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1 Introduction

The purpose of this paper is to make a few elementary remarks about the action
of the Galois group of a local field on vanishing cycles in relative codimension
one. There is a formula due to Deligne and Kato for the dimension of the group
of vanishing cycles in this situation

dima(H' (X Xspeo(r) Spec(k); u(F))) = ¢(n) — ¢(s) + 26dima(F).

Precise details of the context and of the Deligne-Kato formula are given in §3
and §4.4.

There is a canonical action of the absolute Galois group G(k/k) on the van-
ishing cycles H'(X Xspec(r) Spec(k); wi(F)) and the problem of analysing this
Galois action is posed in ([16] p.632).

Let k be a local field and A a finite field of characteristic [ different from the
residue characteristic of k. Then the cohomology group

HS‘H(X X spec(k) Spec(L); w(F)) = H*(L; Hl(X X Spec(k) Spec(E);u!(}')))

can only possibly be non-zero for s = 0,1,2 for each finite Galois extension
L/k. As a contribution to the Galois structure problem posed in ([16] p.632)
we derive a relation between the annihilator ideals of the Z;[G(L/k)]-modules
HI(X Xgpec(k) Spec(L); wi(F)) in the case when the Galois group is abelian.

The structure of the paper is as follows: In §2 we explain how to derive annihi-
lator relations (Theorem 2.7) of the sort we want from elements of the relative K-
group Ko(Z;[G(L/k)], Q:). This is very simple algebra and is a slight generalisa-
tion of the phenomenon discovered in ([37] Chapter 7; see also [38]). In §3 we con-
struct a “refined Euler characteristic”, an invariant lying in Ko(Z;[G(L/k)], Q1),
from the vanishing cycles in relative codimension one. When G(L/k) is abelian
this invariant is represented by an element

QI[G(L/k)]*

det(®) € ZIGL/R)

1



which enters into the annihilator relation of Theorem 4.2. In §§4.3-4.6 we discus-
sion some clues which point to a connection between the Kato-Swan conductor
and det(®).

This all adds up to a very interesting phenomenon which has the prospect
of some very intriguing formulae. Unfortunately, at the moment, I have no
substantial examples to present but I hope to return to this topic in a future
paper.

I am very grateful to Igor Zhukov for introducing me to the topic of Swan
conductors in algebraic geometry — in particular to the results and problems
which appear in ([1], [2], [3], [6], [7], [15], [16], [17], (18], [19], [21], [22], [23],
[24], [25], [30], [31], [32], [41], [42], [43], [44]). I am also very grateful to the
Royal Society for the Joint Projects Grant which made possible my visits to St.
Petersburg and Igor Zhukov’s to Southampton during 2000-2002. In fact, this
work was started during the first of those visits.

2  Ky(Zi|G],Q;) and annihilator relations

2.1 Let! be a prime, G a finite group and let f : Z;[G] — QiG] denote
the homomorphism of group-rings induced by the inclusion of the l-adic integers
into the fraction field, the l-adic rationals. Write Ky(Z;[G], Q;) for the relative
K-group of f, denoted by Ko(Z;[G], f) in ([39] p.214; see also [37] Definition
2.1.5). By ([39] Lemma 15.6) elements of Ko(Z;[G], Q:) are represented by triples
[A, g, B] where A, B are finitely generated, projective Z;[G]-modules and g is a
Q:[G]-module isomorphism of the form g : A ®z, Q; 5B ®z, Qi- subject to
relations described in [39]. This group fits into a localisation sequence of the
form ([29] §5 Theorem 5; [12] p.233)

K(Zi]G)) T K(Qu[G)) -2 Ko(Zu[G, Qi) - Ko(Zu[G)) L5 Ko(QU[G)).

Assume now that G is abelian. In this case K1(Q[G]) = Qi[G]* because
Q:[G] is a product of fields and K;(Z;[G]) = Z;[G]* ([5]I p.179 Theorem (46.24)).
Under these isomorphisms f, is identified with the canonical inclusion.

The homomorphism, Ky(Z;[G]) LN Ko(Qu[G]), is injective for all finite
groups G ([34] Theorem 34 p.131; [5]II p.47 Theorem 39.10). Alternatively,
when G is abelian, Z;[G] is semi-local and the injectivity of f, follows from the
fact that a finitely generated projective module over a local ring is free ([8] p.124
Corollary 4.8 and p.205 Exercise 7.2). Thus the localisation sequence yields an
isomorphism of the form

~ Q[G]"
-~ Z)[G)

Ko(Zi[G), Qi)

when G is abelian. From the explicit description of @ ([39] p.216) this isomor-
phism sends the coset of & € Q;[G]* to [Zi[G], (a- —), Z;[G]]. The inverse isomor-
phism sends [A4, g, B], where A and B may be assumed to be free Z;[G]-modules,
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to the coset of det(g) € Q;[G]* with respect to any choice of Z;[G]-bases for A
and B.

Example 2.2 We shall be particularly interested in the following source of ele-
ments of Ko(Z[G], Q)).
As in §2.1, let [ be a prime and let G be a finite abelian group. Suppose that

d di_1 d d
0—>Fk—k>Fk_1—>...—2>F1—1>F0—>O

is a bounded complex of finitely generated, projective Z;[G]-modules (ie. a
perfect complex of Z;[G]-modules), having all its homology groups finite.

As usual, let Z; = Ker(d; : F; — F,_1) and B; = dy1(Fiy1) C F; denote
the Z;[G]-modules of ¢-dimensional cycles and boundaries, respectively. We have
short exact sequences of the form

0— B, 2% Z, — Hy(F,) — 0

and " .
00— Zip = Fipa - B; — 0.

Applying (— ® Q) we obtain isomorphisms
¢ :Bi®Q — ZeQ
and we may choose Q;[G]-module splittings of the form
N :Bi®@Q — Fit1®Q

such that (di+1 ® ].)’I'].i =1:B,0Q, — B;® Q.
Then we form a Q;[G]-module isomorphism of the form

X :®iF @Q — @, Fp11 ® Q
given by the composition
[ noi_ -1
D;F @Q R D;(Z2; @ Qi) ® (B2j—1 ® Qi)

®; (¢7 - Obai—1)
Y (B @ Q1) @ (Zoj_1 @ Q)

(®; m2j+¥2i-1) ®; i1 ® Q.
If w; € F;, @ Q; then X is given explicitly by the formula
X (wo, we, .. .)
= (no(wo) + da(w2), n2(wa — m(da(wz))) + da(wa), - . .,
- mae(war — Mae—1(da(war))) + dovia(warta), - )
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This construction defines a class, [®;F;, X, ®;Fsi11], in Ko(Z;[G], Q) which
is well-known to be independent of the choices of the splittings used to define X
([39] Ch. 15; see also [37] Propositions 2.5.35 and 7.1.8).

We shall denote by Q]

!
det(X) e ZI(GP

the element which corresponds to [@;Fy;, X, ®;F11] € Ko(Zi[G], Q;) under the
isomorphism of §2.1.

2.3 Recall that, if R is a ring and M a (left) R-module, the (left) annihilator
ideal anng(M) <t R of M is defined to be

anng(M)={reR|r-m=0for allm € M}.

Let us recall from ([26] Appendix; see also [40]) the properties of the Fitting
ideal (referred to as the initial Fitting invariant in [28]).

Let R be a commutative ring with identity and let M be a finitely presented
R-module, in our applications M will actually be finite. Suppose that M has a
presentation of the form

LR M0

with a > b then the Fitting ideal of the R-module M, denoted by Fgr(}M), is
the ideal of R generated by all b x b minors of any matrix representing f. The
Fitting ideal Fr(M) is independent of the presentation chosen for M.

The following result yields relations between the annihilator ideals and Fitting
ideals of the homology modules in Example 2.2 in the special case when each
H;(F,) is finite and zero except for i = 0, 1.

Theorem 2.4 (/38] Theorem 2.4; see also [87] Chapter VII)
Let G be a finite abelian group and l a prime. Suppose that

d dr—1 d; d
0——->Fk—k)Fk_1—>...—2>F1—l>Fo—)0

is a bounded, perfect complez of Z,[G)-modules, as in Ezample 2.2, having H;(F,)
finite for i = 0,1 and zero otherwise. Let

QiG]
Z)[G]*

[®; F5, X, @ Faj41] € Ko(Zi[G], Qi) =

be as in Example 2.2. Then:
(i) if t: € anng,iq(Hi(F.)),

det(X)V't™ € annge)(Hy—i(F.)) < Zi[G]

fori=0,1. Here mg,m; is the minimal number of generators required for the
Z,[G]-module Ho(F,), Hom(H(F,), Qi/Z:), respectively,

(i) if the Sylow l-subgroup of G is cyclic then in (i) anng, g (H1—i(Fi)) may
be replaced by Fg e (H1-i(Fy)).



2.5 Shortening perfect complexes
Now consider once more the situation of Example 2.2. Let G be a finite
abelian group and [ a prime. Suppose that

d dr—1 di—2 d d
0—)Fk—k)Fk_1—)Fk_g—)...—z—)Fl—l>Fo-—)0

is a bounded perfect complex of Z;[G]-modules with H;(F,) finite for each i. Let
to € Qu[G]* Nanng,c)(Ho(F)). As before, choose Q;[G]-modules splittings

7 :Bi®@Q — Fi1 ®@Q

so that (d;z1 ® 1)m; = 1. Thus we obtain a Q;[G]-module isomorphism of the
form N
X :@iFy Qi — ®ifoi1 @ Qu

given, if w; € F; ® Qq, by
X (wo, wa, - - .)

= (no(wp) + da(wa), na(wa — M (da(ws))) + da(wy), ...,

s Tae(war — Moz—1 (dos(war))) + doryz(waera), . - .).
Assuming that Fy is free if necessary, choose 7y so that
No(to: =) =t : Fo CFHo®@Q=B®Q  — F1®Q

lands in F;. Now form the chain complex

Pi0—F-%F "p,% S pepérr )

Write P,y = F; fori =1,3,4,...,k and P, = F,® F, with differentials d;_; = d;
fori=4,5,...,dy = (ds,0) and d; = do+tom. Fori=3,4,5,... Ker(di_1) = Z;.
Also da(wa,wp) = 0 implies that 0 = da(wa) + teno(wo) so that 0 = dy(da(we) +
tono(wo)) = towo, which implies that wo = 0 since to € Q;[G]*. Hence Ker(d;) =
Zy C Fy C Fy ® Fy. The boundaries of P, satisfy Jj(Pj) = d;+1(Fj41) = B; for

j=3,4,...and dy(P,) = d3(Fs) = By C F, @ Fy while di(P;) = By + tono(Fp).
Therefore we may choose Q;[G]-modules splittings of the form

fi-1:d;(F) @ Q=B;®Q "> Fu®Q=PeoQ
for j =2,3,...,k— 1. Finally define
T:Ph®QU=FRoQ —ReQeR1oQ
onz € PB®Q; by
fo(2) = (m(z — mo(dr(2))), 15" d1(2))
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which satisfies

di(fo(2)) = da(m(z — mo(d1(2)))) + tome(t5 d1(2))
= z — no(d1(2)) + no(d1(2))

=z,

as required for a Q;[G]-module splitting.
Denote by Y the Q;[G]-module isomorphism

Y:® P25®Qli>@ip2i+1®Ql

defined using the 7;’s and (L’s. Now Py; = Fyiy1 so for we; = 29541 € Fyiq1 we
ha'vev in &b; F2i Y Qh

Y (21, 23, .. )

=Y (wo, wa . . )

= (7io(wo) + da(ws), fla(wy — i (dp(ws))) + da(wa), - - .,
ooy Tiae(wae — Flas—1 (dos(w2e))) + davya(Watta), - )

= (tg'd1(21), m(z1 = mo(di(21))) + da(23), .. .,

o Motr1(Zaer1 — Moe(dary1 (2o041))) + dotya(22e43), - - ).

Therefore, if yo: € Fo; @ Qy,
Y(X(yﬂa Ya, .- ))

=Y (no(yo) + da(y2), m2(y2 — m(da(y2))) + da{ws), ...,
s Tee(Yor — Moe-1(d2e () + B2 (), - - )
= (t5 " d1(n0(30)) + 15 d1(da(y2)), m (mo(y0) + da(y2) — mo(di1(mo(y0) + da(2))))
+ds(m2(y2 — m(d2(y2)))), - - )
= (t5" %o, M (n0(%0) + d2(y2) — Mo(vo)) + 2 — m(d2(32)), - - )
= (t5'y0, m(da(y2)) +v2 — m(da(y2)), - -.)

= (t5 'y, Y2, Y4, - - -)

so that
det(Y)det(X) = t57*™ ) = g=mo
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where, by modifying F} if necessary (see [38] Theorem 2.4(proof)), we may as-
sume that mo = rankz,c)(Fp) is equal to the minimal number of generators of
Hy(F,) as a Z;[G]-module.

2.6 The case of three homology groups
Now consider a perfect complex with only three non-zero, finite homology
groups H;(F,) for j = 0,1,2, in this case we may assume without changing the
class in Ko(Z;[G], Q;) that the complex has the form

F,: 00— F,— Iy — F, — Fy — 0

with F; free. The construction of §2.5 makes a new perfect complex of the form

P*: O—HFg(ﬂ)QF2®FQd2ﬂ>mF1—>O

with det(Y) = det(X)~1t;™ where myg is the minimal number of generators of
Hy(F,). Now, from the discussion of §2.5,

. Ke'r(d2 +t0’l']0) _ KCT‘(dQ)
Hi(P) = d3(F3)  da(Fs)

= Hy(F,).
However
B F R
da(F2) +tono(Fo) By +tomo(Fo)
We have Z; N(B; + tono(Fo)) = By so that

4 _ Z _ 4+ tono(Fa))
By ZiN\(B1+tomo(Fu))  Bi+tono(Fo)

Ho(P)

HI(F*) =

Therefore we have a short exact sequence of the form

F F

0 — H{(F,) — —_
«(F) B1 + tono(Fo) Zy + tono(Fo)

Also dy induces an isomorphism of the form

31 ~ By
di: —————ec
Z1 + tono(Fo) toFo

so the the short exact sequence has the form

B
0 — Hy(F,) — Ho(P,) — — — 0.
t()F()
We may apply Theorem 2.4 to the shortened complex of §2.5 and §2.6 to
obtain the following result.



Theorem 2.7
Let G be a finite abelian group and l a prime. Suppose that

0—F -2 p % &g da p g

is a bounded, perfect complex of Zi|G]-modules, as in Ezample 2.2, having H;(F,)
finite for i =0, 1,2 and zero otherwise. Let

Qi[G]*

[®;F2;, X, ©;F2;41] € Ko(Zi[G], Qi) = Z[G]*

be as in Example 2.2. Then:
(i) if t; € anng,i)(H;(Fy)) fori=0,2

det(X)tg°t5? € anng,q(H1(F,)) < Zy[G].

Here my, mqy is the minimal number of generators required for the Z;|G)-module
Hy(F,), Hom(Hy(F,), Qu/Z;), respectively,

(i) if the Sylow l-subgroup of G ‘is cyclic then in (i) anng, e (H1(F.)) may
be replaced by Fz,jc)(H1(Fy)). :

Proof

Firstly, we may assume that ¢y € Q;[G]* N anng,ig)(Ho(F)) (see [38] Theorem
2.4(proof)) by replacing to by to + N|Ho(F.)||Hy(F,)| for some suitably large
integer N.

Let ty € anng,jg)(Hz(F,)) = anng,¢(H1(F,)), in the notation of §2.6. Then
we may apply Theorem 2.4 to conclude that

det(Y)™'t5? € anng,iq(Ho(P.)) < Zi[G)

and, by §2.5, det(Y) '5? = det(X)tg°t52. From §2.6 H;(F.) C Hy(P,) and
both are finite groups, since to € Qu[G]*. This inclusion always implies that

annz,jc(Ho(F:)) € anng,(g)(H1(F)))
and, providing the I-Sylow subgroup of G is cyclic it also implies
Fzc)(Ho(Fy)) C Fzya)(H1(F)),

as explained in ([38] Proposition 2.8). O

Remark 2.8 In the proof of Theorem 2.7 we have only used one of the anni-
hilator relations on Theorem 2.4. However, we may modify the proof of ([38]
Theorem 2.4) to obtain another relation. Applying the proof to P, when i = 0
we replace F} by a free module which is the direct sum of the first modules in
a minimal resolutions for Hy(F,) and By/(toFp) and then replace multiplication



by to by the sum of multiplication by ¢; and ¢y on these summands. Then, under
the assumption that to € Qi[G]* Nanng,(g)(Ho(F,)), one obtains

det(X) ey o/ GFN € anng, g (Ha(FL))

where m(By/(toFo)) is the minimal number of generators for the finite module
Bo/(toFy). When the I-Sylow subgroup of G is cyclic we may once again replace
the annihilator ideal by the Fitting ideal.

In the absence of a good estimate for m(By/(toFp)) this relation does not
appear to be very useful.

3 The invariant

3.1 In [16] the following situation is considered: O is an excellent, henselian
discrete valuation ring with fraction field, k, and residue field, . Then O[T is a
local ring with maximal ideal M =< T, P = ker(Oy — F) >. Let A= O, {T’}
denote the henselianisation of Ox[T] at M ([27] p.36). We also write P <1 A for
the kernel of Op{T} — F{T} so that PN Oy = P. If X = Spec(A4) — {M, P}
and P, P, ..., P, is a non-empty finite set of primes of A different from M and
‘P then we have an open immersion

U=SpeCA_{Ma’PrPlaP%“')-Pt}&X;Yz'{PhP%---)-Pt}

where u is an open immersion and ¢ is a closed immersion.

Let A be a field of positive characteristic different from that of F' and let
F be a locally constant sheaf of A-modules of finite rank on U. Fix k, an
algebraic closure of k. Then [16] gives a formula for the A-dimension of the space

of vanishing cycles B
HYX Xgpec(r) Spec(k); w(F))

in terms of the Kato-Swan conductor. In general this group is zero except when
q = 0,1 ([13] p.14) and is also zero when ¢ = 0 in the above situation because
U # X ([16] p.631).

Now suppose that k is a complete discrete valuation field of finite cohomolog-
ical dimension. For example, £ might be an n-dimensional local field (see [10],
1))

Consider Spec(A ®o, k) and observe that A ®o, k = A(Ox — {0})~! so that
the primes in this localisation come from localisation of primes in A. Hence the
primes of A ®p, k correspond to the primes, P <1 A, which satisfy PN Oy = {0}.
The primes M and P both localise to give the whole of A®e, k since they contain
P. Any other prime ideal of P <1 A must have PN O equal to P, Oy, or {0}. The
middle case means P = A, which is not allowed, the first case means that P =P
or M, since A is two-dimensional. Hence the topological space of Spec(A ®o, k)
is equal to X = Spec(A4) — {M, P} and it is clear from the definitions that, for
all open W C X, Ox (W) = O(W) where O is the sheaf of Spec(A).



Therefore we have
U= SpecA—{M,P,P,P,,..., P} S X &Y ={P,P,,...,P}

where u is an open immersion and 7 is a closed immersion. Here P, is a prime ideal
of A which is not maximal and such that O, N P, = {0}. The structure sheaf on
U, for all open W C U, Oy(W) = O(W) where O is the sheaf of Spec(A4). Then
i corresponds to the closed immersions induced by the local ring homomorphisms
A(O, —{0})™* — A/P; and Y = Spec([T:_; A/P,). Since i corresponds to the
sum of local ring homomorphisms of the form A(Or — {0})~! — A/P; we see
that we must have multiplication by any A € O — {0} inducing an isomorphism
on A/P; or, equivalently, A= AN+ P, << Aforeach 1 <i < t.
We have a diagram of homomorphisms of k-algebras
k

k —

\
A®o, k _f A®o, k

We are studying the vanishing cycle cohomology groups
Hq(X X Spec(k) Spec(%), Uy (f))

There is an action on this cohomology of the absolute Galois group, G(k/k)
(cf. [20]).

For each finite Galois extension, k¥ C L C k, write A, = A ®o, L and
B, = A ®o, Or. Since Oy, is a finite Or-module there is a decomposition ({27
Theorem 4.2 p.32)

B = H BL(BL—M)_l.

M«By, M maximal

Since A was a Hensel local ring so is each of the factors and furthermore

AL=BL®o, L= H Br(By— M) ®0¢, L
M«Br, M maximal

in which each of the factors is a Dedekind domain. Therefore

A®ng= 11_1;11 By, Roy L
kCLCk
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so that
H (X Xspec(ry Spec(k);w(F)) = lim H'(Spec(Br, ®o, L));w(F))
kCLCk

which is a continuous A[G(k/k)]-module in the sense of [33].
Choose a bounded resolution of H'(X Xspec(x) Spec(k); wi(F))

0 — HY(X Xgpeetry SpeC(R);wi(F)) =P > I' > I* ... - I" -0
by cohomologically trivial A[G(k/k)]-modules, which may be taken to be finitely

generated if necessary. 3
Form the cochain complex of G(k/L)-invariants

\G(k/L) . — (JO\GGH/LY _, (T1\G&/L) _, — (J™\G(&/L) _,
(I . 0— (I% (1Y) g L) 0,

which is a complex of cohomologically trivial A[G(L/k)]-modules (which may be
taken to be finitely generated if necessary). From the spectral sequence

Byt = H*(L; H(X X Spec(k) Spec(k); w(F))) = H(X X spec(k) Spec(L); ui(F))

and the fact that H'(X Xgpec(ry Spec(k);w(F)) = 0 for ¢ # 1 we find that the
s-th cohomology group of this complex is equal to

HYH(X x spec(k) Spec(L); ui(F)).

This is a finite-dimensional A-vector space.

Also the complex (1°)¢*/L) @ Q is exact.

Suppose that A = Fie, the field with /° elements for some prime [. In this
case (I*)¢*/L) is homotopy equivalent to a complex of finitely generated, coho-
mologically trivial Z;|G(L/k)]-modules

P: 0-Pt—=pPtl o P S0.
This complex defines an Euler characteristic in the relative K-group
X(X Xspeoty SPec(L);wi(F)) = [P, ®, P] € Ko(Z(G(L/K)], Q)
by the construction described in Example 2.2 (see also [37] §2.1.8).
The following result is standard (see [37]).

Theorem 3.2
The element

X(X Xspec(ry Spec(L); w(F)) = [P, @, P*’] € Ko(Z[G(L/F)], Q)

is independent of all choices made in its construction. Furthermore its image
under the canonical homomorphism

Ko(ZiG(L/E)], Qi) = Ko(Zu[G(L/k)]) — Go(Zi|G(L/K)])
is equal to ([37] §2.1.8)
> (—1)° H*(X Xspec(r) Spec(L); wi(F)).

]
Here 7 is the homomorphism in the localisation sequence and c is the Cartan
map.
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4 The case when £k is a local field

4.1 In this section we shall makes a few prefatory remarks about the situation
which is the intersection of Theorem 2.7 and Theorem 3.2. Consider the situation
in which k is a (one-dimensional) local field of residue characteristic p and A = Fy.
where p and [ are distinct primes. In this case, for each finite Galois extension
L/k in §3.1 the group

H**N(X Xspee(r) Spec(L); w(F)) & H*(L; H' (X Xspee(r) Spec(k); w(F)))

can only possibly be non-zero for s =0,1,2 _Furthermore, if NV is the finite
Galois extension of L such that G(k/N) = Gi1(k/L), the first wild ramification
subgroup of G(k/L), we have an isomorphism

H*(L; HY(X Xgpec(r) Spec(k); ui(F)))

= H*(G(N/L); H\(X Xspeo) Spec(k); u(F))EF/MN)
because G(k/N) is a pro-p-group while H!(X Xgpec(k) Spec(k); ui(F)) is a finite
group of order prime to p. Also, replacing L by N, we have .
HY(X Xspeo(ey SpC(E); ur(F))CFM 2 HY(X Xgpeoisy Spec(N); us(F)).

Note that this group may be re-expressed as a vanishing cyclic group in the
manner of ([16] foot of p.655).

Now let us make the further assumption that G(L/k) is abelian. In this
case we may apply Theorem 2.7 to the invariant of Theorem 3.2 to obtain the
following result.

Theorem 4.2
Suppose that G(L/k) is abelian in Theorem 8.2 and that

*

X(X Xspec(ySpec(L); wi(F)) = [P, @, P*] € Ko(Zi[G(L/k)], Qi) = %
is represented by det(®) € Q(G(L/k)]*. Then, for any
t; € anng, (/i) (H? (X Xspee(r) SPec(L); ui(F)))
(i =1,3), we have
(i) det(®)t7e5° € anng,ar/m)(H* (X Xspece(r) SPec(L); wi(F))) < Zy[G(L/k)).

Here my, mg is the minimal number of generators required for the Zi(G(L/k)]-
module H (X X spec(rySpec(L); w(F)), Hom(H3 (X X specr)Spec(L); wi(F)), Qi/Zy),
respectively,

(1) if the Sylow l-subgroup of G(L/k) is cyclic then in (i)

annz, (6(r/k) (H" (X Xspecgs) Spec(L); u(F)))
may be replaced by Fg,ic/k)](H*(X Xspeck) SPec(L); wi(F))).
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4.3 The annihilator relation of Theorem 4.2 becomes interesting only when we
can determine the identity of det(®). I hope to return to this topic with some
more convincing examples worked out in detail. However, for the moment, I
shall content myself with recounting a few observations concerning the nature of
det (D).

Firstly ‘we may ask what sort of data determines the invariant
X(X Xspec(k) Spec(L); w(F))? This question is too hard! On the other hand
we may ask the same question about various images of the invariant in other
class-groups. We may use the isomorphism

KO(Z[G(L/IC)], Q) = Ds prime KO(ZS[G(L/k)]7 Q.s)

to consider x (X Xspec(k)Spec(L); w(F)) as an element of Ko(Z[G(L/k)], Q) whose
s-component is trivial when s # [. Now let M,,,, denote the maximal Z-
order of Q[G(L/k)] and consider the image of the invariant under the canonical
homomorphism

Ko(ZIG(L/k)}, Q) — Ko(ZIG(L/R)]) — Ko(Mmes).

One way in which to distinguish classes in Ko(M,,qy) which are images from
Ko(Zi[G(L/k)], Qi) is the canonical factorisability method of [14] (see also [35]
and [36]). Every class in Ko(Z;[G(L/k)],Q;) may be represented by a class
[P, \, P"] where P’, P" are two finitely generated, projective Z;[G(L/k)]-modules
and X\ : P — P" is an inclusion with finite cokernel. If Coker(\) = M, say,
then M is a finite [-group which is cohomologically trivial as a Z[G(L/k)]-module.
The image of [P, A, P"| in Ko(Mnaz) is distinguished by the following fixed-pixed
data. Let C C G(L/K) be any cyclic subgroup and write C = C; x C’ where C;
is the I-Sylow subgroup of C. Let e € Z;[C'] denote an irreducible idempotent.
Then M is a finite Z;[C’]-module and so is eM“*. By ([14]; [35] Theorem 7.3.12;
[36] Theorem 5.2.2) the function on pairs (C, e) given by the formula

M - (076) = IeMCl|

has the propoerty that [P’,\, P"”] and [Pj, Ao, Pj] have the same image in
Ko(Mnaz) if and only if pooker(x) = pcoker(ro)-

In our situation M will be a vector space over the finite field A so that py, is
equivalent to the function (C,e) — dim,(eM®). This suggests that the formula.
of Deligne and Kato ([16], [22]) for

dlmA(Hl(X ><Spec(k) SpeC(E); W (F)))

gives an important clue to the nature of det(®). The results of [16] and [22] were
recently proved by a different method in [24].

4.4 The Deligne-Kato dimension formula
In the situation of §3.1 a triple (A, U, F) will be called stable if it satisfies the
following three conditions (see [16] (5.1.1) and (6.1.1)-(6.1.2)):
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(i) There exists an étale connected Galois covering U of U such that the
inverse image of F on U is a constant sheaf.

(i) The integral closure B of A in U is a two-dimensional hensel normal local
ring over Oy. If Mp and My, are the maximal ideals of B and O, respectively,
then B is isomorphic over O, to the strict henselianisation of Ox, for some
scheme X of finite type over O and for some closed point z lying over M, such
that X — {z} is smooth over O.

(iii) The residue fields x(P) for all P € Spec(B®e, k) — U are separable over
k.

For any (A, U, F), not necessarily satisfying conditions (i)-(iii) the dimension
formula ([16] Theorem 6.7) takes the form

dima(H*(X Xspec(k) Spec(k); w(F))) — dimy (HY(X X spec(k) Spec(k); m(F)))

= ¢(s) — ¢(n) — 20rdimy (F).

In the case of interest to us U # X and ([16] p.631) the formulae simplifies to
the form '

dima(HY(X X Spec(k) Spec(k); ui(F)))y= é(n) — ¢(s) + 26k dimp (F).

The ingredients in this formula are defined in the following manner, where
the subtlety of [16] lies in the definition of ¢(s). Let P(A) denote the set of
height one primes P of A such that P ¢ U. Define P,(A) to be the finite set

Ps(A) = {P c P(A) | Pﬂ@k = Mk}

and set P,(A) = P(A)— P;(A), which may be identified with the set of maximal
ideals of A ®¢, k = Ag. For P € P,(A) define

dimtotpx(F) = [k(P) : k](swp(F) + dima(F))

where swp(F) is the Swan conductor of F for the discrete valuation ring Ap.

For a triple (A, U, F) take any finite extension k’/k such that the associated
extension (A',U’, ') is stable (i.e. satisfies (i)-(iii)), which is possible by a result
of [9] ([16] Proposition 6.3). With these choices let

o(n) = > dimtotp j (F').
PePy(A'), PgU’

Similarly ¢(s) is defined by a formula

¢(S) = Z dz'mtotp,k: (.F’) .
PePs(A), PgU’

Here the terms dimtotp s (F') in the definition of ¢(s) are definition in terms of
the Swan conductor ([16] §3) of the Galois representation corresponding to F of
the two-dimensional discrete valuation ring V*(P) given by the henselianisation
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of the subring of Ap consisting of the elements whose images in x(P) lie in the
normalisation of A/P.

The integer dy is also defined in terms of the valuation theory of the two-
dimensional rings V*(P) ([16] §5).

Question 4.5 This discussion of §4.3 and §4.4 suggests, to me at least, the
following question: In the situation of Theorem 4.2 is there a formula for

Q[G(L/R)]"

det(®) € Z G /R

in terms of the functions ¢(n), #(s), o as k' varies through suitable extensions
of kor L7

Remark 4.6 A propos of Question 4.5, the Swan conductor which underlies the
functions ¢(s) and ¢(n) may be thought of as a function on Galois representations
([18], [16], [4], see also [35] Chapter 6). Therefore, in order to make sense of the
formula for det(®) in Question 4.5, it may be useful to recall that Q;[G(L/k)]*
is also describeable in terms of functions on representations. Let {lq, denote the
absolute Galois group of Q; and let R(G(L/K)) denote the Grothendieck group
of finite-dimensional representations of G(L/K) defined over Q;, the algebraic
closure of Q;. Then there is an isomorphism of the form [38]

A : Homaqg, (R(G(L/K)), Q;) — Qu[GT"

given by :
A= Y h(x)e
x:G(L/k)—~Q]
where B
ex=[L:k™" Y. x(g9)g7' € QG(L/K)].
9€G(L/k)
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