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Introduction

This paper displays a closed model structure for the category of cubical sets and
shows that the resulting homotopy category is equivalent to the ordinary homo-
topy category for topological spaces. The main results are Theorem 19, which
gives the model structure, and Theorem 29 and Corollary 30 which together
imply the equivalence of homotopy categories.

The cofibrations and weak equivalences for the theory are what one might
expect, namely levelwise inclusions and maps which induce weak equivalences
of topological spaces respectively. The closed model structure is relatively easy
to derive, once one gets away from the preconception that fibrations should be
defined by analogy with Kan fibrations. A fibration is defined to be a map
which has the right lifting property with respect to all trivial cofibrations. The
verification of the closed model axioms is essentially formal, and is displayed
here (see also [4]) as a consequence of standard tricks from localization theory
having to do with a bounded cofibration condition for countable complexes. The
equivalence of the homotopy category of cubical complexes with the ordinary
homotopy category is much more interesting, and follows from the assertion
that the cubical singular functor satisfies excision in a non-abelian sense.

There is an underlying category of models, namely the box category O,
which is used to define cubical sets in the same way that the category of ordinal
numbers defines simplicial sets. This means that a cubical set X is defined as a
contravariant functor X : [0°° — Set on the box category, taking values in the
category of sets. The box category and its basic properties are the subject of the
first section of this paper, while the first properties of cubical sets are described
in the second section. The closed model structure is derived in Section 3, and
appears as Theorem 19.

The assertion that the homotopy categories of cubical sets and topological
spaces (or simplicial sets) are equivalent involves the final three sections of this
paper.

One needs a good subdivision operator. There is certainly an obvious sub-
division of an m-cube, which is just a product of barycentric subdivisions of
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intervals. The subdivision sd X of a cubical set X is constructed from this
naive subdivision of the n-cube in the end, but a functorial description of the
subdivision of cubes is required to make it work. This is done by showing that
the naive subdivision is isomophic to a cubical complex associated to the poset
of non-degenerate cells of the n-cube.

The catch is that the standard, easy relationship between posets and sim-
plicial complexes is lost in the cubical setting. Cubical complexes (meaning
subcomplexes of standard n-cubes) have posets of non-degenerate cells which
have extra structure, formalized here as cubical posets. Furthermore, the cu-
bical nerves of these posets are too big to be useful, but cubical posets have
“minimal” cubical nerves which are cubical complexes. The naive subdivision
of the n-cube is isomorphic to the minimal cubical nerve of the poset of non-
degenerate cells of the cube, and the latter is the functorial construction on
cubical complexes which gives rise to the subdivision operator for all cubical
sets. These ideas are the subject of Sections 4 and 5 of this paper.

Despite the apparent conceptual pain of the construction of the cubical sub-
division functor, the functor itself is much better behaved that the subdivision
functor for simplicial sets, in that there is a canonical map v :sd X — X as for
simplicial sets, but there is also a natural homeomorphism h : | sd X| 2 | X| of
the associated topological spaces, and a natural homotopy h ~ |y|. The natural-
ity of both the map h and the homotopy effectively does away with the necessity
for showing that every cubical set can be refined by a cubical complex; this is
quite unlike the corresponding situation for simplicial sets, where one needs to
show that every simplicial set can be refined by a simplicial complex, via double
subdivision. The proof of the cubical excision theorem (Theorem 27) makes di-
rect use of these constructions, and then the comparison of homotopy categories
(Theorem 29, Corollary 30) follows relatively quickly. These results are proved
in Section 6.

I should say that none of this went exactly according to plan. The idea at
the outset (and this view has been generally held) was that one should be able
to develop the homotopy theory of cubical sets by analogy with the homotopy
theory of simplicial sets. Unfortunately for that point of view (see Remark
8), the topological realization functor does not preserve products, even up to
weak equivalence, and this has the ultimate effect of breaking the analogue of
the theory of minimal fibrations. In fact, the standard n-cells O" are not even
contractible within the category of cubical sets even though their realizations
are hypercubes. This phenomenon can be partially fixed by adding the Brown-
Higgins connections [3] as an auxilliary set of degeneracies; this works for a
long time (there’s even a closed model structure), but then one sees finally that
connections do not respect the subdivision operator. Connections are important
and one can do a lot with them, but it appears that they will have to be
addressed within the homotopy theory of cubical complexes from a more subtle
point of view.

There is a a theory of combinatorial fibrations, which is defined by obvious
analogy with the theory of Kan fibrations of simplicial sets, but is not displayed



here. The analogy goes far enough to produce a decently behaved theory of
combinatorial homotopy groups. There is a Milnor theorem which asserts that
the canonical map X — S|X| induces an isomorphism between the combina-
torial homotopy groups of a fibrant cubical set X and the homotopy groups of
the associated space |X|, but one would like to have this statement hold more
generally for all combinatorially fibrant objects. Its proof should have some-
thing to do with a cubical approximation theorem, meaning a suitable analogue
of simplicial approximation. Cubical approximation has not been proved, and
it may not yet even have a suitable expression — it appears to be one of the
“hard” things that will be possible to properly state and prove only once sub-
stantial portions of the rest of the homotopy theory of cubical sets are properly
developed.

There’s a final punch line: one can go back and develop the homotopy the-
ory of simplicial sets by analogy with the results given here. The closed model
structure for simplicial sets is much easier to derive from this point of view, and
one can prove an exact analogue of the excision result given here for simplicial
sets once one understands (and successfully proves) that simplicial approxima-
tion is really about showing that an arbitrary simplicial set can be refined by a
simplicial complex up to weak equivalence (see [5], [6]) — this is a much more
delicate statement than the approximation technique that is used here. This
collection of ideas will be the subject of a future paper.

This paper was completed while I was a member of the Isaac Newton Insti-
tute for Mathematical Sciences during the Fall of 2002. I would like to thank
that institution for its hospitality and support.
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1 The box category

Writen = {1,2,...,n}, and let 1" be the n-fold product of copies of the category
1 defined by the ordinal number 1 = {0, 1} of the same name. Write 1° for the
category consisting of one object and one morphism.

A face functor (d, €;) : 1™ — 1™ is defined by an ordered inclusion d : m — n
and a set of elements ¢; € {0,1}, i € n — m. The corresponding functor is
specified by the diagrams

d,e;
1 L) S

S
di QIR

1

where d; is the projection pry-1(;) if @ is in the image of d, and d; is the constant
functor at ¢€; for i € n — m.

A degeneracy functor s = sq : 1” — 1* is specified by an ordered inclusion
d : k — n. In effect, the diagram

17 et ok
PTd(i) A

1

is required to commute.
There is an isomorphism of posets

0, :1" 5 P(n)
which is defined by associating to the n-tuple € = (€1, ..., €,) the subset
Qn(e) ={i| e =1}

of the set n = {1,...,n}.
Suppose that (d, ;) : 1™ — 1™ is a face functor, and consider the composite

poset morphism
(d’ei )

17 LDy qm Cmy oy,
Suppose that A = Q,,,(d, €)(0,...,0) and that B = Q,,(d, ¢;)(1,...,1). Write
[A, B] for the subposet of P(m) consisting of all subsets C such that A C C C B.
The poset [A, B] is often called the interval between A and B. Then one can
show that there is a commutative diagram of poset morphisms

1 D m
o L’-ﬁfﬂ - L’-ﬁﬁq
P(n) — /P (m)



where the poset morphism d, is defined by C + d(C)U B. Note that the odered
inclusion d : n — m determines a bijection n = B — A, and that d, induces a
poset isomorphism P(n) = [A, B].

An ordered inclusion d : k — n can be identified with a subset A C n of order
k in the obvious way, and any degeneracy sq : 1" — 1F sits in a commutative
diagram

1” sid/fk
o L;fﬁa " ki
P(Q)FFFFFFF:(k)
i
P(4)

where the indicated isomorphism is determined by a canonical order preserving
bijection k = A and the morphism P(n) — P(A) is defined by C — C N A.

In the definition of both face and degeneracy functors, the ordered inclusions
can be replaced by choices of subsets. In effect, a subset of n having k-elements
determines a unique ordered inclusion k C n.

Consider the composite functor

1 L)y qn s, gk

There is a pullback diagram of order preserving functions

o0

!

s 8

L

d'

and there is a corresponding commutative diagram of face and degeneracy func-

tors
1m (d,e;) /1/" (1)

LHIfH /Jffifﬂ

L
17‘
(d',e5(5))

The sets of face and degeneracy functors are each closed under composition,
and degeneracy functors can be “moved past” face functors according to the
recipe specified above.

We shall write d = (d, ¢;) for face functors in the following, except in places
where the ambiguity could cause confusion.



Lemma 1. Suppose given a commutative diagram

S

. Lﬂfﬂ Jf%ﬁa
1" M

d'

composed of face functors d,d’ and degeneracies s,s'. Then d =d' and s = s'.

Proof. There is a face functor d which is a section of s. Write § = s'd : 1" — 1",
The functor d’ has a left inverse given by a degeneracy, and is therefore a
monomorphism. Then R R
d0=ds'd=dsd =d,
while
dfs=ds=d's

so that s = s’. The functor @ is also the unique functor which makes the
diagram

1m id /l/n

—
s’ ﬁg de
[k

7
1" —

commute. There is similarly a uniquely determined functor 6’ : 1" — 1™ which
makes the diagram
1m [

s’ 9; d
i fl
ln' / k

dl
commute. It follows that the functor 6 is an isomorphism of categories. In
particular, n = n'.

The functor 6 has a factorization

l’n

where p is a degeneracy functor and p is a face functor. Then p is a monomor-
phism as well as an epimorphism. If r < n then
i i
p(€17"'707"'7€n) :p(ela"‘ala"‘aen)
for i ¢ r and p cannot be a monomorphism. It follows that » = n and p = 1,

since there is only one order-preserving monomorphism n — n. It also follows
that u = 1, and hence that § = 1. O



The box category O is the subcategory of the category of small categories
which is generated by the face and degeneracy functors. Its objects consist of the
categories 1%, k > 0, and it follows from Lemma 1 that a morphism 6§ : 1% — 1™
in O can be uniquely written as a composite

1" 6 [

]_k

where s is a degeneracy functor and d is a face functor. Morphisms in the box
category are also called cubical functors.

The pair (i,€) consisting of i € n and € € {0,1} determines a unique face
functor d*¢) : 1"~ — 1" defined by

d(i’e)(’Yl,..-,'Yn—l) - (71:--'7(%7""7"_1)'

Suppose that i < j. Then there is a commutative diagram of face functors

(i,e1)
1n—2 e /I/n—l (2)
d—1.¢2) L:H dlie2)
il il
ln—l /n
dlie1)

if n > 2. If + = 7 there is a diagram

] f{n—1 (3)

-
il il

ln—l

The degeneracy functor s/ : 1 — 177! is the projection which forgets the
jth factor, so that

sj(’yl,...,’yn) = (V1w s Vi1 VjtLs -+ -5 Tn)

Write s! : 1 — 19 for the obvious map to the terminal object 1° in the box
category L.
Then there are relations

sist = sisd Tl if i <. (4)

Similarly, o
s7dTO) =1, (5)



and there are commutative diagrams

)
1L St i< (6)
s Lﬂfﬂ Sﬁ:l
1! /‘Jﬂi
2o
and
(i+1,)
1 L > (7)
s Lﬂfﬂ sfH
1! /le
2o
The projections
(€15 €ngr) ™ (e1,...,€n)
and
T
(617 ) EnJrk) & (en—i-la s 7€n+k)

are degeneracy functors. Thus, any morphism 6 : 17 — 17+* is uniquely deter-
mined by the composites pr;6 and prgf. That said, 1*t* is not the categorical
product of 1" and 1* in the box category O: one sees this by observing that
the diagonal functor A : 1 — 12 is not a face functor.

What can be said along these lines is the following:

Lemma 2. The diagrams (2), (6) and (7) are pullbacks in the box category.

Proof. A box morphism a : 1" — 1" factors through the face d(*¢) : 17~ — 17
if and only if the images a(z) = (ay(x),...,a,(z)) have the form a;(z) = € for
all z € 17. O

A poset morphism v : P(n) — P(m) is said to be cubical if the morphism
Y : 1™ = 1™ defined by the diagram

1n —ffm
o L’-ﬁfﬂ ) L’-ﬁﬁq
P(n) ——/P(m)

is cubical in the sense that it is a morphism of the box category O.

Observe that there is a poset isomorphism 6 : P(F') =N P(F)°P defined by
B — B°©.

Suppose that the face functor d : P(k) — P(n) is defined by the interval
[A, B] C P(n), so that there is an ordered set isomorphism k = B — A which



defines an ordered inclusion d : k — n, and the functor d : P(k) — P(n) is
defined by C'— AU d(C). In particular d factors canonically as the composite

o

P(k) — [4, B] C P(n)

where the displayed isomorphism is induced by the ordered set isomorphism
k=B - A.
There is a commutative diagram

PG = /i, BJer /7’5(9@)06

0|2 ~|g

P (k) B¢, A ———/P(n)

o

where the morphisms along the top are induced by the factorization of the
original poset morphism d; and the isomorphism P(k) = [B¢, A°] arises from
the identity A°— B¢ = B— A in P(n). The point in checking the commutativity
of this diagram is that, for any C' C k, we have (AUd(C°))¢ = A°Nd(C°)°. Also
d(C°)Ud(C) = B — A so that d(C°)¢ = AU (d(C) U B®). Thus, d(C®)*N A° =
d(C) U B°.

Suppose that the subset A of n defines an ordered inclusion A : k — n,
which in turn induces a degeneracy functor s : P(n) — P(A) = P(k) given by
C — C N A. Then the following diagram of functors commutes

P~ A

O
0| >0
P(n) ——/P(A)

The point is that the complement of C'N A in A is the intersection C° N A.
We have proved the following:

Lemma 3. Suppose that the poset morphism w : P(n) — P(m) is cubical, and
let wy : P(n) — P(m) be defined by the requirement that the diagram

Py~ /P ()%

o o

0

P(n) —5—/P(m)

0

commutes. Then the functor w, is cubical.

2 Cubical sets

A cubical set X is a contravariant set-valued functor X : O — Set. Write
X, = X(1™), and call this set the set of n-cells of X. A morphism f: X =Y



of cubical sets is a natural transformation of functors, and we have a category
cSet of cubical sets.

The standard n-cell O" is the contravariant functor on the box category O
which is represented by 1™. Thus, O™ has m-cells given by

0" = homp (1™, 17).

There is a cell category O | X for a cubical set X which is defined by analogy
with the simplex category of a simplicial set. Then objects of O | X are the
morphisms ¢ : 0" — X (equivalently n-cells of X, as n varies), and a morphism
is a commutative triangle of cubical set morphisms

on
s
There is a covariant simplicial set-valued functor O — S
1" — B(1") = (Ah)*"
which is defined by the categorical nerve construction. This functor can be used
to define a cubical singular functor S : S — cSet, where

S(Y), = homs((A})*",Y).

This functor has a left adjoint (called realization or triangulation) X — |X|,
where
X = lim (A)*",
Or—X
Here, the colimit is indexed by members of the cell category O | X for X.
There are similarly defined realization and singular functors

| |:cSet = Top : S

relating cubical sets and topological spaces, and of course realization is left
adjoint to the singular functor in that context as well.

Remark 4. There is no notational distinction between the singular functors
defined on topological spaces and simplicial sets, and no distinction between
the corresponding realization functors. We shall rely on the context to tell
them apart.

Example 5. Suppose that C is a small category. The cubical nerve Bo(C) is
the cubical set whose n-cells are all functors of the form 1™ — C, and whose
structure maps Bp(C), — Bg(C), are induced by precomposition with box
category morphisms 1" — 1™. Observe that there is a natural isomorphism

Bo(C) = S(BC),
where BC is the standard nerve for the category C in the category of simplicial

sets.

10



In a cubical set X, write d(; ) for the function X,, — X,,_; which is induced
by the functor d9), and call this function a face map. Similarly, the degen-
eracies s; : X, = X,41 are the functions which are induced by the functors
s/ 171 5 17, Say that a cell o € X, is degenerate if it is the image of some
sj, and is non-degenerate otherwise.

Define the n-skeleton sk,, X for a cubical set X to be the subcomplex which
is generated by the k-cells X, for 0 < k < n.

Lemma 6. A map [ : sk, X = Y of cubical sets is completely determined by
the restrictions f : Xy — Y for 0 <k <n,

Proof. We want to show that the maps f : X — Y} extend uniquely to a
morphism f, : sk, X — Y. Suppose that z € sk, X,,+1. Then z is degenerate,
so that z = s;z for some z € X,,, and it must be that f.(z) = s;f(x) if the
extension exists. Suppose that z is degenerate in two ways, so that also z = s;y
for some ¢ < j and y € X,,. Then

x = d(;,0)8i% = d(;,0)5;Y = Sj—1d(;,0)Y;
while
sjsi(di,0)y) = sisj—1(d(i0)y) = siz = s;y.

All degeneracies are injective, so that y = s;d(; o)y, and

sif(x) = sisj—1dg0) f(y) = sjsidi0)f(y) = 8;f(y)-

Inductively, the map f, : sk, (X), — Y, for r = k is completely determined by
the maps for 7 < k in the same way. O

It follows that there are pushout diagrams

U 00" ik, x

zeNX,

by b

U 0" k. x

zeNX,

where N X,, denotes the non-degenerate part of X,, and 900" = sk,,_; 0" In
other words, there is a good notion of skeletal decomposition for cubical sets.

The object 00" is the subcomplex of the standard n-cell which is generated
by the faces d(*) : O0"~1 — O". It follows from the fact that the diagram (2)
is a pullback in the box category that there is a coequalizer

|| o= | ]ot—oeon
(€1,€2) (i€

0<i<j<n

where €; € {0,1}.

11



Example 7. The cubical set I'Iz‘€ 0 is the subobject of " which is generated by

all faces d@7) : O"~1 ¢ O" except for d*¢) : O"~! — O". From the diagram
(2), it again follows that there is a coequalizer diagram

|—| Dn—2 = |—| Dn—l N |—|?€7i)
(3,7)#(e)

where the first disjoint union is indexed over all pairs (j1,71), (j2,72) with
0 S jl < j2 S n and (jka’Yk) 7£ (i7€)7 k= 172

Remark 8. Apply this sequence of ideas to the product of standard 1-cells
O! x O'. Every n-cell in this product is degenerate for n > 2 by a simple com-
binatorial argument, while there is a single non-degenerate 2-cell given by the
isomorphism of categories 12 — 1 x 1 (NB: this is a product of box category
morphisms, namely the product of left and right projections, but the isomor-
phism does not define 12 as a categorical product in the box category — see
the discussion of 1-skeleta below). It follows that there is a pushout of cubical
complexes

o012 /sdq 0! x Ot
L:ﬂfﬁ Lﬂfﬁ
|:|2 1 X |:|1

and hence a pushout of simplicial sets

|02 sk, (Ot x OV

bo  bm

02| —— /(! x O

The cell category O | O" has a terminal object given by the identity functor on
1™, so that there is an isomorphism

07 = (At

At the same time, the definitions are rigged so that |00"| coincides with the
geometric boundary of (A!)*™. The skeleton sk; (O! x O') has a 1-cell A : 1 —
1% in addition to those coming from d0%. Tt follows that

|sky (O x OY)] = sky (AT x AY).
It follows that |O! x O'| has the homotopy type of the simplicial circle S*.

The problem with realizations of products as displayed in Remark 8 can
be fixed (following Kan [10]) as follows. The object 1"*™ is not the product
1" x 1™ in the box category, but there is nevertheless a functor x : 0 x 0 — O
which is defined on objects by

1"X17" =1+,

12



and is defined on morphisms by Oxv =6 x ~.
If X and Y are cubical sets, define

XY = hﬂ Dn—l-m
o:0—=X, r:0"—=Y

Here, if the morphisms 6 : 1™ — 1" and v : 1™ — 1° define morphisms
0:0— o and v: 7 — 7' in the box categories for X and Y respectively, then
the corresponding map 1"t™ — 17%% is induced by §x.

Note that there are isomorphisms

O" @ O™ = Onm,

It follows that the functor ¥ — Y ® 0" has a right adjoint Z — Z(™, where
Z,(«") = Z,4+n and has cubical structure map v* : Z,(«") — Zg") defined by
(yX1)* : Zpyn = Zsin. In particular, there is an isomorphism

Y ® on = h3 Dm—l-n'
Om—Yy

The cubical function complex hom(Y, Z) for cubical sets Y and Z is the
cubical set defined by

hom(Y, Z),, = hom(Y @ O, 7).
There is a natural bijection
hom(X, hom(Y, 7)) = hom(X ® Y, Z),
which is a consequence of the identifications
hom(O", hom(Y, Z)) = hom(Y ® 0", Z)
and the isomorphism

Y®X= ling Omm = lig Yoo
Om—Yy, O"—X Or—X

There are identifications

Dn—l ® Dmdm/mn ® Oom

o

Ont+m—1 7/|7_/'|n+m
da(-€)

and

0" ® Dm—lmﬂ/mn ® Om

- L”ﬂfﬂ Lﬂfﬂ
+m

-1
Dn-i—m o /|7_Z|n

13



The functor K — K ® O" has a right adjoint and therefore preserves coequal-
izers. Thus, if K C O" is the subcomplex which is generated by some list of
faces d(t¢) : O"~1 — O", the K ® O™ is isomorphic to the subcomplex of O"+™
which is generated by the list of faces d(©¢) : Ontm=1 _ Ontm  Similarly, if
L C O™ is the subcomplex generated by faces d:¢) : O™~1 — O™ then O"® L
is isomorphic to the subcomplex of 00" which is generated by the list of faces
d(n+j,e) - OQntm—1 _y Ontm

It follows that the induced maps 00" ® O™ — O" @ O™ and O™ ® o0O0™ —
0" ® O™ are monomorphisms of cubical sets. This implies that there are iso-
morphisms

(00" @ O™) U (O" ® 6O™) = gO"*t™

( (i,e) ® o™ u(@" odm) == I‘I’(’:’)"

@O"oO™ U@ @n) =min.
More generally, the functors X — X ® 0" and Y — 0" ®Y preserve monomor-
phisms of cubical sets.

There are isomorphisms

XY= I (O
Or—X, Om—Y
> Lm0 x |07
Or—X, Om—Y
~ |X| x |Y].

In particular, there is an isomorphism of simplicial sets.
|Dn| I~ |D1|><n

For any i € n there is a permutation § € X" such that #(i) = 0. Using 6 to
permute factors therefore induces a diagram

| % o | ——AB7 (8)

s ML%*
i

il
| Mo, | ——A"]
The relations
o= @eOHu@ oo ) cO O =20

imply that the simplicial set inclusion [, ) | C |07[ can be identified up to
isomorphism with the inclusion

(18°) x (@~ hu (] x [aam—t)) c O] x (371,

and is therefore an anodyne extension. It follows from (8) that all induced
inclusions | M7 ) | C |O"] are anodyne extensions of simplicial sets.

14



Lemma 9. Suppose that K and L are cubical sets. Then the function Ky x L; —
(K ® L)1,y defined by sending the pair (o,7) to the cello@ T : 0F @0 - K®L
is an injection. If k =1 = 0 this function is a bijection.

Proof. The map Of xOF* — (O"®0O™), is plainly a bijection, on account of the
canonical isomorphism 0% @ O™ = O™+". The map Ko x O — (K ® O™),
is a bijection, since this map is a colimit of maps O x OF* — (O" ® O™),
indexed over the cells 0" — K of K. The map Ko x Lo — (K ® L) is a colimit
of maps Ko x Of" — (K ® O™)y, indexed over the cells O™ — L of L, and is
therefore a bijection.

We know that the functor K — K ® L preserves monics, and that there is
a canonical isomorphism

c: K S Koo,

Suppose that 01,00 : 0¥ — K and 7,7 : O — L are cells of K and L,
respectively, such that 0y ® 71 = 02 ® 7». There are commutative diagrams

— 2 Ik

Lm “kin

& 0° Z2/K & O°

180 L:H qu@ri(o)
il i

O* @ O /KoL
o171

Here 0 denotes the vertex (0, ...,0) of O

Note that 01(0) ® 7 (0) = 02(0) ® 7(0), so that ¢1(0) = 02(0) and 7 (0) =
72(0). Observe also that the maps 1 ® 71 (0) = 1 ® 72(0) are monomorphisms. It
follows that there is a monomorphism « = (1 ® 7;(0))c such that

ao1 = (01 971)(1®0)c = (02 @2)(1 ®0)c = aos,
so that o1 = 09. Similarly 7 = 7». O

Write NK,, for the set of non-degenerate cells of a cubical set K in degree
n.

Corollary 10. The map Ky, x Lj — (K ® L)1 restricts to an injection N K, X
NL; — N(K ® L)k+l-

Proof. Take (0,7) € Kj x L;. Any degeneracy functor s : 0F ® 00! — 0" can

be written as

Dk ® Dl 81®S2/|jn1 ® One

TN

Dn

15



where s; is either a degeneracy functor or an identity for ¢ = 1,2 and at least
one of the s; is not the identity. There are face functors d; : O™ — O* and
dy : 0" — O such that s;d; = 1. It follows that ¢ ® 7 = sidio ® sadeT, and
hence that 0 = s1dyo and 7 = sado7. Thus if 0 ® 7 is degenerate then one of
the cells 0 and 7 must be degenerate. In particular, there is an induced function
NKy x NL; - N(K ® L)g4;. This function is the restriction of an injection,
and is therefore injective. O

Observe as well that the induced function

| | (NKixNL,_4) > N(K®L),
0<k<n

is surjective. In effect, the corresponding function

|| (BxxLok) = (K®L),
0<k<n

is surjective,
The ideas in the proof of Lemma 6 can also be used to show the following:

Lemma 11. Suppose that x and y are degenerate n-cells of a cubical set X
which have the same boundary in the sense that d(; v = d; )y for all i and e.
Then x = y.

Proof. Suppose that ¢ = s;u and y = s;v for some i < j. Then

u = d;0)8iu = d(;,0)5;v = $j—1d(3,0)V,

while
8iu = 8i8j—1d(;,0)v = 8;8;d(;,0)V-
Then
dgj0)siu = d(j,0)550,
so that

sid(i,0)0 = v.
It follows that
Siu = Sjsid(i,O)U = S;0.

so that z = y. O

Lemma 12. Suppose that z,y : O" — X are n-cells of a cubical set X such
that the induced simplicial set maps z.;y, : |O" — |X| coincide. Then x = y.

Proof. The inclusion sk, X C X induces a monomorphism |sk, X| — |X]|,
so that we can assume that X = sk, X. We may further suppose that X is
generated by the subcomplex sk, 1 X together with the n-cells z and y.

The proof is by induction on n. The assumption that xz, = y. therefore
guarantees that z and y have the same boundary in the sense that dg; oz =
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di,ey for all i and e. Thus if z and y are both degenerate, then = = y by
Lemma 11.

Suppose that y is non-degenerate, and write X for the smallest subcomplex
of X containing sk,_1 X and z. Write ¢ : Xg — X for the inclusion of the
subcomplex Xj in X.

If x # y, then y is not in Xy. Also, the intersection (y) N Xo = sk,—1(y),
where (y) denotes the subcomplex of X which is generated by y. This means
that there is a pushout diagram

oo /

Xo
DEHH /JL;H i

Y

The assumption that =, = y, implies that the dotted arrow lifting exists in the
solid arrow pushout diagram

00| —— o

Lﬂfﬁ-'"" Lﬁﬁq

o7 —— /K]

Y

making it commute. The map i, is an inclusion which is not surjective, since
the solid arrow diagram is a pushout. But the existence of the dotted arrow
forces i, to be surjective. This is a contradiction, so = = y. O

Corollary 13. Suppose that f : X — Y is a map of cubical sets such that the
induced simplicial set map f. : |X| — |Y| is a monomorphism. Then f is a
monomorphism of cubical sets.

Proposition 14. Suppose that f : X — Y is a map of cubical sets such that
the induced simplicial set map f. :|X| — |Y| is an isomorphism. Then f is an
isomorphism of cubical sets.

Proof. The map f is a monomorphism of cubical sets by Corollary 13. If f is
not surjective, there is a non-degenerate cell z : 0" — Y of smallest dimension
which is not in X. It follows that f is a composite of monomorphisms

x I x, Iy

where X is obtained from X by attaching the n-cell 2 in the sense that there

is a pushout diagram
/X
i
/Xo

oan

o
on

T
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The triangulation functor X + |X| preserves monomorphisms and pushouts so
that the induced map f. : | X| = |Y| is a composite of monomorphisms fi. fo,
and there is a pushout diagram

o0 | ——/K|

"

H
i T/|15(0|

of simplicial set maps. Then the monomorphism [00"| — |0"| is not surjective,
so that fo. is not surjective, and so f, is not surjective. This is a contradiction,
so that f must be a surjective map of cubical sets. O

3 The closed model structure

The purpose of this section is to display a closed model structure for the category
of cubical sets. The homotopy category associated to this model structure will
later be shown to be equivalent to the standard homotopy category of topological
spaces.

Basically, if you want to show that a particular category has a closed model
structure, you must define three classes of morphisms in that category, namely
weak equivalences, cofibrations and fibrations, and then show that they satisfy
the five Quillen closed model axioms CM1 through CM5. The axiom CM1
is a completeness axiom which says that certain limits and colimits exist. The
weak equivalence axiom CM2 says that if any two of the composable maps
f and g and their composite fg are weak equivalences, then so is the third.
The retract axiom CM4 says that all of the three defined classes of maps are
closed under retraction. Finally the factorization axiom CMS5 says that any
morphism in the category can be factored as a composite of a fibration with a
trivial cofibration, and as a composite of a trivial fibration and a cofibration.
Here “trivial” has the standard meaning: a trivial fibration is a morphism which
is both a fibration and a weak equivalence, and a trivial cofibration is a map
which is both a cofibration and a weak equivalence.

A map f: X — Y of cubical sets is said to be a weak equivalence if the
induced map f, : |X| = |Y] is a weak equivalence of topological spaces (or of
simplicial sets). A cofibration i : A — B of cubical sets is a levelwise inclusion.
A map p: Z — W of cubical complexes is said to be a fibration if it has the
right lifting property with respect to all maps which are both cofibrations and
weak equivalences.

The category of cubical sets certainly has all limits and colimits, so the the
axiom CM1 is satisfied. The weak equivalence axiom CM2 is a consequence
of the corresponding statement for topological spaces, and the retraction axiom
CMa3 is a trivial consequence of the definitions.

For the factorization axiom, we need to show two things:

18



Lemma 15. A map p : X — Y is a map which has the right lifting property
with respect to all inclusions 000" — O". Then p is a fibration and a weak
equivalence.

Proof. If p has the right lifting property with respect to all inclusions 900" C (O™
then p has the right lifting property with respect to all inclusions, and is therefore
a fibration.

In fact, the map p is a homotopy equivalence of cubical sets, by the standard
argument: the map p has a section s : Y — X since there is a commutative
diagram

w—

i il

y ——
and then rp ~ 1 because there is a commutative diagram

X o oot 2k

P
Lﬂfﬂ“" H fi

X Ot /

pcx

where cx : X ® O! — X is the constant homotopy at the identity on X. It
follows that the induced map p. : |X| — |Y] is a homotopy equivalence of
simplicial sets. O

Lemma 16. There is a set A of trivial cofibrations A C B such that a map
p: X = Y is a fibration if and only if it has the right lifting property with
respect to all maps in A.

Lemma 16 is a formal consequence of Lemma 17, in that Lemma 17 implies
that the set A of trivial cofibrations of countable cubical sets does the job.

Lemma 17. Suppose that A is a countable cubical set, and that there is a

diagram
X
A%fﬁ
A -

of cubical set maps in which i is a trivial cofibration. Then there is a countable
subcomplex D C'Y such that A — Y factors through D, and such that the map
DNY — D is a trivial cofibration.

Proof. We can assume that A is a connected subcomplex of Y.

The homotopy groups 7;(]A|) are countable, since countable simplicial sets
have countable homotopy groups (any countable simplicial set has a countable
fibrant model, by the way that the small object argument works).

19



Suppose that z is a vertex of A = By. Then there is a finite connected
subcomplex L, C Y such that |L,| contains a homotopy = — i(y) where y
is a vertex of X. Write C; = AU (|J, L.). Suppose that w,z are vertices of
C1NX which are homotopic in C;. Then there is a finite connected subcomplex
K, . C X such that w ~ z in |K,, .|. Let By = C; U (Umz Ky .»). Then every
vertex of A is homotopic to a vertex of C; N X inside |C}|, and any two vertices
z,w € Cp; N X which are homotopic in |C}| are also homotopic in B; N X.
Observe also that the maps By C 1 C By are mg isomorphisms.

Repeat this process countably many times to find a sequence

A=BycCicB,cCyCByC...

of countable subcomplexes of Y. Set B = |JB;. Then B is a countable sub-
complex of Y such that mo(B N X) = mp(B) = mo(A) = *.

Pick z € BN X. The same argument (which does not disturb the connectiv-
ity) can now be repeated for the countable list of elements in all higher homotopy
groups 7, (|B|, x), to produce the desired countable subcomplex D C Y. O

In the presence of Lemma 16, a standard transfinite small object argument
produces a factorization

with p a fibration and 7 a trivial cofibration for any map f : X — Y of cubical
sets. A completely standard small object argument, together with Lemma 15,
shows that any map f : X — Y has a factorization

f
x 4

with j a cofibration and q a trivial fibration. Lemmas 15 and 16 therefore imply
the factorization axiom CMS5.
Lemma 15 has a converse, with a formal proof:

Lemma 18. FEvery trivial fibration p : X — Y has the right lifting property
with respect to all inclusions OO0 C O".

Proof. Find a factorization
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where j is a cofibration and the fibration ¢ has the right lifting property with
respect to all 90" C O". Then q is a trivial fibration by Lemma 15, so that j
is a trivial cofibration. The lifting r exists in the diagram

x =/

w6
) "
J Lﬂ p
iiil M

Z A

q
It follows that p is a retract of ¢, and so p has the desired lifting property. O
The axiom CM4 follows. We have proved the following:

Theorem 19. With the definitions of weak equivalence, cofibration and fibration
given above, the category cSet of cubical sets satisfies the axioms for a closed
model category.

The cubical set category is a closed cubical model category, in the sense that
ifi : A — B is a cofibration and p : X — Y is a fibration, then the induced map
of cubical function complexes

(7*,ps«) : hom(B, X) — hom(A4, X) X hom(A,Y) hom(B,Y)

is a fibration which is also a weak equivalence of cubical sets if either i or p is
a weak equivalence. This is a consequence of the observation that if j : C — D
is a second cofibration of cubical sets, then the induced map

B®CUsgc A®D = B® D

is a cofibration which is a weak equivalence if either i or j is a weak equivalence.
In effect, the triangulation functor reflects cofibrations by Corollary 13, and
reflects weak equivalences by definition.

It is also clear that the class of weak equivalences is stable under pushout
along cofibrations. This is half of the assertion that the model structure for
cubical sets is proper. The other half of the properness assertion, namely that
weak equivalences are stable under pullback along fibrations, remains to be
verified.

4 Cubical posets

Recall that an interval [A, B] C @ in a poset () is a subposet consisting of all
objects C such that A < C < B.
Say that a poset P is cubical if the following hold:

1) there is a fixed poset isomorphism f : 1¥ = [A, B] for all non-empty
intervals [A, B] of P
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2) any inclusion i : [A,B] C [C, D] of non-empty intervals induces a box
category morphism i, : 1¥ — 1! such that the following diagram commutes

il
fl fl

[4, B] —/€, D]

3) intervals are closed under intersection in P.

In the presence of the poset isomorphism f : 1% =2 [A, B], say that k is the
dimension of [A4, B]. We shall say that the isomorphisms f are parameterizations
of the intervals; they are a necessary part of the structure.

The power set poset 1™ = P(n) is a standard example. In that case, any
non-empty interval [A, B] C P(n) determines a unique ordered set isomorphism

d:k S B-AcC n which then determines a parameterization
10 24 P(k) &5 [0, B — A] = [A, B]

This is the standard parameterization of an interval [A, B] C P(n), and will
always be used. Note the equality

[Al,Bl] n [AQ,BQ] = [Al UAz,Bl n BQ]

so that the set of intervals of P(n) is closed under intersection.

In some sense, the conditions 1)-3) together mean that a cubical poset P
has a covering by power sets.

Cubical posets P have “minimal” cubical nerves B, P. The easiest way to
define B,, P as a cubical set is to decree that

B, P = lim ok,
[4,B]

where the colimit is indexed over the poset of non-empty intervals in P and
the indicated colimit is for the functor [A, B] — OF, where f : 1¥ — [A4, B] is
the poset isomorphism required by the structure. In particular, the poset of
intervals in 1™ = P(n) has a unique maximal element [}, n], so that there is a
canonical isomorphis

B, P(n) =0O".

Alternatively, it is easily seen that there is a coequalizer

| | 0= || O%— Bu.P.
[A,B]N[C,D]#£0 [A,B]#£0

Here, r is the dimension of the intersection [A4, B]N[C, D] and k is the dimension
of [A, B].
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The intervals N
1* = [A,B]c P

in a cubical poset P determine cells o4 p) : 0% — BgP of the cubical nerve
B P. The construction of these cells respects inclusion of intervals, and there-
fore determines a canonical natural map

np : B, P — BoP.

An important special case of this construction is the standard map 7 : O™ —
By (1™) which associates to an m-cell (ie. a box category morphism) 6 : 1™ —
1™ the corresponding functor 6 : 1™ — 1™ — in other words n forgets the fact
that the functor 6 is a box category morphism. The map 7 : 0" — Bp(1"®)
is plainly a monomorphism (this is the first step to a general story: all cells
O[A,B] OF — BpP are monomorphisms). It is also easy to see that any face
map d : 0¥ — 0" determines a pullback diagram

Ok ——/B(1*) (9)
bl
o o)

n

is a pullback diagram in the category of cubical sets. In effect, if v : 1° — 1*
is a functor such that the composite dy is a cubical functor, then there is a
degeneracy functor s : 1 — 1* such that sd = 1 and so vy = sdy is a cubical
functor.

Now suppose that

[E, F] ——/{A, B]
»
[C, D] / il

is a pullback diagram of non-empty intervals in a cubical poset P, so that
[E,F]=[A,B]N][C, D], and let

or /ﬁ k (10)
DLT’ﬂ“ /BDL}’:ﬂ“

be the corresponding diagram of cells. Then the diagram (10) factors as a
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diagram

or Itk
% %%W#
BIZI?;T) ———/Bn(1%)
f
|:|l
Q%%# )
Br(1) /B P

where all of the indicated square are pullbacks, and the map 7 is a monomor-
phism. It follows that the diagram (10) is a pullback in cubical sets.

The subobject X of BnP which is generated by the intervals o4 p : Ok —
BpP is in fact covered by those intervals since (10) is a pullback, and it follows
that there is a coequalizer

| | o= || of-X
[A,B]N[C,D]#0 [A,B]#£0

The map np : B, P — BpP factors through an isomorphism B,,P = X by
comparison of coequalizers, so that np is a monomorphism. We have proved

Lemma 20. Suppose that P is a cubical poset. Then the canonical map np :
B, P — BgP is a monomorphism, so that B,,P can be identified with the
subobject of the cubical nerve BoP which is generated by non-empty intervals.

Lemma 21. Suppose that P is a cubical poset. Then there is an isomorphism
of simplicial sets
|B,,P| = BP.

Proof. The intervals cover P, so there is a coequalizer diagram of simplicial sets
|| Ban= || BaY - BP
[A,BIN[C,D]#0 [A,B]#0

There are natural canonical isomorphisms

0| = B(1™)
which together induce a comparison of coequalizer diagrams
|_|[ABm[CD 10" //AB]“:Ik'—/lB P
Lfﬂ L:Hfﬂ M
Uia,510ic,p B(A7) _/ W4 BAY) ——/BP
so that the induced dotted arrow is an isomorphism. O
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One can show that the isomorphism |B,, P| =, BP coincides with the com-
posite

|B.P| 2> |BuP| = |S(BP)| < BP,

where S denotes the cubical singular functor S : S — cSets.
A cubical poset morphism g : P — @ is a poset morphism which respects
the cubical structure of intervals in the sense that in all diagrams

1 —L B ———/p

i

=Mh(4), 9(B)) —h

the uniquely determined functor g, : 1¥ — 1! is a cubical functor. All cubical
functors 6 : 1™ — 1™ are cubical poset morphisms.

Suppose that P and () are cubical posets, and consider the product poset
P x Q. Any interval [(A1, As), (B1, B2)] has the form

[(A1,A2), (B1, B2)] = [A1, B1] x [A2, B,

and so the parameterizations 17 — [A1, By] and 1° =5 [A,, B,] together induce
a parameterization

1715 =5 [(Ay, As), (By, By)).

It’s plain from these identifications that any inclusion of intervals in P x @ is a
cubical morphism, and of course intervals in P x @) are closed under intersection.
In particular, the product poset P x @) is a cubical poset. It is also clear that
the projections P x ) — P and P x ) — @ are cubical poset morphisms.

Recall that the minimal nerve B,, P of a cubical poset P is defined by the
identification

B, P = lig O
[4,B]

where the limit is indexed over the intervals [4,B] C P and k is the dimen-
sion of [4, B]. Write [4,B] : 0% — B,,P for the canonical cubical set map
corresponding to the interval [A, B]. It follows that there is an isomorphism

B,,P ® B,,Q = hgl 0" e O°,
[A1,B1],[A2,B2]

where [A1, B1] and [A2, Bs] vary over the intervals with corresponding dimen-
sions 7, s of P and @ respectively. The composites

[(A13A2)3(B17B2)] B (

DT(X)DSEDH_S mPXQ)

determine a cubical set map

v:BynP® BynQ — Bn(P xQ) (11)
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The construction can plainly be reversed, and it follows that v is an isomor-
phism. The isomorphism v is natural with respect to cubical poset morphisms
in both variables.

5 Cubical subdivision

Write NO™ for the poset of non-degenerate cells in the cubical complex ™.
Observe that an object o of NOI" can be identified with a coface (d, ) : 1¥ — 17,
and hence with an interval [4, B] C P(n). Here, A is identified with the image
of (0,...,0) under (d,¢), while B is the image of (1,...,1).
Write N'P(n) for the poset of intervals in P(n). We have just displayed a
poset isomorphism
NO" = NP(n).

Under this identification, a face relation 7 < ¢ between non-degenerate cells
corresponds to an inclusion of intervals [C, D] C [A, B], where A C C C D C B.
The corresponding interval [[C, D],[A, B]] in the poset NO™ can be identified
up to isomorphism with the product poset [A, C]°P x [D, B] (with C' C D), via
the map (E, F) — [E, F]. There is a parameterization

1° x 11— [C°, A% x [D, B] =% [4,C)% x [D, B] = [[C, D], [A, B]

which arises from the standard parameterizations for [C¢, A°] and [D, B] and
the canonical isomorphism 6 : [C¢, A°] — [A, C]°P
An intersection

[[C1, D1], [A1, B1]] N [[Ca, D], [A2, Bo]]
of intervals in NO" consists of intervals [E, F] such that
FE € [Al,Cl] n [AQ,CQ] = [A1 U AQ,Cl n 02]

and
F e [Dl,Bl] N [DQ,BQ] = [D1 U Ds, By ﬂBQ].

It follows that the displayed intersection is equal to the interval
[[Cl NCsy, DU Dg], [Al UAs, BN Bz]]

This interval can be empty, of course.
Any cubical morphism 6 : P(n) — P(m) restricts to cubical morphisms
0:[E,F] — [0(E),0(F)]. There is a commutative diagram

0.

M6 (), (D)), i), 6(B)]] (12)

o~

[[C, D], g Bl

[4,C17 x [D, B ——/(A),6(C))* x [6(D),6(B)]
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The same observation applies to inclusions
[[C1, D1, [Ar, Bi]] C [[C2, D], [Az, By ]]
of intervals in N[O™: such a map coincides up to isomorphism with a product
[A1,C1]°P x [Dy, B1] = [As,C5]°? x [Da, Bs]

of inclusions of intervals.
It follows in particular that the poset NO™ has a cubical structure, and we
define the cubical set sd " by

sdO" = B, NO".

We now know as well that any cubical set map 6 : 0" — O induces a morphism
of cubical posets # : NO"™ — NO™, and hence functorially determines a cubical
set map 6, : sdO"” — sdO™. Note finally that the assignment [A4, B] — B
defines a cubical poset map v : NO™ — P(n) which respects all cubical structure
maps 6 : 0" — O™ in the sense that all diagrams of poset maps

NO» —2Shrom

ha ki

P(n) /P (1)

0.

commute. It follows that there are cubical set maps v : sd0" — O" which
respect all cubical set maps (0" — O™,
The subdivision sd X of a cubical set X is defined by

sd X = h_n);l sd ™.
Or—X
This construction is functorial in X, and there is a natural transformation

v:8dX = X

which is induced by the maps v :sdO” — O".

Suppose in general that P is a cubical poset, and that Q C P is a subposet
which is closed under taking subobjects in the sense that if A < B and B € @
then A € @. Then the induced poset morphism

[A, B]Q C [A, B]p

is an isomorphism if [A, B]g is non-empty. It follows that @ is a cubical poset,
and the inclusion Q C P is a morphism of cubical posets.

Example 22. Suppose that K is a cubical complez in the sense that K C O™
for some 0", and let NK denote the poset of non-degenerate cells in K. Then
as a subposet of NO", NK is closed under taking subobjects, and is therefore
a cubical poset.
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Suppose that K C O" is a cubical complex. Then the intersection of any
two non-degenerate cells o : 0¥ C K and 7 : 0™ C K is again a non-degenerate
cell cN7:0O" C K, simply because this is true in O0™. It follows that there is a

coequalizer
| o= ot - K

ot o

which is determined by the covering {0 : O™ C K} arising from the collection
of non-degenerate cells. The functor K + sd K plainly has a right adjoint, and
therefore preserves colimits, so that the picture

| |sdO" = | |sdO% -5 sd K
ont o
is a coequalizer.

There is a comparison of fork diagrams

L, sdO" 4//0 sd0F —— KA K

L T,

Ly, BnNO" _MU B,,NOF ——/B,,NK

which becomes a comparison of coequalizers in simplicial sets after triangulating.
In effect, the poset NK is covered by the posets NO* corresponding to non-
degenerate cells o : OF — K, so that the fork

| | BNO" = | | BNO* - BNK

ont o

is a coequalizer of simplicial sets. Now use Lemma 21.

It follows from Proposition 14 that the induced map ( : sd K — B,,NK is
an isomorphism. There is a cubical set monomomorphism B,, NK C BoNK. It
follows that the cubical subdivision functor preserves monomorphisms between
cubical complexes, and this in turn implies the following;:

Lemma 23. The functor X — sd X preserves monomorphisms of cubical sets.

Proof. Use a relative skeletal decomposition for a monomorphisms i : X —
Y, in conjunction with the fact that all induced maps sd 900" C sdO" are
monomorphisms. O

We have also proved

Lemma 24. Suppose that K C O" is a cubical complex. Then there is an
isomorphism

~

¢:sdK 5 B,NK.
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There is a poset isomorphism
Pl) = PO (13)

where the composite

Pm) = PL)*" X5 P(1)

with the " projection functor pr; coincides with the degeneracy functor s; :
P(n) — P(1) which is defined by intersection with the subset {i}. In other

words,
ifid A
si(A) = ) T?¢’
1={1} ifie A

This is on account of the identification

1%

1U---UL.

n
The poset isomorphism (13) induces a cubical poset isomorphism
NP(n) = NP(1)*"
of the corresponding posets of intervals. Any interval [A, B] of dimension n in

P(m) induces a cubical morphism [A4, B] : P(n) — P(m) in the usual way, and
there is a commutative diagram

NP @)~ /P ()

f
/NP @)xm

[4.B].

To describe the bottom horizontal map, write d : n =2 B — A C m for the unique
ordered monomorphism associated to the interval [A, B]. Then the composite

NP BB Npy<e 24 Np(1)

factors through the object [0, 0] if i ¢ B, factors through the object [1,1] ifi € A
and is the projection
Pra=1@)

NPL)*" NP(1)

ifie B— A.
Suppose that the subset A C n determines an ordered set monomorphism
d :r — n via the composite
r2ACn

in the usual way. Then restriction along d (aka. intersection with A) induces
a cubical morphism d* : P(n) — P(r) in the usual way, and this morphism
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induces a cubical poset morphism d* : NP(n) — NP(r) on the corresponding
posets of intervals. There is a corresponding commutative diagram

NP(n) ——/KP(x)

o

IR

fl fH
n ) r

NP(1)
and each composite

NP@L)*" L NP 24 NP(1)

coincides with the projection prqg;) : NP(1)*™ — NP(1).
The cubical poset morphisms v, : NP(n) — NP(1) respect the cubical
structure functors s;. It follows that there is a commutative diagram

NP(n) —/KP)*
" am L‘Hfh
P(n) xn

Finally, we know that the minimal nerve construction B, takes products to ®
products, and that sd 0" = B,,NP(n), while B,,P(n) = O". It follows that
there are isomorphisms

sdd" S (sdO')®”

which respect the cubical structure functors, and that there are commutative
diagrams

sd On fbd Ot)®n

ol L:’ 'y®"
il i

on T/(I{jl)@n

There is a homemorphism h : |sdO'| — |O'| which is defined by sending
the vertex [0, 0] to 0, the vertex [1,1] to 1, and the vertex [}, 1] to 1/2, and then
extending linearly. The map 7, : |sdO!| — |0} is the affine map which sends
[@,0] to 0 and the other two vertices to 1. There is plainly a convex homotopy
H : h — ~,. Since it’s convex, and h and -, have the same effect on the vertices
[@,0] and [1,1], the homotopy H is constant on the images of these vertices.

Topological realization takes ® products to products, so there are commu-
tative diagrams

|sd On| ——//kd Ot |*"

b
il il

|Dn| T/|t|1|><n
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Any interval [A, B] of dimension n in P(m) induces a diagram

|saon| <22 fkqom)

:Lﬂfﬂ LH:fH

|sle|><” /|/sd|:|1|><m
[A,B].

in which the map [A4, B, : |sd O'[*" — | sd O *™ is defined by the composites

|saot<n Bl sqpt o 21y |sa 0

where pr;[A, B, factors through the vertex [}, 8] if i ¢ B, factors through [1, 1]
if i € A and coincides with the projection pry-i(; : [sdO'*" — |sd O if
i € B — A. Again, d is the unique ordered monomorphism n 2 B — A C m
which is determined by the interval [A, B].

Similarly, if A C n of order r determines the ordered set monomorphism
d : 1t — n in the usual way, then there is a commutative diagram

|sdO"| —“—Akd 0|
A
|Sd|]1|><” — /l/sdD1|><r

where the composite

sd O " Ly |sd 0% 27y |sd Ot
|

is the projection prg(;).

It follows that the product homeomorphisms A*" : |sdO'*" — |O!| de-
termine homeomorphisms h,, : |sd0"| — |O"| which commute with all maps
induced by cubical set maps 6 : 0" — O™ in the sense that the diagrams

|sd 07| —=—fkd Om|
il fl
0" ——Abm|
commute. The homotopies
H, :|sdO' ™ x |OY — (O "
which are defined by

Hn*(tl,...,tn,s) = (H(tl,s),,H(tn,S))
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induce homotopies
H! :|sdO"| x |O' — |O7

from h,, — 7y« which respect cubical set maps 6 : 0" — O™ in the sense that
the diagrams
0. x1

|sd0"| x |0 fedom| x |00

", Lﬂ Lg;n
il il
o

commute.
We have assembled a proof of the following

Theorem 25. There is a homeomorphism h : |sd X| — |X| which is natuaral
in cubical sets X, and a natural homotopy H : |sd X| x |0 — |X| from h to

V-
6 Cubical excision
Lemma 26. Suppose that Uy and Us are open subsets of a topological space Y

such that' Y = Uy UU,. Suppose given a commutative diagram of pointed cubical
set maps

where 1 is an inclusion of finite cubical sets. Then for some n the composite
diagram

sd” K L[ —[4(U1) U S(Us)

L“ﬁq /g(iqu)fH

sd" L, ——/1
o B

is pointed homotopic to a diagram

sd” K —/ﬂ(qg%u S(Us)

sd” [, ———/3(Y)

admitting the indicated lifting.
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Proof. Suppose that K € K' C L. We begin by showing inductively that there
is an N such that the composite
B')«

N
sdV K" 2 S sdN k'] 31 5|k 2P0 gy

factors uniquely through a map £’ : sdN K’ — S(Uy) U S(Us), where ' is the
composite K’ C L LN S(Y), and 8, : |[K'| = Y is the adjoint of /.

Note that a map f : K" — S(Y) lifts to S(Uy) U S(Us) if and only if for
every cell o : OF — K" the adjoint (fo). : |0 — Y of the composite fo lifts
to Uy or Us.

Suppose that the composite

sd" K’ 2 S|sd” K'| 21 1K) 225 S(v)
lifts to S(U1) U S(Uz). Then I claim that the composite

sd™L K Ty g sdmt K| SM g ) BB (v (14)

lifts to S(Ul) U S(UQ)

In effect, suppose that o : 0% — sd" ™ K’ is a cell of sd"™ K’. Then the
realization o, : |0°] — |sd"™" K| is carried on a cell 7 : 0" — sd™ K' in the
sense that there is a commutative diagram

o) —L A
* Lﬁfﬂ . Lﬂ*fﬂ
|sd™ ! K| ——/|kd" K|

The cell 7 lifts to S(U;)US(Us) by assumption, so that its adjoint 7, : |[O"| = YV
factors through either U; or Us. The adjoint o, of ¢ is the composite

o0l Lo Iy,

so that o, factors through either U; or Us. It follows that the composite (14)
factors through S(Uy) U S(Us).
Suppose that L' C L is obtained from K’ by attaching a cell, so that there

is a diagram
o0r ——/K

DL?fH /}’H &

Suppose further that there is some n such that the composite

S(Bxcr)s

sd" K' % S|sd” K| 215 S|K| Sy
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lifts to S(Uy) U S(Uz), where Sk is the composite K' C L LN S(Y). There is a
number m such that the composite

| S(BL’*)

sd™ O 2 S|sd™ 0| 25 s|or) — S|L S(Y)

lifts to S(U1) U S(Us) by a standard Lebesgue number argument.
Now consider the diagram

Sloar| ——/4| K| (15)

Lﬂ Eﬁk’*
il il

S|07| 55 /4(Y)

Then there is a number N such that after refinement along the maps S(h™)n
the diagram (15) lifts to a commutative diagram

sdN 900" ———/4aN K

oo b

sd¥ Or /$(Uy) U S(Us)

The subdivision functor preserves pushouts, so there is a uniquely determined
lift sd¥ L' — S(Uy) U S(Us) of the composite

N !
sd¥ L' 2 S|sdN | 21 g|r) 2Py

S(Y).

Thus, we can suppose that we’ve found the requisite number N. The com-
posite

SBK’*\
7

sd¥ iK' M 5)sa K| 1Y s S(Y).

is naturally homotopic to the composite
N N B
sd"K' — K'c L = S()

for all complexes K’ between K and L.
The map 8 : K — S(Y) already lifts to S(U1) U .S(Uz) so that there is a
commutative diagram

saV ok — /) sa¥ or Mo o) usw,)  (6)

o b . b b

sdV K ——/9|sd"V K| ——/9|K| /14(v)

S(ax)

for all cells ¢ : 0% — K, where the composite

|O% 5 | K| 25 Y
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factors through some map 7 : |0% — U;. It follows that the restriction to
sd™ O" of the homotopy S(a.)S(h™N)n ~ ay" stays inside S(U;) U S(U,). This
is true for all o, so that the homotopy of the lifting sd¥ K — S(Uy) U S(U>)
with the composite

sdV K X K % S(U) U S(Uy)

stays inside S(U;) U S(Us).

It also follows from the commutativity of diagram (16) that the homotopy
of diagrams preserves base points: in particular, take the cell ¢ : 0¥ — K to be
the base point 0° — K. O

Theorem 27 (cubical excision). Suppose that Y is covered by open subsets
Uy and Uy. Then the induced map of cubical sets i : S(Uy) US(Us) C S(Y) is
a weak equivalence.

Proof. Suppose that X is a pointed cubical set. The category F.(X) of pointed
finite cubical subsets K C X has all finite limits is plainly filtered, and there is
an isomorphism
| X| = hé“ mq| K.
KeF,(X)

Suppose that [a] € m,(|S(Y)],z) is carried on a finite subcomplex w : K C
S(Y) in the sense that [a] = w.[a'] for some [o/] € 74| K|. There is an N > 0
such that the diagram

odV 00 L fho —= /3 U S(U)

o

stqu? S m%)ﬂ“

is pointed homotopic to a diagram

sdV 00 ——/$(U3} U S(Us)

sdN g ———/$(Y)

in which the indicated lift o exists. But 7 is a weak equivalence, so that
[@'] = vN[a"] for some . But then [a] = w.yN[a"] = i.0.[a”] so that i, is
surjective on homotopy groups.

Suppose that [5] € 7,|S(U1) U S(Usz)| is carried on the subcomplex K C
S(U1)US(U,) and suppose that i.[5] = 0. Then there is a commutative diagram
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of cubical set inclusions

YU S(U,)
Lﬂ e
L——/3(v)

such that [8] — 0 in m,|L|. Thereis an N > 0 such that the composite diagram

sdV K /4 (U1) U S(Un)
" Lﬂfﬁ L%fﬂ
sd L —— /L ———— )

is pointed homotopic to a diagram

SdNK—/g UggUS U2

b

sdV L ”
12
in which the indicated lifting exists. Again, the maps 4" are weak equivalences,
so that [8] = 4[] for some [3'] € m,|sd™ K| and

i14[B] = il*'Yiv[/Bl] = lll*[fgl] = T*J*[ﬁl]
Finally, vV j.[8'] = j.[8] = 0 so that j.[8'] = 0 in 7 |sd” L| and so i;.[3] = 0
in 7,|S(U) U S(U)|. O

The category cSets of cubical sets is a category of cofibrant objects for a
homotopy theory, for which the cofibrations are inclusions of cubical sets and the
weak equivalences are those maps f : X — Y which induce weak equivalences
fe 1 |X] = Y| of CW-complexes. As such, it has most of the usual formal
calculus of homotopy cocartesian diagrams (specifically 11.8.5 and I1.8.8 of [8]).

Corollary 28. Suppose that the diagram

L, oA —/X
"
U A —h
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is a pushout in the category of simplicial sets. Then the diagram of cubical set
morphisms

LI, SloA" ——/¢|x]|
il L”-Hfﬂ
L; S|An| ——/4|y|

is homotopy cocartesian.

Proof. The usual classical arguments say that one can find an open subset U C
|Y'| such that |X| C U and this inclusion is a homotopy equivalence. The set U
is constructed by fattening up all |0A™| to an open subset U; of |A™| (by radial
projection) such that |0A™| C U; is a homotopy equivalence. We can therefore
assume that the inclusion

L] 1oamc (] 1am)nu

K2 (2

is a homotopy equivalence. We can also assume that there is an open subset
V; C JA™| such that the inclusion is a homotopy equivalence, such that V;NU; C
U; is a homotopy equivalence, and such that |A"| = V; U U;. The net result is
a commutative diagram

LI, S|oAr| —— /4| x|

~ LH 111 Lﬁ
il il

S(VNU)—=—4Un(;A") —/4U)

w b

S(V) ———A; S|A"| —— /3|y

of cubical set homomorphisms in which all vertical maps are cofibrations and
the labelled maps are weak equivalences. The the composite diagram I + IT is
homotopy cocartesian by cubical excision (Theorem 27), so that the diagram IT
is homotopy cocartesian by the usual argument. It follows that the composite
diagram III + IT is homotopy cocartesian, again by a standard argument. [J

Theorem 29. Suppose that' Y is a topological space, and let € : |S(Y)| = Y be
the adjunction map arising from the cubical set singular functor S and its left
adjoint | | : cSets — Top. Then the map € :|S(Y)| = Y is a weak equivalence.

Proof. The cubical singular functor S : Top — cSets preserves weak equiv-
alences. In effect, all spaces are fibrant, so the standard construction which
replaces a map by a fibration can be used to show that any weak equivalence

37



f: X — Y has a factorization

L /4
X %Fﬂq

where 7 is a trivial fibration and j is a section of a trivial fibration Z — X.
It is therefore enough to show that the cubical singular functor takes trivial
fibrations to weak equivalences. Finally, if 7 : Z — Y is such a trivial fibration,
then it has the right lifting property with respect to all inclusions |00"| C |O"],
so that the induced map S(n) : SZ — SY has the right lifting property with
respect to all inclusions 00" C O" by adjointness. We already know that this
means that S(7) is a weak equivalence (in fact, a homotopy equivalence).

The functor Z +— |S(Z)| therefore preserves weak equivalences. We can thus
assume that ¥ = |X| for some simplicial set X.

The functor Z +— |S(Z)| also preserves disjoint unions and filtered colimits
of CW complexes (because the spaces |O0"| are compact). It also preserves
homotopies, and therefore preserves contractible spaces; in particular, the map
e: |S(JA™|)| = |A™]| is a weak equivalence for all standard simplices A™.

Finally, we can induct along skeleta of simplicial sets X and suppose that
the map € : |S(| skp—1 X|)| = | skn—1 X| is a weak equivalence for all simplicial
sets X. But then the induced diagram

Ueenx, 1SUOA™ )] ——A8(|sky—1 X])|
bl bl
Usenx, [SUA™)] ———A6(] sk, X))

is homotopy cocartesian for all simplicial sets X by Corollary 28. The various
occurrences of € then give a comparison of homotopy cocartesian diagrams, and
the map € : |S(| sk, X|)| — | sk, X| is a weak equivalence by the gluing lemma
[8, 11.8.8]. O

Corollary 30. The counit map n: X — S(|X]) is a weak equivalence for any
cubical set X.

Proof. The map 7 is a weak equivalence of cubical sets if and only if the induced
map |n| : |X| = [S(]X])| is a weak equivalence of topological spaces. This,
however, follows from a triangle identity and Theorem 29. O
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