Galois cohomology of Witt vectors of algebraic integers

Lars Hesselholt*

Introduction

Let K be a complete discrete valuation field, and let L/K be a finite Galois extension with Galois group $G = G_{L/K}$. By the normal basis theorem, L is always a projective K[G]-module, and by a classical theorem of Noether, the ring of integers \mathcal{O}_L is a projective $\mathcal{O}_K[G]$ -module, provided that L/K is tamely ramified. But for wildly ramified extensions, the structure of \mathcal{O}_L as an $\mathcal{O}_K[G]$ -module is extremely complicated and quite far from understood. In this paper, we show that the ring of Witt vectors $W.(\mathcal{O}_L)$ is a more well-behaved object. We assume that K has characteristic 0 and that the residue field k has characteristic p > 2, but we do not assume that k is perfect. Then for every finite Galois extension L/K we show:

THEOREM. The pro-abelian group $H^1(G_{L/K}, W.(\mathcal{O}_L))$ is zero.

In general, the higher groups $H^i(G_{L/K}, W.(\mathcal{O}_L))$, i > 1, are non-zero. Hence, the theorem may be viewed as an additive version of Hilbert's theorem 90.

The theorem is equivalent to the statement that the canonical inclusion

$$W.(\mathcal{O}_K)/p^vW.(\mathcal{O}_K) \xrightarrow{\sim} (W.(\mathcal{O}_L)/p^vW.(\mathcal{O}_L))^G$$

is an isomorphism of pro-abelian groups, for all $v \ge 1$. Indeed, the cokernel of this map is isomorphic to the subgroup of $H^1(G, W.(\mathcal{O}_L))$ of elements killed by p^v . But by $[\mathbf{6}$, theorem 3], this subgroup is equal to the whole group, if v is greater than or equal to the p-adic valuation of [L:K].

It was this equivalent statement of the theorem that was the original motivation for proving it. To explain this, let $K_v = K(\mu_{p^v})$. It follows from [2, theorem 5.12] and [5, théorème 1(1)] that for all $v \ge 1$, the inclusion of Milnor K-groups

$$K_q^M(K)/p^v \xrightarrow{\sim} (K_q^M(K_v)/p^v)^G$$

is an isomorphism. By analogy, we conjecture that for all $v \geq 1$, the canonical inclusion of de Rham-Witt groups

$$W. \Omega^q_{(\mathcal{O}_K, M_K)}/p^v \to \left(W. \Omega^q_{(\mathcal{O}_{K_v}, M_{K_v})}/p^v\right)^G$$

is an isomorphism of pro-abelian groups. (The definition of the de Rham-Witt groups is given in [4, §3].) The theorem of this paper establishes the case q = 0.

^{*} Supported in part by a grant from the National Science Foundation.

We shall always normalize the valuation v_L on L such that the valuation of a uniformizer $\pi_L \in \mathcal{O}_L$ is equal to 1.

This paper was written while the author was visiting the Issac Newton Institute for Mathematical Sciences in Cambridge, England. It is a pleasure to thank the institute for its hospitality and support and for the excellent working conditions it provided. Finally, I wish to thank Spencer Bloch and Vic Snaith for much help and encouragement.

1. Proof of the theorem

1.1. Let L/K be a finite Galois extension with Galois group G. Then for all m, n > 1, we have a short-exact sequence of G-modules

$$0 \to W_m(\mathcal{O}_L) \xrightarrow{V^n} W_{m+n}(\mathcal{O}_L) \xrightarrow{R^m} W_n(\mathcal{O}_L) \to 0.$$

The induced sequence of G-fixed sets again is exact. For as a set, $W_s(\mathcal{O}_L)$ is equal to the s-fold product of copies of \mathcal{O}_L , and $\mathcal{O}_L^G = \mathcal{O}_K$. Hence, we have an exact sequence of cohomology groups

$$0 \to H^1(G, W_m(\mathcal{O}_L)) \xrightarrow{V_*^n} H^1(G, W_{m+n}(\mathcal{O}_L)) \xrightarrow{R_*^m} H^1(G, W_n(\mathcal{O}_L))$$
$$\xrightarrow{\partial} H^2(G, W_m(\mathcal{O}_L)) \xrightarrow{V_*^n} H^2(G, W_{m+n}(\mathcal{O}_L)) \longrightarrow \dots$$

Lemma 1.1.1. Let $N \geq 1$ be an integer. Then the following are equivalent.

(i) For all $m \geq N$ and all $n \geq 1$, the map induced by the restriction

$$R_*^m: H^1(G, W_{m+n}(\mathcal{O}_L)) \to H^1(G, W_n(\mathcal{O}_L))$$

is equal to zero.

(ii) For all m > N, the map induced by the restriction

$$R_*^m: H^1(G, W_{m+1}(\mathcal{O}_L)) \to H^1(G, \mathcal{O}_L)$$

is equal to zero.

(iii) For all $m \geq N$, the boundary map

$$\partial = \partial_{m,1} : H^1(G, \mathcal{O}_L) \to H^2(G, W_m(\mathcal{O}_L))$$

is injective.

PROOF. The statements (ii) and (iii) are clearly equivalent, and statement (ii) is a special case of statement (i). Suppose that statement (ii) holds. Then for all $m \geq N$, the map

$$V_*: H^1(G, W_m(\mathcal{O}_L)) \xrightarrow{\sim} H^1(G, W_{m+1}(\mathcal{O}_L))$$

is an isomorphism. It follows for all m > N and all n > 1, the iterated map

$$V_*^n: H^1(G, W_m(\mathcal{O}_L)) \xrightarrow{\sim} H^1(G, W_{m+n}(\mathcal{O}_L))$$

is an isomorphism, and this, in turn, implies statement (i) of the lemma.

Suppose that L/K is a cyclic extension, and let σ be a generator of the Galois group. We recall that for every G-module M, the cohomology group $H^i(G,M)$ is canonically isomorphic to the ith cohomology group of the complex

$$M \xrightarrow{1-\sigma} M \xrightarrow{\operatorname{tr}} M \xrightarrow{1-\sigma} M \xrightarrow{\operatorname{tr}} M \to \dots,$$

where for $a \in M$, tr(a) is the sum of the Galois conjugates of a. In the case at hand, we have canonical isomorphisms

(1.1.2)
$$H^{1}(G, \mathcal{O}_{L}) \approx (\mathcal{O}_{L} \cap (\sigma - 1)L)/(\sigma - 1)\mathcal{O}_{L},$$
$$H^{2}(G, W_{m}(\mathcal{O}_{L})) \approx W_{m}(\mathcal{O}_{K})/\operatorname{tr}(W_{m}(\mathcal{O}_{L})).$$

In the following we shall often identify the cohomology groups on the left with the corresponding groups on the right. We also recall the ghost map

$$w: W_m(A) \to A^m$$

is the ring homomorphism, which to a Witt vector (a_0, \ldots, a_{m-1}) associates the m-tuple (w_0, \ldots, w_{m-1}) , where for $0 \le s < m$,

$$w_s = a_0^{p^s} + pa_1^{p^{s-1}} + \dots + p^{s-1}a_{s-1}^p + p^s a_s.$$

It is injective, if p is a non-zero-divisor in A. This is the case for $A = \mathcal{O}_K$, as we assume that K has characteristic zero. Hence, lemma 1.1.1 (iii) is equivalent to the statement that for $m \geq N$, the composite map

$$(1.1.3) H^1(G, \mathcal{O}_L) \xrightarrow{\partial} H^2(G, W_m(\mathcal{O}_L)) \xrightarrow{w} \mathcal{O}_K^N / w(\operatorname{tr}(W_m(\mathcal{O}_L)))$$

is injective. We remark that this is a map of $W_{m+1}(\mathcal{O}_K)$ -modules. It is not a map of \mathcal{O}_K -modules unless \mathcal{O}_K is absolutely unramified with perfect residue field.

LEMMA 1.1.4. The composite map (1.1.3) is given by

$$\operatorname{class}(x) \mapsto \operatorname{class}((\frac{\operatorname{tr}(x^p)}{p}, \dots, \frac{\operatorname{tr}(x^{p^m})}{p})).$$

PROOF. Since the ghost map is natural and additive, we have

$$w(\operatorname{tr}(a)) = \operatorname{tr}(w(a)),$$

for all $a \in W_m(\mathcal{O}_L)$. To prove the lemma, one applies this to the Teichmüller representative $[x] = (x, 0, \dots, 0) \in W_{m+1}(\mathcal{O}_L)$ of $x \in \mathcal{O}_L$ with $\operatorname{tr}(x) = 0$.

1.2. Let L/K be a totally ramified cyclic extension of order p, and let σ be a generator of $G = G_{L/K}$. Then the filtration by ramification groups takes the form

$$G = G_1 = \cdots = G_t \supset G_{t+1} = \{0\},\$$

where t is the integer given by $v_p((\sigma - 1)\pi_L) = t + 1$.

LEMMA 1.2.1. If
$$v_L(a) = ps - (p-1)t$$
, then $v_K(tr(a)) = s$.

PROOF. We must show that the trace induces an isomorphism

$$\mathfrak{m}_L^{ps-(p-1)t}/\mathfrak{m}_L^{ps-(p-1)t+1} \xrightarrow{\sim} \mathfrak{m}_K^s/\mathfrak{m}_K^{s+1}.$$

But this follows from the formula [7, chap. V, §3]

$$\operatorname{tr}(\mathfrak{m}_L^n) = \mathfrak{m}_K^r$$

where
$$r = [(d+n)/p]$$
 and $d = (t+1)(p-1)$.

We wish to evaluate the valuation of the trace of pth powers. The lemma shows that this is possible, if p divides t. We now assume this to be the case.

COROLLARY 1.2.2. Suppose that p divides t. Then for all s > 1,

$$v_K(\operatorname{tr}(a^{p^s})) = e_K + p^{s-1}v_L(a).$$

PROOF. We write t = pt'. Then $v_L(a) = ps'$ implies $v_K(\operatorname{tr}(a)) = s' + (p-1)t'$, and hence, $v_K(\operatorname{tr}(a^{p^s})) = p^{s-1}v_L(a) + (p-1)t'$, for all $s \ge 1$. If a = 1, we get $v_K(\operatorname{tr}(1)) = (p-1)t'$. But $\operatorname{tr}(1) = p$ and $v_K(p) = e_K$.

LEMMA 1.2.3. Suppose that p divides t. Then every non-zero class in $H^1(G, \mathcal{O}_L)$ is represented by an element $x \in \mathcal{O}_L$ such that $1 \leq v_L(x) < pe_K/(p-1)$ and such that p does not divide $v_L(x)$.

PROOF. We recall the \mathcal{O}_K -basis of $\mathcal{O}_L^{\text{tr=0}} = \mathcal{O}_L \cap (\sigma - 1)L$ exhibited in the proof of [6, theorem 2]. Let σ be a generator of G. Then for $\mu \geq 1$, we let

$$x_{\mu} = \prod_{0 \le i < \mu} \sigma^i(\pi_L),$$

where $\pi_L \in \mathcal{O}_L$ is a uniformizer. Since $v_L(x_\mu) = \mu$, the elements x_μ , $1 \le \mu \le p-1$, and 1 form an \mathcal{O}_K -basis of \mathcal{O}_L . We let $y_\mu = (\sigma - 1)(x_\mu)$ and $y'_\mu = y_\mu/\pi_K^{t'}$. Then $v_L(y_\mu) = \mu + t$ and $v_L(y'_\mu) = \mu$. It follows that the elements y_μ , $1 \le \mu \le p-1$, form an \mathcal{O}_K -basis of $(\sigma - 1)\mathcal{O}_L$, and that the elements y'_μ , $1 \le \mu \le p-1$, form an \mathcal{O}_K -basis of $\mathcal{O}_L \cap (\sigma - 1)L$. Hence, as an \mathcal{O}_K -module,

$$H^1(G,\mathcal{O}_L) \approx \bigoplus_{\mu=1}^{p-1} \mathcal{O}_K/\mathfrak{m}_K^{t'} \cdot y'_{\mu}.$$

Let k be the residue field of K, and let W be a complete discrete valuation ring such that W/pW is isomorphic to k. Such a ring W always exists [1, proposition 1.1.7]. In addition, there exists a ring homomorphism $f: W \to \mathcal{O}_K$ such that the induced map of residue fields is the identity. It follows that, if $\pi_K \in \mathcal{O}_K$ is a uniformizer, then f induces an isomorphism $W[\pi_K]/(\phi_K(\pi_K)) \stackrel{\sim}{\to} \mathcal{O}_K$, where $\phi_K(X) \in W[X]$ is an Eisenstein polynomial of degree e_K . Hence, as a W-module, $H^1(G, \mathcal{O}_L)$ is a k-vector space with a basis given by the classes of $\pi_K^i y'_\mu$, where $0 \le i < t'$ and $1 \le \mu \le p-1$. The valuation $v_L(\pi_K^i y'_\mu) = pi + \mu$ is not divisible by p and satisfies

$$1 \le pi + \mu \le p(t'-1) + p - 1 = pe_K/(p-1) - 1.$$

Let $x \in \mathcal{O}_L^{\,\mathrm{tr}=0}$ be a general element and write x as a linear combination

$$x = \sum_{i=0}^{t'-1} \sum_{\mu=1}^{p-1} \alpha_{i,\mu} \pi_K^i y_{\mu}',$$

where $\alpha_{i,\mu} \in W$. We associate to x the element

$$x' = \sum_{i=0}^{t'-1} \sum_{\mu=1}^{p-1} \alpha'_{i,\mu} \pi_K^i y'_{\mu},$$

where $\alpha'_{i,\mu}$ is equal to $\alpha_{i,\mu}$, if p does not divide $\alpha_{i,\mu}$, and zero, otherwise. Then x and x' represents the same class in $H^1(G, \mathcal{O}_L)$. Moreover, this class is non-zero if and only if x' is non-zero. If this is the case, then p does not divide $v_L(x')$ and $1 \leq v_L(x') < pe_K/(p-1)$.

Proposition 1.2.4. Suppose that p divides t. Then the boundary map

$$\partial = \partial_{N,1} : H^1(G, \mathcal{O}_L) \to H^2(G, W_N(\mathcal{O}_L))$$

is injective, provided that $p^N > pe_K/(p-1) = t$.

PROOF. It suffices, by lemma 1.2.3, to show that for every $x \in \mathcal{O}_L^{\text{tr}=0}$ such that $1 \leq v_L(x) < pe_K/(p-1)$, the image of the class represented by x under the following map is non-zero.

$$H^1(G, \mathcal{O}_L) \xrightarrow{\partial_{N,1}} H^2(G, W_N(\mathcal{O}_L)) \xrightarrow{w} \mathcal{O}_K^N / w(\operatorname{tr}(W_N(\mathcal{O}_L))).$$

This, by lemma 1.1.4, is equivalently to showing that there cannot exist $a_0, \ldots, a_{N-1} \in \mathcal{O}_L$ such that for all $0 \le s < N$,

(1.2.5)
$$\operatorname{tr}(a_0^{p^s}) + p \operatorname{tr}(a_1^{p^{s-1}}) + \dots + p^{s-1} \operatorname{tr}(a_{s-1}) = p^{-1} \operatorname{tr}(x^{p^{s+1}}).$$

To prove this, we assume the opposite and establish a system of inequalities on the valuations of the elements a_0, \ldots, a_{N-1} . We then observe that these inequalities cannot be satisfied simultaneously, if $t' < p^N$. The basic observation needed to establish the inequalities is that for all $a \in \mathcal{O}_L$,

$$v_L(a) \le p(v_K(\operatorname{tr}(a)) - e_K).$$

To see this, we write $a = \alpha_0 \cdot 1 + \alpha_1 y_1' + \dots + \alpha_{p-1} y_{p-1}'$ with $\alpha_0, \dots, \alpha_{p-1} \in \mathcal{O}_K$. Then $\operatorname{tr}(a) = p\alpha_0$, and hence, $v_K(\operatorname{tr}(a)) = e_K + p^{-1}v_L(\alpha_0)$. But $v_L(a) \leq v_L(\alpha_0)$.

We first consider the equation (1.2.5) for s=0. By comparing the valuation of the two sides, we see that the equation has no solutions, if $v_L(x) < e_K$. Hence, in this case, the image by $\partial_{1,1}$ of the class of x is non-trivial. We may therefore assume that $v_L(x) \geq e_K$. In this case, a solution $a_0 \in \mathcal{O}_L$ will satisfy that

$$v_L(a_0) - e_K \le pv_L(x) - (p+1)e_K.$$

We next show, inductively, that if the equations (1.2.5) with s = 0, 1, ..., n have a solution, then

$$v_L(x) \ge (1 + p^{-1} + \dots + p^{-n})e_K$$

and any such solution will satisfy

$$0 \le v_L(a_s) - e_K \le p^{s+1}v_L(x) - (p^{s+1} + \dots + p + 1)e_K, \quad 0 \le s < n,$$

$$v_L(a_n) - e_K \le p^{n+1}v_L(x) - (p^{n+1} + \dots + p + 1)e_K.$$

We now assume that the equations (1.2.5) with s = 0, 1, ..., n-1 have a solution and consider the equation for s = n. The right hand side of the equation has valuation $p^n v_L(x)$ and, inductively, the valuation of the terms on the left hand side with $0 \le i \le n-2$ satisfy

$$p^{n-1-i}e_K \le v_K(p^i \operatorname{tr}(a_i^{p^{n-i}})) - (i+1)e_K \le p^{n-i}(p^i v_L(x) - (p^i + \dots + 1)e_K),$$

and for the term i = n - 1, we have

$$v_K(p^{n-1}\operatorname{tr}(a_{n-1}^p)) - ne_K \le p(p^{n-1}v_L(x) - (p^{n-1} + \dots + p + 1)e_K).$$

The last term i=n on the left is our new variable. We claim that the valuation of the term i=n-1 on the left is strictly smaller than the valuation of the terms $i=0,1,\ldots,n-2$ and also strictly smaller than the valuation of the right hand side. The proof will be given below. Assuming the claim, we see that if a solution exists, we necessarily must have

$$v_K(p^n \operatorname{tr}(a_n)) = v_K(p^{n-1} \operatorname{tr}(a_{n-1}^p))$$

and this implies the inequality

$$0 \le v_K(\operatorname{tr}(a_n)) - e_K = v_L(a_{n-1}) - e_K \le p^n v_L(x) - (p^n + \dots + p + 1)e_K.$$

There are no solutions, if the integer on the right is negative. And if this number is non-negative, a solution will satisfy

$$v_L(a_n) - e_K \le p^{n+1}v_L(x) - (p^{n+1} + \dots + p + 1)e_K.$$

This completes the proof of the induction step. The proposition follows, since

$$p^{N-1}v_L(x) - (p^{N-1} + \dots + p+1)e_K < 0.$$

Indeed, we have $v_L(x) < pe_K/(p-1) - 1$, so we must show that

$$p^{N-1}(pe_K/(p-1)-1) < (p^N-1)e_K/(p-1),$$

which holds if and only if $p^{N-1} > e_K/(p-1)$.

It remains to prove the claim. We first note that for all $0 \le i \le n-2$, the valuation of the ith term is greater than or equal to the valuation of the n-2nd term. Indeed, this is the statement that

$$p^{n-1-i}e_K + (i+1)e_K \ge pe_K + (n-1)e_K$$

or equivalently, $p^{n-1-i} \geq n-1-i$, which is certainly true. So it suffices to show that the valuation of the n-2nd term is strictly greater than the valuation of the n-1st term. This is the statement that

$$pe_K + (n-1)e_K > p^n v_L(x) - (p^n + \dots + p + 1)e_K$$

and since $v_L(x) < pe_K/(p-1)$, it suffices to show that

$$p + (n-1) \ge 1/(p-1) + (n+1).$$

But this is equivalent to the statement that $(p-2)(p-1) \ge 1$, which is true, if and only if p > 2. This completes the proof.

Corollary 1.2.6. Let L/K be a totally ramified cyclic extension of order p and let σ be a generator of $G = G_{L/K}$. Suppose that $v_L(\sigma(\pi_L) - \pi_L)$ is congruent to 1 modulo p, and let N be the smallest integer such that $p^N > pe_K/(p-1)$. Then

$$R^N_*: H^1(G, W_{N+n}(\mathcal{O}_L)) \to H^1(G, W_n(\mathcal{O}_L))$$

is equal to zero, for all $n \geq 1$.

PROOF. This follows from proposition 1.2.4 in view of lemma 1.1.1.

1.3. We next consider the case of a general cyclic extension L/K of order p.

Lemma 1.3.1. Let L/K be a cyclic extension of order p, let K'/K be a finite tamely ramified extension, and let L' be the composition of L and K'. Then for all integers i > 0 and n > 1, there is a canonical isomorphism

$$H^i(G_{L/K}, W_n(\mathcal{O}_L)) \xrightarrow{\sim} H^i(G_{L'/K'}, W_n(\mathcal{O}_{L'}))^{G_{K'/K}}.$$

PROOF. The extension L'/L is again tamely ramified, and therefore, by a theorem of Noether [3, chap. I §3, theorem 3], $\mathcal{O}_{L'}$ is a projective $\mathcal{O}_L[G_{L'/L}]$ -module. It follows that the Hochschild-Serre spectral sequence

$$E_2^{s,t} = H^s(G_{L/K}, H^t(G_{L'/L}, W_n(\mathcal{O}_{L'}))) \Rightarrow H^{s+t}(G_{L'/K}, W_n(\mathcal{O}_{L'}))$$

collapses, such that the edge homomorphism

$$H^s(G_{L/K}, W_n(\mathcal{O}_L)) \xrightarrow{\sim} H^s(G_{L'/K}, W_n(\mathcal{O}_{L'}))$$

is an isomorphism. Similarly, since K'/K is tamely ramified, the spectral sequence

$$E_2^{s,t}(G_{K'/K}, H^t(G_{L'/K'}, W_n(\mathcal{O}_{L'}))) \Rightarrow H^{s+t}(G_{L'/K}, W_n(\mathcal{O}_{L'}))$$

collapses, and the edge homomorphism

$$H^t(G_{L'/K}, W_n(\mathcal{O}_{L'})) \xrightarrow{\sim} H^t(G_{L'/K'}, W_n(\mathcal{O}_{L'}))^{G_{K'/K}}$$

is an isomorphism. The composition of these two isomorphisms gives the isomorphism of the statement. \Box

LEMMA 1.3.2. Let L/K be a totally ramified cyclic extension of order p. Then there exists a finite tamely ramified extension K'/K such that if L' is the composition of L and K', then $v_{L'}(\sigma(\pi_{L'}) - \pi_{L'})$ is congruent to 1 modulo p.

PROOF. Let L_1 be the composition of L and $K_1 = K(\mu_p)$. Then, by Kummer theory, $L_1 = K_1(x^{1/p})$, for some $x \in K_1$. Moreover, if we write $x = u\pi_{K_1}^i$ with $u \in K_1^*$, we can assume that p does not divide i. Let L' be the composition of L_1 and $K' = K_1(u^{1/i})$. Then

$$L' = K'((\pi_{K'}^i)^{1/p}) = K'(\pi_{K'}^{1/p}),$$

where $\pi_{K'} \in \mathcal{O}_{K'}$ is a uniformizer. If $\pi_{L'} \in \mathcal{O}_{L'}$ is a pth root of $\pi_{K'}$, then $\pi_{L'}$ is a uniformizer. Moreover, if $\sigma \in G_{L'/K'}$ is a generator, then $\sigma(\pi_{L'}) = \zeta_p \cdot \pi_{L'}$, so

$$\sigma(\pi_{L'}) - \pi_{L'} = (\zeta_p - 1)\pi_{L'}.$$

This shows that

$$v_{L'}(\sigma(\pi_{L'}) - \pi_{L'}) = v_{L'}(\zeta_p - 1) + 1 = pv_{K'}(\zeta_p - 1) + 1.$$

Finally, K'/K is tamely ramified.

COROLLARY 1.3.3. Let L/K be a totally ramified cyclic extension of order p. Then there exists $N \geq 1$ such that the map

$$R_*^N : H^1(G, W_{N+n}(\mathcal{O}_L)) \to H^1(G, W_n(\mathcal{O}_L))$$

is equal to zero, for all $n \geq 1$.

PROOF. If we choose a tamely ramified extension K'/K as in lemma 1.3.2, then the statement follows from lemma 1.3.1 and corollary 1.2.6. The smallest integer such that $p^{N-1}(p-1) > e_{K'} = e_{K'/K}e_K$ will do.

1.4. We now prove the theorem of the introduction. Let L/K be a finite Galois extension with Galois group G. The ramification groups define a finite filtration

$$G = G_{-1} \supset G_0 \supset G_1 \supset G_2 \supset \cdots \supset G_{v-1} \supset G_v = \{1\}$$

of G by normal subgroups. We recall the following facts about the quotients G_i/G_{i+1} from [7, chap. IV, §2]. The quotient G/G_0 is canonically isomorphic to the Galois group of the extension k_L/k_K of residue fields, the quotient G_0/G_1 is cyclic of order prime to p, and the quotients G_i/G_{i+1} , $i \geq 1$, are elementary abelian p-groups. Let $K' = L^{G_1}$. Then K'/K is a tamely ramified extension, and the extension L/K' is the composition of a sequence of extensions

$$K' = M_1 \subset M_2 \subset \cdots \subset M_n = L$$

each of which is cyclic of order p. The theorem follows from corollary 1.3.3 by iterated use of the Hochschild-Serre spectral sequence.

References

- [1] P. Berthelot and W. Messing, Théorie de Dieudonné cristalline. III. Théorèmes d'équivalence et de pleine fidélité, The Grothendieck Festschrift, Vol. I, Progr. Math., vol. 86, Birkhäuser, Boston, MA, 1990, pp. 173–247.
- [2] S. Bloch and K. Kato, p-adic etale cohomology, Publ. Math. IHES 63 (1986), 107–152.
- [3] A. Fröhlich, Galois module structure of algebraic integers, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 1, Springer-Verlag, 1983.
- [4] L. Hesselholt and I. Madsen, On the K-theory of local fields, Ann. Math. (to appear).
- [5] B. Kahn, Deux théorèmes de comparaison en cohomologie étale: applications, Duke Math. J. 69 (1993), 137–165.
- [6] S. Sen, On automorphisms of local fields, Ann. Math. 90 (1969), 33-46.
- [7] J.-P. Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, 1979.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS

 $E ext{-}mail\ address: larsh@math.mit.edu}$