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Abstract. Let G be a fixed graph and let XG be the number of copies
of G contained in the random graph G(n, p). We prove exponential
bounds on the upper tail of XG which are best possible up to a log-
arithmic factor in the exponent. Our argument relies on an extension
of Alon’s result about the maximum number of copies of G in a graph
with a given number of edges. Similar bounds are proved for the random
graph G(n, M) too.

1. Introduction

Let G =
(
V (G), E(G)

)
be a fixed graph. By a “copy” of G in another

graph F we mean any, not necessarily induced subgraph of F , isomorphic
with G. We use the notation vG = |V (G)| and eG = |E(G)| for the numbers
of vertices and edges. (For typographic reasons we sometimes write e(G)
instead.) We assume that eG > 0.

As usual, G(n, p) denotes the random graph with n labelled vertices and
the edges added randomly, such that each of the

(n
2

)
possible edges exists

with probability p, independently of the other edges; see e.g. [11]. Let XG

be the number of copies of G contained in the random graph G(n, p).
The distribution of XG has been studied extensively since the pioneering

paper by Erdős and Rényi [6], where the first results were given. A general

threshold for {XG > 0} was established by Bollobás [3] at p = n−1/mG , where
mG := maxH⊆G eH/vH , with XG asymptotically Poisson at the threshold
for the so called strictly balanced graphs. The asymptotic normality of XG

for a wide range of p (as long as pn1/mG → ∞ and n2(1 − p) → ∞) was
proven in [18].

Next, it was shown that the lower tail of the distribution of XG decays
exponentially in the expectation of the least expected subgraph of G, see
[10] (P(XG = 0)) and [9] (the general case). Namely, let ΨH := nvH peH ,
which is roughly the expected number of copies of H in G(n, p). Then, for
all ε ∈ (0, 1], with cε > 0 depending on G and ε,

P
(
XG ≤ (1− ε)EXG

)
≤ exp

(
−cε min

H⊆G, eH>0
ΨH

)
. (1.1)
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This is best possible, provided p stays away from 1, as by the FKG inequality,
− log P(XG = 0) ≤ − log P(XH = 0) = O(ΨH) for every H ⊆ G. It is easy
to see that minH⊆G ΨH is achieved by H = G for small p, and by H = K2 for
large p. For some graphs these are the only two cases, but there are graphs G
for which as many as 2

5vG subgraphs give the minimum for different ranges
of p [19]. For more on small subgraphs of random graphs see [11].

Estimate (1.1) has found numerous applications within the theory of ran-
dom graphs (see [11]). In the nineties, in the course of study of Ramsey
properties of random graphs ([16, 17]) a need for a similar upper tail bound
was articulated (see Appendix for a typical application). So far only some
ad hoc techniques have been used to obtain partial results. Spencer [20]
gave bounds on the upper tail not only for XG but also for the number of
copies of G extending a given set of vertices. For balanced graphs and with
some restrictions on the range of p, Vu [22] derived an upper bound of the
form:

P(XG ≥ (1 + ε)EXG) ≤ exp
(
−cεΨ

1/(vG−1)
G

)
.

In the same paper Vu also gave a general lower bound:

P(XG ≥ (1 + ε)EXG) ≥ exp
(
−CεΨ

1/α∗G
G log(1/p)

)
,

where α∗G is the fractional independence number of G (see Appendix A
for definition), and noticed that for stars G = K1,k it essentially matches
the upper bound. He also asked under what circumstances the exponent in

the upper bound could be improved to −cεΨ
1/α∗G
G , essentially matching the

lower bound. (Actually, Vu’s lower bound is not always correct, because
the construction in [22] may require more than n vertices; cf. the complete
result for stars in Corollary 1.8 below. It is correct at least when p is so

small that Ψ
1/α∗G
G = O(n), and (for all p) when α∗

G = vG/2, for example, for
regular graphs.)

Several techniques to bound the upper tail are surveyed in [12], see also
[11]. Most of the methods do not give optimal results, but for the graphs
K4 and C4 and some ranges of p, upper bounds matching Vu’s lower bound
(up to a factor O(log(1/p)) in the exponent) were found in [13] and [12].
Optimal results for K3 and K4 have also been obtained by Kim and Vu
(personal communication). Some related results on the upper tail of the
number of triangles in different models of random graphs are given in [5].

In this paper, we prove upper and lower exponential bounds on the upper
tail of XG for all G and all p, which match up to a factor O(log(1/p)) in the
exponent. Our main probabilistic result can be stated as follows.

Let N(F,H) be the number of copies of H in another graph F and let
N(n,m,H) be the maximum of N(F,H) over all graphs F with vF ≤ n and
eF ≤ m. In other words, N(n,m,H) is the largest number of copies of H
that can be packed in n vertices and m edges. Recall that ΨH := nvH peH ,
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and let

M∗
G = M∗

G(n, p) :=

{
max{m ≤

(n
2

)
: ∀H ⊆ G N(n,m,H) ≤ ΨH} p ≥ n−2,

1 p < n−2.

(1.2)
The reason for the special definition in the extreme case p < n−2 (when
ΨK2

= n2p < 1), is to prevent M ∗
G = 0. Since N(n, 1,H) = 0 unless eH ≤ 1,

it is easily checked that 1 ≤ M ∗
G ≤

(n
2

)
.

Remark 1.1. It suffices to consider in (1.2) connected subgraphs H ⊆ G,
because if H is the disjoint union of two subgraphs H1 and H2, then ΨH =
ΨH1

ΨH2
while N(F,H) ≤ N(F,H1)N(F,H2) for each F and consequently

N(n,m,H) ≤ N(n,m,H1)N(n,m,H2).

Theorem 1.2. For every graph G and for every t > 1 there exist constants

c(t, G) > 0 and C(t, G) > 0 such that for all n ≥ vG and p ∈ (0, 1)

P(XG ≥ tEXG) ≤ exp {−c(t, G)M ∗
G(n, p)} ,

and, provided tEXG ≤ N(Kn, G),

P(XG ≥ tEXG) ≥ pC(t,G)M∗
G(n,p).

If tEXG > N(Kn, G), the probability is trivially 0.
Our proof is not strong enough to yield sharp estimates of the dependence

of c(t, G) and C(t, G) on t, see Remark 8.2. We are mainly interested in the
case of constant t, for example t = 2, and the theorem then says that
log P(XG ≥ tEXG) equals −M ∗

G up to a factor that is at most O(log 1/p).
Theorem 1.2 is proved in Sections 2 (upper bound) and 3 (lower bound). It
turns out that the same result holds with no essential modifications for the
random graph G(n,M) too, see Section 4.

To apply Theorem 1.2, it is crucial to have a fair estimate of the extremal
parameter N(n,m,H) for every graph H ⊆ G in order to estimate M ∗

G.
This leads to the combinatorial part of this paper.

Let α∗H be the fractional independence number of H (see Appendix for the
definition and basic properties of α∗

H). Noga Alon proved in his first pub-

lished paper [1] (see also [7]) that N(m,H) = Θ(mα∗H ), where N(m,H) =
N(∞,m,H) is the analogue of N(n,m,H) without restricting the number
of vertices. Here and below, a = Θ(b) means that cb ≤ a ≤ Cb for some
positive constants c and C that may depend on the considered fixed graph
(G or H) but not on any other parameters such as m, n or p. The next
theorem, which is our main graph theoretic result, extends Alon’s estimate.

Theorem 1.3. For every graph H without isolated vertices, and for all

m ≥ eH and n ≥ vH , we have,

N(n,m,H) =





Θ(mα∗H ) if m ≤ n,

Θ(mvH−α∗H n2α∗H−vH ) if n ≤ m ≤
(n
2

)
,

Θ(nvH ) if m ≥
(n
2

)
.

(1.3)



4 SVANTE JANSON, KRZYSZTOF OLESZKIEWICZ, AND ANDRZEJ RUCIŃSKI

The first case above (m ≤ n) is equivalent to Alon’s result, while the last
case is trivial and stated here just for completeness. Theorem 1.3 is proved
in Section 5.

Remark 1.4. As an immediate consequence of (and a supplement to) The-
orem 1.3, if H has v0 isolated vertices, then (1.3) remains valid for m ≥ n,
while for m ≤ n we have N(n,m,H) = Θ(mα∗H−v0nv0).

The obtained bounds on N(n,m,H) translate to the parameter M ∗
G(n, p),

so vital for Theorem 1.2. Recall that mG := maxH⊆G eH/vH , and note that

p < n−1/mG if and only if minH⊆G ΨH < 1. Further, let ∆G be the maximum
degree of G. It is easily seen that mG ≤ ∆G/2 < ∆G.

Theorem 1.5. For every graph G and n ≥ vG we have

M∗
G(n, p) =





Θ(1) if p ≤ n−1/mG ,

Θ
(
minH⊆G Ψ

1/α∗H
H

)
if n−1/mG ≤ p ≤ n−1/∆G ,

Θ(n2p∆G) if p ≥ n−1/∆G .

(1.4)

Remark 1.6. Note that minH⊆G Ψ
1/α∗H
H is achieved by a connected subgraph

of G. Indeed, if H = H1 ∪ H2 ⊆ G is a disjoint union of two subgraphs

of G and (nvH peH )
α∗Hi < (nvHi peHi )α

∗
H for both i = 1, 2, then we get a

contradiction by multiplying the two inequalities. Hence Ψ
1/α∗H
H ≥ Ψ

1/α∗Hi
Hi

for i = 1 or 2.
Moreover, for p ≤ n−1/∆G as in (1.4), it suffices to consider H with eH > 0,

since otherwise Ψ
1/α∗H
H = n ≥ n1+1/∆Gp = Ψ

1/α∗K
K , where K = K1,∆G

is a
maximal star in G.

Combining Theorems 1.2 and 1.5, we find upper and lower bounds for
P(XG ≥ tEXG) expressed in terms of n and p. Note that they are similar
to, but clearly distinct from, the lower tail estimates in (1.1), see Remark 8.3.
We state explicit results for some particular classes of graphs. We consider
below only p ≥ n−1/mG , since otherwise M ∗

G = Θ(1) by Theorem 1.5. First,
for k-regular graphs the formula for M ∗

G is indeed very simple.

Corollary 1.7. If G is a k-regular graph, then M ∗
G = Θ(n2pk) for all p ≥

n−1/mG = n−2/k . More generally, for a graph G we have M ∗
G = Θ(n2pk)

for all p ≥ n−1/mG if and only if ∆G = k and G has a k-regular subgraph.

In particular, if G further is connected, it has to be k-regular.

However, for other graphs, we may have different expressions for M ∗
G for

different ranges of p. Below we give two examples of that.

Corollary 1.8. Let G be the k-armed star K1,k, with k ≥ 1, and assume

p ≥ n−1/mG = n−1−1/k. Then

M∗
G =

{
Θ(n1+1/kp) if p ≤ n−1/k,

Θ(n2pk) if p ≥ n−1/k.
(1.5)



UPPER TAILS FOR SUBGRAPH COUNTS IN RANDOM GRAPHS 5

Corollary 1.9. Let Pk be the path on k vertices, i.e. of length k − 1, and

assume p ≥ n−1/mPk = n−1−1/(k−1). Then, if k ≥ 3 is odd,

M∗
Pk

=

{
Θ

(
n2 k

k+1 p2 k−1

k+1

)
if p ≤ n−1/2,

Θ
(
n2p2

)
if p ≥ n−1/2,

(1.6)

and, if k ≥ 4 is even,

M∗
Pk

=





Θ
(
n2p2 k−1

k

)
if p ≤ n−1,

Θ
(
n2 k−1

k p2 k−2

k

)
if n−1 ≤ p ≤ n−1/2,

Θ
(
n2p2

)
if p ≥ n−1/2.

(1.7)

Note that P2 = K2 is covered by Corollary 1.7 or 1.8, and quite different.
Theorem 1.5 and its corollaries are proved in Section 6.

It is easily seen that for any G we have a pattern of the same type as
in the corollaries above; M ∗

G(n, p) is always given by a sequence of one or

several expressions of the type Θ
(
napb

)
, each expression valid for a certain

range of p. This is further explained in Section 7.
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2. Proof of the upper bound

It will be convenient in the proof to count ordered copies of G, i.e. copies
of G with the vertices ordered in some way, consistent with a fixed ordering
of the vertices of G. Equivalently, an ordered copy of G in F can be regarded
as an injective mapping of V (G) into V (F ) that maps edges into edges. We
let YG denote the total number of ordered copies of G in G(n, p). Note that
YG = aut(G)XG, where aut(G) is the number of automorphisms of G, and
thus P(YG ≥ tEYG) = P(XG ≥ tEXG).

For convenience, we also extend the definition of N(n,m,H) to non-
integer m; clearly N(n,m,H) = N(n, bmc,H). We will use a simple es-
timate.



6 SVANTE JANSON, KRZYSZTOF OLESZKIEWICZ, AND ANDRZEJ RUCIŃSKI

Lemma 2.1. For every H with eH > 0 there is a constant CH such that if

n ≥ vH and 0 ≤ m1 < m2 ≤
(
n
2

)
, then

N(n,m1,H) ≤ CH
m1

m2
N(n,m2,H).

Proof. This can be shown directly from the definition, but for us it is simpler
to see that it is an immediate corollary of Theorem 1.3 and the obvious
inequalities 1 ≤ α∗H ≤ vH − 1. (The case m1 < eH is trivial, since then
N(n,m1,H) = 0.) �

Let G1, . . . , Gf , f = (n)vG
, be all ordered copies of G in the complete

graph Kn on the labelled vertex set [n] = {1, . . . , n}. Furthermore, for
i = 1, . . . , f , set Yi = 1 if Gi ⊂ G(n, p) and Yi = 0 otherwise. Thus
YG =

∑
i Yi.

Set µH := EYH = (n)vH
peH = Θ(ΨH). We will first show by induction

that for all m = 1, 2, . . .

EY m
G ≤ µm

G


1 + vG!

∑

H⊆G

N(n, (m− 1)eG,H)

µH




m−1

. (2.1)

The above sum extends over all subgraphs H of G with eH > 0. It is trivially
true for m = 1.

For m ≥ 2, we set F = F (i1, . . . , im−1) = Gi1 ∪ · · · ∪Gim−1
. The number

of copies of G which are edge-disjoint from F is bounded, crudely, by (n)vG
,

while the number of copies of G which intersect F on a given subgraph H can
be bounded as follows: there are at most N(n, eF ,H) ≤ N(n, (m−1)eG,H)
choices of H in F , at most (n − vH)vG−vH

= (n)vG
/(n)vH

choices of the
remaining vertices in G and, finally, at most vG! orderings. Hence

EY m
G =

∑

i1,...,im

E(Yi1 · · · Yim) =
∑

i1,...,im

pe(Gi1
∪···∪Gim )

=
∑

i1,...,im−1

pe(F )
∑

im

peG−e(F∩Gim )

≤
∑

i1,...,im−1

pe(F )


(n)vG

peG +
∑

H⊆G

∑

Gi∩F∼=H

peG−eH




≤
∑

i1,...,im−1

pe(F )


µG + vG!

∑

H⊆G

N(n, (m− 1)eG,H)
µG

µH




= EY m−1
G · µG


1 + vG!

∑

H⊆G

N(n, (m− 1)eG,H)

µH


 ,

and (2.1) follows by induction.
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By Markov’s inequality, we then have

P(YG ≥ tµG) ≤ t−m


1 + vG!

∑

H⊆G

N(n, (m− 1)eG,H)

µH




m−1

. (2.2)

For p ≥ n−2, choose m = dc′M∗
Ge, with c′ = c′(G, t) < 1/eG chosen below.

We then have by Lemma 2.1 and the inequality N(n,M ∗
G,H) ≤ ΨH ,

N(n, (m− 1)eG,H)

µH
≤ N(n, c′M∗

GeG,H)

µH
≤ CHc′eG

N(n,M∗
G,H)

µH

≤ CHc′eG
ΨH

µH
= CHc′eG

nvH

(n)vH

≤ CHc′eG
nvG

(n)vG

≤ CHc′eG
vvG
G

vG!
.

Hence, if c′ =
(
eGvvG

G

∑
H⊆G CH

)−1
min(t1/2 − 1, 1), then

1 + vG!
∑

H⊆G

N(n, c′eGM∗
G,H)

µH
≤ t1/2,

and (2.2) yields the upper bound in Theorem 1.2, with c(t, G) = c′ 12 log t.

The exceptional case p < n−2 is trivial with m = 1. �

3. Proof of the lower bound

The lower bound in Theorem 1.2 will be a consequence of the following
result. As in the proof of the upper bound, YH stands for the number of
ordered copies of H in G(n, p).

Theorem 3.1. Suppose that 0 < p < 1 and n ≥ vG. If there exist H ⊆ G,

t > 0 and m such that

N(n,m,H) ≥ 2tΨH

then

P(YG ≥ tEYG) ≥ 1
4pm+eG .

To prove Theorem 3.1 we will use a lower tail estimate for a sum of indica-
tor random variables. It is a consequence of the following Paley–Zygmund
type inequality (see, e.g., [14, p. 8]) which generalizes a strengthening of
Chebyshev’s inequality (see, e.g., [11, page 54, Remark 3.1].) We include a
simple proof for completeness.

Lemma 3.2. Let X be a random variable with EX > 0 and EX 2 < ∞.

Then, for every 0 ≤ δ < 1,

P(X > δEX) ≥ (1− δ)2
(EX)2

EX2
.
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Proof. Let 1E denote the indicator of an event E . We have X1{X≤δEX} ≤
δEX, and thus

E
(
X1{X>δEX}

)
= EX −E

(
X1{X≤δEX}

)
≥ EX − δEX.

The Cauchy–Schwarz inequality now gives
(
(1− δ)EX

)2 ≤
(
E(X1{X>δEX})

)2 ≤ EX2 P(X > δEX). �

Lemma 3.3. If X =
∑N

i=1 Xi, where Xi are arbitrary indicator random

variables with EXi = P(Xi = 1) = pi ≥ p0, then

P(X > 1
2Np0) ≥ P(X > 1

2EX) ≥ 1
4p0.

Proof. Clearly, EX =
∑N

i=1 pi ≥ Np0. Moreover, by the Cauchy–Schwarz

inequality, X2 ≤ N
∑N

i=1 X2
i , and thus

EX2 ≤ N

N∑

1

EX2
i = N

N∑

1

EXi = NEX.

Hence, by Lemma 3.2,

P(X > 1
2Np0) ≥ P(X > 1

2EX) ≥ (EX)2

4EX2
≥ EX

4N
≥ 1

4
p0. �

Proof of Theorem 3.1. By assumption, there exists a graph F ⊆ Kn with
eF ≤ m and such that

N(F,H) ≥ 2tΨH ≥ 2tEYH .

Note that F contains many more copies of H than G(n, p) does on average.
Thus our strategy will be to guarantee that G(n, p) ⊃ F , and, using the
lower tail estimate of Lemma 3.3, that a fraction of the expected number of
extensions of these copies of H to copies of G will indeed appear in G(n, p).

Fix one copy of H in G and ignore the other copies of H, if there are
any. Then each ordered copy of G in another graph contains a unique
corresponding ordered copy of H. Call a copy of G in Kn F -rooted, if this
distinguished copy of H is a subgraph of F . Note that there are precisely
aut(H)N(F,H) ordered copies of H in F , and thus

N := aut(H)N(F,H)(n − vH)vG−vH

F -rooted copies of G in Kn; we denote them by G1, . . . , GN . Note also that

NpeG−eH ≥ 2tEYH(n− vH)vG−vH
peG−eH = 2tEYG. (3.1)

Let GF (n, p) be the random graph G(n, p) conditioned on G(n, p) ⊇ F ,
i.e. the random graph obtained by adding to F each of the remaining

(
n
2

)
−eF

edges with probability p, independently of the others. Let Zi be the indicator
that GF (n, p) contains Gi. Then

P(Zi = 1) = pe(Gi\F ) ≥ peG−eH ,
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and thus, by Lemma 3.3,

P
(
YG ≥ 1

2NpeG−eH | G(n, p) ⊇ F
)
≥ P

( N∑

i=1

Zi ≥ 1
2NpeG−eH

)

≥ 1
4peG−eH ≥ 1

4peG .

(3.2)

Consequently, by (3.1) and (3.2),

P(YG ≥ tEYG) ≥ P(YG ≥ 1
2NpeG−eH ) ≥ 1

4peGP
(
G(n, p) ⊇ F

)

= 1
4peGpeF ≥ 1

4peG+m. �

To complete the proof of the lower bound in Theorem 1.2, note first that,
by the definition (1.2) of M ∗

G, there exists H ⊆ G such that N(n,M ∗
G +

1,H) > ΨH , except when M ∗
G =

(n
2

)
. It follows from Lemma 2.1 that with

C ′ = 4maxH⊆G CH , either

N(n,C ′tM∗
G,H) ≥ 2tN(n, 2M ∗

G,H) ≥ 2tN(n,M ∗
G + 1,H) > 2tΨH

or C ′tM∗
G >

(
n
2

)
. In the second case, the result is a consequence of the

inequality

P(XG ≥ tEXG) ≥ P
(
XG = N(Kn, G)

)
≥ P

(
G(n, p) = Kn

)
= p(n

2)

≥ pC′tM∗
G .

(3.3)

In the first case, Theorem 3.1 yields

P(XG ≥ tEXG) ≥ 1
4pC′tM∗

G+eG ≥ 1
4pC′′tM∗

G

with C ′′ = C ′ + eG, and it remains only to take care of the factor 1/4. If
p ≤ 1/2, we can use 1/4 ≥ p2 ≥ p2M∗

G and the result follows.
For p > 1/2 we note that Lemma 2.1 implies that if c′ = 1/maxH⊆G CH ,

then for every H ⊆ G

N(n, c′
(n
2

)
peG ,H) ≤ peGN(n,

(n
2

)
,H) = peGN(Kn,H) ≤ ΨH

and thus M ∗
G ≥ c′

(
n
2

)
peG ≥ 2−eGc′

(
n
2

)
. Consequently, the result follows again

from (3.3) (now with C ′ = 2eG/c′). �

4. Subgraph counts in G(n,M)

In this section we consider the random graph G(n,M) with n (labelled)
vertices and M edges, chosen uniformly at random from all sets of M edges
in Kn. (Here n and M are integers with 0 ≤ M ≤

(n
2

)
.) Thus, XG now

denotes the random variable which is the number of copies of G in G(n,M).
Note that the maximum possible value of XG is N(n,M,G).

It is well known that in many respects, G(n,M) and G(n, p) with p =
M/

(n
2

)
behave similarly, see [11, Section 1.4]. For example, this is true for the

property XG > 0 of containing a copy of G. Under some mild restrictions,
the lower tail estimates carry over from G(n, p) to G(n,M), see [11, Section
3.1]. It is not obvious that this correspondence holds also for the upper
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tails, but indeed it does. We have the following version of Theorem 1.2 for
G(n,M).

Theorem 4.1. For every graph G and for every t > 1 there exist constants

c(t, G) > 0 and C(t, G) > 0 such that for all n ≥ vG and eG ≤ M ≤
(
n
2

)
,

with p := M/
(n
2

)
,

P(XG ≥ tEXG) ≤ exp {−c(t, G)M ∗
G(n, p)} ,

and, provided tEXG ≤ N(n,M,G),

P(XG ≥ tEXG) ≥
{

pC(t,G)M∗
G(n,p) if p ≤ 1/2,

e−C(t,G)M∗
G(n,p) if p ≥ 1/2.

Proof. Note first that, taking H = K2 in (1.2),

M∗
G = N(n,M ∗

G,K2) ≤ ΨK2
= n2p = O(M). (4.1)

For the upper bound we follow the proof in Section 2, now taking expec-
tations for G(n,M). Let again µH := (n)vH

peH but observe that this now
is only an approximation to EYH . We have

EYG = (n)vG

(M)eG((n
2

))
eG

and thus, by simple estimates,

µG

(
1−

(
eG

2

)
1

M

)
≤ EYG ≤ µG. (4.2)

Similarly we see that EY m
G is not larger for G(n,M) than for G(n, p). Hence

(2.1) still holds. By Markov’s inequality we now have

P(YG ≥ tEYG) ≤ t−m EY m
G

µm
G

( µG

EYG

)m
,

yielding the same estimate as in (2.2), except for a factor (µG/EYG)m.

If µG/EYG ≤ t1/4, say, this completes the proof of the upper bound as in
Section 2.

If t1/4 < µG/EYG, (4.2) implies t = 1 + O(1/M) and thus by (4.1)

(t− 1)2M∗
G = O

(
(t− 1)2M

)
= O(t− 1) = O(log t).

Taking c(t, G) = c1(t − 1)2 with c1 small, we thus have c(t, G)M ∗
G ≤ log t

and our bound follows by Markov’s inequality P(XG ≥ tEXG) ≤ 1/t.
For the lower bound, we note first that if we choose a subgraph F ⊆ Kn

with eF = M and N(F,G) = N(n,M,G), then, using Stirling’s formula,

P
(
XG = N(n,M,G)

)
≥ P

(
G(n,M) ⊇ F

)
=

((n
2

)

M

)−1

≥ (M/e)M

(n
2

)M
=

(p

e

)M
.

(4.3)
In the case p ≥ 1/2 we have M ∗

G = Θ(n2) = Θ(M) by Theorem 1.5, and
the lower bound follows by (4.3).
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Assume now p < 1/2. By Lemma 2.1 and the argument in Section 3,
there exists a subgraph H ⊆ G and a constant C ′ = 2eG+3CH such that
either

N(n,C ′tM∗
G,H) > 2e(G)+2tΨH ≥ 2e(G)+2tEYH (4.4)

or C ′tM∗
G >

(n
2

)
. In the second case, and more generally if C ′tM∗

G ≥ M/2,
the lower bound follows again from (4.3).

In the remaining case, (4.4) holds and C ′tM∗
G < M/2. Now fix a graph

F ⊆ Kn with eF ≤ C ′tM∗
G < M/2 such that

N(F,H) ≥ 2e(G)+2tEYH . (4.5)

We condition on F ⊆ G(n,M), which means that we consider the random
graph GF (n,M) obtained by adding M − eF ≥ M/2 random edges to F .
We count F -rooted copies of G as in the proof of Theorem 3.1 in Section 3,
now with

P(Zi = 1) ≥
(
1 + O(M−1)

)
(p/2)e(Gi\F ) ≥ 2−eG−1peG−eH ,

if M is large enough. Denoting the number of F -rooted copies of G in Kn by
N as before, we now have by (4.5), instead of (3.1), NpeG−eH ≥ 2eG+2tEYG.
Consequently, just as in Section 3,

1
2E

N∑

i=1

Zi ≥ 1
2N2−eG−1peG−eH ≥ tEYG,

and the result again follows by Lemma 3.3, since

P(G(n,M) ⊃ F ) ≥ (p/2)eF ≥ (p/2)M/2. �

5. Proof of Theorem 1.3

We follow [7] with minor modifications. Consider the linear program-
ming problem of finding xv, v ∈ V (H), that maximize

∑
v xv subject to

constraints

0 ≤ xv ≤ log n, v ∈ V (H), (5.1)

and

xv + xw ≤ log m, vw ∈ E(H). (5.2)

Let γ = γ(n,m,H) be the maximum value of
∑

v∈V xv.
Given an optimal solution xv, v ∈ V (H), we construct a graph F by

blowing up each vertex v ∈ V (H) to a set of nv = dcexve vertices, where c
is a small constant depending on H only (c = v−2

H will do). In other words,
let V (F ) =

⋃
v∈V (H) Vv, where Vv are disjoint sets, |Vv| = nv, and the pair

(Vv, Vw) spans a complete bipartite graph if vw ∈ E(H) and the empty
graph otherwise. It is clear by the above constraints that vF ≤ n, eF ≤ m,
while

N(F,H) ≥
∏

v

nv ≥ cvH eγ .
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Conversely, consider the dual linear programming problem which is to find
yv, v ∈ V (H), and ze, e ∈ E(H), that minimize

∑

v

yv log n +
∑

e

ze log m

under the constraints

yv, ze ≥ 0, v ∈ V (H), e ∈ E(H), (5.3)

and

yv +
∑

e3v

ze ≥ 1, v ∈ V (H). (5.4)

Let (yv) and (ze) denote an optimal solution. Then, by the duality theorem
(see, e.g., [15]), ∑

v

yv log n +
∑

e

ze log m = γ. (5.5)

Let F be a graph with vF ≤ n and eF ≤ m. For any partition V = V (F ) =⋃
v∈V (H) Vv, let W be the set of all ordered copies of H in F with each

v ∈ V (H) mapped to a vertex in the corresponding set Vv. An elementary
application of the probabilistic method (see, e.g., [7, Proposition 1.3]) yields
that there is always a partition with

|W| ≥ v−vH
H N(F,H). (5.6)

Let us fix one such partition. Define a hypergraph W ′ on V by W ′ =
{V (H ′) : H ′ ∈ W}. Since each H ′ ∈ W is determined by V (H ′), we have
|W ′| = |W|.

For a subset U ⊆ V define the trace of W ′ on U by

Tr(W ′, U) = {W ∩ U : W ∈ W ′} = {V (H ′) ∩ U : H ′ ∈ W}.
Let t be a large integer and let sv = dyvte, ue = dzete, where we recall that
(yv) and (ze) is a solution satisfying (5.5). We form a sequence U1, . . . , Us

of subsets of V by taking each Vv precisely sv many times and each Vv ∪
Vw precisely uvw many times. Note that, by (5.5), each vertex v ∈ Vv is
contained in sv +

∑
e3v ue ≥ yvt +

∑
e3v zet ≥ t of these sets.

By Shearer’s Lemma ([4]; cf. [7, Lemma 1.2]),

|W|t = |W ′|t ≤
s∏

j=1

|Tr(W ′, Uj)|

=
∏

v∈V (H)

|Tr(W ′, Vv)|sv
∏

vw∈E(H)

|Tr(W ′, Vv ∪ Vw)|uvw .
(5.7)

Now, as Tr(W ′, Vv) is a set of singletons, |Tr(W ′, Vv)| ≤ |Vv| ≤ vF ≤ n,
while Tr(W ′, Vv ∪Vw) is a set of edges of F , so |Tr(W ′, Vv ∪Vw)| ≤ eF ≤ m.
Hence, by (5.7),

|W| ≤
∏

v

nsv/t
∏

vw

muvw/t ≤
∏

v

nyv+1/t
∏

vw

mzvw+1/t → eγ
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as t →∞. Finally, by (5.6),

N(F,H) ≤ vvH
H eγ , (5.8)

which implies that N(n,m,H) ≤ vvH
H eγ . This, together with the previously

established lower bound, yields that

N(n,m,H) = Θ(eγ).

It remains to calculate γ, for which we have to further study the system
of constraints (5.1) and (5.2). In the case m ≤ n, after rescaling by log m,
it is straightforward to see that γ = α∗

H log m. In the trivial case m ≥ n2,
the optimal assignment is xv = log n for all v, and so γ = vH log n.

In the remaining case n ≤ m < n2, any optimal assignment must satisfy
xv ≥ log m − log n for all v, because otherwise we could increase an xv to
log m− log n without violating any constraints. Consequently, we may write

xv = log m− log n + (2 log n− log m)ξv,

where 0 ≤ ξv ≤ 1. Then the conditions (5.1) and (5.2) become, in terms of
ξv, the standard conditions defining the fractional independence number α∗

H .
Hence, in this case,

γ =
∑

v

xv = (log m− log n)vH + (2 log n− log m)
∑

v

ξv

= (log m− log n)vH + (2 log n− log m)α∗H . �

6. Remaining proofs

In this section we prove Theorem 1.5 and its corollaries. We consider only
subgraphs H ⊆ G without isolated vertices.

Lemma 6.1. For every subgraph H ⊆ G,

eH ≤ ∆G(vH − α∗H), (6.1)

and equality holds for at least one H with eH > 0.

Proof. The inequality follows immediately from Lemma 9.1 and the obvious
fact that ∆H ≤ ∆G. To obtain equality, let K be a maximal star in G, i.e. a
vertex v with maximal degree and its ∆G neighbours together with the ∆G

edges from v. Then eK = ∆G, vK = ∆G + 1 and α∗K = ∆G. �

Proof of Theorem 1.5. First, if p < n−1/mG , then ΨH < 1 for some H ⊆ G.
Since N(n, eH ,H) ≥ N(H,H) = 1 > ΨH , (1.2) yields M ∗

G < eH ≤ eG

(except when eH = 1 and M ∗
G = 1).

Next, assume that n−1/mG ≤ p ≤ n−1/∆G and let m = minH⊆G Ψ
1/α∗H
H .

Taking H ⊆ G which yields equality in (6.1), we have eH/∆G = vH − α∗H
and thus

ΨH = nvH peH ≤ nvH−eH/∆G = nα∗H .
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Hence, m ≤ Ψ
1/α∗H
H ≤ n. If m ≥ eG, Theorem 1.3 thus yields that, for every

H ⊆ G,

N(n,m,H) = Θ(mα∗H ) = O(ΨH) (6.2)

and for some H0 ⊆ G (the one achieving the minimum in the definition of
m)

N(n,m,H0) = Θ(m
α∗H0 ) = Θ(ΨH0

). (6.3)

It is now easy to see, by Lemma 2.1, that, for suitable constants c and C,
N(n, cm,H) ≤ ΨH for all H ⊆ G, while either N(n,Cm,H0) > ΨH0

or
Cm >

(
n
2

)
. Hence, cm ≤ M ∗

G < Cm. In the case m < eG, we similarly find
M∗

G < CeG and thus M ∗
G = Θ(1) = Θ(m).

Finally, assume that p ≥ n−1/∆G , and let now m = n2p∆G ; thus m ≥ n.
If m ≥ eG, Theorem 1.3 now yields, for every H ⊆ G,

N(n,m,H) = Θ
(
mvH−α∗H n2α∗H−vH

)
= Θ

(
nvH p∆G(vH−α∗H)

)
.

By Lemma 6.1, we have ∆G(vH −α∗H) ≥ eH for every H ⊆ G with equality
for some H0 (at least for H0 = K – the maximal star in G). Hence, we again
have (6.2) for every H and (6.3) for some H0 (ignoring the middle terms),
and M∗

G = Θ(m) follows as before. Finally, in the case m < eG, we easily
find M∗

G = Θ(1) = Θ(m). �

Lemma 6.2. If H ⊆ G, and p ≤ n−1/∆G , then Ψ
1/α∗H
H ≥ n2p∆G .

Proof. We have eH ≤ ∆GvH/2 ≤ ∆Gα∗H and thus

ΨH/(n2p∆G)α
∗
H = nvH−2α∗H peH−∆Gα∗H

≥ nvH−2α∗H
(
n−1/∆G

)eH−∆Gα∗H = nvH−α∗H−eH/∆G ≥ 1, (6.4)

since eH/∆G ≤ vH − α∗H by Lemma 6.1. �

Proof of Corollary 1.7. Suppose that ∆G = k and that H is a k-regular
subgraph of G. Then eH = kvH/2 and, by Lemma 9.2, α∗

H = vH/2. Thus

Ψ
1/α∗H
H =

(
nvH pkvH/2

)2/vH = n2pk.

Consequently, Lemma 6.2 yields, for p ≤ n−1/k,

min
H′⊆G

Ψ
1/α∗

H′

H′ = Ψ
1/α∗H
H = n2pk,

and the result follows from Theorem 1.5.
Conversely, if M ∗

G = Θ(n2pk) for all p ≥ n−1/mG , then Theorem 1.5

implies first ∆G = k and secondly that for n−1/mG ≤ p ≤ n−1/k there must
be equality in (6.4) for some H ⊆ G, which is possible only if eH = kα∗H
and vH = 2α∗. But then eH = kvH/2; since ∆H ≤ ∆G = k, this means that
H is a k-regular subgraph of G. �

Corollary 1.8 follows almost immediately from Theorem 1.5, using α∗
G =

k, and we omit the details.
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Proof of Corollary 1.9. The case p ≥ n−1/2 is immediate from Theorem 1.5.

In the case p ≤ n−1/2, let us for ease of notation set Ψ̃k := Ψ
1/α∗Pk
Pk

and

M̃k := minH⊆Pk
Ψ

1/α∗H
H . We claim that if k ≥ 3 is odd, then

M̃k = n2 k
k+1 p2 k−1

k+1 if n−1−1/(k−1) ≤ p ≤ n−1/2, (6.5)

and if k ≥ 4 is even, then

M̃k =

{
n2p2 k−1

k if n−1−1/(k−1) ≤ p ≤ n−1,

n2 k−1

k p2 k−2

k if n−1 ≤ p ≤ n−1/2.
(6.6)

The result then follows by Theorem 1.5.
To show (6.5) and (6.6), we observe by Remark 1.6 that we only have to

consider connected subgraphs H ⊆ Pk in the definition of M̃k. The only
such H are themselves paths, and thus, for k ≥ 3,

M̃k = min
2≤j≤k

Ψ̃j = min
(
M̃k−1, Ψ̃k

)
. (6.7)

If k is odd, α∗Pk
= (k + 1)/2 and

Ψ̃k =
(
nkpk−1

)2/(k+1)
= n2 k

k+1 p2 k−1

k+1 ,

while if k is even, α∗Pk
= k/2 and

Ψ̃k =
(
nkpk−1

)2/k
= n2p2 k−1

k .

It is now elementary to verify (6.5) and (6.6) by induction using (6.7), start-

ing with M̃3 = min
(
M̃2, Ψ̃3

)
= min

(
Ψ̃2, Ψ̃3

)
= Ψ̃3. �

7. The phases

We study in this section the exponent M ∗
G(n, p) as a function of p, for a

given graph G. Compare the corresponding results for the lower tail in [11,
§3.2]. We use the notation M ∗

G � nxpy for M∗
G = Θ

(
nxpy

)
.

Let p = n−z (where z ≥ 0 does not have to be regarded as fixed). De-

fine `H(z) := (vH − eHz)/α∗H . Thus Ψ
1/α∗H
H = n`H(z), and it follows from

Theorem 1.5 that
M∗

G

(
n, n−z

)
� nL(z), (7.1)

where

L(z) :=





2−∆G z if 0 ≤ z ≤ 1/∆G,

minH⊆G `H(z) if 1/∆G ≤ z ≤ 1/mG,

0 if 1/mG ≤ z.

(7.2)

By Remark 1.6, it suffices to consider connected subgraphs H.
Clearly, L(z) is a piecewise linear, continuous function, which is strictly

decreasing on [0, 1/mG]. See the example in Figure 1.
Let q denote (the minimal) number of line segments in L(z) for z ≤ 1/mG.

There exist real numbers {xi}q
1, {yi}q

1 and {zi}q+1
1 , with xi > 0, yi > 0
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and 1/mG = z1 > z2 > · · · > zq+1 = 0, such that L(z) = xi − yiz for
zi ≥ z ≥ zi+1 and thus, by (7.1),

M∗
G(n, p) � nxipyi if n−zi ≤ p ≤ n−zi+1 . (7.3)

The above intervals for p, or z, will be referred to as the phases of the upper
tail (of XG, or G, for short). The interval Ii = [zi+1, zi] will be called the i-th
phase, i = 1, . . . , q, and in particular Iq = [0, zq] will be called the last phase.
So, q stands for the number of phases. For instance, by Corollaries 1.7–1.9,
regular graphs have one phase, stars (except K2) and odd paths have two,
while even paths have three phases of the upper tail (as in Figure 1).

If zq > 1/∆G, then it follows from the proof of Lemma 6.2 that zq = z1 =
mG and q = 1. Hence, the graphs with only one phase of the upper tail are
fully characterized by Corollary 1.7, and for all graphs G with more than
one phase, the last phase is [0, 1/∆G], i.e. n−1/∆G ≤ p ≤ 1.

From now on let us assume that q ≥ 2, and so, zq = 1/∆G. For each phase
Ii, i = 1, . . . , q− 1, there exists a (not necessarily unique) subgraph Hi ⊆ G
such that L(z) = `Hi(z) for z ∈ Ii and thus xi = vHi/α

∗
Hi

and yi = eHi/α
∗
Hi

.

We call these subgraphs Hi the leading subgraphs (for the upper tail). Note
that the leading subgraphs are the subgraphs H that can be used in our

0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 1. L(z) (thick curve) for P6, with the corners
marked by circles. The dotted line is 2−∆Gz; the thin lines
are `H(z) for the connected subgraphs of P6; the intersections
with the z-axis are in order P6, P5, P4, P3, P2.
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construction for the lower bound in Theorem 1.2 for the respective ranges
of p (see Theorem 3.1).

Returning to Corollaries 1.8 and 1.9, we see from the proofs that if G is a
star or a path, it is itself the unique leading subgraph for the first phase. If
G is an even path of order k ≥ 4, the leading subgraph for the second phase
is Pk−1 (unique as an abstract graph, although there are two copies of it in
G). For P6 in Figure 1, the leading subgraphs are thus P6 and P5.

7.1. The subgraph plot. There is another, more graphic way to depict
the phases. The subgraph plot in [11, §3.2], which yields information about
the phases and leading subgraphs for the lower tail, can be adapted to the
upper tail. In this version, let QH := (vH/α∗H , eH/α∗H) ∈ R

2 and consider
the set Σ := {QH : H ⊆ G, eH > 0} in the xy-plane. See Figures 2 and 3
below.

Note that mG is the maximal slope of the lines from (0, 0) to the points in
Σ, while, by Lemma 6.1, ∆G is the maximal slope of the lines from (1, 0) to

the points in Σ. Let L(m) and L(∆) be the lines y = mGx and y = ∆G(x−1),
resp., and let C be their common point. Moreover, let D := (2,∆G). By
the relation between `H and QH , it is easy to see the following.

There is only one phase for the upper tail of G if and only if C = D,
and the graphs for which this happens are characterized by Corollary 1.7.
Otherwise, let A be the point in Σ ∩ L(m) nearest to C (on the right), and
let B be the point in Σ ∩ L(∆) nearest to C (on the left). If C ∈ Σ, then
A = B = C and there are exactly two phases, corresponding to C and D.
The leading subgraphs for the first phase correspond to A = B = C in the
sense that QH = C.

If C /∈ Σ, then there are at least three phases. Our “battlefield” is confined
to the (geometric) triangle T := ABC. Let Σ∗ be the convex hull Conv(Σ∩
T ). The extreme points of Σ∗, ordered with decreasing y-coordinate, form
a sequence beginning with Q1 = A and ending with Qq−1 = B. It is then
easily seen that these extreme points, supplemented by Qq = D, correspond
to the phases, in the sense that Qi = (xi, yi) and that the leading subgraphs
for the i-th phase (1 ≤ i ≤ q − 1) are the subgraphs H for which QH = Qi.
Moreover, the slopes of the line segments joining the points Q1, . . . , Qq−1

form an increasing sequence strictly contained between mG and ∆G, and
their reciprocals are the numbers z2, . . . , zq−1, which together with z1 =

1/mG and zq = 1/∆G (the reciprocals of the slopes of L(m) and L(∆))
determine the intervals I1, . . . , Iq. Note that it follows that it follows that
the exponents in (7.3) satisfy x1 > x2 > · · · > xq−1 < xq and y1 > y2 >
· · · > yq−1 < yq, with the monotonicity broken at the last phase.

In particular (when C 6= D), A and B represent the first and the last but
one phases. For these two phases we can be more explicit about the leading
subgraphs. It is seen from the subgraph plot and the definition of Q1 = A
above that the leading subgraphs for the first phase are the subgraphs H
with α∗H/vH maximal among the subgraphs with eH/vH maximal.
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If G is strictly balanced (see [11] for definition), the leading subgraph
in the first phase is thus G itself, and it is unique (see Examples 7.1–7.4).
If G is balanced but not strictly balanced, G may be or not be a leading
subgraph in the first phase, but is not a leading subgraph in any later phase
(see Examples 7.5 and 7.6). If G is not balanced, then it may only become
its own leading subgraph at a later phase (see Example 7.7). All of this
contrasts with the lower tail, where G always is a (unique) leading subgraph
in the first phase.

Similarly, for the last but one phase, the leading subgraphs H are those
with α∗H/vH minimal among the subgraphs with eH/(vH −α∗) = ∆G (com-
pare Lemma 6.1). The star K = K1,∆ may or may not be among them (see
Examples 7.2 – 7.7).

7.2. Examples. We finish this section with some examples illustrating this
geometric approach. In each example, we provide the parameters m = mG,
∆ = ∆G, the points A,B,C,D and Qi = (xi, yi), i = 1, . . . , q, and z1, . . . , zq;
the values of M ∗ = M∗

G follow from these by (7.3). We also discuss the
leading subgraphs, and in two cases include figures with the subgraph plots.

Example 7.1. We choose G = K3 as a graph with just one phase. Here
m = 1, ∆ = 2, Q1 = A = B = C = D = (2, 2), z1 = 1, and M ∗ � n2p2 for
all p ≥ 1/n. We have not defined any leading subgraphs when there is only
one phase; a natural definition would be the subgraphs corresponding to C,
in this case K3 itself.

Example 7.2. The star G = K1,3 has just two phases (Corollary 1.8).
We have m = 3/4, ∆ = 3, Q1 = A = B = C = (4/3, 1), Q2 = D = (2, 3),

z1 = 4/3, z2 = 1/3. Thus M ∗ � n4/3p for n−4/3 ≤ p ≤ n−1/3 and M∗ � n2p3

for n−1/3 ≤ p < 1. The only leading subgraph is H = G.

Example 7.3. Also the path on five vertices G = P5 has two phases with
the leading subgraph H = G, which, however, is not the star K = K1,∆.
We have m = 4/5, ∆ = 2, Q1 = A = B = C = (5/3, 4/3), Q2 = D = (2, 2),
z1 = 5/4, z2 = 1/2.

Example 7.4. The path on six vertices G = P6 enjoys three phases with
H = G and P5 being the two leading subgraphs. Here m = 5/6, ∆ = 2, Q1 =
A = (2, 5/3), Q2 = B = (5/3, 4/3), C = (12/7, 10/7), Q3 = D = (2, 2), and
z1 = 6/5, z2 = 1, z3 = 1/2. The subgraph plot is shown in Figure 2; the
points QH in Σ (for connected subgraphs only) are shown as large crosses,

and the lines L(m) and L(∆) together with Σ∗ (in this case the line joining
A and B) are added. Note that this figure is dual to Figure 1 (in the sense
of projective geometry); the points (crosses) in Figure 2 correspond to the
lines in Figure 2 and, conversely, a line such as AB through two points in
in Figure 2 corresponds to the intersection point of the corresponding lines
in Figure 1.
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Figure 2. Subgraph plot for P6. Σ∗ is the line AB.

Example 7.5. If G is a K3 with an attached pendant vertex, both G and
the subgraph K3 are leading subgraphs in the first phase. This graph has
three phases; K = K1,3 is the unique leading subgraph for the second phase

n−2/3 ≤ p ≤ n−1/3. Here m = 1, ∆ = 3, Q1 = A = (2, 2), Q2 = B =
(4/3, 1), C = (3/2, 3/2), Q3 = D = (2, 3), z1 = 1, z2 = 2/3, z3 = 1/3.

Example 7.6. If G1 is a C4 with an attached pendant vertex, G1 is the
unique leading subgraph in the first phase. This graph too has three phases,
with K = K1,3 the unique leading subgraph for the second phase n−1/2 ≤
p ≤ n−1/3. Here m = 1, ∆ = 3, Q1 = A = (5/3, 5/3), Q2 = B = (4/3, 1),
C = (3/2, 3/2), Q3 = D = (2, 3), z1 = 1, z2 = 1/2, z3 = 1/3.

If G2 is a C4 with a path of length 2 attached, the unique leading subgraph
in the first phase is the subgraph G1. In fact, G2 has the same phases and
leading subgraphs, and indeed the same L(z), as G1. Hence also m, ∆, A,
B, C, D, Qi and zi are the same as for G1.

Example 7.7. Let G be the “kite graph”, formed of a copy of K4 without
one edge e and a pendant edge attached at a vertex not adjacent to e. We
have m = 5/4, ∆ = 4, Q1 = A = (2, 5/2), Q3 = B = (5/4, 1), C =
(16/11, 20/11) and Q4 = D = (2, 4); in addition, Q2 = (5/3, 2) and z1 = 4/5,
z2 = 2/3, z3 = 5/12, z4 = 1/4. This graph has four phases, and the three
leading subgraphs are K4 − e, G and K = K1,4 (all unique). The subgraph
plot (connected subgraphs only) is shown in Figure 3.



20 SVANTE JANSON, KRZYSZTOF OLESZKIEWICZ, AND ANDRZEJ RUCIŃSKI
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Figure 3. Subgraph plot for Example 7.7. Σ∗ is shaded.

7.3. Graphs with many phases. Our last example describes an infinite
family of trees T 1, T 2, . . . , such that for every integer k ≥ 2 the tree T k has
k + 1 phases for the upper tail. (For the lower tail, graphs with arbitrarily
many phases were constructed in [19]. These are not trees, since a tree has
only two phases for the lower tail.)

Example 7.8. Let T k be the tree obtained by taking k stars K1,i, i =
1, . . . k, and tying them up by merging one pendant vertex from each star
into one vertex. The knot vertex then has k neighbors v1, . . . , vk, and each
vi is, in turn, attached to i − 1 leaves. The total number of vertices is
1 + k +

(
k
2

)
. We may call T k a star cluster.

It is convenient to label the vertices by 1, . . . , 1 + k +
(k
2

)
, in the depth-

first manner, beginning with the knot and searching the stars in order of
decreasing size, i.e. taking the knot, then vk followed by its attached leaves,
then vk−1 followed by its leaves, and so on until v1. Figure 4 presents T 4

and the labelling of its vertices.

Proposition 7.9. For every k ≥ 2, the graph T k described above has k + 1
phases for the upper tail.

Proof. By Remark 1.6, it is enough to consider only connected subgraphs of
T = T k, that is, subtrees. Moreover, as is the case for all bipartite graphs,
for trees α∗ = α – the size of the largest independent set. So, if H is a
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Figure 4. The tree T 4 with 5 phases.

subtree with h vertices, then ΨH = (nhph−1)1/αH , and the minimum of ΨH

over all H with given h is obtained by maximizing αH . Let α(h) := maxαH

over all subgraphs H of T with vH = h. Furthermore, let Q∗
h = (h/α(h), (h−

1)/α(h)). In the upper tail subgraph plot, we thus only have to consider the
points Q∗

1, . . . , Q
∗
v, where v = vT .

Let Th be the subtree of T induced by the vertices 1, . . . , h (in the labelling
described in Example 7.8). It is straightforward to show that for each h =
1, . . . , v, we have α(h) = αTh

= h − d(h), where d(h) is the degree in Th

of the knot. (A maximal independent set in Th is obtained by taking all
vertices of Th except the vi’s.)

Let us now distinguish those numbers h among 1, . . . , v for which Th

consists of a number of complete stars in T , i.e. define

h(j) = 1 + k + (k − 1) + · · · + (k − j + 1) = 1 + kj − j(j − 1)/2,

j = 0, . . . , k. We thus have α(h(j)) = h(j) − j.
Note that if h is not of the form h(j), one has α(h + 1) = α(h) + 1; it

follows by a simple calculation that Q∗
h lies to the right of Q∗

h+1 and that
the slope from Q∗

h+1 to Q∗
h is

h− α(h) − 1

h− α(h)
=

d(h) − 1

d(h)
<

v − 1

v
= m.

This means that for such h, the points Q∗
h do not appear as extreme points

of the convex hull Σ∗; consequently, the extreme points Qi in the upper tail
subgraph plot are among the points Q∗

h(j), j = 1, . . . , k. We will now show

that these points lie on a (strictly) concave curve, proving that all these
points are extreme points and that T thus has k + 1 phases, given by them
and by D = (2, k); more precisely, Qi = Q∗

h(k+1−i), 1 ≤ i ≤ k. It will also

follow that Th(k+1−j) is a leading subgraph for the i-th phase. (Except for
the first phase, the leading subgraph is not unique.)

To see that the points Q∗
h(j), j = 0, . . . , k, lie on a concave curve, re-

gard h(t) := 1 + (k + 1/2)t − t2/2 as a function of a real variable t, de-
fine x(t) = h(t)/(h(t) − t) and y(t) = (h(t) − 1)/(h(t) − t) and note that
Q∗

h(j) = (x(j), y(j)). For t ∈ [0, k] we have h(t) − t > 0, and by standard

calculus, dx/dt > 0 and

dy/dx = (dy/dt)/(dx/dt) = 1 + (k − 1/2− t)/(1 + t2/2).
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Hence, x is an increasing function of t, dy/dx is a decreasing function of t,
and thus dy/dx is a decreasing function of x, showing that y is a strictly
concave function of x. �

8. Further remarks

Remark 8.1. The main remaining problem for the upper tail, as we see
it, is the gap between the upper and lower bounds in Theorem 1.2. For
constant t, the gap amounts to a factor O(log(1/p)) in the exponent.

When G = K2, and more generally in the rather trivial case when G is
a matching, it is easy to see that for p ≥ n−1/mG = n−2, there is a lower
bound exp {−C(t, G)M ∗

G(n, p)} of the same type as the upper bound. We

conjecture that this is true in general, for as long as p ≥ n−1/mG .
In another uninteresting case, when p is below the threshold n−1/mG , we

have M∗ = Θ(1), our upper bound is Θ(1), and the lower bound is pΘ(1).
On the other hand, at least for balanced G, the correct probability is just
P(XG > 0), which, by the result of [10], see (1.1), is Θ(EXG). Indeed,
when EXG < 1/2, to have more than 2EXG copies of G is the same as to
have at least one. The fact that the upper bound is not sharp here does not
undermine our belief stated above. The important difference is that in this
case, 1 is much more that 2EXG.

Remark 8.2. Our proof of the upper bound in Theorem 1.2 yields the
estimate c(t, G) = Ω(t− 1)2 for 1 < t ≤ 2, and c(t, G) = Ω(log t) for t ≥ 2.
Using a version of Lemma 2.1 for m1 > m2, the latter can easily be improved
to

c(t, G) = Ω(t1/ maxH⊆G α∗H ), t ≥ 2. (8.1)

Note that for the trivial case G = K2, when XG has a binomial distribu-
tion, the upper bound in Theorem 1.2 is optimal (assuming p and t are not
too extreme), with c(t, G) = Θ(t− 1)2 for 1 < t ≤ 2 and c(t, G) = Θ(t log t)
for t ≥ 2. It follows that if G is a matching with j disjoint edges, then
c(t, G) can be at most c(t, G) = Θ(t1/j log t) for t ≥ 2. This suggests that
the best c(t, G) for large t in general might be of the form (8.1), possibly
with an additional factor log t, but we have no proof of that.

Our proof of the lower bound yields C(t, G) = O(t), but as stated in
Remark 8.1, we do not believe that form of the lower bound is sharp, so
there is not much reason to investigate the constants in it.

Remark 8.3. It follows from our results that the upper tail probabilities
typically are larger than the lower tail probabilities in (1.1). More precisely,

suppose that ∆G ≥ 2 and that n → ∞ and p → 0 with p � n−1/mG (i.e.

pn−1/mG →∞). Then

M∗
G � min

H⊆G, eH>0
ΨH . (8.2)

This can be shown directly from Definition (1.2), but we use instead Theo-
rem 1.5:
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Let H ⊆ G with eH > 0. First, consider the case n−1/mG � p ≤ n−1/∆G .

If α∗H > 1 we have, since p � n−1/mG implies ΨH →∞, ΨH � Ψ
1/α∗H
H . On

the other hand, the only H with eH > 0 and α∗H < 1 is H = K2. In this
case, let S = K1,∆G

be a maximal star in G and note that

ΨH = n2p � n1+1/∆Gp = Ψ
1/α∗K
K .

Hence, minH ΨH � minH Ψ
1/α∗H
H = Θ(M∗

G).

In the case n−1/∆G ≤ p � 1, we note that eH ≤ ∆GvH/2. Thus, if
vH > 2,

ΨH ≥ nvH p∆GvH/2 =
(
n2p∆G

)vH/2 � n2p∆G = Θ(M∗
G).

The remaining case is again H = K2, but then

ΨH = n2p � n2p∆G = Θ(M∗
G).

Hence (8.2) holds for n−1/mG � p � 1, which shows that the bound for
the lower tail in (1.1) is smaller than the upper bound for the upper bound
in Theorem 1.2. It is easily seen by arguments as above that if we further
require n−1/mG log n � p � 1, then also the lower bound in Theorem 1.2 is
larger than (1.1), so the two tails are of different orders.

A heuristic reason for the difference is that it is possible to create many
copies of G using comparatively few excess edges, as in our construction
in Section 3, while there seems to be no similar way to greatly reduce the
number of copies by deleting rather few edges.

Remark 8.4. As mentioned in the introduction, Spencer [20], see also [2,
§8.5] and [21, §5.2], studied a generalization of subgraph counts XG, viz. the
number of extensions isomorphic to G of a given set of vertices in G(n, p).
Although we have not examined this more general problem, we believe that
our methods apply here too.

Remark 8.5. Alon’s result in [1], which is the case n ≥ m of our Theo-
rem 1.3, was extended to hypergraphs by Friedgut and Kahn [7]. We guess
that Theorem 1.3 too has an extension to hypergraphs, in particular, since
we use the method of proof in [7]. However, we have not pursued this.

Problem 8.6. Graphs with arbitrarily many phases were constructed in
Example 7.8 above. How many phases are possible for graphs with a given

number of vertices? (For the lower tail, see [19].)

9. Appendix

9.1. Fractional independence number. For a given graph H, the frac-

tional independence number of H, denoted by α∗
H , is the largest value of∑

v αv over all assignments of weights αv ∈ [0, 1] to the vertices of H satis-
fying the condition αv +αu ≤ 1 for all edges uv of H. It follows immediately
from this definition that if eH > 0 then

1 ≤ vH/2 ≤ α∗H ≤ vH − 1. (9.1)
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The upper bound can be strengthened.

Lemma 9.1. For every graph H with eH > 0,

α∗H ≤ vH − eH

∆H
. (9.2)

Proof. For any feasible assignment of weights αv to V (H), if dH(v) is the
degree of v in H,

eH ≤
∑

vu∈E(H)

(1− αv + 1− αu) =
∑

v∈V (H)

dH(v)(1 − αv)

≤ ∆H

∑

v∈V (H)

(1− αv) = ∆H

(
vH −

∑

v

αv

)
.

Taking an optimal assignment, we obtain (9.2). �

For regular graphs, the lower bound in (9.1) and the upper in (9.2) coin-
cide, so we have a simple formula:

Lemma 9.2. If the graph H is regular and eH > 0, then

α∗H = vH/2. �

Note that the bound in (9.2) also is achieved by, among others, stars and
paths of even length. Incidently, in both these cases, α∗

H is just equal to the
independence number αH , that is, there is a 0-1 optimal assignment. It is
well-known that every vertex of the polytope defined by xv ≥ 0 (v ∈ V (H))
and xv + xu ≤ 1 (uv ∈ E(H)) is half-integral, and consequently α∗

H can

always be realized by an optimal assignment with αv ∈ {0, 1
2 , 1}. (This result

is sometimes attributed to Lovász, who, however, denies it, saying that it
was already a folklore before.) It is characteristic of all bipartite graphs that
α∗H has an integral solution (but there are, clearly, non-bipartite graphs, like
the one in Example 7.5, for which this is true as well).

Proposition 9.3. If H is bipartite, then α∗
H = αH .

Proof. If H has isolated vertices, they contribute equally to both parameters.
So, assume that the minimum degree δH ≥ 1, and consider the dual problem
of minimizing

∑
e ρe over all assignments of weights ρe ∈ [0, 1] satisfying

the condition
∑

e3v ρe ≥ 1 for all vertices v of H. This minimum value
is denoted by ρ∗H and called the fractional edge covering number. By the
duality theorem of linear programming (see, e.g., [15]) α∗

H = ρ∗H for all
graphs H. Trivially, we also have ρH ≥ ρ∗H = α∗H ≥ αH , where ρH is the
edge covering number of H, i.e. the smallest number of edges of H whose
union is V (H). But, for bipartite graphs H, as a consequence of Gallai’s
Theorem, we have in fact, αH = ρH (see, e.g., Corollary 1.1.7 in [15]), which
implies that indeed α∗

H = αH . �

Finally, let us characterize the graphs for which α∗
H = vH/2. By Lemma 9.2,

all regular graphs are among them (and in fact, every graph with a regular
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spanning subgraph). A perfect 2-matching of a graph H (see [15], page 216)
is a spanning subgraph of H whose every component is either a cycle or an
edge. The following result is implicit in [1], but it can also be deduced from
[15]. Here we provide a simple proof based on the fact that a graph has a
perfect 2-matching if and only if it satisfies the Hall condition that every
independent set A of vertices has at least |A| neighbors – see Corollary 6.1.5
in [15]. (Note that for regular graphs this condition holds.)

Proposition 9.4. We have α∗
H = vH/2 if and only if H has a perfect

2-matching.

Proof. If an independent set A violates the Hall condition then assign 1 to
all vertices in A, 0 to all neighbors of A and 1

2 otherwise. This is a feasible
assignment of total weight greater than vH/2. Conversely, if α∗H > vH/2,
then, in an optimal, half-integral assignment, the set A of vertices with
weight 1 must have bigger size than the set B of vertices with weight 0. But
A is an independent set with no neighbors outside B. �

Alternatively, Proposition 9.4 can be proved without invoking Hall’s con-
dition, by using instead the duality theorem and the fact that ρ∗H can also
be realized by a half-integral assignment.

9.2. An application of upper tail. The following illustration is a simpli-
fied form of a problem appearing in [8] (see also [12]). The main difference
is that here we deal with induced subgraphs of a random graph, while the
real thing involves non-induced subgraphs, and so a regularity lemma for
sparse graphs has to be used in order to count the edges.

Given a graph G, its base B(G) is defined as the graph with vertex
set V (G) and the edges taken as all pairs {u, v} such that for some w ∈
V (G) we have uw, vw ∈ E(G). It is straightforward to prove that if,

say, p ≥ (2.1 log n/n)1/2 then, a.a.s. B(G(n, p)) = Kn, while already for
p = Θ(1/

√
n), we have a.a.s. B = Θ(n2), where we for simplicity write

B := e(B(G(n, p))).
Does the last estimate hold for all sufficiently large induced subgraphs

of G(n, p), say of size n/2? As there are roughly 2n such subgraphs, it is
sufficient to show that if a > 0, the random graph G(n/2, p), or, equivalently,
G(n, p), where p = a/

√
n, satisfies B = Θ(n2) with probability at least

1− o(2−n). Below we provide a short proof of this fact based on our upper
tail estimate.

Let M be the number of edges and let X = XC4
be the number of 4-cycles

C4 in G(n, p). Furthermore, let Dv be the degree of vertex v and Tuv – the
number of “tepees” over uv, that is, the number of vertices w such that
uw, vw are edges of G(n, p).Then, by double counting and convexity of

(x
2

)
,

we have, provided M ≥ n,

∑

uv

Tuv =
∑

v

(
Dv

2

)
≥ n

(∑
Dv/n

2

)
= n

(
2M/n

2

)
≥ M2

n
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and then either B > M 2/2n or
∑

uv Tuv/B ≥ M2/nB ≥ 2. In the latter
case we similarly have

2X =
∑

uv

(
Tuv

2

)
≥ B

(∑
Tuv/B

2

)
≥ M4

4Bn2
,

where the sums
∑

uv are taken over all pairs uv with Tuv > 0, and thus have
precisely B terms. Hence (still deterministically), if M ≥ n,

B ≥ max

(
M4

8n2X
,
M2

2n

)
.

By Chernoff’s bound (see, e.g., [11]), M ≥ n2p/3 with probability at least

1 − e−Θ(n3/2). Noticing that EX = Θ(n4p4), all we need to complete the
proof is a bound of the form P(X ≥ tEX) ≤ e−n, which is provided by
our Theorem 1.2 (upper bound) with t constant and large enough (see Re-
mark 8.2) together with Corollary 1.7.
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[13] S. Janson & A. Ruciński, The deletion method for upper tail estimates. Technical re-
port U.U.D.M. 2000:28, Uppsala. Available from http://www.math.uu.se/~svante/.

[14] J.-P. Kahane, Some Random Series of Functions. 2nd ed., Cambridge Univ. Press,
Cambridge, 1985.

[15] L. Lovász & M.D. Plummer, Matching theory. North-Holland Mathematics Studies
121, Annals of Discrete Mathematics 29, North-Holland Publishing Co., Amsterdam;
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Poland

E-mail address: rucinski@amu.edu.pl

URL: http://main.amu.edu.pl/~rucinski/


