The upper triangular group and operations in
algebraic K-theory

Victor P. Snaith

1 Introduction

1.1 Let bu and bo denote the stable homotopy spectra representing 2-adically
completed unitary and orthogonal connective K-theory respectively. Thus the
smash product, bu A bo is a left bu-module spectrum and so we may consider
the ring of left bu-module endomorphisms of degree zero in the stable homo-
topy category of spectra [1], which we shall denote by Endieft—bu—mod(buAbo).
The group of units in this ring will be denoted by Autiefi—bu—mod(bu A bo),
the group of homotopy classes of left bu-module homotopy equvialences and
let Autf, ; py—moa(bu A bo) denote the subgroup of left bu-module homotopy
equivalences which induce the identity map on H,(bu A bo; Z/2).

Let U,.Z2 denote the group of infinite, invertible upper triangular matrices
with entries in the 2-adic integers. That is, X = (X;;) € UxZs if X, ; € Zy
for each pair of integers 0 < 4,5 and X;; = 0if j > 4 and X;; is a 2-adic
unit. This upper trianglular group is not equal to the direct limit lim— U,Z,
of the finite upper triangular groups.

Our main result (proved in §3.2) is the following:

Theorem 1.2
There is an isomorphism of the form

¥ 1 AUt py g mod(bu A bo) — UnZs.

1.3 There is a similar calculation of the group Aut],;; 4, _0q(bo A bo) which
I shall leave to the reader. In fact, the appearance of bo in Theorem 1.2 is
just for convenience. The main use of this result will be to realise the 2-adic
group-ring, Zs[UxZ,], as a subring of the left-bu module endomorphisms of
bu A bu ~ bu Abo AS2CP2,

The preference for bu over bo is that, if F' is an algebraically closed field of
characteristic different from 2, then there is a homotopy equivalence of ring
spectra bu ~ KFZ, between 2-adic connective K-theory and the algebraic
K-theory spectrum of F' with coefficients in the 2-adic integers ([17] [18]).
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As explained in Remark 4.5, Theorem 1.2 implies that the 2-adic group-ring,
Zs[UxZs), may be considered as a ring of operations on 2-adic algebraic K-
theory. I hope to develop the properties of these operations in a subsequent
paper.

The paper is organised in the following manner. In §2 we recall the de-
composition of bu A bu and bu A bo together with several related facts about
Steenrod algebra structure. In §3 we prove Theorem 1.2. In §4 we explain the
application of Theorem 1.2 to the construction of operations on algebraic K-
theory and on Chow groups. In §5 we make some remarks about the possible
identity of 1 A ¥® in UyZs.

I am very greatful to Michael Crabb and Richard Kane for helpful con-
versations and to Ian Leary for assistance with the experimental results of
§5.

2 Connective K-theory

2.1 In this section we recall the splitting of bu A bu ([1] [8]; see also [9]).
Let X be a finite spectrum and let DX denote its S-dual. Following the
account of ([1] pp.190-196) this means that we have an S-map

e:DXNX — S°

such that, if W is a finite spectrum and Z is arbitrary, there is an isomorphism
([1] Proposition 5.4 p.195)

T:[W,ZADX], = [WAX,Z],

given by T{f] = [(1z Ae) - (f ALx)].
Hence, setting W = S° and Z = X, we have

p=T"1x):8° — X ADX.

Setting Z = HZ/2, the mod 2 Eilenberg-Maclane spectrum, we obtain an
isomorphisms

U:H™*(DX;Z/2) = H.(X;Z/2) = Hom(H*(X;Z/2),Z/2)
whose composition, U, is given by
U(e)(B) = ' (B® ) € H*(S%Z/2) 2 Z/2

for all @« € H*(DX;Z/2), 8 € H*(X;Z/2).



Let A denote the mod 2 Steenrod algebra [16] then, for m > 0,

U(Sq™(@)(6) = 1*(B ® Sq™(@) = 3 1" (S¢*(6) ® S™*(a)),

a=1

since Sq™(p* (B ® a)) = 0.
Let x denote the canonical ant1—automorph1sm ([16] pp.25-26). We have

U(Sq™(@)(8) = 3 U(Sq™*(@))(5¢°(6).

a=1

For m = 1, U(Sq'())(8) = U()(S¢*(8)) = U(e)(x(Sq*)(8))- If, by induc-
tion, we have U(S¢"(2))(8) = U(«x )(x(Sq )(B)) for all n < m then

U(Sq™(a))(B) = Zl U(a)(x(Sq™*)(Sq*(8)) = U(a)(x(Sq™)(8)),
since 3™ o x(S¢™*)Sq* = 0.

Therefore, as a left A-module, H~*(DX; Z/2) is isomorphic to H,(X; Z/2)
where the left action by S¢° corresponds to x(5¢%)«, composition with x(S¢®)
(cf. [13]). However, x(Sq') = Sq' and x(S¢™) = S¢™, because these
are primitives in the Hopf algebra, A. If we set B = E(Sq*, Sq®) then
H—*(DX;Z/2) is isomorphic as a left B-module to H,(X;Z/2) on which Sq!
and Sq% acts via Sq! and S¢%', respectively.

2.2 Consider the second loopspace of the 3-sphere, 2253, There is an algebra,
isomorphism [15] of the form

H*(stg; Z/2) = Z/2[§11 §2) €3v .. ]

where & = Q%(.) has degree 28 — 1 and &, is primitive. Here ¢ = &; is the
image of the generator of H;(S';Z/2). The right action of S¢* and Sq°!, via
their duals Sq! and S¢¥*, on H,(Q253;Z/2) is given by [15]

§t4—2 Zf t Z 37
(gt)Sqm =
0 otherwise
and
§t2-1 Zf t Z 2,
(Et)Sql =
0 otherwise.

These are the same formulae which give the right action on H,(bu;Z/2)
([1] pp.340-342).



Since B = E(S¢*, S¢°!) is a commutative ring, we may consider H,(Q25%;Z/2)

to be a left B-module via the formulae, Sq'(&) = (&)Sq' and Sq°(&;) =
(&)Sq™.

In order to apply these observations to Q25% we would prefer it to be a

finite complex. However, there exists a model for 225% which is filtered by
finite complexes ([3] , [14])

S'=FCcFhCcFRcCc..c®S$8=JF
k>1

and there is a stable homotopy equivalence, an example of the so-called Snaith
splitting, of the form

9283 ~ VkZIFk/Fk—l-

In addition, by ([5]; see also [12]), this stable homotopy equivalence may be
assumed to be multiplicative in the sense that the H-space product on 0253
induces a graded homotopy-ring structure

{Fx/Fr—1 NF/Fi_1 — Fi1/Freqio1}

on Vi>1Fi/Fi-1. To obtain a graded homotopy-ring with identity we add
an extra base-point by defining Fy = S° F; = * for j < 0 and replacing
Vis1Fr/Fr—1 by VisoFr/Fr-1.

The geometrical construction of the homology operation, )1, shows that

& =t € Hy(F1;Z/2) and that & € Hot_(For—1/Fp-1_1;Z/2), in terms of the
induced splitting of H,(Q253%;Z/2) so that there is an algebra isomorphism
of B-modules of the form

H,(VisoFu/Fu—1;Z/2) 2 Z/2]€1, 63, 63,64, .. ]
Next, write H,(X"2CP%Z/2) = Z/2 < 1 > @Z/2 < x > for the mod 2

homology of the double-desuspension of the complex projective plane. Hence
Sql and Sq?! act trivially on z € Ho(X~2CP?;Z/2). Therefore we may define
an isomorphism of right B-modules

o

d: H*(VkZO(F4k/F4k—1 A 2_2CP2); Z/2) — Z/2[€%, 537 §3a 54: v ]

by the formula, for e = 0,1,

(€)M (E)760Ee" - - & © 7°) = E7 (L) 7ENER - &

Here the right B-module structure on Z/2[¢?,£2,&3,&, .. .| is that given by
the formulae introduced previously.

On the other hand, there is an isomorphism of algebras with right B-

module structure ([1] p.340)

H*(bu7 Z/2) = Z/2[€%, fgu 63:64: .. ']1
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where these &;’s are the canonical Milnor generators of the dual Steenrod
algebra ([16] pp.19-22). Therefore we have a canonical isomorphism of graded,
right B-algebras

® : H.(Viso(Far/Fin-1 AS2CP?);Z/2) = H,(bu; Z/2).
If A= Sql or Sqm, f c H*(bu; Z/2) and o &€ H*(szo(F4k/F4k_1 A
Y2CP?);Z/2) then (®(a))X = @(()A) and
< A(f), ®(a) >= (2(a))A(f) = 2((@)A)(f) =< [, B(a)}) > .

On the other hand, if we interpret o as belonging to H* (V>0 D(Far/Fap—1 A
$72CP?%);Z/2) then (o)X becomes the left translate of @ by A, A(a), for
A = Sq! or S¢®. Identifying H,(bu;Z/2) with the dual of the left B-module,
H*(bu; Z/2), we have f(®(A(a))) = A(f)(®(a)). This means that the adjoint
of @,

adj(<1>) (S HO’In(H—*(VkZQD(F4k/F4k_1 A 2_2CP2); Z/2) X H*(bu, Z/2), Z/2)
given by adj(®)(a ® f) = f(®(a)) satisfies, if A = S¢* or S,
adj(P)(Aa® f)) = adj(®)(AMa)® f+ o ® A(f))

= f(@(Ma))) + A(£)(®(a))
=0

= Madj(®)(a ® f)).
Therefore we have a canonical family of maps. for &k > 0,
adj(®)x € Homp(H™*(D(Fy/Fay1 ANX2CP?);Z/2) ® H*(bu; Z/2), Z/2)

such that adj(®) = Yg>1(adj(®)k.

The analysis of the right B-module, H,(bu;Z/2), in ([1] Proposition 16.4
and pp.340-342) shows that each left B-module of the form H*(D(Fy/Fy—1/A
Y ~2CP?); Z/2) satisfies the conditions of ([1] p.353). That is, up to direct
sums with projectives these B-modules are equivalent to finite sums of $I?,
the a-th suspension of the b-th tensor power of the augmentation ideal, with
a+b even. Here a and b may be negative. The same result holds if we smash
with a finite number of copies of bu. For such modules as the left variable
Exty'(—,—) vanishes for s > 0 and ¢ — s odd and the related Adams spectral
sequence collapses. In particular the Adams spectral sequence

Ey' = Exty}(H*(D(Fu/Fy_1 A S2CP?);Z/2) ® H*(bu; Z/2)®*,Z/2)
—— ﬂt_s(D(F4k/F4k_1 A 2_20P2) Abu A bu) ® Zo
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has
Ey' > Exty (H*(D(Fu/Fa_1 AS2CP?);Z/2) ® H*(bu; Z/2),Z/2)

and Ey* 2 E%t, by ([1] Lemma 17.12 p.361).
In addition, by the 2-local version of ([1] pp.354-355; see [1] p.358-359),
the Hurewicz homomorphisms yield an injection of the form

7(D(Fy/ Fag—1 ANZ2CP%) Abu A bu) @ Zo
l
Ext¥ (H*(D(Fy./Fy—1 A S2CP2); Z/2) @ H*(bu; Z/2), Z/2)
@
Hy(D(Fy/Fy1 AZ2CPOY) AbuAbu) @ Qq

where Q2 denotes the field of 2-adic rationals.
The collapsing of the spectral sequence ensures that there exists at least
one element

adj(\)x € Tu(D(Fg/Fp_1 AS"2CP?) A bu A bu) @ Zy

whose mod 2 Hurewicz image is adj(®)x. Such an element corresponds, via
S-duality with W = §°, Z = bu A bu, to a (2-local) S-map of the form

)\k : F4k/F4k_1 A 2_2CP2 —s buAbu

whose induced map in mod 2 cohomology is equal to ®;, the k-component of
the dual of .
Now X is a left \A-module homomorphism

A H*(bu A bu; Z/2) — H*(Fy/Fap—1 AX2CP%Z/2)
while ®} is a left B-module homomorphism
CI)Z . H*(bu; Z/2) — H*(F4k/F4k_1 A 2—20P2; Z/2)

Here we have identified B with its dual Hopf algebra, B,. The relation
between A} and ®; is described in the following manner.

There is a left .A-module isomorphism, H*(bu;Z/2) = A ®p Z/2 ([1]
Proposition 16.6 p.335), and an isomorphism ([1] p.338)
¥: AQp H*(bu; Z/2) — H*(bu; Z/2) @ H*(bu; Z/2)
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given by ¥(a®pb) = >>(a’ ®p1) ® a”(b) where the diagonal of a € A satisfies
Aa) =Y. d’ ® a” and b € H*(bu; Z/2). On the other hand, ®; induces a left
A-module homomorphism

&t : A®p H*(bu; Z/2) — H*(Fy./Fyu—1 AX2CP?,Z/2)
given by ¢%(a ®p q) = a(P}(b)). These homomorphisms satisfy
br = A - ¢
Now consider the composition

L= (m/\l)(z 1/\)\k) . Vk_>_0b’LL/\(F4k/F4k_1/\E~2CP2) — bu/\bu/\bu — b’LL/\b’LL
k>0

where m : bu Abu — bu is the bu-product. This map induces an isomorphism
on mod 2 cohomology. To see this it suffices to show that the composition

- 18X (m*®1)y : A®pH*(bu; Z/2) — H*(VisoFur/Fu—1 A 2CP% Z/2)
k>0

is an isomorphism. For ¢ € A and b € H*(bu;Z/2) & A ®p Z/2 define
V' (a®pb) € H*(bu;2/2) ® (A®p H*(bu; Z/2)) by ¢'(a®pb) = 3(a'®51)®
(a” ®p b) where A(a) =Y o’ ® a”. We find that

(1®¥)¢'(a ®pb)
=(1®89)(Z(a’®51) ® (" ®5 D))
=3 (a’®p1) ® (a1 ®p 1) ® as(b),
where (1® A)A(a) = $d’ ® a; ® az, so that
1Y) =(A® 1)y = (m" 1)y
From this identity we have
(Zr201 @ AZ)(m* ® 1)1p(a ®p b)
= (Zk201® ¢;)¢'(a @5 b)
=¥(a' ®5 1) ® a" (T 4(8))

= %(1a ®B (Zi>0 P%))(a ®p b).

Since Y x>0 ®; is an isomorphism of left B-modules this composition is an
isomorphism of left A-modules.

To recapitulate, we have proved the part (i) of the following result, part
(ii) being proved in a similar manner.

7



Theorem 2.3
In the notation of §2.1, there are 2-local homotopy equivalences of left-bu.-
module spectra of the form

(’L) L: szob’u, A (F4k/F4k_1 A E_ZCP2) — buAbu
and
(ZZ) L: szob’u A (F4k/F4k_1) — bu A bo.

Theorem 2.3 should be compared with the odd primary analogue which
is described in detail in [6].

2.4 Comparison with mod 2 cohomology
It is very easy to compare the 2-local splitting of left bu-module spectra

L : Vi>obu A (F4k/F4k_1 N 2_20P2) = buAbu
with a corresponding splitting for mod 2 cohomology.

There is a unique, non-trivial map of spectra, ¢ : bu — HZ/2, and we
wish to construct a homotopy commutative diagram of the form

szob’u A (F4k/F4k_1 A 2—2CP2) bu A bu
szoL A1TAL tA1
VkZ()HZ/Z A (F4k/F4k_1 A 2_2CP2) L HZ/2 Abu

in which I’ is a homotopy equivalence.
However, the Adams spectral sequence

ExtSt(H*(D(Fuk/Fa—1 A S2CP?);Z/2) @ H*(HZ/2 A bu; Z/2), Z/2)
= my_o(D(Fae/ Far_y A S—2CP2) A HZ/2 A bu)

has
Ey' = Exty (H*(D(Fax/Fap-1 NS T2CP?);2/2) ® A, Z/2)



which is zero if s is non-zero, since A is a free B-module [10]. Also, compo-
sition with ¢ corresponds to the canonical map on Eg’*

HomB(H_*(D(F4k/F4k_1 A 2_2CP2); Z/2) ® ARp Z/2, Z/2)

!

Homp(H™*(D(Fyx/Far—1 AX72CP?);Z/2) @ A, Z/2)
given by composition with ¢* : A — A ®p Z/2. Hence there exists
adj(N)x € mo(D(Fur/Fap1 A Z2CP2) A HZ/2 A bu)

such that
¢ adj( Nk =~ adj(N)e

and therefore
LM = A Fu/Fae 1t AXT2CP? — HZ/2 A bu.
We see that we may set L' equal to
L'=(m A1) (Trsol AX) : VisoHZ/2 A (Fug/ Fag—1 A Z2CP?)

— HZ/2ANHZ/2 Nbu — HZ/2 A\ bu

where m/ : HZ/2 AN HZ/2 — HZ/2 is the cup-product.

Also L' induces an isomorphism in mod 2 homology, since it is a homo-
morphism between free, graded module of finite type over the polynomial
ring, A. = Z/2[£,&,...], and Z/2 ®4, (L) = Z/2 ®uzpz/2). (L)« is an
isomorphism ([7] pp.603-605).

3 The role of the upper triangular group

3.1 In this section I am going to prove Theorem 1.2, which will be ac-
complished in §3.2 after some prefatory discussion. Let us begin with some
motivation from homotopy theory. Let ¥® : bu — bu denote the Adams
operation. In order to understand the map

IA@W* —1):buAbu— buAbu

we observe that it is a left bu-module map and therefore we ought to study
all such maps. The 2-local splitting of bu A bu of Theorem 2.3(i) implies that
we need only study left bu-module maps of the form

¢k,l bu A (F4k/F4k_1) AX2CP? — bu A (F41/F4l._1) AX2CP?
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for each pair, k,! > 0. In addition, the factor ¥~2CP? will only be a nuisance

so we shall study
IA W —1):buAbo — buAbo

first. By virtue of the 2-local splitting of Theorem 2.3(ii)
L" : bu Abo —= Visobu A (Fu/ Far_1)
we are led to study the corresponding left bu-module maps, {¢;c,,l , of the form
ki U A (Fgge/ Fap—1) — bu A (Fu/Fy_1).

A left bu-module map of this form is, in turn, determined by its restriction
to S° A (Fyx/Fy—1). This restriction is a homotopy element of the form

[‘15'1;,1] € wo(D(Far/ Far—1) N (Fu/Fy—_1) Abu) @ Zs.

This homotopy group is calculated by means of the (collapsed) Adams spec-
tral sequence

Ey' = Exty (H*(D(Fy/Fu-1); Z/2) ® H*(Fy/Fy_1;Z/2),Z/2)
= T1—s(D(Far/ Far—1) A (Fu/Fyu_1) A bu) @ Zs.

Recall from ([1] p.332) that X° is the (invertible) B-module given by
Z/2 in degree a, ¥™* = Hom(X% Z/2) and I is the augmentation ideal,
I = ker(e : B — Z/2). Hence, if b > 0, I™® = Hom(I% Z/2), where I° is
the b-fold tensor product of 7. These duality identifications may be verified
using the criteria of ([1] p.334 Theorem 16.3) for identifying X21°.

In ([1] p.341) it is shown that the B-module given by

H™(D(Fy/Far—1);Z/2) = Ho(Fu [ Far—1;7Z/2)

is stably equivalent to X2 '*1127'-1 when 0 < 4k = 2. Therefore
H*(D{Fy/Fu_1);Z/2) is stably equivalent to $~@ " +DJ1-2""" when 0 <
4k = 27. If k is not a power of two we may write 4k = 2™ + 2™ + ... 4 2™
with 2 <7 <719 < ... <1 In this case

H,(Fu/Fy1;2/2) 2 Q7 H(Fy/Fy_1;7/2)

which is stably equivalent to

2r1 =1 414272 14 2me =141 pori—lo14ora-l 14 4211 _ 2k+a(k) 12k—alk
3 I =3 ®) ( ),

where a(k) equals the number of 1’s in the dyadic expansion of k. Similarly,
H*(D(Fy/Fy._1); Z/2) is stably equivalent to X—2k—c(k) ya(k)-2k
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Next we observe that Ext} (T°M,Z/2) = Exty “(M,Z/2). Also the
short exact sequence

0 —IQM —BM —M—0

yields a long exact sequence of the form

.. — Ezt3(B® M,Z/2) — Ext3 (I ® M,Z/2) — Exty (M, Z/2)

—> Exty"(B® M,Z/2) —
so that, if s > 0, there is an isomorphism
Ext3i(I ® M,Z/2) — Ext3™ (M, Z/2).
Therefore, for s > 0,

Bt = Egty(D-2tel)-ak) 2-2%k-a()+alk) 7, /9)
>~ B ts+2l 2k—o(l)+o(k),t— 2l+2k—a(l)+a(k)(z/ 2,Z/2).

Now Exty*(Z/2,Z/2) = Z/2[d,b] where a € Extg', b € Ertg® and the
contributions to mo(D(Fy/Fuk—1)N(Fu/Fy_1)Abu)®Z, come from the groups
{E5* | s > 0}. This corresponds to Exztg*(Z/2,Z/2) when u = s+ 21 — 2k —
a(l)+a(k) and v = s—2l4+2k—a(l)+a(k), which implies that v—u = 4(k—I).
This implies that this Fztg"(Z/2,Z/2) = 0if [ > k or, equivalently, that each
E3*® = 0 is zero when ! > k. Therefore mo(D(Fuye/Fap—1) A (Fu/Fy_1) ANbu) ®
Zo=0if I > k.

Now suppose that | < k. If Ezty“(Z/2,Z/2) is non-zero then it is
cyclic of order two generated by a®¥~ 5y 2plv— ~/2 and when u = s + 2] —
2k — a(l) + a(k),v = s — 2l + 2k — a(l) + a(k) this monomial is equal to
g Hi—tk—a)+a(k)p2(k=l)  Fyrthermore, in order for this group to be non-zero
we must have s > 4(k — 1) + a(l) — a(k) which implies that s > 0if k = and
s> 4k—D+a(l)—a(k) > 2(k—1)+1if £ > I. The last inequality is seen by
writingl =2"1 4+ ...+ 2% with0 <o < ... <a,and k-1 =29 ... 2%
with 0 < €1 < ... < €. Then a(l) = r and a(l + 2%) < r + 1 so that, by
induction, a(k) < r + g which yields

q

20k —D+a(ll)—alk) >2(k-1)—g> Z (2t ~1) > 1.

Suppose now that k& > [ and consider the non-trivial homotopy classes of
left-bu-module maps

v bu A (Fap/Fap—1) — bu A (Fyu/Fy_q)
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which induce the zero map on mod 2 homology. In the spectral sequence
these maps are represented by elements of Fy® = E3* with s > 0 since being
represented in E>* is equivalent to being detected by the induced map in mod
2 homology. By the preceding discussion, the only other possibility is that
@i, is represented in EgfAk—D+el)—alk)erdlk—)+al)=alk) for some € > 0. Since
multiplication by two on mo(D(Fur/ Fax—1) A(Fa/Fa—1) ANbu) ® Zy corresponds
to multiplication by a € Extg'(Z/2, Z/2) in the spectral sequence, we see that

By = V21,
for some 2-adic unit y and positive integer €, where
by P bu A (Fap/Fye—1) — bu A (Fu/Fy_,)

represented in  the skpectral sequence by a  generator of
E;(k—l)+a(l)—a(k),4(k—l)+a(l)—a( ).

When k = a similar argument shows that
ke = V20kk

where i denotes the identity map of bu A (Fy/Fax—1). In particular, if d’Z,k
induces the identity map on mod 2 homology then € = 0.

3.2 Proof of Theorem 1.2
Recall that Autf,f;_p,_moq(bt A bo) is the group, under composition, of
homotopy classes of 2-local homotopy equivalences of

Viso bu A (Fye/ Fag—1)

given by left bu-module maps which induce the identity map on H,(—;Z/2).
The discussion of §3.1 shows that the elements of this group are in one-one
correspondence with the matrices in U, Zy. More specifically, the discussion
shows that there is a bijection

¢ : UOO(Z2) - A’u‘t?eft—bu—mod(bu A bO)
given by

¢(X) = Xigtry : bu A (VisoFar/Fuk—1) — bu A (VisoFar/ Fak—1)-
i<k

Here ¢4, is chosen as in §3.1.
We shall obtain the isomorphism of Theorem 1.2 by setting ¥(X) =

S(X71).
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However, in order to ensure that 4 is an isomorphism of groups we must
choose the tx; more carefully. In fact, I claim that we may choose the 4 ’s
to be the identity maps, choose each txy1 4 as in §3.1 and then define

Lk = U+10bi42041 - - - bek—1

for all k — [ > 2. If this is so then 9} is an isomorphism of groups because ¢
is a bijective anti-homomorphism, since we have

P(X) - ¢(Y)

= (Tick Xiptn)(Cics Yesbsyt)

= s Dtcsck Xk Ye,sbth1t - - - Ls,s—1lstl,s -+ - bk—1,k—2bk b—1
= Ztgk (YX )t,kbk,t

= ¢(YX)

as required.
It remains to verify the claim. For & > [ > m we need to know the relation
between the composition ¢, -tk and ¢k . Set s(k, 1) = 4(k—1)+a(l) — alk).
The element, tky is represented by the generator of
ExtsB(k,l),s(k,l) (Z2l—2k+a(l)—a(k)I2l—2k—a(l)+a(k)’Z/2) o z/z and Um by that of
Eactfé(l’m)’s(l’m)(22m_2’+°‘(m)“"(l)1 2m—2l-a(m)+a(l) 7/2) = Z,/2 while i, is Tep-
resented by a generator of

Emtsék,m),s(k,m)(Z2m—2k+a(m)—a(k) IZm—2k—a(m)+a(k)’ Z/2) o z/2

The composition, ¢, ¢k, is represented by the product of the representatives
under the pairing induced by the tautological B-module isomorphism,

e Ib ® Za’ Ib’ o 2a+a’ Ib+b’

for suitable positive integers a,a’,b,b’. Via the dimension-shifting isomor-
phisms described in §3.1, the pairing

Exty(£°1° Z/2) ® Exty® (S91Y,Z/2) — Extly™ "+ (549 [ 7,/2)
may be identified with the product
Emt%+b,8—a(z/2, Z/2) ® E$t§+b’,31_al (Z/Z’ Z/Z)

— Bty s thttiets'-a—d'(7 )9 7./9)
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which is an isomorphism whenever both sides are non-trivial. Therefore, since
s(k,1) + s(l,m) = s(k,m), this is true in our case and there exists a 2-adic
unit ug ., € Zj such that

Lim * Lkl = Ukl mlkm-

This relation justifies the choice of ¢x;’s when k¥ — 1 > 2 and completes the
proof of Theorem 1.2 O

4 An application to algebraic K-theory

4.1 As in §1.1 let bu and bo denote the stable homotopy spectra represent-
ing 2-adically completed unitary and orthogonal connective K-theory respec-
tively. Hence bu is a commutative ring spectrum with multiplication and
unit maps m : bu A bu — bu and 7 : S° — bu, respectively. Also bo is a
commutative ring spectrum and a two-sided bu-module.

Suppose now that E is a connective, right-bu-module spectrum. Hence
we have a multiplication p : E A bu — E such that

p-(AAM)>2p-(uAl): EANbuAbu — E.

Form the compositions

Lg:EAbu=EAS Abu 2 B AbuAbu

N\ es0E A bu A (Fy/ a1 A E-2CP?)

szo[tl\ll\l

e szoE A (F4k/F4k_1 A 2—2CP2)

and
Lg:ENbo=EAS®Abo ™" EAbuAbo

L7t VisoE Abu A Fy/Fy_y

VisopAl
2 VisoE A Fy/Fy s

where L and L are the 2-local equivalences of Theorem 2.3.

14



Theorem 4.2 X
The maps Lg and Lg of §4.1 are 2-local homotopy equivalences.

Proof

We must show that Lg and Lg induces isomorphisms in mod 2 homology.
The two cases are similar. However, this is easily seen for Lg from the discus-
sion of §2.2. Identify H.(Viso(Far/Fuu—1 AL 2CP?);Z/2) and H,(bu;Z/2)
with Z/2[£2, €2, 3,84, .. .] as in §2.2. Then the construction of L ensures that

LH(1®2)=102+> ba®c,

where each b, € H,(bu;Z/2) has strictly positive degree. Hence

(Lek(@®2)=a®z+ ) pla®by) ®cy

and induction on the degree of z shows that (Lg), is an isomorphism. O

4.3 Let F be an algebraically closed field of characteristic different from 2
then there is a homotopy equivalence of ring spectra bu ~ KFZ, between
2-adic connective K-theory and the algebraic K-theory spectrum of F with
coefficients in the 2-adic integers ([17] [18]). Let X be a scheme over Spec(F)
so that the algebraic K-theory spectrum of X with coefficients in the 2-adic
integers, K XZs, is a right-K F'Zs-module spectrum. Setting £ = KXZ, in
Theorem 4.2 we obtain:

Corollary 4.4
There are 2-local homotopy equivalences of the form

LKX . KXZ2 /\ﬂZz — szoKXZ2 A (F4k/F4k_1 A E_Qsz)

and
Lgx : KXZy ANbo — VoK XZo A Fyy/ Fiye_1.

Remark 4.5 The splitting of Theorem 2.3 may be used to give a family
of well-behaved operations in connective K-theory. At odd primes this is
developed in [6], for example. In a similar manner the splittings of Corollary
4.4 may be used to give a family of operations on the algebraic K-theory of
F-schemes.

More precisely, for k£ > 0 let

KXZy(k) = KXZy A Fyr/ Fyp—1
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so that KXZ5(0) = KXZ,. Then we may define maps of spectra of the form
to be given by the components of the composition

Vuz0Q" : KXZy A Fai./ Far—1 Y KX 7y A bo A Fu/Fap—1

X0ty 5K X2 A FinFin1 A Fur/Fis

1
2 VoK XZo A Fuypyar | Fanrai—1.

Here m : Fyn/Fyn—1 N Far/Far—1 — Faniar/Fantak—1, as in §2.2, is induced
by the loopspace mulitplication on 92283 via the Snaith splitting. The con-
struction of the Q™’s imitates that of ([6] p.20).

In the case when X is a regular scheme of finite type over F' these oper-
ations should induce interesting operations on Chow theory by virtue of the
isomorphism ([11] Theorem 5.19)

HPY (XK ) = AP(X).

Operations in connective K-theory have been thoroughly examined before
([1] 6] [8] [9]). The difference between my approach and previous ones is to
view the Q™’s as lying in Zy[U,Z5] in order to control better the relations
such as that between Q"Q™ and Q™™ (cf. [6] p.98). I hope to elaborate on
this application elsewhere.

Incidentally, using equivariant intersection cohomology theory, Steenrod
operations on Chow theory have been constructed in [2] while similar opera-
tions are constructed in [19] using motivic cohomology.

5 Which is the matrix for 1 A 37

5.1 If ¥® : bo — bo is the Adams operation in 2-local orthogonal con-
nective K-theory then the homotopy class [1 A %] defines an element of
AUty ¢; by moa(bu A b0). It would be very interesting to know the identity
of the matrix

X,./,3 € U00Z2

which corresponds to [1 A %3] under the isomorphism of Theorem 1.2. I have
not been able to determine Xys. Of course, there is an ambiguity in the
definition of the isomorphism of Theorem 1.2 due to the fact that each ¢x41 4
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is defined only up to a 2-adic unit. This ambiguity is easy to accommodate.
There is a more substantial problem. If

X,/,s = Z ke € Uy

0<i<k

the 2-adic integers, ajx, are determined by the effect of the ¢;’s on
7« (bu A bo) @ Zy modulo torsion. Imitating [1] we study 2-adic homotopy
modulo torsion by means of its image in H,(bu A bo; Q2) = Qa[u,v?]. The
Hurewicz image of 7, (bu A bo) ® Z, consists of those polynomials, f(u,v?) €
Zslu/2, (v/2)?) such that f(at,b*?) € Zy[t,t71] for all odd integers a and b.
The action of 1 A¢® is given by the ring endomorphism of Qa[u,v* which
fixes u and sends v? to 9v2. Modifying the argument of [1] it is possible to de-
termine a free Z,-basis for the space of such polynomials but we do not know
whether it respects the decomposition of =, (bu A bo) ® Z, into the summands
me(bu A (F/Fak—1)) ® Zg given by Theorem 2.3(ii). Having found such a
Zy-basis, it is straightforward to determine the entries in X5 up to 2-adic
units.
By way of illustration, consider the coefficient, ag x, of

Lko - bu A (F4k/F4k_1) — bu A (Fo/F_l) = bu

in Xys for k > 1. This coefficient is determined by the effect on a generator
2, € Tar(Far/Fye—1) represented by the inclusion of the bottom cell. Up to
2-adic units, (tx0)s(2x) = 22~2F)2%* where a(k) is the number of 1’s in the
dyadic expansion for k. When k& = 1 we must have z; = wu? + (v? — u?)/4
for some w € Zs. Hence

(1A P®)u(21) = 921 + (1 — 4w)20% = 9(e1,1)«(21) + (1 — dw)(e1,0)4(21).

This shows that a;; = 9 and g1 = 1 — 4w € 1+ 4Z,. In fact w must
be divisible by 2 because u*(v? — u?)/4 is divisible by 2 in 7g(bu A bo) ®
Z,. Similarly, in order to calculate a; one shows that (9,1).(22) € ma(bu A
(F1/F3)) ® Zy is exactly divisible by 2%~ Then one chooses a suitable
candidate for 22, (9u* — 10u%v? + v*)/16 for example, determines its image
under (1 A %), and reads off as, a1 2, ap 2.

Proceeding in this manner the ambiguity in the choice of z; as a polyno-
mial in u and v? soon gets out of hand. The following possibilities for the
first six columns of X3 were produced for me by Ian Leary using a Maple
programme to choose a Zg-basis for 2-adic homotopy modulo torsion. The
entries in the matrices are only determined up to multiplication by 2-adic
units and e, € {0, 1}.
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5.2 Some possibilities for Xys'

/110 0 0 0
0 9 1 2t-es 2l-ens gl-eis
00 92 2= 1 1
00 0 9% 2l-es 2l-eas

000 0 gt 2l-ess

\0 0 0 0 0 9 )

09 1 1  2l-ens 9l-eis
0 0 92 2l—e2s 1 1
00 0 9 l-ess 9l-ess

000 o0 9t oles

\0 0 0 O 0 9% )

(110 0 1 0
0 9 1 2-e1s gl-eia gl-eis
00 92 2-es 1 1

00 0 98 2l-esa ol-ess

000 0 9 2l-es

\0 0 0 0 0 % )

! Added January 2002: Using results from [4] Francis Clarke and the author have recently
shown that Xs is conjugate in UxZ3 to the matrix having 91 in the (4,1)-entry, 1’s in
each (i,%+ 1)-entry and zero everywhere else.
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/(110 0 0 1\
0 9 1 20-es 2l-ew
00 9 2-es 1 1
00 0 9 2iess gl-ess

000 0 9t l-ess

\0 0 0 0 0 o )
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