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Introduction

This paper is an expanded version of notes for a set of lectures given at the Isaac
Newton Institute for Mathematical Sciences during a NATO ASI Workshop
entitled “Homotopy Theory of Geometric Categories” on September 23 and 24,
2002. This workshop was part of a program entitled New Contexts in Stable
Homotopy Theory that was held at the Institute during the fall of 2002.

The idea was to present some of the basic features of the homotopy theory of
simplicial presheaves and the stable homotopy theory of presheaves of spectra,
and then display their use in applications. A general outline of these theories
forms the subject of Sections 1 and 2 of this paper.

There has been some renewed interest in equivariant stable categories for
profinite groups of late, and the main features of that theory have been de-
scibed here in Sections 3 and 4. I wanted to stress the calculational aspects
of that theory as well as display its main features. This is done in the course
of presenting an outline of the proof of Thomason’s descent theorem for Bott
periodic algebraic K-theory, which appears in Section 5.

The outline of the Thomason result which is presented here is a stripped
down version of the proof appearing in [19], with all of the hard bits (ie. the
coherence issues) carefully swept under the rug. Also, the proof works as stated
only for good schemes and at good primes. The other cases, which are much
more complicated to discuss, have been treated in detail elsewhere, particularly
in Thomason’s original paper [38] and the Thomason-Trobaugh paper [39]. One
should also look at the commentary given by Mitchell in [30].

I would like to thank the iiber-organizers of the Workshop and the New
Contexts program at the Institute for giving me the opportunity to speak. I
would also like to take this opportunity to thank the Newton Institute for its
hospitality and support.

*This research was partially supported by NSERC.
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1 Simplicial presheaves

In all that follows, C will be a small Grothendieck site, meaning a category
having a set of objects and equipped with some notion of covering. Standard
examples include the following:

1)

The category op|x of open subsets of a topological space X has as objects
all inclusions U C X of X, with coverings given by open coverings in the
traditional sense.

The category underlying the Zariski site Zar|s of a scheme S has objects
consisting of all open subschemes U C S of the scheme S. A covering
family is a collection of open subschemes U; C U such that UU; = U.
This site is really just the site of open subsets of the topological space
underlying the scheme S, but we give it a special name.

The category underlying the étale site et|s of a scheme S consists of all
étale maps U — X, and has covering families consisting of sets of mor-
phisms ¢; : U; — U over X such that U¢;(U;) = U.

The Nisnevich site Nis|g of a scheme S has the same underlying category
as the étale site, but a covering of U/S is an étale covering family ¢; :
U; — U such that every scheme morphism Sp(F) — U defined on some
field F lifts to the total space of the scheme homomorphism LI U; — U
which is defined by all of the maps ¢;. There are fewer Nisnevich covers
than étale covers. Note, however, that that every Zariski cover U; C U is
a Nisnevich cover, so that the Nisnevich topology is finer than the Zariski
topology, but coarser than the étale topology.

All of the algebraic geometric sites described above have “big” broth-
ers, namely (Sch|s)zar (Sch|s)e: and (Sch|s)nis respectively. These are
the so-called big sites for the respective topologies. The underlying cate-
gories consist, in all cases of S-schemes Y — S which are locally of finite
type, and secretly have some fixed infinite cardinal bounding their sets of
points. The covering families have the same definitions as for the corre-
sponding versions above. One can impose extra structure on the schemes



over S: most commonly one decorates the category Sm|gs of smooth S-
schemes with any of the above topologies, so that one has the the smooth
sites (Sm|s)zar, (Sm|s)et and (Sm|s)nis. The smooth Nisnevich site
(Sm|s)nis is the basis for the standard description of motivic homotopy
theory over S.

6) Any small category I gives rise to a Grothendieck site, with the so-called
“chaotic” topology, which really is no topology at all: the covering families
are precisely the identity maps a — a in the category I.

Most of the examples of Grothendieck sites listed above arise in algebraic
geometry. The displayed list is is by no means complete: there are, for example,
the various flavours of flat topologies, Voevodsky’s h topologies, and so on.
Grothendieck sites abound in nature.

A presheaf on a site C is a contravariant functor F' : C°? — Set taking values
in the set category. Contravariant functors on C taking values in categories D
are said to be presheaves in D, or presheaves of objects in D. For example, a
presheaf of abelian groups is a contravariant functor A : C°? — Ab taking values
in the category of abelian groups. A presheaf of simplicial sets, or a simplicial
presheaf, is a contravariant functor X : C°? — S taking values in the category
S of simplicial sets.

The presheaves on C taking values in D are the objects of a category, for
which the morphisms are the natural transformations. From this point of view,
a simplicial presheaf is a simplicial object in the category of presheaves of sets.
A morphism f: X — Y of simplicial presheaves consists of simplicial set maps
f:X({U) = Y(U), one for each object U of C, which are natural with respect
to the morphisms of C in the obvious sense. I write s Pre(C) for the category of
simplicial presheaves on the site C.

Here are some basic examples of simplicial presheaves:

1) Every simplicial set Y determines a constant simplicial presheaf I'*Y" de-
fined by I'*Y(U) = Y, with all morphisms of C sent to the identity on
Y. One often dispenses with the I'* and just writes Y for the constant
simplicial presheaf associated to Y.

2) Any object A € C represents a presheaf U — hom(U, A) = A(U). Again,
objects in C and the presheaves that they represent are often confused
notationally. Any simplicial object X in C represents a simplicial presheaf
(of the same name), by exactly the same process.

2a) A group object G of C represents a presheaf of groups G(U) = hom(U, G).
The associated classifying simplicial presheaf BG is defined in sections by
BG(U) = Bhom(U,G).

2b) Suppose that W — V is a covering map of V in C. The corresponding Cech
object is the simplicial presheaf arising from the iterated fibre products

W,W va,W xVWxVW,...



in the presheaf category, and all of the associated projections and diagonals
relating them.

It’s more conceptually satisfying to think of this object as the nerve of a
groupoid: if f : X — Y is a plain old function, then there is a groupoid
whose objects are the elements of X, and we say that there is a (unique)
morphism z — y if f(z) = f(y) in Y. The nerve of this groupoid has X
as its set of vertices and has all iterated cartesian products X Xy --- Xy X
as simplices. Apply this construction to all functions W(U) — V(U) in
all sections and you get the Cech object associated to the covering.

2c) Suppose that Lisa finite Galois extension of a field k£ with Galois group
G. Then the Cech object associated to the étale covering Sp(L) — Sp(k)
on any good site of k-schemes consists of the iterated pullbacks

Sp(L), Sp(L) X sp(k) SP(L), - - -

which can be identified with the Borel construction EG x ¢ Sp(L), just by
the identification L ®; L = [], L given by Galois theory. The notation
EG xg Sp(L) also stands for the nerve of the translation category for
the action of G on Sp(L), and the isomorphism between the Cech object
associated to the cover Sp(L) — Sp(k) and the Borel construction EG X ¢
Sp(L) is induced by an isomorphism of presheaves of groupoids.

3) Suppose that A is a presheaf of abelian groups, and write K(A4,n) =
W (A[-n]). Here, A[-n] means the presheaf of chain complexes which
consists of a copy of A concentrated in degree n, and then we obtain
K(A,n) by applying the Eilenberg-Mac Lane W construction to obtain
a simplicial abelian group in each section. The Eilenberg-Mac Lane con-
struction is natural so this works, and K(A,n)(U) = K(A(U),n) is the
standard construction of an FEilenberg-Mac Lane space. The simplicial
presheaf K(A,n) is usually called an Eilenberg-Mac Lane object associ-
ated to the abelian presheaf A. Of course, there is one of these for each
n > 0.

Of course there are such things as sheaves, which are presheaves which satisfy
a patching property defined by the topology on C. Most often one is dealing with
covering families U; — U in sites (as in algebraic geometry) where pullbacks are
defined. In such a context, one says that a presheaf F is a sheaf if the diagrams

FU) = [[Fw) = [[FW: xv U;)

i,J

are equalizers for all covering families U; — U of all objects U of C. The category
Shv(C) is the full subcategory of the category of presheaves whose objects are
the sheaves; in other words one constructs the sheaf category by taking all
natural transformations between sheaves. The inclusion of the sheaf category
in the category of presheaves has a left adjoint F' — F, called the associated



sheaf functor. The canonical map 7 : F — F arising from the adjunction is
called the associated sheaf map. The associated sheaf is constructed by formally
adjoining (twice) all solutions of patching problems in F' via certain filtered
colimit diagrams; most people find this construction obtuse, and it will not be
repeated here. The important point to remember is that, since F is constructed
from F by a filtered colimit construction, the functor F — F is exact in the
sense that it preserves all finite limits up to isomorphism.

I generally like to look at [33] for the basics about sheaves on Grothendieck
sites, but your mileage may vary; the presentation in [26] is not quite as severe.

The basic idea behind the homotopy theory of simplicial presheaves on a
site C is that it is determined by the topology of C. Simplicial presheaves
X : C° — S are just diagrams of simplicial sets, and the option of choosing the
chaotic topology (or rather, no topology at all) produces one of the standard
diagram-theoretic homotopy theories. All other topologies on C are finer than
the chaotic topology, and all produce different homotopy theories.

Another observation is that, while it is true that different topologies deter-
mine different homotopy theories for simplicial presheaves on a fixed category
C, the sheaves and simplicial sheaves on C are somehow beside the point, except
that they give the means of specifying weak equivalences.

The slick way of defining weak equivalences (which as far as I know is due
to Joyal [25]) starts with looking at weak equivalences of simplicial sets a little
differently. A simplicial set X has homotopy groups m,(X,z), one for each
vertex € Xo. Collecting all of the terminal maps 7, (X, z) — = taking values
in the one point set together (one for each x € Xy) produces a function

|_| (X, z) = |_| *

z€Xo r€Xo

produces a group object m, X — Xy over Xj in the category of sets, for every
n>1 If f: X — Y is a simplicial set map, then the induced group maps
fe :m(X,2) = (Y, f(z)) can be bundled together to form a morphism of
group objects which is compatible with the vertex function f : X¢ — Y; in the
sense that the following diagram of functions commutes:

TnX I /77[nY (1)

Lﬂfﬂ il
Xo

I 0

The one sees that a map f : X — Y is a weak equivalence of simplicial sets in
the usual sense if and only if

1) the induced function fy : 71X — mY is a bijection, and

2) the square (1) is a pullback for all n > 1.



Here of course, mpX is the set of path components of X, which can be defined
to be the coequalizer
X1 = Xg > meX

of the face maps do,d; : X1 — Xp.

These constructions are completely natural, so it makes sense to talk about
the homotopy group objects 7, X — Xy over the presheaf of vertices X, of a
simplicial presheaf X. The presheaf of path components 7y X is also defined
by a coequalizer of the two face maps dy,d; : X7 — Xp, but this time in the
presheaf category. Both constructions specialize to the corresponding thing for
simplicial sets in all sections.

Definition 1. A morphism f: X — Y of simplicial presheaves on a Grothen-
dieck site C is said to be a (local) weak equivalence if the following hold:

1) the induced map of sheaves f, : 79X — 7Y is an isomorphism of sheaves,
and

2) the diagram of sheaf morphisms

a X Hy

bn

Xo I /%

is a pullback in the sheaf category for all n > 1.

Here, 7, X is the sheaf associated to the presheaf m,, X, for all n > 0.

In the presence of stalks, this definition is equivalent (this is an exercise)
to saying that a map f : X — Y is a local weak equivalence if and only if
all induced maps f. : X, — Y, of stalks are weak equivalences of ordinary
simplicial sets. There is another more exotic definition which involve Boolean
localization, which amounts to taking a fat “point” in some category of diagrams
[18]. Alternatively, one can say that a map of simplicial presheaves is a local
weak equivalence if it induces an isomorphism in all possible sheaves of homotopy
groups, for all local choices of base points: see the definition of “combinatorial”
weak equivalence in [13, p.48] — it’s the same thing.

Example 2. The associated sheaf map n: X — X is a local weak equivalence
of simplicial sheaves, since it is locally the identity map. This is why one tends
not to single out simplicial sheaves as separate objects of study even thought
there is a perfectly good historical reason for doing so in Joyal’s work [25].

Definition 3. A map i : A — B of simplicial presheaves is said to be a cofibra-
tion if the induced functions i : 4,(U) — B, (U) are one to one, for all n > 0
and objects U of C.

Equivalently, a map i : A — B is a cofibration if it is a monomorphism in
the category of simplicial presheaves on C.



Definition 4. A map p: X — Y of simplicial presheaves is said to be a global
fibration if it has the right lifting property with respect to all maps of simplicial
presheaves which are simultaneously cofibrations and local weak equivalences.
A simplicial presheaf X is said to be globally fibrant if the unique map X — *
to the terminal simplicial presheaf is a global fibration.

The definition of global fibration means that if p: X — Y sits inside a solid
arrow commutative diagram of simplicial presheaf morphisms

A—oI

&
j\fﬂ e

Biil fi
B -

where j is a cofibration and a local weak equivalence, then the dotted arrow
exists making the diagram commute.

These days (this first appeared in [1]), people sometimes use the term “in-
jective fibration” for global fibration. The use of the term “global fibration” in
[13] follows the usage of Brown and Gersten [3].

Now here’s the result [13], [18] that gives the homotopy theory of simplicial
presheaves:

Theorem 5. Suppose that C is a small Grothendieck site. Then with the defi-
nitions of local weak equivalences, cofibrations and global fibrations given above,
the category s Pre(C) satisfies the axioms for a proper closed simplicial model
category.

The original result of this type is the corresponding statement about sim-
plicial sheaves, which is due to Joyal [25]. Joyal’s result is a consequence of
Theorem 5 (see [13]), essentially on account of the fact that the canonical map
n: X — X relating a simplicial presheaf X and its associated simplicial sheaf
is a local weak equivalence.

The adjective “simplicial” in the statement of the theorem means that there
is a well-behaved notion of function space hom(X,Y") for simplicial presheaves
X and Y. Explicitly, the n-simplices of simplicial set hom(X,Y") are the simpli-
cial presheaf maps X x A™ — Y, where we have followed practice of identifying
the standard n-simplex A™ with its associated constant simplicial presheaf. The
term “proper” means that local weak equivalences are preserved by pullback
along global fibrations and pushout along cofibrations; this is a property that
is inherited from simplicial sets, in that it can be checked stalkwise or with a
Boolean localization argument.

As usual, the function space construction only has homotopical content when
the simplicial presheaf Y is globally fibrant; this is enough, since all simplicial
presheaves are cofibrant. When Y is globally fibrant, the usual closed simplicial
model category tricks imply that there is a natural bijection

mohom(X,Y) = [X,Y]



relating the set of path components of the simplicial set hom(X,Y") with the
set, of morphisms [X,Y] in the homotopy category Ho(s Pre(C)) associated to
the category of simplicial presheaves on C.

Suppose that K is a simplicial set, and that Y is a globally fibrant simplicial
presheaf. Then there is a natural isomorphism

hom(I'K,|Y) =2 hom(K,T'.Y),

where the functor T',Y (called global sections of Y) is the right adjoint of the
constant presheaf functor, and is thus defined by

T,Y = lim Y/(U).
veC

It follows that there are induced bijections
[F*K, Y]sPre(C) = [K, I1*}/]5

relating morphisms in the homotopy categories (suitably labelled) if Y is globally
fibrant.

If the site C happens to have a terminal object ¢ (as is almost always the
case with the sites arising in algebraic geometry), then I'.Y = Y (¢) by formal
nonsense. In that case, one uses the homotopy category of pointed simplicial
presheaves (which exists formally, in the presence of Theorem 5) to see that
there is an isomorphism

[Sna Y]sPre(C)* = WnY(t)-

In other words, the homotopy groups of global sections of globally fibrant objects
are isomorphic to groups of morphisms in the homotopy category of simplicial
presheaves, and are thus determined by the topology on the site C.
Suppose that A is an abelian sheaf. Then there is a sequence of natural
isomorphisms
[¥, K (A,n)] = [Z, K(A,n)] (simplicial abelian sheaves)
= [Z[0], A[-n]] (sheaves of chain complexes)
=~ Ext?(Z, A)
~ H"(C,A).

(2)

Some comments:

1) The first of these isomorphisms relates morphisms [, K (A, n)] in the ho-
motopy category of simplicial presheaves with morphisms in the corre-
sponding homotopy category of simplicial abelian presheaves (or sheaves)
(see [12],[24]); it is an adjointness relation that follows from the fact that
the free simplicial abelian presheaf functor X — ZX preserves local equiv-
alences. This is trivial to verify in the presence of stalks, but more gener-
ally used to be known as the Illusie conjecture; the result has been known
for a long time, and was one of the early applications of the Boolean
localization [41].



2) The second isomorphism in the list is a consequence of the Dold-Kan
correspondence, which in this case identifies morphisms in the homotopy
category of simplicial abelian presheaves with morphisms in the derived
category.

3) The identification of Ext"(Z, A) with morphisms [Z[0], A[-n]] is often
taken to be a definition of the Ext group these days. Actually proving
that it coincides with a more traditional description of Ext seems to re-
quire the use of hypercovers [12].

We have seen, in other words that the standard description of the n!* co-
homology group H"(C, A) of the site C with coefficients in the abelian sheaf
A coincides with a group of morphisms in the homotopy category of simplicial
presheaves. Thus, for example, if S is a scheme and p,, is the étale sheaf of m!"
roots of unity on S, then there is an isomorphism

[*7 K(u‘mv n)]et|s = H(?,‘,(Sa ,Ufm)

relating the étale cohomology of S with coefficients in p,, to morphisms in
the homotopy category of simplicial presheaves on the étale site et|s for S.
The identification of sheaf cohomology with morphisms in simplicial presheaf
homotopy categories is wildly general: it applies universally.

There is also a convenient way, with these techniques, to capture sheaf co-
homology within standard homotopy theory. We need a definition first:

Definition 6. Suppose that X is a simplicial presheaf. A globally fibrant model
for X is a local weak equivalence j : X — Z where Z is globally fibrant.

Here’s an easily proved lemma, with far-reaching consequences:

Lemma 7. Suppose that f : X = Y is a local weak equivalence of globally
fibrant simplicial presheaves. Then f is a simplicial homotopy equivalence, and
all induced maps in sections f : X(U) = Y (U), U € C, are simplicial homotopy
equivalences.

Proof. The map f is a weak equivalence of objects which are both cofibrant
and fibrant, so it is a homotopy equivalence according to standard closed model
category tricks. The simplicial presheaf X x Al is a cylinder object for a simpli-
cial presheaf X, so we can assume that the homotopy equivalence is simplicial.
If the homotopy equivalence is globally simplicial then it is simplicial in each
section. O

Corollary 8. Suppose that f : X — Z and f' : X — Z' are globally fibrant
models for a fized simplicial presheaf X. Then Z and Z' are simplicially homo-
topy equivalent.

In other words, any two choices of globally fibrant models for a fixed sim-
plicial presheaf X are homotopy equivalent in all sections. One often write
j : X = GX for a choice of globally fibrant model for X: such things always



exist by the closed model axioms, and j could be a trivial cofibration (ie. a cofi-
bration and a local weak equivalence) if one likes. Some culture: the “G” stands
for “global”, but it can also stand for “Godement”, in cases where Godement
resolution theory works [13], [38], [32].

It is now a consequence of the identifications (2) that if A is an abelian sheaf
on a site C having terminal object ¢, and GK (A, n) is a globally fibrant model
for the Eilenberg-Mac Lane object K(A,n) then there are isomorphisms

H"i(C,A) if0<i<
nGE (A, n)(t) & (C,A) i 0_zl_n,and

0 otherwise.
The moral is that sheaf cohomology with coefficients in A can be recovered
from the spaces of global sections GK (A4, n)(t) of the globally fibrant objects
GK(A,n).

Remark 9. It causes no pain at all to see that if B is an abelian presheaf and
GK(B,n) is a globally fibrant model for K(B,n), then there are isomorphisms

H" (C,B) if0<i< d
mGEB @) 2 0GR IS S

0 otherwise.
The point is that there is a local weak equivalence K (B,n) — K (B,n) which
induces a homotopy equivalence GK(B,n) — GK(B,n), so that the map
GK(B,n)(t) - GK(B,n)(t) in global sections is also a homotopy equivalence.

Suppose that G is a sheaf of groups on the site C, and let BG be its associated
classifying simplicial sheaf. There is a non-abelian analogue of the cohomology
identifications (2), in that there is a bijection

[*, BG] =2 {isomorphism classes of G-torsor over the point *}. (3)

The thing on the right is one of the standard descriptions of the classical non-
abelian invariant H!(C,G). The result itself is a hypercover argument (a hyper-
cover is a map which is both a “local fibration” and a local weak equivalences in
the modern world [12] — this concept will not be explained here) which makes
use of the fact that the fundamental groupoid functor preserves local weak equiv-
alences [16]. Insofar as the category of G-torsors “is” the stack associated to the
sheaf of groups G, this result gave the first indication that simplicial presheaf
homotopy theory had something to do with stacks [22].

Here is how it came up in a first application: with the identification (3)
in hand, it is clear that if k is a field of characteristic not 2 and O,, is the
algebraic group of automorphisms for the trivial form of rank n, then there is
an identification of the set [, BO,] of the set of morphisms in the homotopy
category of simpicial presheaves for the étale topology on Sp(k) with the set of
isomorphism classes of non-degenerate symmetric bilinear forms of rank n over
k. This identification gives rise to a theory of characteristic classes for quadratic
forms over k in the mod 2 Galois cohomology of k£ as follows:

10



1) there is a ring isomorphism
H:t(BO’n7Z/2) = A[HW17 o 7HW2]

where A = HZ(k,Z/2) is the mod 2 Galois cohomology of k and the
degree of the polynomial generator HW; is i.

2) Every form a of rank n determines a morphism [a] : * — BO,, in the ho-
motopy category of simplicial presheaves for the étale topology on Sp(k),
and hence determines a map

o H(BO,,Z/2) — H},(k,Z/2)

taking values in the mod 2 Galois cohomology of k. The generators HW;
get mapped to elements HW;(«) € H{,(k,Z/2) which are called the higher
Hasse-Witt invariants of the form «.

It is easy to see that HW;(«a) is induced by the determinant O, — Z/2, and
that HWs(a) coincides with the classical Hasse-Witt invariant. The higher
Hasse-Witt invariants were originally defined by Delzant, but not in this form.

The foregoing will make more sense in the presence of the definition of the
cohomology of a simplicial presheaf. Explicitly, if X is a simplicial presheaf on
C and A is an abelian presheaf on that site, then one defines the cohomology
group H™(X, A) by setting

H™(X, 4) = [X, K (4,n)]

This definition specializes to all geometric cohomology theories of schemes (use
the constant simplicial presheaf associated to a scheme) and simplicial schemes
(use the simplicial presheaf represented by the simplicial scheme) [13]. In par-
ticular, in the example above,

H,(BO,,Z/2) = [BO,, K(Z/2)]

where the morphisms are in the homotopy category of simplicial presheaves on
the étale site for k.

The definition of the cohomology groups must be held in stark contrast to
the homology sheaves of a simplicial presheaf X: if A is a presheaf of abelian
groups on C, then one defines the nt* homology sheaf H,, (X, A) by

H,(X,A) = H,(ZX ® A),

where the object on the right is the sheaf associated to the n!* homology sheaf
of the simplicial abelian presheaf ZX ® A.

Homology sheaves and cohomology groups are related by a universal coeffi-
cients spectral sequence

EPY = Ext?(H,(X,7), A) = HPT(X, A).

11



It follows from a standard comparison argument that any map f : X — Y
which induces an isomorphism in all homology sheaves must also induce an
isomorphism cohomology groups. Similar statements apply to ¢-torsion coeffi-
cients, where £ is a prime: if f induces an isomorphism of sheaves H, (X, Z/() =
H,.(Y,Z/¢) then f induces an isomorphism in all cohomology groups with ¢-
torsion coefficients.

Example 10. Suppose that k is an algebraically closed field of characteristic
not equal to £, where £ is some prime number. The general linear presheaf of
groups Gl is defined by Gl = lim Gl,, in the presheaf category on the smooth
étale site (Sm|y)et. One interpretation of the Gabber rigidity theorem says that
the adjunction map e : I*BGI(k) — BGI of simplicial presheaves induces an
isomorphism
H.(I'*BGl(k),Z/¢) = H.(BGIl,Z/?)

in all mod ¢ homology sheaves for the étale topology. It follows that the map €
induces cohomology isomorphisms

H*(BGI,Z,/0) = H?,(D* BGI(k), Z/().

On the other hand, the algebraically closed field &k has trivial étale cohomology
groups, so that there are isomorphisms

H(T*BGI(k),Z/) = H*(BGI(k),Z /().

We have therefore identified the mod £ cohomology of the discrete group GI(k)
with étale cohomology HY (BGI,Z/{), which is well known to be a polynomial
ring Z/{[cy,ca,...] in Chern classes which is invariant of the underlying alge-
braically closed field. Suslin’s calculation

7/t ifn=2ii>0,

Ko (k,7.)0) =
(k. 2/6) {0 ifn=2i+1,i>0,

follow pretty quickly.

This last example was one of the early calculational successes of the homo-
topy theory of simplicial presheaves. It also illustrates an idea, namely rigidity,
which has proven to be quite robust:

1) There are comparison maps € : ['*BG(k) — BG associated to any reduc-
tive algebraic group over G, and the generalized isomorphism conjecture of
Friedlander and Milnor says that the discrete and étale cohomology with
mod £ coefficients for the classifying spaces of such groups G should be an
isomorphism. The rigidity program for proving the conjecture is staring
at you: show that the map I'™*BG(k) — BG induces an isomorphism in
mod £ étale homology sheaves (it’s just too bad that it hasn’t worked yet
outside of stable cases).

2) A rigidity argument like the one displayed above is at the heart of the
proof of the Suslin-Voevodsky theorem [37] which asserts that the singular
cohomology of a scheme coincides with its étale or qfh cohomology if the
coefficient sheaves are finite and constant.

12



2 Presheaves of spectra

Suppose that A is a presheaf of abelian groups on C. The Eilenberg-Mac Lane
objects K (A, n) naturally organize themselves into a presheaf of spectra, which
will be called H(A). Specifically, this structure includes the full sequence of
pointed simplicial presheaves

K(A,0), K(4,1), K(A,2), ...

and maps of pointed simplicial presheaves S' A K(A,n) — K(A,n + 1) which
are induced by shifting the underlying chain complexes, as usual. Here, S! is
the simplicial circle A'/OA!, identified with a constant simplicial presheaf —
Voevodsky denotes this object by S} [40].

More generally, a presheaf of spectra X on the site C consists of pointed
simplicial presheaves X™ n > 0, and maps of pointed simplicial presheaves
o:S'AX" — X" which are sometimes called bonding maps. Really what
we’re doing here by initiating the study of these objects is taking the Bousfield-
Friedlander model for the stable category [2], and adapting it to the presheaf
context: a spectrum, for us, will be just a sequence of pointed simplicial sets
and bonding maps displayed according to the recipe above, and the category
of (Bousfield-Friedlander) spectra will be denoted by Spt. From this point of
view, a presheaf of spectra X on the site C is a functor X : C°? — Spt.

A map f: X — Y of presheaves of spectra is the obvious thing; it consists
of maps f : X" —» Y™ n > 0, of pointed simplicial presheaves which respect
structure in the obvious sense that the diagrams

SI AX" 7 /X'n—i—l

Sl/\a\ﬂ:‘ L;l
i i

StAY? ——N

commute. Alternatively, f is just a natural transformation between the functors
X,Y : C°? — Spt. Ishall write Spt(C) for the category of presheaves of spectra
on the site C.

There are adjoint functors

Spt aa—/4pt(C)
I,

which are induced by the global sections functor I', and the constant presheaf
functor I'*, as the notations suggest. As in the case of simplicial presheaves,
one often confuses a spectrum with its associated constant presheaf of spectra.
Thus, for example, one writes S = I'*S for the constant object associated to
the sphere spectrum S. This presheaf of spectra, in all sections, consists of the
pointed simplicial sets

SO St STASY ...
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with bonding maps given by identities.

As a matter of convenience, one writes S™ = S*A--- A ST (n-fold smash); it
is standard to call this object the simplicial n-sphere.

The weak equivalences that define the stable homotopy theory of presheaves
are much easier to define than weak equivalences of simplicial presheaves, essen-
tially because there is no ambiguity about the choice of base point. Explicitly,
a presheaf of spectra X has presheaves 7, X, n € Z, of stable homotopy groups,
and these presheaves have associated sheaves 7, X of stable homotopy groups.

Definition 11. A map f : X — Y of presheaves of spectra on C is a (local)
stable equivalence if it induces isomorphisms 7, X 2 7Y in all associated sheaves
of stable homotopy groups.

Definition 12. A cofibration is a map i : A — B of Spt(C) such that

1) the map i : A° — B° is an inclusion (aka. cofibration) of simplicial
presheaves, and

2) all maps
(Sl A B™) Usinan) At Bn+1, n >0,

are cofibrations of simplicial presheaves.

Definition 13. A global (or stable) fibration is a map p: X — Y of presheaves
of spectra on C which has the right lifting property with respect to all maps
which are simultaneously cofibrations and local stable equivalences.

Now here’s the first main result [14]:

Theorem 14. With the definition of local stable equivalence, cofibration and
global fibration given above, the category Spt(C of presheaves of spectra on a
Grothendieck site C satisfies the axioms for a proper closed simplicial model
category.

The associated homotopy category Ho(Spt(C)) is the stable homotopy category
associated to the site C and its underlying topology.

The statement of the Theorem implies the existence of a well-behaved func-
tion space hom(X,Y) for presheaves of spectra X and Y. This is the usual
thing: its set hom(X,Y"), of n-simplices is the set of all maps X A A} = Y
of presheaves of spectra, where A’ is the simplcial set A™ with a disjoint base
point attached.

There are some things that you just get for free out of this result, along
with some knowledge of the ordinary stable homotopy category, since all maps
X — Y of presheaves of spectra which induce stable equivalences X (U) — Y (U)
in each section must also be local stable equivalences. Here are some of the more
striking examples:

Example 15. Suppose given a finite list of presheaves of spectra X;, 1 <1 < n.
Then the canonical map



is a local stable equivalence, because the corresponding property holds for
ordinary spectra. Among other things, this means that the stable category
Ho(Spt(C)) has an additive structure.

Example 16. Fibre and cofibre sequences coincide in the stable category of
presheaves of spectra, just as fibre and cofibre sequences coincide in the ordinary
stable category. The point is that the proof of the result in the ordinary stable
category involves natural constructions, and hence passes to the category of
presheaves of spectra.

The proof of Theorem 14 involves a stabilization construction which is very
similar to the one met in real life [2], except that one has to be careful to use
globally fibrant models on the simplicial presheaf level. More explicitly, if X is a
presheaf of spectra, then one first constructs a level fibrant model j : X — Xy;
this map consists of inductively constructed globally fibrant models X" — X7
in all levels. Then there is a presheaf of spectra QX with a natural map
n: Xy — QXy such that the simplicial presheaf QX7 is the filtered colimit of
the inductive system

n+1 2 vn+2
XJ’}—>QXf —>QXf —

arising from the adjoints of the bonding maps for X. The indicated loop spaces
make homotopical sense (Y = hom,(S!,Y), in general and as usual) because
all of the simplicial presheaves V" are globally fibrant. Finally (this is impor-
tant, and is a standard source of errors) a filtered colimit of globally fibrant
objects might not be globally fibrant, so we have to take a level fibrant model
of the presheaf of spectra () X¢. The stabilization of X is then the composite

X—)Xf —>QXf — (QXf)f.

One can assume that this map is natural in X, because the small object con-
structions by which we construct globally fibrant models are all natural.

In fact, the composite map X — (QXy); is a fibrant model for X: it
induces an isomorphism in stable homotopy groups (this is obvious, because
we're stabilizing almost in a standard way in sections), and the object (QXy)
is globally fibrant in the sense of Theorem 14.

The observation that this thing is globally fibrant is an outcome of the
proof of Theorem 14, which follows a formal script as outlined by Bousfield and
Friedlander. One of the outcomes of that proof is a formal recognition principle
for global fibrations of presheaves of spectra:

Lemma 17. A map p: X — Y is a global fibration of presheaves of spectra if
and only if it satisfies the following two properties:

1) all constituent mapsp: X™ — Y™, n > 0, are global fibrations of simplicial
presheaves, and
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2) all diagrams of simplicial presheaf maps

X RX7})y
p p*ﬂ:1
v vy,

are homotopy cartesian diagrams in the category of simplicial presheaves.
It’s an easy exercise to draw the following consequence:

Corollary 18. A presheaf of spectra X is globally fibrant if and only if all level
objects X™ are globally fibrant simplicial presheaves and all adjoint bonding maps
X" = QX" are local weak equivalences.

In other words, a globally fibrant presheaf of spectra is an {2-spectrum object
for the category of presheaves of spectra on the site C. It is in particular a
presheaf of 2-spectra in the usual sense, but it has more structure arising from
the topology on C. Globally fibrant presheaves of spectra are really the central
mystery of the subject, as they encode the notion of descent.

Definition 19. A presheaf of spectra X on the site C satisfies descent if some
(and hence any) globally fibrant model j : X — Z induces stable equivalences
j:X(U)— Z({U), U € C, of ordinary spectra in all sections.

This is just an example of a very general notion: we can talk , for example,
about simplicial presheaves that satisfy descent, or presheaves of groupoids G
such that BG satisfies descent. The modern definition of stack is a presheaf of
groupoids that satisfies descent in this sense.

We care about presheaves of spectra X that satisfy descent because we can
often explicitly calculate their presheaves of stable homotopy groups 7, X, mean-
ing that we can compute the groups 7, X (U) in all sections. This is usually done
with cohomological techniques that depend on phenomena such as the following
example:

Example 20. Suppose that A is an abelian sheaf on the étale site et|s for
some scheme S. Let H(A) be the corresponding Eilenberg-Mac Lane presheaf
of spectra, and take a globally fibrant model j : H(A) - GH(A). In fact, to
make the construction, it is enough to take a level fibrant model H(A); for
H(A) since we'’re starting with a presheaf of Q-spectra.

By definition,

mGH(A)(S) = limy 2 nGE (4,0)(S),

and we know from before that there are isomorphisms

HYI(S,4) if0<j<n,

T GK(A,n)(S) = {O ifjon
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Then the object GH(A)(S) is an Q-spectrum by construction, so that there are
isomorphisms
H'(S,4) ifi<o,
mGH(A)(s) = Her (5 TS
0 ifi>0.

I chose to work on an étale site to make the example more real, but this
calculation works in complete generality: if B is an abelian presheaf on a site
C and GH(B) is a globally fibrant model for the corresponding Eilenberg-Mac
Lane presheaf of spectra, then there are isomorphisms

—q o
T .GH(B) = {H (¢.B) ifi<0,
0 ifi>0.

The calculations just made are the basis of the construction of the descent
spectral sequence for the stable homotopy groups m.GF of a globally fibrant
model GF of a presheaf of spectra F'.

Again we’ll introduce some assumptions to make the construction a little
more real: suppose that F' is a presheaf of connective spectra on the étale site
et|s of a decent scheme S. The connectivity assumption means that 7;F = 0
for i < 0, or that the stable homotopy group sheaves of F' vanish in negative
degrees. Ordinary spectra E have natural Postnikov towers P, E [19], and so
the presheaf of spectra F' has a Postnikov tower

il i

= _lt:P,F

il ikl
BF —=/¢PF

iR il
F by F ——Id P, F

The Postnikov tower splits off stable homotopy groups in the usual sense, and
we have taken globally fibrant models P, F — GP,F of all of the P,F in such
a way that the map GP,,41 F — GP,F are stable fibrations having fibres of the
form GK (mp+1F,n + 1). It’s not hard to see that the inverse limit

@GPnF

is globally fibrant. It, however, more difficult to conclude that the map

F = mGP,F
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is a local stable equivalence; this usually requires an assumption of a uniform
bound on étale cohomological dimension in all sections, but this is often met in
decent geometric examples provided that the sheaves of stable homotopy groups
are torsion sheaves of some kind. If that works, the inverse limit of the tower of
fibrations

is stably equivalent to GF'(S), and a suitably re-indexed Bousfield-Kan spectral
sequence [38], [19] has the form

E' = H3(S, 7 F) = m_,GF(S). (4)

The convergence has to be taken with a grain of salt: typically (again) a uniform
bound on étale cohomological dimension with respect to the sheaves 7, F' is
required to make it work. The spectral sequence (4) is called the descent spectral
sequence for F', or for GF. One often sees it referred to as the étale cohomological
descent spectral sequence, or as the topological descent spectral sequence.

Example 21. Suppose that K/¢ is the mod ¢ K-theory presheaf of spectra
on the étale site et|s, where ¢ is a prime which is distinct from the residue
characteristics of S. Suppose that S is otherwise well behaved as a geometric
object [38], and in particular has finite Krull dimension d. Take a stably fibrant
model j : K/ — GK/{. Then GL/{(S) is a variant of the étale K-theory
spectrum of S, and has descent spectral sequence

E;’t = H:t(S, ﬁtK/g) = WtstK/Z(S)'

The étale sheaves 7, K /¢ are known, by Suslin’s calculation of the mod ¢ K-
theory of algebraically closed fields: the sheaf ;K /¢ is the twist ,u?z’t in even
positive degrees, and is 0 elsewhere.

The Lichtenbaum-Quillen Conjecture can be viewed as the assertion that
the canonical homomorphism

is an isomorphism for i > d — 1 for such schemes S.

In the case where S is defined over a field F' containing a primitive ¢" of
unity ¢, “the” Bott element is easily described as an element of o K/¢(F) that
maps to ¢ under the surjection

oK JU(F) — Tor(Z/¢, F¥)

(The notation is a bit pedantic: the group m2K/¢(F') is otherwise known as
Ky(F,Z/f) and m K (F) = K;(F) = F*.) In more general cases, some care has
to be taken — see the “Gang of Four” paper [5].

One can show that the groups m;GK/{(S) are Bott periodic for i > —1 [19].
Inverting multiplication by the Bott element 3 gives a spectrum GK /¢(S)(1/p),
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which is stably equivalent to the étale K-theory spectrum of Dwyer and Fried-
lander [4]. The canonical map GK/¢(S) — GK/{(S)(1/8) induces an isomor-
phism in stable homotopy groups in degrees i > —1, under the standard as-
sumptions. One might also want to be careful about the coefficients and insist
that ¢ # 2; these issues have been treated in some detail in the literature [38].

Etale K -theory is an example of a generalized étale cohomology theory, or
more broadly, of a a generalized sheaf cohomology theory. Quite generally, if F
is a presheaf of spectra on a site C, take a globally fibrant model j : FF — GF
and define

H'(C,F) =n_;T.GF, i€ Z.

All sheaf cohomology theories are examples of generalized sheaf cohomology
theories: in the present notation, we have already seen that there is a natural
isomorphism

H(C, H(A)) = H'(C, A).

for all abelian presheaves A. This isomorphism also explains the sign change in
the defining index: the idea is to make the notation for the generalized theories
compatible with the notation for ordinary sheaf cohomology.

Other examples of these theories abound, particularly in algebraic K-theory,
where there is a flavour of K-theory for each of the standard geometric topolo-
gies, and interesting descent theorems (or conjectures) which relate these theo-
ries to algebraic K-theory itself. In particular, we have

1) Zariski K-theory arising from the Zariski topology, which coincides with
ordinary K-theory for regular schemes by the Brown-Gersten descent the-
orem [3], and

2) Nisnevich K-theory arising from the Nisnevich (or cd) topology, which
coincides with the K-theory of regular schemes by the Nisnevich descent
theorem [32] (an unstable version of Nisnevich descent is the starting point
for motivic homotopy theory [31]).

Finally, in this language, Thomason’s descent theorem [38], [19] asserts that
the Bott periodic K-theory presheaf of spectra K/£(1/3) satisfies descent for
the étale topology in the same range of examples (including the primes £) for
which the Lichtenbaum-Quillen conjecture is believed to hold. In other words,
if you take the mod ¢ K-theory presheaf of spectra K /¢ and formally invert
multiplication by the Bott element, you end up constructing a model for étale
K-theory. The overall moral is that descent is everywhere.

I want to close this section by mentioning some other general developments
that could not be treated at length here:

1) There is a homotopy theory (ie. model structure) for the category Spt™(C)
of presheaves of symmetric spectra on an arbitrary small site C, such
that the associated homotopy category is equivalent to the stable cate-
gory Ho(Spt(C)) of presheaves of spectra on C [20]. The point of the
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construction, as for the case of ordinary symmetric spectra [11], is that
the category of presheaves of symmetric spectra has an internal symmetric
monoidal smash product.

2) Suppose that S is a scheme of finite Krull dimension, and let (Sm|s)nis
denote the site of smooth S-schemes, equipped with the Nisnevich topol-
ogy. One can construct the unstable motivic homotopy category [31] from
the category s Pre((Sm|s)nis) by formally contracting the affine line Ak
over S [9]. One can then go on to formally invert smashing with an object
T which is compact in a suitable sense (eg. T = S, G,,,P!) to pro-
duce a motivic stable category Sptr((Sm|s)nis) of T-spectra [21]. In the
case T = P!, we obtain the motivic stable category of Morel and Voevod-
sky. There is a corresponding category Spt7((Sm|s)nis) of symmetric
T-spectra which is defined by analogy with the constructions in [11] and
[20]. This category is a model for the motivic stable category of T-spectra
if the cyclic permutation (1,2,3) acts trivially on the three-fold smash
T"3; examples include T = S',P'. Again, this category of symmetric
spectrum objects has an internal symmetric monoidal smash product, so
there is a good theory of smash products for the motivic stable category.

3 Profinite groups

For our purposes, a profinite group G = {G;} is a finite group-valued functor
G : I — Grp with ¢ = G;, which is defined on a small left filtered category
I and such that all morphisms ¢ — j of I are mapped to surjective group
homomorphisms 7 : G; = Gj.

T’ll recall what it means for the index category I to be left filtered. There
are two conditions:

1) any two objects 4,7’ of I have a “common lower bound”, meaning that
there is an object 4" and morphisms

it

,L'I

2) for any two morphisms «, ' : i — i’ there is a morphism e : i — i such
that a-e=a'-e

As a result (and we will use this all the time) colimits of contravariant functors
defined on I are filtered in the usual sense.

Although it’s a little crime to do so, I'm going to confuse notations by writing
G = 1&1 G;. The main reason for assuming that the all transition homomor-
phisms é’l — G in the profinite group G is that all induced homomorphisms
G — G; are surjective. I shall write H; for the kernel of this homomorphism,

20



which can be viewed either as a subgroup of the inverse limit or a profinite
group defined on the left filtered category I | i whose objects are all morphisms
j—iin I.

Example 22. The central examples for us will be the Galois group G of Galois
field extensions F'/K of a fixed field K. By this we really mean the collection
of all Galois groups G(L/K) of the finite Galois extensions L within F. Keep
in mind that nobody has said anything about F' being separably closed.

A discrete G-set X (for a profinite group G) is a set equipped with G-action
G x X — X which factors through an action by one of the quotients G; in the
sense that there is a commutative diagram

G x

-

GiXX—)(/:#

There is a corresponding category of such gadgets, consists of the discrete G-
sets and all G-equivariant maps beteen them; this category will be denoted by
G- Setd.

A finite discrete G-set is a discrete G-set X which (you guessed it) happens
to be finite. We write G — Sety for the full subcategory of G — Set, on such
finite objects. It is not hard at all to see that a finite discrete G-set X can be
identified up to equivariant isomorphism with a finite disjoint union of the form

| | Gi/Ni.

where N; is a subgroup (not necessarily normal) of the corresponding group
G;. Observe that the one point set * with trivial G-action is a member of this
category, and is terminal.

The category of finite discrete G-sets has the structure of a Grothendieck
site, where the covering families {¢; : X; — Y} are finite lists of G-equivariant
maps ¢; : X; — X such that the induced morphisms LI X; — Y are surjective.

A sheaf F': (G — Setgq)°? — Set is a contravariant functor (or presheaf)
such that the induced map

Well, a sheaf had better take finite disjoint unions to finite products, and the
indentification
F(Gi/N;) = F(Gy)™

is a consequence of the fact that the covering morphism G; — G;/N; determines

a coequalizer
Gi X Nz = Gl XGi/Ni Gl = Gl — G,/N,

in the category of finite discrete G-sets.
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Write Shv (G — Setyy) for the category of sheaves on the site of finite discrete
G-modules. There is an equivalence of categories

L
Shv (G — Setqr) aq /('/; — Mod,
R

The notation G — Mody refers to Serre’s category of discrete G-modules: these
are sets equipped with a G-action G x X — X such that X is a filtered colimit
of fixed points in the sense that

X = lim X .
-

Recall that H; is defined to the kernel of the group homomorphism G — G;.
The functors L and R are easy to describe: if F' is a sheaf then

LF = liy F(Gy),

while
RX =homg(,X)

is the functor represented on the category of G-sets by X.

Example 23. Every discrete G-set X is a discrete G-module, since it’s fixed
by some H;. The object therefore represents a sheaf X = hom( , X) on the site
G — Set g of finite discrete G-modules. In particular, every object of G — Setgf
represents a sheaf.

Here are some remarks:

1) The topos G — Mody of discrete G-modules has enough points: there is
a functor
u* : G — Mod, — Set

which is defined by forgetting the group structure, so that v*X is the set
underlying X. Colimits and finite limits are formed in the category of
discrete G-modules as they are in the set category, so it’s easy to see that
the functor u* is faithful and exact. That’s fine, but the wierdness here is
that there’s only one stalk.

2) For a presheaf X on the site of finite discrete G-modules, the object LX
is still defined and is a discrete G-module, and the canonical map X —
RL(X) can be identified with the associated sheaf map. The map itself is
a little complicated to describe, but reduces in sections corresponding to
G;/N; to the composite

X(Gi/N;) = X (G)™ = lim X (G)™ ™ = hom(Gi/N;, LX),

Jj—

22



3) There is an isomorphism
[.F=LF¢

for all sheaves F'. Recall that the global sections I', F' of F' is given by
taking the inverse limit of F' over the objects of the underlying site. Then

one has
LFY =lim F(G;)¥ = lig F(G;)" = F(*)

The topos G — Mod, (aka. Shv(G — Setgs) is often called the classifying
topos for the profinite group G.

A well known theorem of Giraud [26], [33] asserts that if a category satisfies
a certain list of exactness properties, then it must be equivalent to the category
of sheaves on some Grothendieck site. Furthermore, the site itself is defined
on a generating family in a completely explicit way. The category of discrete
G-modules for a profinite group G, and the identification with sheaves on the
site of finite discrete G-sets is a result of the constructions of Giraud’s theorem.

Giraud’s theorem is a very useful tool for attaching explicit sites to toposes.
It applies, in particular, to all flavours of categories of sets or spaces admitting
actions by a group G (topological, discrete, sheaf theoretic, etc.) — these
categories are the classifying toposes for the corresponding group objects.

4 Generalised Galois cohomology theory

We shall continue to talk about general profinite groups G = {G;}, as in the
previous section.
The covering map G; — * determines a Cech resolution

G,’QQ G,XG,&@EG,XGzXGz

"

*

of the terminal object * in the finite discrete G-module set G — Modgs. This
simplicial object of left G-modules can be identified with the sheaf-theoretic
Borel construction G;x ¢, EG; arising from the action of G; on itself by right
multiplication. The notation G;X g, EG; means that this object is the sheaf
associated to the obvious presheaf G; x ¢, EG; — this distinction can be a very
subtle point.

Suppose that B is an abelian presheaf on G — Setgr. The cochain complex
of presheaf maps hom(G; X, EG;, B) is a cosimplicial abelian group with n-
cochains

hom((G; X, EG;)n, B) = II B@).
*(g—l*m*(g—n*

The simplicial presheaf maps G; xg, EG; — G; Xg, EG; arising from the
transition homomorphisms G; = G; induce cochain complex maps

hom(G, XG; EG“B) e hom(Gj X a5 EG],B)
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and we define the Cech cohomology groups H*(G, B) of G with coefficients in
the abelian presheaf B by

H*(G,B) = lim H* hom(G; X, EG;, B) = lim H*(G;, B(Gy))
G,‘ Gi

If A is an abelian sheaf on G — Setgy, then there are isomorphisms

91 gn 91 an

where (from the last section) H; is the kernel of the canonical surjection G — G;.
It follows there are isomorphisms

lig H* hom(G; X, EG;, A) = lim H* (G, LAH) = H*(G,LA)

In other words, the Cech cohomology groups H*(G, A) of G with coefficients
in the abelian sheaf A coincide up to isomorphism with the traditional Galois
cohomology groups H*(G, LA) of G with coefficients in the discrete G-module
LA associated to the sheaf A.

Now here’s the central fact about this construction:

Lemma 24. Suppose that B is an abelian presheaf on the site G — Setgyr, and
suppose that its associated sheaf B is 0. Then H*(G,B) = 0.

Proof. A n-cochain in hom(G; xg, EG;, B) is a tuple (a,) of elements a, €
B(G;), where the index o corresponds to the set of n-tuples of elements in
G;. The associated sheaf B is 0, so there is a covering X, — G; such that
a, — 0 € B(X,). It follows that there is a transition homomorphism G, = G
in the profinite group G such that o, — 0 € B(G;,). Pick j > j, for all o.
Then the cochain a maps to 0 in

II B@G).

op
(BG2),,

This is true for all cochains, so the filtered colimit of complexes that defines
H*(G, B) in all degrees is 0. O

Here’s an easy corollary:

Corollary 25. Suppose that B is an abelian presheaf. Then the associated sheaf
map B — B induces an isomorphism

H*(G,B) = H*(G, B).

Proof. The kernel and cokernel of the map B — B are abelian presheaves whose
associated sheaves are Q. O
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Write H*(G, A) for the sheaf cohomology of the topos G — Mod, of dis-
crete G-modules with coefficients in an abelian sheaf A. There are, of course,
isomorphisms

H*(G,A) = H'T.I* = H*T*(x)

where A — I* is an injective resolution of the abelian sheaf A.
The following result says that sheaf and Cech cohomology coincide:

Proposition 26. There is an isomorphism
H*(G,A) = H*(G, A)
which is natural in abelian sheaves A.

Proof. Let A — I* be an injective resolution of A. Then the simplicial presheaf
maps G; Xg, EG; — * and the injective resolution together determine natural
isomorphisms

) @A) . (B)
H*(G,A) & H*(G,I*) = H*(G, A).

The cohomology groups H*(G, I*) arise from a filtered colimit of bicomplexes

I re

91 an

in an obvious way. The isomorphism labelled (A) is a consequence of Lemma
24, since the cohomology presheaves H*I™* satisfty HPI* = 0 for p > 0. The
isomorphism (B) is induced by the collection of local weak equivalences

Gi XaG; EGZ — k.

One uses the fact that all functors hom( , I?) are exact on the sheaf category
since the abelian sheaves I” are injective. O

Example 27. Suppose that k is a field, and let G = Gal(ksep/k) be its absolute
Galois group, where k,., denotes the separable closure of the field k. There is
a “site isomorphism”
et|k i) G — Sety

which is defined by taking a finite étale map U = U Sp(L;) — Sp(k) to the
set homy, (Sp(ksep),U). The notation means that U is a finite disjoint union of
spectra of separable extensions L;/k. Any abelian sheaf A for the étale topology
on Sp(k) therefore corresponds uniquely to an abelian sheaf on the site G—Set 4
of discrete finite G-sets for the Galois group G, and there is an isomorphism

H:t(k,A) = H*(GaA)

which is induced by the site isomorphism and the identification of sheaf coho-
mology with Cech cohomology given by Proposition 26.
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These ideas have analogs for presheaves of spectra F' on the site G — Set ;.
There is a stable equivalence

hom((G; xg; EG;)+, F) ~ holim ¢, F(G}),

so one is entitled to define the generalised Cech cohomology groups H"(G, F)
with coefficients in the presheaf of spectra F' by

EW(G,F):lng_nQohm(hPKGJ

for n € Z.
Here’s a key point: if F' is globally fibrant, then the local weak equivalence
G; Xg, EG; — * induces a stable equivalence

hom, ((G; xa; EG;)4,F) = hom, (S, F) = F(x).
In particular, there is a stable equivalence
Qolim ¢, F(G;) =~ F(%).

This is the finite descent property for globally fibrant presheaves of spectra on
the siteG — Setgy.
There are two consequences:

1) There is an isomorphism
H* (G, F) =2 H*(G, F)
if F'is globally fibrant. Recall that H" (G, F) & m, F(*) in this case.

2) HE— Fisa globally ﬁbra}nt model for a presheaf of spectra E then the
induced map H*(G, E) — H*(G, F) can be identified with a morphism

H*(G,E) = H*(G, E)

from the generalised Cech cohomology theory associated to E to the gen-
eralized sheaf cohomology theory associated to E.

Remark 28 (Warning). The map
H*(G,E) — H*(G, E)

relating generalised Cech and generalised sheaf cohomology is not known to be
an isomorphism in general. We have effectively seen that it is an isomorphism
when E is an Eilenberg-Mac Lane spectrum object K (A, n). Both constructions
see fibre sequences so it follows that the map is an isomorphism if E has only
finitely many non-trivial presheaves of homotopy groups ... but that’s it. It is
even not known that H*(G, E) = 0 in the presence of a local stable equivalence
FE — %
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In general, if F' is a presheaf of spectra on G — Sety and G is one of the
quotients (components) of the profinite group G, then the right multiplication
maps -g : G; = G; by elements g € G; determine an action

Write g = (-g)* : F(G;) — F(G;). The finite collection of maps g : F(G;) —
F(G;) of spectra can be added up in the stable category to produce the norm
map N : F(G;) = F(G;); this map is defined to be the “composite”

G) = [ F@) &\ FG) 5 FG).
9€eG g€eG

in the stable category. The notation here is a little bit strange, although you
find it in the literature [19]: the map A is not a diagonal, but is rather defined
by the requirement that all diagrams

commute, and is therefore multiplication by the group elements in the corre-
sponding factors.
If g, h are elements of G;, then there is a commutative diagram

F(Gy) ——#(G:)
g h

il il
F(G;) T/F(Gi)

in the stable category (actually much more care is required), and so the norm
map has a factorization

F(G) $/¢(%

-

hOllll! GiF(Gi)

/!lolim GiF(Gi)
h
through a map
Ny, : hOllll!(;lF(Gl) — OlimGiF(Gi)

called the hypernorm.
Recall that the map
F(x) = holim ¢, F(G;)
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is a stable equivalence if F' is globally fibrant; in that case the composition
F(Gy) — holing ¢, F(Gy) % holim ¢, F(G;) < F(x)

defines an abstract transfer map T : F(G;) — F(x). This transfer map has the
usual list of good properties (including a projection formula) where it is defined.

Assumption 29. We're now going to restrict to the cases of presheaves of
spectra F' which are bounded below in the sense that the presheaves of stable
homotopy groups m; F' vanish for ¢ below some number N, and such that the
cohomological dimension of the profinite group G with respect to all sheaves
7. F is bounded above by some number M. This means that H/(H,7;F) = 0
for j > M for all closed subgroups H of G. Saying that H is closed means
in practice that H is the pullback in G of some finite subgroup of some finite
quotient G;.

Example 30. The examples of such profinite groups to keep in mind arise from
Galois groups of fields k, when the étale sheaves 7, F' are f-torsion where / is a
prime not equal to either 2 or the characteristic of k, and k has finite transcen-
dance degree over some field N containing a primitive £** root of unity (;, and
such that either c¢d¢(N) < 1 (eg. N = F,((,) a finite field) or cdj (N (pe)) < 1
(eg. Q(¢¢)). These are special examples of fields k& for which Thomason’s de-
scent theorem for Bott periodic K-theory holds (and is more easily described),
and for which the Lichtenbaum-Quillen conjecture should hold.

Under these assumptions, all of the descent machinery works:

1) If F is a globally fibrant presheaf of spectra on G — Sety the Galois
cohomological descent spectral sequence

Ey' = H*(G, 7, F) = m_ s F(x) = H*7Y(G, F)

converges. If G is the absolute Galois group of one of the fields in the list
above, then this spectral sequence has the form

Ey' = H3\(k, 7 F) = m_ s F(k) = H ' (k, F).

2) Suppose that FF — P,F is a Postnikov section of F, and consider the
composite

F - P,F 5 GP,F

where j is a globally fibrant model. The presheaf of spectra GP,F has
only finitely many non-trivial presheaves of stable homotopy groups on
account of the global bound on cohomological dimension, and the fibre
of the composite map F — GP,F has presheaves of stable homotopy
groups which are 0 below some fixed integer, in all sections. In fact, one
can show that the presheaf maps m;F' — m;GP,F are isomorphisms for
i < n — M. This gives a technique for approximating the presheaves of
stable homotopy groups of F' on presheaves of spectra having only finitely
many non-trivial presheaves of stable homotopy groups.
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3) Suppose that E is a presheaf of spectra whose presheaves of stable ho-
motopy groups 7, E satisfy the assumptions above. The n'* Postnikov
section £ — P, FE induces a comparison diagram

Hi(G, E) —/i(G, P,E)

"

Hi(G, E) —/Mi(G, P,E)

We have just seen that the map H!(G, F) — H!(G, P, E) is an isomorphism
for i > M —n. It follows that Hi(G, P, E) is isomorphic to Hi(G, E) in the
same range. (One should very quickly revert to interpreting this in terms
of actual stable homotopy groups of spectra, because the sign change is
much too confusing).

Now we’re in position to believe a pretty good result:

Theorem 31 (Tate Theorem). Suppose that F' is a globally fibrant presheaf of
spectra on the site G —Setqr, and suppose that the presheaves of stable homotopy
groups of F' are bounded below and that G has finite cohomological dimension
with respect to all sheaves 7. F of F. The the hypernorm map

Ny, + holim ¢, F(G;) — holim ¢, F(G;) ~ F(x)
is a stable equivalence for all finite quotients G; of G.

The Tate Theorem is due to Thomason [38], but appeared for the first time
in [19] in its present form. Its proof of is an inductive argument that starts with
the Tate lemma that asserts the norm map induces an isomorphism

Ho(Gi, A(Gy)) = H°(Gi, A(G1))

if A is a discrete abelian G-module of cohomological dimension 0 [34]. This
gives the case of the Theorem for presheaves of spectra GH(A) associated to
such sheaves A. Both sides of the comparison respect fibre sequences, allowing
one to prove the case corresponding to presheaves of spectra GK(B,n) where
G has bounded cohomological dimension with respect to the abelian sheaf B.
A second induction involving fibre sequences allows one to verify the statement
for all globally fibrant models GP, F of finite Postnikov sections, and then one
finishes the proof by using the approximation technique given in item 2) above.

In the cases to which it applies, the Tate Theorem give rise to the Tate
spectral sequence

EYY = Hy(Gi,my F(Gi)) = TpigF (%)

Thus, for the sort of base field k listed in Example 30, if L/k is a finite Galois
extension with Galois group G and F' is a globally fibrant presheaf of spectra on
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the étale site et|; which satisfies the usual assumptions, then the Tate spectral
sequence has the form

Eg’q = Hyp(G,myF(L)) = mpiaF(K) (5)

We shall switch to this context for the remainder of this paper.

5 Thomason’s descent theorem

The Tate spectral sequence (5) and low dimensional calculations are the basis
for the following result of Thomason. For the statement, we need to know that
if L/k is a finite Galois extension of a field k with Galois group G, then the
K-theory transfer map i : K/¢(L) — K/{(k) is G-equivariant for the obvious
action of G on K/¢(L) and the trivial action on K/{(k). It therefore induces a
map of spectra

in : holim aK /L) = K/l(k)
which is called the hypertransfer.

Theorem 32. Suppose that k is a field satisfying the list of assumptions in Fx-
ample 80, and suppose that there is a Galois extension N/k such that cdy(N) <1
and cdy(H) < 1 where H = Gal(N/k). Suppose that L/k is a finite Galois
subextension of N/k with Galois group G. Then there is an element

Ind(B) € 2 holim ¢ K'/{(L)

such that the homomorphism ip. : w3 holim ¢ K/¢(L) — mK/l(k) induced by
the hypertransfer maps Ind() to the Bott element € mo K /l(k).

The element Ind(f3) is called an inductor for the Bott element 5. The punch-
line in the proof of Theorem 32 is the Tate Theorem for the globally fibrant
model of the suspended Moore spectrum S[2]/Z.

Now, in the same generality as the Theorem 32:

1) The Bott periodic K-theory presheaf of spectra K/¢(1/§) and its globally
fibrant model GK/{(1/8) are both modules over the mod ¢ K-theory
presheaf K /¢. In particular the composite

K/0(1/B)(L) A K/UL) = K[C(1/B)(L) = K/((1/B)(k)
has an adjoint

¢ K/0(1/B)(L) —» Hom(K/{(L), K/(1/B) (k)
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taking values in a function spectrum. Taking homotopy inverse limits for
the G-action induces a map ¢, which fits into the picture

holim ¢ K /£(1/6) () —*—Afolimm  Hom(K/¢(L), K/¢(1/5) (1))
Hom(holiny GKJH(L), KJE(1/B)E)
nd(B)

OV R — Mom(S[2], K/g 1/B)(k))

The indicated dotted arrow map is induced by multiplication by the Bott
element, by a projection formula argument. A similar picture exists for
the globally fibrant model GK/((1/5), and the two may be compared.

2) Consider the resulting comparison diagram

K/6(1/B)(k) ———Molim ¢ K /£(1/B8)(L) /s (1/8)(k)
’ Lﬂfﬂ g Lﬂfﬂ Ll{lfﬂ
GE/0(1/B)(k) ——Molim G K /€(1/)(L) ——/H2GK /0(1/B) (k)
(6)

The vertical maps arise from the choice j : K/¢(1/8) — GK/{(1/8) of
globally fibrant model, the maps labelled * are canonical maps into the
respective homotopy inverse limits, and both horizontal composites are
induced by multiplication by the Bott element.

Actually, this is all a bit of a lie: all of the objects in the diagram (6) are
supposed to be constructed from finite Postnikov sections of the presheaf of
spectra K /€(1/f) so that the following “Cech descent” arguments work — the
concept of approximation by finite Postnikov sections was invented to handle
exactly this point (and Thomason used to say that this was the hardest thing
in his proof) — but the display in front of you is already formidable enough.

3) We have a diagram (6) for all finite subextensions L/k of N/k, and
the idea is that the map j : K/¢(1/8) — GK/{(1/B) should induce
an isomorphism in generalized Cech cohomology theory for the Galois
group of N/k (this is the thing that requires a finite Postnikov section
instead). Then any element a € 7,GK/((1/5)(k) lifts to an element of
7. holim g K/€(1/B)(L) for some extension L, so that U is in the image
of . : MK /U(1/B)(k) = m.Q2GK/¢(1/B)(k). Similarly, if j.(y) =0 in
T GK/((1/p)(k) then i*(y) = 0in 73 holim ¢ K'/¢(1/B)(L) for some L, and
so fUa = 0. Multiplication by 8 has been inverted on K/¢(1/5) and on its
globally fibrant model, so it follows that j : K/¢(1/8)(k) = GK/¢(1/5)(k)
is a stable equivalence. This is also true if k is replaced by any of its finite
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extensions inside the field IV, because the same assumptions are at work.
One then can replace k£ by N, by a continuity argument.

4) The previous step effectively finishes the case of relative Galois cohomo-
logical dimension 1. One can show that the map j : K/((1/5)(k) —
GK/l(1/5)(k) for all fields satisfying the standard assumption by induct-
ing up through a Tate-Tsen filtration [19], [38], meaning via an induction
through steps of relative Galois cohomological dimension one.

These have been, grossly speaking, the steps in proving Thomason’s descent
theorem for Bott periodic K-theory for good fields (and at good primes). The
version of Thomason’s theorem that is given in [19, Thm 7.31] asserts the fol-
lowing;:

Theorem 33. Suppose that ¢ is a prime such that £ > 3. Suppose that X is
a scheme which is separated, Noetherian and regular, of finite Krull dimension,
and suppose that the ring T'(X, Ox) of functions on X contains 1/¢. Suppose
that each residue field k(x) of X is of finite transcendance degree over some field
ks such that cdi(ky) <1 or cdy(ky () < 1. Then the map

K/(1/p)(X) = GK/(1/5)(X)
s a stable equivalence.

The assumptions on the residue fields mean that the statement of Thoma-
son’s theorem holds for those fields: the requirement that the respective fields
contain a primitive £ root of unity disappears by a trick. The important thing
is the regularity assumption, which means that we are in the realm where the
Nisnevich descent theorem holds.

Here’s how to finish the proof. Take a globally fibrant model

j: KJU(1/B) = GK/U(1/B)

with respect to the étale topology on smooth schemes over X. This is a map of
presheaves of spectra, but now interpret it in the stable category associated to
the Nisnevich topology. The presheaf of spectra GK/£(1/5) is globally fibrant
with respect to the Nisnevich topology, since direct image functors preserve
global fibrations (this is a ubiquitous fact, which first appeared in [15]). At the
same time, by working in stalks at points z on smooth schemes Y/ X, one finds
a commutative diagram

K/0(1/B)(O ) —2— @K 10(1/8)(O" 1)

“b G

K/U(1/B)(k(x)) ——/fK/t(1/5) (k(z))

where O;"Y is the henselization of the local ring O), y and the vertical maps
are induced by the residue homomorphism Oy — k(z). The residue maps
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are both stable equivalences, essentially by Gabber rigidity, and the bottom
horizontal map is a stable equivalence by the Thomason theorem for fields.

It follows that the map j : K/¢(1/8) — GK/{(1/0) is a local stable equiv-
alence and hence a globally fibrant model for the Nisnevich topology. At the
same time, the Nisnevich descent theorem implies that the presheaf of spectra
K/l(1/5) satisfies Nisnevich descent, and is therefore sectionwise stably equiv-
alent to any globally fibrant model for that topology. The map j is therefore a
stable equivalence in all sections.
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