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Introduction

Let K be a complete discrete valuation field, and let L/K be a finite Galois
extension with Galois group G = G,/ k. By the normal basis theorem, L is always
a projective K[G]-module, and by a classical theorem of Noether, the ring of integers
Oy, is a projective Ok [G]-module, provided that L/K is tamely ramified. But for
wildly ramified extensions, the structure of O, as an Ok[G]-module is extremely
complicated and quite far from understood. In this paper, we show that the ring
of Witt vectors W.(Of) is a more well-behaved object. We assume that K has
characteristic 0 and that the residue field k has characteristic p > 2, but we do not
assume that k is perfect. Then for every finite Galois extension L/K we show:

THEOREM. The pro-abelian group H' (G, x, W.(OL)) is zero.
In general, the higher groups H*(Gr/x,W.(OL)), i > 1, are non-zero. Hence,
the theorem may be viewed as an additive version of Hilbert’s theorem 90.

The theorem is equivalent to the statement that the canonical inclusion

W.(Ox) /P W.(Ox) =5 (W.(O1) [p"W.(01)) ¢

is an isomorphism of pro-abelian groups, for all v > 1. Indeed, the cokernel of this
map is isomorphic to the subgroup of H*(G, W.(Op)) of elements killed by p¥. But
by [6, theorem 3], this subgroup is equal to the whole group, if v is greater than or
equal to the p-adic valuation of [L : K].

It was this equivalent statement of the theorem that was the original motivation
for proving it. To explain this, let K, = K (u,). It follows from [2, theorem 5.12]
and [5, théoréme 1(1)] that for all v > 1, the inclusion of Milnor K-groups

KM(K)/p* & (K)M(K.)/p")°

is an isomorphism. By analogy, we conjecture that for all v > 1, the canonical
inclusion of de Rham-Witt groups

v v\ &
Ww. Q?OK,MK)/p — (W Q((IOKU,MKv)/p )

is an isomorphism of pro-abelian groups. (The definition of the de Rham-Witt
groups is given in [4, §3].) The theorem of this paper establishes the case ¢ = 0.
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We shall always normalize the valuation v, on L such that the valuation of a
uniformizer w7, € Oy, is equal to 1.
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1. Proof of the theorem

1.1. Let L/K be a finite Galois extension with Galois group G. Then for all
m,n > 1, we have a short-exact sequence of GG-modules

0= Win(O1) L5 Winyn(01) 25 W, (01) — 0.

The induced sequence of G-fixed sets again is exact. For as a set, Ws(Op) is equal
to the s-fold product of copies of O, and Of = Ok. Hence, we have an exact
sequence of cohomology groups

0 = HY(G, W (O1)) Y55 HYG, Winsn(O1)) 255 HYG, W, (OL))

O HA(G, Wi (01)) Y5 HA(G, Winin(O1)) — ...
LEMMA 1.1.1. Let N > 1 be an integer. Then the following are equivalent.
(i) For allm > N and all n > 1, the map induced by the restriction
Ry HY(G, Winin(Or)) = H' (G, Wn(OL))
is equal to zero.
(ii) For all m > N, the map induced by the restriction
R™: HY (G, Wy41(01)) = HY(G,0y)
is equal to zero.
(iii) For all m > N, the boundary map
0 =0m,: HY(G,0L) = H*(G,W,,(Or))
1s injective.
ProOF. The statements (ii) and (iii) are clearly equivalent, and statement (ii)

is a special case of statement (i). Suppose that statement (ii) holds. Then for all
m > N, the map

Vi: HY(G,W,,,(0O1)) = HY (G, W,,,11(01))
is an isomorphism. It follows for all m > N and all n > 1, the iterated map
Vi HY G, Wy (01)) = HY G, Winin(OL))
is an isomorphism, and this, in turn, implies statement (i) of the lemma. O
Suppose that L/K is a cyclic extension, and let o be a generator of the Galois

group. We recall that for every G-module M, the cohomology group H(G, M) is
canonically isomorphic to the ith cohomology group of the complex

1— t 1— t
M—M--"M—5M-"5M-—...,
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where for a € M, tr(a) is the sum of the Galois conjugates of a. In the case at
hand, we have canonical isomorphisms

HY(G,0.) ~ (0N (0 —1)L)/(c —1)Oy,
H*(G, W, (O1)) = Wi (Ok)/ tr(W,, (O1)).
In the following we shall often identify the cohomology groups on the left with the
corresponding groups on the right. We also recall the ghost map
w: Wip(A4) = A™
is the ring homomorphism, which to a Witt vector (ag,...,amn—1) associates the
m-tuple (wg, ..., wmn_1), where for 0 < s < m,

(1.1.2)

3 s—1
ws =ab +pal  +---+p*tal_| +pias.

It is injective, if p is a non-zero-divisor in A. This is the case for A = Ok, as we
assume that K has characteristic zero. Hence, lemma 1.1.1 (iii) is equivalent to the
statement that for m > NN, the composite map

(1.1.3) HYG,01) % H2(G, Wn(01)) % ON Jw(tr (W, (O1)))
is injective. We remark that this is a map of W,,41(Ok)-modules. It is not a map

of Ok-modules unless Ok is absolutely unramified with perfect residue field.
LEMMA 1.1.4. The composite map (1.1.8) is given by

class(z) — class((tr(;cp) ey tlr(:;pm))).

PROOF. Since the ghost map is natural and additive, we have

w(tr(a)) = tr(w(a)),
for all a € W,,(Or). To prove the lemma, one applies this to the Teichmiiller
representative [z] = (z,0,...,0) € Wy,41(OL) of x € O, with tr(z) = 0. O

1.2. Let L/K be a totally ramified cyclic extension of order p, and let o be a
generator of G = G /k. Then the filtration by ramification groups takes the form

G=G=---=G; DGtJrl :{0},
where ¢ is the integer given by v,((0 — 1)) = ¢+ 1.
LEMMA 1.2.1. Ifvg(a) = ps — (p — 1)t, then vk (tr(a)) = s.

PRrROOF. We must show that the trace induces an isomorphism

mlis—(P—l)t/mlzs—(p—l)Hl N m%/m?l.
But this follows from the formula [7, chap. V, §3]
tr(my) = mp,
where r = [(d+n)/p) and d = (t + 1)(p — 1). O

We wish to evaluate the valuation of the trace of pth powers. The lemma shows
that this is possible, if p divides t. We now assume this to be the case.

COROLLARY 1.2.2. Suppose that p divides t. Then for all s > 1,
vk (tr(a?”)) = ex + p*~tur(a).
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PROOF. We write t = pt'. Then vy, (a) = ps’ implies vk (tr(a)) = s’ + (p — 1)/,
and hence, vk (tr(a?’)) = p*lvp(a) + (p — Dt', for all s > 1. If a = 1, we get
vr(tr(1)) = (p — 1t'. But tr(1) = p and vk (p) = ek. O

LEMMA 1.2.3. Suppose that p divides t. Then every non-zero class in H' (G, Op)

is represented by an element x € Of, such that 1 < wvp(z) < pex/(p — 1) and such
that p does not divide vy (x).

PROOF. We recall the Ok-basis of Of'=% = O, N (0 — 1)L exhibited in the
proof of [6, theorem 2]. Let o be a generator of G. Then for p > 1, we let

Tp = H O-i(ﬂ-L)v
0<i<p
where 77, € Oy, is a uniformizer. Since v (z,) = p, the elements z,,, 1 < pu <p-—1,
and 1 form an Ok-basis of Or,. We let y, = (0 — 1)(z,) and y;, = Yy, /7. Then
vr(yu) = p+t and v (y,) = p. Tt follows that the elements y,, 1 < p < p—1,

form an Ok-basis of (¢ —1)Op, and that the elements y;,, 1 < p < p — 1, form an
Ok-basis of O, N (0 — 1)L. Hence, as an Ok-module,

p—1
HY(G,01) ~ @ Ok [mi -y,

p=1
Let k& be the residue field of K, and let W be a complete discrete valuation ring such
that W/pW is isomorphic to k. Such a ring W always exists [1, proposition 1.1.7].
In addition, there exists a ring homomorphism f: W — O such that the induced
map of residue fields is the identity. It follows that, if 7 € Ok is a uniformizer,
then f induces an isomorphism W{rk]/(¢x(7K)) — Ok, where ¢x(X) € W[X]
is an Eisenstein polynomial of degree ex. Hence, as a W-module, H'(G,Op) is
a k-vector space with a basis given by the classes of ﬂ}(ylt, where 0 < i < ¢ and
1 < u < p—1. The valuation vL(W}(yL) = pi + p is not divisible by p and satisfies

1<pi+p<pt'—=1)+p-1=pex/(p—1) -1
Let z € O'=° be a general element and write x as a linear combination

t'—1 p—1

— E E i o0
T = ai,/_LTrKyp,?

=0 p=1
where «; , € W. We associate to z the element

t'—1p—1

L E E ! i,
€T = ai,uTrKy;m

=0 p=1
where o} , is equal to a;,, if p does not divide a;,, and zero, otherwise. Then
and 7' represents the same class in H'(G,Op). Moreover, this class is non-zero if
and only if z' is non-zero. If this is the case, then p does not divide vy, (z') and

1 < (@) < pexc/(p— 1). O
PROPOSITION 1.2.4. Suppose that p divides t. Then the boundary map
0= 8N,1: Hl(G, OL) — HQ(G, WN(OL))

is injective, provided that pN > per /(p— 1) = t.
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ProoF. It suffices, by lemma 1.2.3, to show that for every z € O=Y such
that 1 < vr(z) < pex/(p — 1), the image of the class represented by x under the
following map is non-zero.

o w
HY(G,0r) =% H*(G, Wi (0r)) % OF Jw(tr(Wn(Or))).
This, by lemma 1.1.4, is equivalently to showing that there cannot exist ag, ...,an_1
Oy, such that for all 0 < s < N,
ps ps—l s—1 1 s+1
(1.2.5) tr(ag ) +ptr(al )4 ---+p* tr(as—1) =p tr(a? ).

To prove this, we assume the opposite and establish a system of inequalities on the
valuations of the elements ag,...,ax_1. We then observe that these inequalities
cannot be satisfied simultaneously, if # < p~. The basic observation needed to
establish the inequalities is that for all a € Oy,

vr(a) < p(vk(tr(a)) — ex).

To see this, we write a = ag - 1+ a1y +--- + ap_ly;_l with ag,...,a,-1 € Ok.
Then tr(a) = pag, and hence, v (tr(a)) = ex + p v (ap). But vy (a) < v (ao).

We first consider the equation (1.2.5) for s = 0. By comparing the valuation of
the two sides, we see that the equation has no solutions, if vy (z) < ex. Hence,
in this case, the image by 01,1 of the class of = is non-trivial. We may therefore
assume that vy (x) > ex. In this case, a solution ay € Oy, will satisfy that

v (ao) — ex < pup(z) — (p+ ek

We next show, inductively, that if the equations (1.2.5) with s =0,1,...,n have a
solution, then

vp(x) > A +p 4 +p ek

and any such solution will satisfy

0 <wr(as) —ex <p™lop(z) — (' +---+p+1lex, 0<s<n,

vp(an) —ex < p"Mlop(z) — (" + -+ p+ ek
We now assume that the equations (1.2.5) with s = 0,1,...,n — 1 have a solution
and consider the equation for s = n. The right hand side of the equation has
valuation p™vy, (z) and, inductively, the valuation of the terms on the left hand side
with 0 <14 <n — 2 satisfy
P ek <ok (' tr(al” ) = (i + Dex <p T (plus(e) — (0 + -+ Dex),
and for the term ¢ = n — 1, we have
vk (p" " tr(a),_y)) — nex < p(@"tvr(z) = (" 4+ p+ Dek).

The last term ¢ = n on the left is our new variable. We claim that the valuation
of the term ¢ = n — 1 on the left is strictly smaller than the valuation of the terms
1 =0,1,...,n — 2 and also strictly smaller than the valuation of the right hand
side. The proof will be given below. Assuming the claim, we see that if a solution
exists, we necessarily must have

vk (" tr(an)) = v (p" " tr(ay,_y))
and this implies the inequality

0 <wg(tr(an)) —ex =vr(an—1) — ex < p vp(z) — (P " +---+p+ 1ek.
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There are no solutions, if the integer on the right is negative. And if this number
is non-negative, a solution will satisfy
vr(an) —ex <p"Hop(z) = (" 4+ p+ e
This completes the proof of the induction step. The proposition follows, since
PN lop(x) — (PN 4 4+ p4 ek < 0.

Indeed, we have vr(z) < pex/(p — 1) — 1, so we must show that

PV per/(p—1) = 1) < (0 = Dex/(p 1),
which holds if and only if pN=! > ex/(p —1).

It remains to prove the claim. We first note that for all 0 < i < n — 2, the
valuation of the ith term is greater than or equal to the valuation of the n — 2nd
term. Indeed, this is the statement that

pn—l—ieK + (’L 4 1)€K > pex + (n - 1)6K7

or equivalently, p"~'=% > n — 1 — i, which is certainly true. So it suffices to show
that the valuation of the n — 2nd term is strictly greater than the valuation of the
n — 1st term. This is the statement that

pex + (n— eg > p vp(x) — (" +---+p+ ek,
and since v, (z) < pex /(p — 1), it suffices to show that
pHm—1)>1/(p—1)+(n+1).

But this is equivalent to the statement that (p —2)(p — 1) > 1, which is true, if and
only if p > 2. This completes the proof. O

COROLLARY 1.2.6. Let L/K be a totally ramified cyclic extension of order p and
let o be a generator of G = G k. Suppose that vy (o(rr) — 7r) is congruent to 1
modulo p, and let N be the smallest integer such that p"¥ > per /(p —1). Then

R*N cH (G7 WN+TL(OL)) - H' (Ga WH(OL))

is equal to zero, for alln > 1.
ProOF. This follows from proposition 1.2.4 in view of lemma 1.1.1. O

1.3. We next consider the case of a general cyclic extension L/K of order p.

LeEMMA 1.3.1. Let L/K be a cyclic extension of order p, let K'/K be a finite
tamely ramified extension, and let L' be the composition of L and K'. Then for all
integers i > 0 and n > 1, there is a canonical isomorphism

Hi(GL/K7 Wn(OL)) l) Hi(GLI/K/ s Wn(OL,))GK’/K .
PrOOF. The extension L'/L is again tamely ramified, and therefore, by a the-

orem of Noether [3, chap. I §3, theorem 3], Op is a projective Or[G1/]-module.
It follows that the Hochschild-Serre spectral sequence

Eyt = H*(Gr/k, H (G /1, Wa(O1))) = H* G/ /i, Wn(OL))
collapses, such that the edge homomorphism

H*(Gr/k,Wa(Or)) = H*(GL/k, Wa(OL'))
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is an isomorphism. Similarly, since K'/K is tamely ramified, the spectral sequence
Eg’t(GK'/KyHt(GL'/Ku Wn(Or))) = Hs+t(GL’/K7 Wn(Or))
collapses, and the edge homomorphism
HY Gk, Wn(Opr)) & Ht(GL’/K’aWn(OL’))GKI/K

is an isomorphism. The composition of these two isomorphisms gives the isomor-
phism of the statement. O

LEMMA 1.3.2. Let L/K be a totally ramified cyclic extension of order p. Then
there exists a finite tamely ramified extension K'/K such that if L' is the composi-
tion of L and K', then vy (o(wp:) — mrr) is congruent to 1 modulo p.

PrOOF. Let L; be the composition of L and Ky = K (up). Then, by Kummer
theory, L; = Ky(x'/?), for some z € K;. Moreover, if we write z = ury, with
u € K7, we can assume that p does not divide i. Let L' be the composition of L,
and K’ = K;(u'/?). Then

L' = K'((wi) /Py = K'(x)lP),
where g € Ok is a uniformizer. If 7wy, € Op is a pth root of g/, then 7y is a
uniformizer. Moreover, if o € G/ /i is a generator, then o(ny/) = (- 71/, 80
o(rnp) —mp = (¢ — D
This shows that
vp(o(mp) =) = o (G —1) + 1 =pok (G — 1) + 1.

Finally, K'/K is tamely ramified. O

COROLLARY 1.3.3. Let L/K be a totally ramified cyclic extension of order p.
Then there exists N > 1 such that the map

RY: HY(G, Wnin(O1)) = HY (G, W,(0OL))

is equal to zero, for alln > 1.

Proo¥r. If we choose a tamely ramified extension K'/K as in lemma 1.3.2, then
the statement follows from lemma 1.3.1 and corollary 1.2.6. The smallest integer
such that pV~!(p — 1) > exr = exyex will do. O

1.4. We now prove the theorem of the introduction. Let L/K be a finite
Galois extension with Galois group G. The ramification groups define a finite
filtration

G=G_.1DG DG DG D---DGy1 DG, ={1}
of G by normal subgroups. We recall the following facts about the quotients
G;/Giy1 from [7, chap. IV, §2]. The quotient G/Gy is canonically isomorphic
to the Galois group of the extension kj,/kk of residue fields, the quotient Go/G
is cyclic of order prime to p, and the quotients G;/Git1, i > 1, are elementary
abelian p-groups. Let K' = L% . Then K'/K is a tamely ramified extension, and
the extension L/K’ is the composition of a sequence of extensions

K’:M1CM2C"'CMn:L
each of which is cyclic of order p. The theorem follows from corollary 1.3.3 by

iterated use of the Hochschild-Serre spectral sequence.
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