POWERS AND PRODUCTS OF REGENERATIVE PHENOMENA

J.F.C. Kingman, Isaac Newton Institute

Summary The simultaneous occurrence of two independent regenerative phenomena
defines a third, whose p-function is the product of the first two. Thus integer powers of p-
functions are p-functions. The corresponding result for non-integer powers (with exponent
a > 1) was proved in 1995 for discrete time, and for standard continuous time, phenomena.
There are still open questions, notably whether the class of Markov p-functions is closed
under non-integer powers. These questions are addressed by means of a new technique
which relates the atoms of the canonical measure to ‘kinks’ in the p-function. This provides

new information even for products of p-functions.
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1. Multiplicative theory of p-functions
A regenerative phenomenon (Kingman, 1972a) is a random process
Z=(Z(t),t>0) (1.1)

taking only the values 0 and 1 and such that, whenever

D=t <ti1 <ty <...<t,, (1.2)
P{Z(t1) = Z(tz) = ... = Z(tn) =1} = [ p(tr — tr—1). (1.3)

Here p is a function on (0,00) called the p-function of Z which determines the finite-

dimensional distributions of Z by a simple inclusion-exclusion argument.

In particular, the first occurrence probability

P{Z(t;) = ... = Z(tn_1) =0, Z(t,) = 1}
=E{(1-Z(t1)) (1= Z(t2))...(1 = Z(tn-1)) Z(tn)} .

Expanding out the product gives a sum of products of Z(¢,.), each of which has expectation

given by (1.3) for a subsequence of (1.2). Thus
P{Z(t1)=...=Z(tn-1) =0, Z(t,) =1} = F (t1,t2,...,tn;p) , (1.4)

where each F'is a polynomial in values of p:

(
F(t1,t2,t3;p) = p(ts) — p(t1)p(ts — t1) — p(t2)p(ts — t2) (1.5)
+ p(t1)p(ta — t1)p(ts — t2)

A necessary and sufficient condition for a real-valued function on (0, c0) to be a p-function

is that, for any sequence (1.2),
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and
n

ZF(t17t277tT‘7p) <1 (]‘7)

r=1

The most important classes of p-functions are P, the class of standard p-functions
satisfying

limp(t) =1, (1.8)
t—0

and R, the class of renewal sequences which are in effect p-functions which are non-zero

only when t is an integer.

Although (1.6) and (1.7) give a complete criterion for a function to be a p-function,
they can be difficult to apply. For instance, it is very hard to use them to show that the
product of two p-functions is a p-function. Yet this is obvious probabilistically, since if Z;
and Z are independent regenerative phenomena with p-functions p; and po, then (1.3) is
satisfied by

Z(t) = Z1(1) Z2(1) , (1.9)
with

p(t) = p1(t)p2(t) - (1.10)
This simple observation was the starting point of the rich Kendall-Davidson theory of

delphic semigroups (Kendall and Harding, 1973).

In particular, for any p-function p,

p*(t) = {p(t)}* (1.11)
defines a p-function p® for any positive integer «. This suggested the natural question (in
the discussion of (Kingman, 1966)) whether p® is a p-function if a > 1 is not an integer.
It was a difficult question because there seemed to be no probabilistic interpretation of
p®, and it was only resolved thirty years later (Kingman, 1996) by direct use of (1.6) and
(1.7). And even that proof left a gap, since it only proved that the two classes R and P
are closed under

pr— p° (a>1), (1.12)

and there are many p-functions that fall outside these classes.

An important subclass of P is PM, which consists of those standard p-functions which
can come from continuous time Markov chains. David Williams has asked whether PM
is closed under the map (1.12). This is still an open question, but the technique to be

described below makes it very likely that the answer is positive.



2. A general proof of the power property

The purpose of this section is to give a proof that p® is a p-function for e > 1, a proof
that applies to any p-function p, and not only to those in R and P which were dealt with
in Kingman (1996).

It is well known (Kingman, 1972b) that it is often possible to avoid (1.7), since it
follows from (1.6) in the presence of simpler restrictions on p. A function which satisfies
(1.6) but not necessarily (1.7) is called a semi-p-function. Then it is known that a semi-p-
function satisfying (1.8) is a p-function if and only if it is bounded, and there is a similar

result for renewal sequences. Both these results are special cases of the following result.

Theorem 1 A semi-p-function is a p-function if and only if it is bounded.

Proof The ‘only if” assertion is immediate, since (1.6) and (1.7) with n = 1 show that
any p-function satisfies
0<p(t) <1 (2.1)

for all ¢ > 0. To prove the converse, we use the ‘first passage’ formula

n—1

p(tn) =D F(ti o, tip)p(tn — o) + F (1,2, tnip) (2.2)

r=1

which is valid for any sequence (1.2) and any function p. It is important to note that,
although (2.2) has a simple probabilistic meaning when p is a p-function, it is true as an

identity in the values of p. It can indeed be used by recursion on n to define the polynomials
F.

Let p be any semi-p-function, so that

fT:F(t17t27"'7tT;p)>O (23)
forr=1,2,...,n, and write
f=h+h+...+/n. (2.4)
We prove by induction on a = a; + a3 + .. .a, that, for non-negative integers a,.,
a! a1 pas an
p(a]_t]_ +a2t2+...+antn) 2 m 1 2 fn . (25)



This is trivially true if a = 1; suppose it true for 1,2,...,a — 1. Replace the sequence
tl) ceey tn in (22) by

O<ti<tao<...<t, <T=a1t1+...+ant,.

Then (2.2) and (2.5) for a — 1 imply that

(a = 1)! _
ffemL L fan

pﬂ7>§:ﬁaﬂ”(w—1ﬂ“ﬂw
r=1

which proves (2.5).

If the semi-p-function p is bounded above by M (say), (2.5) shows that
alfi* .. fin < Maq!. .. ap! (2.6)

for all a,. Take logarithms and set a, = [N f,] as the integer N — oo. Then Stirling’s
formula shows that (with simple modifications if f, = 0)
logar! =Nf: (longr - 1) +O(N)a
loga!=Nf(logNf—1)+0o(N),
and (2.6) simplifies to
Nflogf+o(N)<O0.

This shows that f < 1 and therefore p satisfies (1.7) and is a p-function.

Theorem 2 If p is a semi-p-function and a > 1, then p® is a semi-p-function.

If p is a p-function, then p® is a p-function.

Proof The second assertion follows from the first by Theorem 1. Thus we only have
to prove, if a function p satisfies (1.6) for all sequences (1.2), then so does p® for all a > 1.
We shall in fact prove, by induction on n, the stronger result that, if p satisfies (1.6) for

all sequences of length at most n, then so does p® for all o > 1.

This assertion is trivially true for n = 1,2. Suppose it is true for 1,2,...,n — 1, and
let p be any function satisfying (1.6) for every sequence of length at most n. Then p®

satisfies (1.6) for every sequence of length less than n, and our task is to prove that
F(t17t277tnapa) 20 (27)
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Suppose first that p(¢,) = 0. Applying (2.2) with the 2-element sequence 0 < t, < t,
we have p(t,)p(t, — t,.) = 0, and so p®(t,)p®(tn, — t,) = 0. But

pa(tr) > F(tlv' "7t1’;pa) > 07

so that
Fty,...,to;p)p* (tn —t,) =0

for r =1,2,...,n — 1. Equation (2.2) then shows that (2.7) is true with equality.

In what follows we therefore assume that

p(tn) > 0. (2.8)
Use the conventions
and write
fij(a) = F (tig1 —ti  tigo —t5, ... 15 — t;;0%) (2.10)

for 0 <7 < j < n, so that by the inductive hypothesis

fij(@) 20 (a>1) (2.11)

except perhaps for i = 0, j = n. Equation (2.2) applied to the sequence t;41 — t; <
tiv2 —1; < ...<t; —t; shows that, for 0 <i < j < n

P (L — t;) Z fir(@)p® (t; — tg) - (2.12)
k=1+1
In matrix notation
P,=1+F,P,, (2.13)

where P, and F, are square matrices of order (n + 1), the (7, j)th element of P, being
P (tj — i)

if 0 < ¢ < j < nand 0 otherwise, and the (4, j)th element of F,, being f;;(a) if 0 <i < j < n

and 0 otherwise.

Thus
F,=1-pP;', P,=I1+P,F,, (2.14)



and using primes to denote differentiation with respect to «,
P =F,P. +F'P,,

so that
Fc/u:(I_Fa)Pc/uPojlz(I_Fa)P&(I_Fa)

=P, — F,P — P Fo+ FoP.F,.

The (0,n) element of this matrix identity is
f(l)n(a) =P ( Ing ZfOr t -t )1ng(tn—tr)

—-}:l) ) log p(ts) fon(ct)

+ Z fﬂr(a)pa (ts - tr) ]ng (ts - tr) fsn (Ck) 9

1<rLs<n

where terms in log0 are ignored. Applying (2.2) and its dual from (2.14), this is easily

thrown into the form
f(l)n (a) :f()n (a) Ing(tn)
+ Z fOr fsn (ts . tr) IOg {p (ts - tT)p(tn) } (2'15)

p (tn - tr)p(ts)

where the sum extends over all r, s satisfying

I<r<s<n, fOr(a)fsn(a)p (ts - tr) >0, (2'16)
these conditions ensuring by (2.11) that the logarithm is defined.

Equation (2.15) is a general form of equation (16) of (Kingman, 1996) and the proof
now proceeds exactly as in that paper. We apply Jensen’s inequality to the sum in (2.15),

using the convexity of

Y(z) =xlogw,
to show that the sum cannot be less than

-1

Q™ p(tn) " AY(B/A) = o p(t,) " Blog(B/A),
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where

A= Z fOr fsn ( - tr)pa(ts)

< Forl@? (b — 1) S 5 (12) fun(@)

= {p*(tn) = fon()}?
and

B = ZfOr fsn ( s tr)pa(tn)
= {p*(tn) — fonla)} p*(tn).

Thus (2.15) implies that

fint@) > fon(e)logp(tn) + a7 (4(0) ~ fonle)}hog { A )

which means that
g9(a) = fon(a)p(tn) ™
satisfies
ag'(@) > — {1 —g(a)}log {1 — g(a)} (2.18)

in @ > 1. This differential inequality, with g(1) > 0, is shown in (Kingman, 1996) to imply
that g(a) > 0 for all « > 1, so that

fOn( ) (t17t27"'7tn;pa) >O

as required, and the proof is complete.

3. Kink analysis for products

The class P of standard p-functions is characterised by the Laplace transform identity

/000 p(t)e=bdt = {9 + /(0 | (1—e%) u(dt)} (3.1)

valid for # > 0. For every p € P, there is a unique measure p on (0, 00], the canonical

measure of p, satisfying

/(0 | min(¢, 1)p(dt) < oo (3.2)
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and (3.1). Conversely, for any u satisfying (3.2), there is exactly one continuous function
p satisfying (3.1), and it belongs to P. This bijection is continuous, if P is given the
topology of pointwise convergence, and the set of measures satisfying (3.2) is given the

vague topology that is the weakest making

po—> J () min(t, 1) p(dt)
(0,00]

continuous for any bounded continuous f.

If standard p-functions p; and p, have canonical measures g and s, the canonical

measure  of p = py1ps is determined by pq and ps. Indeed,

(ks p2) — o (3.3)

is a commutative, associative binary operation making the space of measures satisfying

(3.1) a semigroup isomorphic to P. It is however very difficult to describe (3.3) explicitly.

Kink analysis addresses these problems using Theorem 3.4 of (Kingman, 1972a), which
asserts that any p € P has right and left derivatives p’(t+) and p’(t—) at all ¢ in (0, 00)
and that

p(t+) = p'(t=) = pft}. (3.4)

Thus an atom of p at ¢t corresponds to a ‘kink’ in the graph of p. Since

p'(t+) = p1(t)p5(t+) + P (t+)p2(t)
and
p(t=) = p1(t)p5(t—) + py(t—)p2(t)

(3.4) implies that
pity = pr(H)pait} + pa ()it} (3.5)

Thus the atoms of p in (0,00) form the union of the atoms of p; and of uy. (This is not

necessarily true at oo, where it is possible that p;{oc} = pa{occ} = 0 but that u{oc} > 0.)

Now suppose that p; and pe are purely atomic. Then (3.5) shows that the atomic
part p, of pon (0,00) is given by

pra(dt) = p1(t)p2(dt) + pa(t)pa(dt), (3.6)
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so that
p(dt) = p(t)pe(dt) + p2(t)pa(dt) . (3.7)

This inequality now extends by continuity to all u; and pe, since the purely atomic mea-
sures form a dense subset and all the relevant operations are continuous. Thus we have

proved the following.

Theorem 3 The canonical measure ; of the product p = p;ps of standard
p-functions with canonical measures p; and p. satisfies (3.7) on (0,00). The

atom of p at any ¢ € (0,00) is given by (3.5).

The equation (3.5) and the inequality (3.7) have natural probabilistic interpretations,
which can be developed into a probabilistic description of the semigroup operation (3.3).

This is both complex and subtle, and space does not allow it to be described here.

4. Kink analysis for powers
The same argument, but without a probabilistic meaning, applies to the canonical

measure of the power of a standard p-function.

Theorem 4 Let p € P have canonical measure yu, and let « > 1. Then p“
belongs to P, and has canonical measure p, (say). The atoms of p, in (0,00)

are at the same points as those of y, and

pa{t} = ap(t)* = p{t} (4.1)

for each ¢ € (0,00). If the measure v, is defined on (0,00) by

pa(dt) = ap(t)*va(dt), (4.2)
then v, increases with « in the sense that, for 1 < a < g,

p< vy <vg. (4.3)
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Proof Since p® has derivative ap(t)*~!p’ to right and left, (3.4) shows that

paf{ty = ap(t)*~1p' (t+) — ap(®)*~'p'(t-)
= ap(t)* " u{t},
proving (4.1). In particular, if 4 is purely atomic, the atomic part of p, is ap(t)*~tu(dt),

so that
fia(dt) = ap(t)*~ ' p(dt) (4.4)

on (0,00). As before, this inequality extends to general p by continuity. In the notation
of (4.2),
vadt) > p(dt)

so that the first inequality in (4.4) is proved.
To prove the second inequality, apply (4.4) to pY(y > 1). This gives

by () > ap(£) @~V ()
or
ayp(t)* ™ Wan (dt) = ap(t)*Typ(t) vy (dl) -

Thus we have proved that

Var 2 Uy

for a,,y > 1, which becomes the second inequality of (4.4) if we replace v by @ and « by
Ble.

How does this apply to the Williams problem started at the end of Section 17 The
class PM of standard p-functions arising from Markov chains with countable state space
is closed under products. Thus p* € PM if p € PM and « > 1 is an integer. Is this true

if o is not an integer?

Suppose therefore that p € PM. The characterisation theorem for PM (Kingman,
1972a) shows that the canonical measure p of p is absolutely continuous on (0, 00), and

admits a lower semicontinuous density f which is either identically zero or satisfies
ft)>0(t>0), f(t)=e Mt >=1) (4.5)

for some . The case f = 0 is easily dealt with, so we assume (4.5).
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Theorem 4 shows that the canonical measure p, of p®(a > 1) is free of atoms in
(0,00). Indeed, more is true, as can be seen by taking § to an integer in (4.3). Then we
know that p? belongs to PM, so that K is absolutely continuous in (0, 00). So therefore
is v, and the inequality (4.3) implies that v, is absolutely continuous. This implies that

to has a density f, on (0,00) and, if g, is defined by

fa(t) = a’p(t)a_lgoz(t) ’ (46)
Ja is a density for p,. By (4.3),if 1 < a < 3,
f(t) < galt) < gp(t) (4.7)

for almost all ¢, and a standard regularisation technique enables the densities to be chosen

so that (4.7) holds for all ¢t € (0, 00) so that g, is non-decreasing in «.

From (4.5), (4.6) and (4.7), fa(t) > 0 for all ¢ > 0. For ¢ > 1,
fa (t) > ap(t)a—le—'yte—'y(a)t

for some vy(«), since standard p-functions decay at most exponentially fast (Kingman,
1972a, p. 53). Thus we have almost established the necessary conditions for p* to belong
to PM. The only gap is the need to prove that f, can be taken to be lower semicontinuous
when « is not an integer, and the techniques of this paper are not powerful enough to prove
this. Williams’s question remains open, but might perhaps be promoted to the status of a

conjecture.
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