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Abstract

We prove that the combinatorial diameter of the skeleton of the poly-
tope of feasible solutions to any m×n transportation problem is O(max{n, m}3).

The transportation problem (TP) is a classic problem in operations research.
The problem was posed for the first time by Hitchcock in 1941 [8] and inde-
pendently by Koopmans in 1947 [11]. The problem appears in any standard
introductory course on operations research.

The m × n TP has m supply points and n demand points. Each supply
point i holds ri units, and each demand point j wants cj units. A solution to
the problem can be written as a m×n matrix X with entries decision variables
xij having value equal to the number of units transported from supply point i to
demand point j. Without loss of generality we assume that

∑m

i=1 ri =
∑n

j=1 cj .

The objective is to minimize total transportation costs
∑m

i=1

∑n

j=1 tijxij , where
tij is the unit transportation cost from supply point i to demand point j. The
set of feasible solutions of TP, the transportation polytope, is described by

n
∑

j=1

xij = ri, i = 1, 2, . . . ,m;

m
∑

i=1

xij = cj , j = 1, 2, . . . , n;

xij ≥ 0, i = 1, 2, . . . ,m, j = 1, 2, . . . n.

The 1-skeleton (edge graph) of this polytope is defined as the graph with
vertices the vertices of the polytope and edges its 1-dimensional faces. In 1957
W.M. Hirsch stated his famous conjecture (cf. [4]) saying that any polytope in
IRd defined by n inequalities has diameter n− d. So far the best bound for any
polytope is O(nlog d+1) [9]. Any strongly polynomial bound is still lacking. Such
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bounds have been proved for some special classes of polytopes (for examples see
[12]). Among those are some special classes of transportation polytopes [2] [1]
and the the polytope of the dual of TP [1].

A strongly polynomial time algorithm for TP follows directly from [13].
It is not a primal simplex type algorithm. In fact the existence of a strongly
polynomial primal simplex algorithm is unknown. The first strongly polynomial
bound on the diameter of the transportation polytope was given by Dyer and
Frieze [6]. Actually, they prove a bound on the diameter of any polytope {x ∈
IRn|Ax ≤ b, b ∈ IRm} where A is a totally unimodular matrix. The proof is
complicated, using the probabilistic method on the outcome of a randomized
algorithm. Moreover, the bound is huge (O(m16n3(ln(mn))3) assuming m ≤ n).
We will give a simple proof of a O(max{n3,m3}) bound. As will be seen, the
bound is on the diameter of the transportation polytope with only a restricted
class of edges. The proof is constructive: it gives an algorithm that describes
how to go from any vertex to any other vertex on the transportation polytope
in O(max{n3,m3}) steps along the edges.

We first review some known facts about the transportation polytope [10].

Lemma 1 The transportation polytope has dimension nm − m − n + 1.
Any vertex corresponds to a basic feasible solution and each such a solution has
at most m + n − 1 variables with non-zero values.
Any non-degenerate basic feasible solution has exactly m + n− 1 non-zero vari-
ables.

Thus, according to the Hirsch conjecture the diameter is bounded by m+n−1.
For any feasible solution X of TP, create the bipartite graph G(X) by defin-

ing a vertex for each row and column and the edges E(X) = {(i, j)|xij > 0, i =
1, . . . ,m, j = 1, . . . , n}. The following facts are found in [10].

Lemma 2 Any feasible solution X of TP is a basic feasible solution if and only
if G(X) is a spanning forest.
X is a non-degenerate basic feasible solution if and only if G(X) is a spanning
tree.
G(X) has q + 1 components if and only if X is a basic feasible solution of
degeneracy q, i.e., a solution with m + n − 1 − q non-zero variables.

In any introduction to operations research the so-called North-West Corner
rule is given as a way to find a starting solution for a simplex algorithm for
TP (see e.g. [7]). This rule starts by giving the highest possible value to x11,
and at each step when a highest possible value is given to entry xij it moves
on to xi,j+1 in case xij filled column j, or to xi+1,j in case xij filled row i, and
proceeds until xmn has received a value.

We call a basic feasible solution a North-West Corner rule solution (NWC-
solution) if the solution can be obtained by applying the North-West Corner
rule to some permutation of the rows and columns. We say that the row- and
column permutation genrates the NWC-solution. Notice that any row- and
column permutation generates a unique NWC-solution. The reverse is not true:
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any NWC-solution can be generated by different row- and column permutations
(indeed by exponentially many).

Lemma 3 A basic feasible solution X of TP is a NWC-solution ⇔ each of the
components of G(X) is a caterpillar graph, i.e., a tree with a central (backbone)
path and all vertices not on this path directly connected to it by an edge.

Proof. ⇒: Suppose this is not true. Then there must exist a vertex in G(X)
that is end vertex of at least 3 edge disjoint paths of length 2. Suppose without
loss of generality that row-vertex i is such a vertex, and G(X) contains the paths
(i, j1, i1), (i, j2, i2), and (i, j3, i3) given in the order in which j1, j2 and j3 appear
in the column permutation generating NWC-solution X. In constructing the
NWC-solution all entries in column j1 receive their value before those in column
j2, which receive theirs before those in column j3. Thus, i2 must be “south” of
i. Since xi,j3 > 0, xi2,j2 is non-zero only if xi,j2 was given a value that neither
filled column j2 nor row i, contradicting the NWC-rule.
⇐: To facilitate the exposition we assume that G(X) is a spanning tree. In
the degenerate case the arguments below should be applied to any of the trees
spanning the components, and consider them in arbitrary but prefixed order.

Take the backbone path of G(X) (or any if there is a choice). Without
loss of generality suppose this path starts with a row-vertex i1 and ends with a
column-vertex jK and, following it, it reads (i1, j1, i2, j2, . . . , iK , jK).

Let d(v) be the degree of vertex v. Any vertex not on the path has degree 1.
For each row-vertex ik+1, k = 1, . . . ,K − 1 denote its adjacent column-vertices
not on the backbone path in arbitrary order jk1

, . . . , jkd(ik+1)−2
. (Clearly there

are no such vertices if d(ik+1) = 2.) In a similar way we denote the row-vertices
not on the backbone path and adjacent to column-vertex jk by ik1

, . . . , ikd(jk)−2
,

k = 1, . . . ,K − 1.
Now we are ready to construct a permutation ρ of the rows and γ of the

columns.

ρ(i1) = 1, γ(j1) = 1,

ρ(ik) = ρ(ik−1) + d(jk−1) − 1, k = 2, 3, . . . ,K,

γ(jk) = γ(jk−1) + d(ik) − 1, k = 2, 3, . . . ,K,

ρ(ikh
) = ρ(ik) + h, h = 1, . . . , d(jk) − 2, k = 1, . . . ,K − 1,

γ(jkh
) = ρ(jk) + h, h = 1, . . . , d(ik+1) − 2, k = 1, . . . ,K − 1.

It is easily verified that ρ and γ are indeed permutations of the rows and the
columns, respectively. Since given this permutation the NWC-solution is unique
it must be X. �

In the sequel we use the term pivot step from a solution to another solution
to indicate an exchange on a 2×2-submatrix of X containing 3 non-zero entries
and 1 zero entry. The zero entry is increased at the expense of two of the
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non-zero entries until one of the two (or, in case of degeneracy, both) becomes
zero. Notice that this is a restriction on the choice of edges of the transportation
polytope. However, as we will see, restricting to these class of moves is sufficient
for obtaining the desired result.

Lemma 4 From any non-NWC-solution it requires at most n + m − 1 pivot
steps and rearranging of rows and columns to reach a NWC-solution.

Proof. Let X be a non-NWC-solution and G(X) the corresponding graph.
Again for convenience we assume that G(X) is a spanning tree. Let P be the
longest path of G(X). We call the vertices at distance at least 2 from the longest
path non-caterpillar vertices, and the others caterpillar vertices. By Lemma 3,
G(X) contains at least one non-caterpillar vertex at distance exactly 2 from
P . Take any vertex at distance 2 from P , u say. Suppose, without loss of
generality, that the path from u to P is given by (u, v, i), ending in row-vertex i
on P (whence u is a row-vertex and v a column vertex). Write P as (P1, i, j, P2),
with P1 the part of P until i and P2 the part of P from j.

Insert edge (u, j) into G(X), creating the circuit (u, j), (j, i), (i, v), (v, u).
This corresponds to increasing entry xuj at the expense of decreasing either
xij or xuv to 0, yielding the new basic feasible solution X ′. In the former case
G(X ′) = (G(X) ∪ (u, j))\(i, j) has longest path (P1, i, v, u, j, P2). The number
of non-caterpillar vertices has decreased by at least 1. If (u, v, i) was part of the
longer path (Q, u, v, i), then the vertex on Q adjacent to u becomes a caterpillar
vertex as well.

In the latter case the longest path of G(X ′) = (G(X)∪ (u, j))\(u, v) is again
P . However, u is now connected to P by the edge (u, j) and hence has become
a caterpillar vertex, decreasing the number of non-caterpillar vertices by 1.

Therefore, we need to repeat this procedure, inserting the edge connecting
a vertex at distance 2 from the longest path to a vertex at distance 3 on the
longest path, at most n + m − 1 times to arrive at a caterpillar graph, since
G(X) contains no more than n + m − 1 non-caterpillar vertices. �

As a preliminary to Lemma 6 we bound the number of pivot steps required
to reach a NWC-solution from a non-NWC-solution without permuting rows or
columns for problem instances with two rows or two columns.

Lemma 5 Given a basic feasible solution X of a 2×n TP (m×2 TP), at most
n (m) pivot steps are required to arrive at a NWC-solution, maintaining the
order of the rows and columns in which X is given.

Proof. We prove the statement for a 2×n TP only. The proof for m× 2 TP’s
is analogous. Consider a 2 × n TP with given basic feasible solution

X =

(

x11, x12, . . . , x1n

x21, x22, . . . , x2n

)

.

Notice that there exists at most one column in X with two non-zero entries. We
denote this column k ∈ {1, . . . , n} if it exists, and we use k = 0 to say that no
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such column exists (X is degenerate). By induction on the number of columns
we will prove the lemma and the claim that in case k ∈ {0, 1, n} only n−1 pivot
steps are required.

The claim and the lemma are obviously true if there is only 1 column. Sup-
pose it is true for every 2 × (n − 1) TP and consider X. We distinguish three
cases.
Case 1. x21 = 0 (⇒ x11 > 0) or x1n = 0 (⇒ x2n > 0): We fix, respectively
the first or the last column and create a NWC-solution on the remaining n − 1
columns. Notice that if the conditions of the claim hold for X then they will
hold again for the matrix restricted to the remaining n− 1 columns. Therefore,
the induction hypothesis proves both claim and lemma.
Case 2. x21 > 0, x1n > 0, and k ∈ {0, 1, n}, i.e., the condition of the claim
holds: We do a pivot step on the 2× 2-submatrix made up by columns 1 and n.
After this step x21 = 0 or x1n = 0 and we are in Case 1, having done 1 pivot
step. The induction hypothesis proves the claim and hence the lemma for this
case.
Case 3. x21 > 0, x1n > 0, and k ∈ {2, . . . n − 1}: We do a pivot step on the
submatrix made up by columns 1 and k. After this step x11 > 0, and x21 = 0,
bringing us in Case 1, or x1k = 0, bringing us in Case 2. In the former situation
the induction hypothesis proves the lemma. In the latter situation we arrive at
at the conditions of the claim after one pivot step, from where we need to make
only n − 1 pivot steps. This proves the lemma. �

Consider a NWC-solution X and a row- and column permutation that gen-
erates X. An exchange of position of two consecutive rows or columns of the
permutations we call a neighbour exchange. In general, X will not be the NWC-
solution generated by the permutation obtained after a neighbour exchange.

Lemma 6 After a neighbour exchange on a NWC-solution the number of pivot
steps required to arrive at the NWC-solution generated by the permutation after
the exchange is bounded by the number of non-zero entries in the two rows or
columns that were exchanged.

Proof. We give the proof for a neighbour row-exchange. The one for neigh-
bour column-exchanges is analogous. Let X be the solution generated by the
permutation before the exchange, and let the exchange be made on the i-th and
the i + 1-th row of this permutation. Notice that X restricted to rows i and
i + 1 is a solution of the 2× n TP with row sums ri and ri+1 and column sums
c′j = xij + xi+1,j , j = 1, . . . , n.

There exists at most one column of X in which both rows i and i+1 have a
non-zero-entry. Let this be column k. Since X is a NWC-solution row i contains
non-zero entries in all columns k− l, k− l +1, . . . , k, and zero entries elsewhere,
and row i+1 contains non-zero entries in all columns k, k+1, . . . , k+h and zero
entries elsewhere (l and h may be 0, and, in a degenerate solution, either row i
or row i + 1 may have a 0 in column k). Hence, c′j = 0, ∀j /∈ {k − l, . . . , k + h},
and X restricted to rows i and i+1 and to columns k− l up to k +h is a NWC
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solution for the 2× (l + h + 1) TP with row sums ri and ri+1 and column sums
c′j , j = k − l, . . . , k + h. After reversing the rows we know from Lemma 5 that
we can obtain the NWC-solution in this restricted 2× (l + h + 1) TP within at
most l + h + 1 pivot steps.

Fixing X everywhere except in its i-th and i + 1-th row, and creating a
NWC-solution on the 2× (l+h+1) TP defined above, but with the order of the
two rows reversed, creates a NWC solution on the whole problem, generated by
the permutation after the neighbour row-exchange. As noted above this must
be the unique NWC-solution generated by the new permutation. �

The following lemma is straightforward from the definition of NWC-solution.

Lemma 7 Any NWC-solution can be reached from any other NWC-solution
by a series of at most m2 + n2 neighbouring row- and column exchanges and
restoring the NWC-property after each exchange.

From Lemmas 6 and 7 we get the following corollary.

Corollary 1 At most O(max{n,m}3) pivot steps are required to get from any
NWC-solution to any other NWC-solution.

Since according to Lemma 4 we can get from any non-NWC-solution to any
NWC-solution in at most n + m pivot steps, the main theorem follows.

Theorem 1 The transportation polytope has diameter O(max{n,m}3).

We notice that the bound on the diameter is an enormous improvement over
the bound that was known before [6] and presented above. Moreover, the proof
is rather simple and uses only basic knowledge about TP. It would be interesting
to investigate if the result and its proof could help in the design of a strongly
polynomial time primal simplex algorithm.

We emphasize that we do not use all the edges of the transportation poly-
tope in establishing the bound. Hence, the bound even holds on the restricted
transportation polytope in which only edges exist that correspond to 2×2-pivot
steps, as defined above. Firstly, this may give some space to make shortcuts
on the paths defined in this paper on the transportation polytope by using also
other edges, bringing the bound on the diameter further down, in the direction
of the linear bound implied by the Hirsch conjecture.

Secondly, it opens the possibility that a random walk on the vertices of the
transportation polytope using only 2 × 2 moves mixes rapidly. The analysis
of such a walk seems easier than one that allows steps along any edge of the
polytope. This would be a crucial step in devising a polynomial randomized
approximation scheme for counting the vertices of the transportation polytope,
a ]P-complete problem [5] 1. So far rapid mixing on the transportation polytope
has been shown only for problems with a fixed number of rows or a fixed number
of columns [3].

1In fact, [5] only claims NP-hardness, but the proof establishes ]P-completeness.
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