H,,¢.) € M(G) with (Ho, %) < (H,,¢,) and ¢, 0dd, and precisely M elements
(H,, ¢, + ¢.) € M(G) with (Ho,2¢o) < (Hr,¢r + ¢,) and ¢,, ¢, odd. Thus

ooy Y oMeslMa D gyl S iy,

(Ho.200)X < (Hr,dr+¢%) Ho<.<Hr (Ho:$oK<(Hr ér)
¢r,¢f 0odd $rodd

So the first term can be rewritten as

) > (=1D)"(nm.g —2)

(Hg,¢0)€(H,$)G (Ho:$p)<.<(Hr ér)
$r odd
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Next we reduce the second expression. Let (Ho,¢0) € (H, )€ fixed. For Hy < H, < G
let Xy 40 = {¢r: H, — :i:l[Resﬂ;(dJ,.) # ¢o,¢-0dd} and n' = n};_, denote the number
of elements in X _, . Now

> > U= 3 (1) mig

$prb0 (Hobo+ep-<(Hr dr+d7) (Ho-¢o)<~-<£lHr vbr)
$r,8} 0dd $rod

since, for any chain (Ho, ¢o)<.<(H,, $,) with ¢, 0dd, a chain (Hy, ¢ + ¢h)<.<(H,, $» + ¢L.)
with ¢,,#. odd determines and is determined by ¢’ € Xj, 4o~ Furthermore, for (H,, ¢,)
fixed with (H,,¢,)¢ = (H,$)°,

> D MEpgere, (1= > > (Dl g,

(Ho,o+48f) (Ho$o+8))<. < (Hr dr+4}) (Ho$0)E(H $)C (Hobo)<-<(Hr.ér)
(Ho.$0+90)C (H,90)C $r.L odd $ro

as mpg,, 89+9% = 1 in the case (Ho,$0)® # (Ho,#h)C, and my, do+g, = 2 in the case
(Ho, $0)® = (Hp, ¢})C. Finally, we may take the sum over all (H,,gb,) to rewrite the

second expression as

Z (_ l)ranr,d’o

G (Hp, & (Hp,
(Ho,¢0)E(H,8)C ( °¢04):od<(i rpr)

Taking these simplifications into account, we conclude from ng, 4, + 7y, 4, = na,, that

|H|
C—-B= al > (-1)(na, —2)
(Ho$0)<.<(Hr ér)
(Hg,4$0)E(H ,$)C | ¢rodd

and lemma 6.12 is proved. l

Theorem 6.13
The map aZ induced an explicit induction formula, that is, for p : G — O(2n) in

F(G),
ba(az(p)) = selp) € B°(G) .
Proof
We study the diagram
Fo(G) —% QR3(G) — QR°(G)
concl c+l cl
QR(G) —%= QR+(G) —= QR(G)

Note that the right square is a commutative diagram, since all maps involved are homo-
morphisms and ag, used in the definition of c., is a section for bg. Indeed

ba(c+((H, ¥)°)) = bo(Indf (an (c(¥))) = Ind§ (bran(c(¥))) = IndF(c(¥)) = c(IndF(¥)).
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Since ¢, is injective, it suffices to show

c+((¥& 0 aZ)(p) = c(ra(p)) (= (be 0 ag)(coke)(p)) -

Therefore it is enough to prove that the defect on the commutativity in the left square,
given by (6.9), vanishes after been hidden with b¢. In fact, for p: G — O(2n) and ny(p)
as in 6.9, we calculate

be (c+(az(p)) — ac(c(p))) =

H
bo| Sinat) -2 X (1ol 0)° | =
(H,9) (Ho$0)<.<(Hr $r) |G
¢ odd (Hr $r)=(H,8)
~ 1 H
Sra -2 % (17 lmag g0 =
(H,$) (H0v¢0)<-.<(Hrp¢r) | |
#odd (Hr $r)=(H,$)
H
Snale) - Dimag( (il I;" Indf,(¢o)) =
(H.,¢) | | (Hp.$0).<(Hr.$r) I I
¢ odd (Hr @r)=(H,¢)
| |I d r|H0| _
SNlna(o) - 25 IndS( Y (1) T ndE, (1) =0,
(H,¢) |G| Ho<.<Hp | |
¢ odd He=H
since firstly, for H < G a fixed noncyclic group,
- H
> (-yimdg,m =0 (1)

Ho<.<Hr=H

(see for example [Bo3, III.1.4]), and secondly, if # < G has a nontrivial contribution
to the sum above, then ng(p) > 0 (so there exists an odd ¢) and ny(p) — 2 # 0 (so
ng(p) > 4), so that H has an elementary abelian 2 group of order at least 4 as a factor
group and can not be cyclic. W
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