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Abstract. We design the first polynomial time approzimation schemes
(PTASs) for the problem of Metric MIN-BISECTION of dividing a given
finite metric space into two halves so as to minimize the sum of distances
across that partition. Our approximation schemes depend on a novel hy-
brid metric placement method and a new application of linearized quadratic
programs.

1 Introduction

The MIN-BISECTION problem of dividing a given graph into two equal
halfs so as to minimize the number of edges or the sum of their weights
across the partition belongs to the one of the most intriguing problems now
in the area of combinatorial optimization. The reason is that we do know
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at the moment how to deal with the minimization global conditions like
partitioning the sets of vertices into halves. The MIN-BISECTION problem
arises naturally in several contexts ranging from combinatorial optimization
to computational geometry and statistical physics [H97]. Up to now we
do not have any approximation hardness result for MIN-BISECTION cf.
[BKO1], thus we cannot exclude a possibility of existence of a PTAS for
that problem. On other hand the best known approximation factor for that
problem is O(log* n) [FK00].

Here we consider the metric version of that problem: we consider a finite set
V of points which we call vertices together with a metric d(.,.) on V and we
ask for a partition of V' into two equal parts such that the sum of the distances
from the points of one part to the points in the other is minimized. It is easy
to see that the metric MIN-BISECTION is NP-hard in exact setting even if
restricted to weights 1 and 2. In this paper we prove somewhat surprisingly
that the general metric MIN-BISECTION possesses a PTAS. This answers
to an open problem of [FKO01].

We draw on two lines of research to develop our algorithm: One is a method
of so-called exhaustive sampling for additive approximation for various op-
timization problems such as MAX-CUT or MAX-kSAT [AKK95], [F96],
[GGRY6], [FK96], [FK97], [AFKKO1]. The second line we draw on con-
nects to the previous papers on approximate algorithms for metric problems
and weighted dense problems [FKO01] and [FVKO00].

We describe now some of the new essential ideas we used in contrast to other
metric papers [FKO01] and [[99]. The main problem was the problem of sam-
pling. Just as in [FKO1] uniform sampling does not work, and we need to
sample by picking each vertex with a probability proportional to the sum
of its distances to the other vertices. This was circumvented in [FKO1] by
dividing each vertex into an appropriate number of “clones” and doing stan-
dard sampling on the set of clones. Then one could easily conclude from the
fact that the clones of each fixed vertex go together in a maximum cut. This
does not hold anymore for MIN-BISECTION (and also MAX-BISECTION)
where we cannot use this cloning procedure. This is circumvented in this
paper by a new method of guessing the placement of the outliers and a new
technique of biased hybrid placements.

As mentioned before our result on existence of a PTAS for metric MIN-
BISECTION is in a sense optimal, as it is easily seen, following an argument



of Theorem 1 of [FKO01], to be NP-hard in exact setting even if restricted to
instances with weghts 1 and 2.

2 Organization of the Paper

The rest of the paper is organized as follows.

In Section 3, we formulate some metric lemmas which we need later. In
Section 4, we give an algorithm for the Euclidean case and the analysis of
its correctness. Finally, in Section 5, we construct two new PTASs for the

general metric MIN-BISECTION problem.

3 Preliminary Results

Given a finite metric (V, d), we define

Wy = Z d(l’,y)

yev

for each x € V', and

W:wa.

zeV

Thus, W is twice the sum of all distances in V.

We define also for U C V,
WU = Z Wy .

vel

First, a couple of metric lemmas.

Lemma 1

Proof: See [FKO1].

Lemma 2

Yu mq;axd(u,v) <W/n



Proof: See [FKO1].
u

The following lemma is crucial here. It shows that it suffices to obtain
an additive approximation (within eW) to get a PTAS for metric MIN-
BISECTION.

Lemma 3 In the metric case, the optimal value of MIN-BISECTION satis-
fies OPT > W/5.

Proof: Let X = L U R be the optimal min bisection, of value OPT. Let
W = ZXXX d(l’,y), W = ZLXL d(l’,y), and Wr = ZRde(x7y)‘ Take 2
points x; and x5 at random uniformly with replacement from L and 2 points
x3 and x4 at random uniformly with replacement from R, and conside r the 6
edges of their induced subgraph. Then the contribution to the bisection is a =
d(zy,23) + d(z1,24) + d(2g, 23) + d(22, 24), with expectation 40PT/(n*/4),
and the contribution to W, + Wr is d(xy, x2) + d(x3,24), with expectation
(W, + Wg)/(n?/4), and satisfies:

d(zy,22) < d(xy,xs) + d(as, x2)

d(zy,22) < d(xy,xy) + d(ay, o)

d(zs,xq) < d(xs,xq) +d(xy, x4)

d(xs,xq) < d(xs,xq) + d(ag,x4)
d(zy,x2) + d(as,xq) < a

Hence Wy, + W < 40PT, and so W < 50OPT.

4 A Fixed Dimension Case

We describe first the Euclidean case, when the dimension of the underlying
space is fixed. Here, we describe the PTAS for MIN-BISECTION on the
plane. The cases of higher but fixed dimension are similar (replacing polar
coordinates by spherical coordinates).

4.1 The Algorithm
The algorithm is the following.



Input: A set V' of n points on the Euclidean plane.

1.
2.
3.

Scale the problem so that the average interpoint distance is equal to 1.
Compute g = > cy @/n, the center of gravity of V.

If (d(z,g),0(x)) denote the polar coordinates of # w.r. to g, define the
domains
D,y =
(1) <d(w0) <e(14e)"
r€R?: and ,
hre<6(z) < (k-+1)me

where r > 1 and 0 < k < 27/e. Let

Do ={z € R*: d(z,9) < €}

Construct a point (multi)set V' obtained by replacing each element of
VN D, by y,x, the point with polar coordinates d(y, x,g) = e(1+¢) ™"
and 0(y, ) = kme. Hence y, ; has multiplicity m, ; equal to the number
of points in V' N D, ;. Moreover, each element of V' N Dy is replaced by

g.
Let s = 1 +1logy,.(n/2¢). Let w, denote the weighted distance from

yrx to X'
wer = > > mud(Yer,yie)-
0<j<2r/c 0<I<s

Note that a partition (L, X'\ L) of X" is defined by the set of pairs of
integers (prk, Grk) With ¢.x = m, x — p, ) where for each 0 < k < 27 /e
and 0 <r < s, p, i denotes the number of points in D, ; which belong
to L. We do exhaustive search on all the bisections corresponding to
prg With 0 < p.p < m,x when m,;, < 1/e*, and with p., € {j|*m,x] :
0<j<1/e#—1}. for m,; > 1/€*. We output the best bisection found.

Note that there are O(log n) domains D, . Thus the exhaustive search tests
at most (1/¢2)00ogn) = pOUos(1/9) distinct bisections.



4.2 Analysis of Correctness

Let us analyse the effect of the restrictions of the sizes of the possible inter-
sections of each domain with each side of the cut.
Let J denote the set of admissible pairs (r, k). Given an optimum bisection

OPT=(p,k, Mk _prvk)TS&kSW/E of V', we are guaranteed that our exhaustive
search

tests a bisection OPT =(p] 1, q, 1) r<s k<nse With |l — prx| < e*m, ;. Denote
by @ the set of pairs (r, k) for which the inequality em, ; < p,r < (1 —€)m,
is satisfied. Clearly, the y, ) for (r,k) ¢ @ contribute at most el to the
bisection. We have thus

Val(OPT') — Val(OPT) < > >
(r,k)eQ (Své)eQ
(pi,kq;z - pr,k%,f) d(Yr k> Ysg) + W

For (r,k) € Q, (s,0) € @ we have |pl., — pri| < epri, g5 — gsi| < €qsy, and
S0

Val(OPT') — Val(OPT)

s XX

(r,k)EQ (Své)eQ
((1 + 6)2p7’7kq575 - pr,kQS,Z) d(yr,kv ys,l)
+eW
S (1 + 36) Z Z pr,kQS,Zd(yr,kv ys,l)
(r,k)EQ (Své)eQ
+eW
< (14 3¢)OPT + W
< (14 8¢)OPT,

the last because we know that OPT > W/5 by Lemma 3. The proof that the
preliminary grouping of the vertices does not change the value of the optimum
bisection by more than O(eW) is similar to the proof given in [FKO01] and
is omitted. Thus we have a PTAS for MIN-BISECTION on the Fuclidean

plane.



5 PTASs for General Metric MIN-
BISECTION

We move now to the case of arbitrary metric spaces covering all geometric
spaces of arbitrary dimension. The methods of this section will generalized
vastly over the methods of Section 4.

Our PTASs for metric MIN-BISECTION will make essential use of the fol-

lowing lemma.

Lemma 4 Let t = 4logn/e*. Let V be a finite metric space and let U C V,
Wu = > uev wy. Let T be a random sample of U obtained by picking each
point uw € U with probability tw,/W. Let v € V. Then,

S o,y - oy )

< ew, 1
uel ueT Wy = ( )

with probability at least 1 — n=2.

Proof: Let d(v,U) = Y ,cyd(v,u) and consider the random variable
D(v,T) =Y erd(v,u)/w,. We have:

D(v,T) :thyi

=1
where the Y; are pairwise independent and each distributed as Y; with

d(v,u Wy,
We have that ED(v,T') = s=d(v,U). Also |Y;| < %, Thus Azuma’s inequal-
ity [AZUG67] gives
Pr(|D(w, 1) = jod(v,U)] > /1) < V12

or

Y

Pr(|d(v,U) — KD(U,T)| L )
t Vi
Take A = 2/logn, t = 4logn/e* to get

Pr <|d(v, U)— ?D(U,T” > ewv) <n”?

We will also need the two following simple lemmas.
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Lemma 5 Let V' denote the set of vertices of weight less than W. If V; is
a random subset of V' obtained by picking each vertex v € V with probability
¢, then with probability at least 1 — €* we have: 2vev; Wo < 2eV.

Proof: The sum 37 ¢y, w, is dominated by the product *W.B where B
has the Binomial distribution BIN(n,¢€). The result follows by applying a
Chernoff-Hoeffding Bound.

|

Lemma 6 Let V' and V; be defined as above. Then with probability at least
1 —€/10 we have 3, ey, d(u,v) < 11e2W.

Proof: The sum 37, v, d(u,v). has expectation bounded above by

7”/]”‘2/;;1“4/ < 1.12W. The result follows by using Markov inequality.

5.1 The First PTAS for the General Metric MIN-
BISECTION

In this section we design and analyse our first PTAS for the general met-
ric MIN-BISECTION. As mentioned in the introduction it builds on abso-
lute approximation sampling methods of [AKK95], [F96], [GGR96], [FVKO00],
[FKO01], and [AFKKO1]. The crucial point here is however an introduction of
a new technique combining biased metric sampling with some novel hybrid
placements and partitioning method.

The following definition will be crucial in the development of this section.

Definition 1 Consider a partition (L, R) of V. A multiset T' of vertices with
multiplicities p(u), uw € V is called (9, €)-representative with respect to P,
if for every vertex v except perhaps for a subsel of exceptional vertices of
weight at most SW, we have, with t = |7,

w 3 plu)d(u,v) S d(u,v)| < ew
b eThL Wy wel 7 -
and p
‘K > (u,v) — > d(u,v)| < ew,.
t wThr Wu weR

A wvertex which is not exceptional is called normal.

8



We take t = 1/€*, A = 1/y/€ in Lemma 4 to get
W
Pr <|d(v,U) — 7D(U,T)| > ewv) < /%

Thus, for this choice of ¢, the expectation of the number of vertices for which
at least one of the inequalities in definition 1 does not hold is at most 2ne=1/2¢.
This implies that the expectation of the weights of the corresponding ver-
tices does not exceed 2We™'/? and, by Markov Inequality, with probability
at least 1 — ¢/10, this weight does not exceed (20/e)We='/? < W for

sufficiently small e. This proves the following lemma.

Lemma 7 Let T be a random sample of V with size |T'| = t, defined as
in Lemma 4 and let (L, R) be an arbitrary bipartition of V. Let € > 0 be
sufficiently small. If t > 1/€*, then with probability at least 1 — ¢/10, T is
(€%, €)-representative with respect to (L, R) and moreover, the total weight of
the exceptional vertices does not exceed ¢*W .

Proof: See above.

We need the following lemma.

Lemma 8 Let (L, R) be an optimum bisection of V Let { = 1/e and define
a partition Vi, Vo, ..., Vi of V' by placing each vertex in a randomly chosen V.
With probability 1 — o(1), there exists a partition (A, B) whose cost is within
an additive error at most eW from the optimum bisection and such that for
each j it satisfies

ANV - BV < 1. 2)

Proof: Let L; =V, N L, R; =V, N R. For each j we do the following:

- If |L;| > |R,|, we set §; = LWJ and we move from R to L ¢; vertices
randomly chosen in L;
- If |L;] < |Ry|, we set §; = LWJ and we move from L to R §; vertices
randomly chosen in R;.
Clearly, the resulting partition satisfies to 2. Let MV be the set of vertices

whose positions have been changed according to the above rules and let A
be the resulting loss in the objective function. Clearly,

A< Z Wy,

zeMV

9



and so

E(A) <) pows, (3)

zeV
where p, is the probability that x is moved. Fix now attention on a particular
x € L. (The case of © € R is exactly similar.) Assume without loss of
generality that @ € Vj. We have that |L;| — 1 has the binomial distribution
with parameters n/2 — 1 and p = e. Also, |R;| has the binomial distribution
with parameters n/2 and p = e. Hoeffding-Chernoff gives (see [HO63]),

Pr(|L1 — ELy| > y/nlogn < 2n™°

and the analogue for |R;|. Thus,

Pr(|Ly — ELi| 4+ |R1 — ERy| > 2y/nlogn) <4n™°

For fixed |Ly| and |R;|, we have p, < Ta=ELlHR-ER] o) q thus

€n

4 1
2 2en +4n°
eV n

Hn~°

IN

Pz

IN

and using (3),
E(A) < Wmaxp,
< HWn~.

The lemma follows now by using Markov Inequality.

5.1.1 The Algorithm

The algorithm takes as input a finite metric space (V, d). It makes a series of
guesses and returns, when all these guesses are correct and with probability
at least 3/4 a bisection of V' whose cost is within O(eWW') from the optimum.

1. Compute vertex weights w, = >, d(u,v) and total weight W = 3" w,.

2. Let X denote the set of vertices with weight > €IV and let V' = V\ X.

Let £ = 1/¢ and define a partition Vi, V5, ..., V; of V' by placing each
vertex in a randomly chosen V.

10



3. Let P, = (L, R) be a bisection (L, R) with value at most el from
the optimum and with the property that it induces on each V; a parti-
tion whose parts sizes differ by at most one. (The existence of such a

partition is guaranteed by Lemma 8.) By exhaustive search, find the
partition (X, Xg) of X induced by Fy. Let (L;, R;) be the partition of
V; induced by P,. In the next phase the algorithm will construct induc-
tively a sequence of “hybrid” partitions F, P, ..., P;, ..., P, where the
first hybrid is Fy, the last partition P, is the output, and such that, for
each fixed 7, P; coincides with Fy on each of the sets Vi1, Viyq, ..., Vi

4. For each 5 =1,2,...,{, do the following:

(a)

(b)

(d)

Let T;_; denote a random multiset of V' obtained by picking ¢
times a vertex v € V according to the probabilities tw,/W,v € V|
where t is defined as in Lemma 7.

By exhaustive search, guess the partition (77_;,77 ;) induced on
T]—l by (XLvXR)v

(Al, Bl), ceey (A]‘_l, B]‘_l),

(Li,R;),...,(Le, Re). That is, classify the vertices of T;_; which
are in X, V4, V5,...,V,_1 according to the partition being built by
the algorithm, and classify the remaining vertices of T;_; accord-
ing to the optimal partition guessed by exhaustive search.

For v € V}, let

Construct a partition (A;, B;) of V; by placing the |V;|/2 vertices
with smallest value of b(v) in A; and placing the other |V;|/2
vertices in B;.

Let A = U]‘AJ‘ and B = U]‘B]‘.

5. Output the best of the bisections (A, B) thus constructed.

5.1.2 The Analysis

Recall that for each j € {0,...,¢} P; is the partition which agrees with the
partitions (Ay, By), ..., (4;, Bj) constructed by the algorithm in V4, ..., V;, and
which agrees with the optimal partition (L, R) in Vj41,..., V;

11



We will prove that when the algorithm correctly guesses for each j the par-
tition (T;,T;/) induced on a random sample 7} by FP;, then the bisection
(A, B) is optimal within at most 16eWW with probability at least 3/4. The
analysis will consist in showing that the increase of the objective function
when changing one hybrid bisection into the next is small. We will need the
following definition.

Definition 2 Consider a partition P = (L, R) of V. The unbalance of a
vertex v € V' with respect to P is the quantity

ub(v) = - d(u,v) = Y d(u,v).

u€L uER

Lemma 9 If T;_; is representative with respect to P;_y, and if Lemma 5

holds, then COST(P;) — COST(P,_;) < 16¢*W .

Before proving the lemma, let us first see how to use it to complete the
analysis. By Lemma 7 the set T,_; has probability at least 1 — ¢/10 of
being representative with respect to P;_;. Thus, with probability at least
1 —le/10 = 9/10, T;_; is representative for every j and Lemma 5 holds for
every j. Summing over j, we then deduce that in that case:

COST((A, B)) — OPT =
COST(P,) — COST(Py) < 16€W.

This implies with Lemma 3 a relative approximation ratio 1 4+ 95¢. To con-
clude the proof, it remains to verify that the result holds with the probability
at least 3/4 as claimed,when all the guesses are correct, The probability that
the result does not hold is bounded above by the sum of:

- the probability that Lemma 8 does not hold which is o(1)

- the probability that at least one of the samples T}, Ts, ..., T; is not (€2, €)-
representative which is bounded above by 1/10

- the probability that Lemma 5 does not hold for at least one 7 which is
bounded above by 1/9.

The sum of these bounds is smaller than 0.25 and the claim follows

The running time is 2°(/¢)p2 where the first factor accounts for the required
number of exhaustive searches and n? is, within a constant factor, an upper

12



bound for the number of operations needed for any fixed sequence of guesses.

Hence, the algorithm is a PTAS for MIN-BISECTION on metric spaces.

We now proceed to prove Lemma 9. We will prove that when the algorithm
correctly guesses for each j the partition P! induced on T by P;, then the
partition returned by the algorithm is near-optimal with high probability.
The analysis will compare, for each j, the cost of partition P; to the cost of

partition FP;_;.

Lemma 10 If T;_y is representative with respect to P;_y, and if Lemma 5

holds, then COST(P;) — COST(P,_y) < 16¢W .

Proof: The only vertices which are classified differently in P;_; and in FP;
are vertices in V; : say, x vertices are in the left side of P;_; and in the right
side of P;, and the same number = of vertices are in the left side of P; and in
the right side of P;_;. Pair up these vertices in a matching M. For each such
pair (u,v), such that P;_; places v on the right side and u on the left side,
let P;_i(u,v) denote the partition obtained from P;_; by swiching the sides
of vertices u and v. Note that by definition of the algorithm, l;(u) > l;(v)
Note that the overall probability that for each j, T; is representative is at
least 9/10, so we can assume that this is the case. Then,

COST(P;(u,v)) — COST(P;_y)
< ub(u) — ub(v)

= (i) — wb(v)) — -(b(u) — b(v) +
T bw) ~ bie))

< (ab(u) — wb(v)) -
< [ib(u) — Tb(u)| + [ib(v) — 5b(w)]

There are two cases. - )

(i) If uAand v are normal, then we use the upper bounds |ub(u) — %b(uﬂ <
ew,, [ub(v) — Fb(v)| < ew,.

(ii) For the total contribution of the exceptional vertices, we use the overall

bound e2W of Lemma 7. Also
COST(P;) — COST(Pj-1)

13



< > (COST(Pj_1) — COST(P;_1(u,v))
(w,v)eM
+2 Z d(u,v).

u,vEV;

Thus,

COST(P;) — COST(P;_1)
< 2e Z wy, + EW + Z d(u,v)

u€Vj u,vEV;

< 4EW 4 EW + 11EW,
the last by using Lemma 5. Thus
COST(P;) — COST(P;_y) < 16*W.
| |

This completes the correctness proof of our second PTAS for the general

metric MIN-BISECTION.

5.2 The Second PTAS for General METRIC BISEC-
TION: The Use of Linear Programs

Our second algorithm will use the method of linearization of quadratic integer
programs introduced in [AKK95]. For this we need a new analysis of the
rounding procedure working for arbitrary metric.

The input is finite metric space (V,d) with n points. We denote by (L, R)
an optimum bisection. Let us denote by B the set of vertices v with w, >
n?/logn. The algorithm is the following

1. We guess the partition (Bp, B\Bp) induced on B by (L, R). We set
U = V\B. (Guessing the placement of the vertices in B is needed for
the success of the rounding procedure.)

We write D(u, Br) = Y ,ep, d(v,u). and we let t = 4logn/e®.

2. We take first a random sample S C V\B by picking independently ¢
points u; € V\ B according to the distribution defined by Pr(u; = u) =
w, [W.

14



3. We define for each v € V,
d(v,u)

Wy

>

ueS

+ D(Uv BL)

€y, =

W
t

[Assume that S C L' = L\Br. Then by lemma 4 the first term in the
right-hand side of the expression of e, is an estimate of the sum of the
distances from v to the points in L’. The second term is the sum of the
distances to Br. Thus e, estimates D(v, L).] We have that [assuming
)

Pr(|D(v,L) — e,| < ew,) > 1 — 2n7 2.

for each fixed v. This gives immediately

Pr(|D(v, L) — e,| < ew, Yo € V\B) > 1 —2n"2

4. We introduce the program LP(U) with variables z,,v € U,

MIN — BISECTION = min Z Ty€y

vel

subject to the constrains

Z(l — ay)d(u,v) < e,(1+¢€)

uel

n
Y@, = 5 | Br|
vel

(equal sides condition) and to

z, €{0,1} Vo e U

5. Following the method of [AKK95], we solve the fractional relaxation of
LP(U) and then use randomized rounding to obtain an integer solution

to LP(U).

The correctness proof splits into two parts. One part consists in proving that
the value of the fractional relaxation falls within no more than the required
error from the minimum bisection. This part is similar to [AKK95]. The
second part concerns the rounding and is presented below.

15



5.2.1 Analysis of the Rounding

Denote by y = (y,),v € U the result of randomized rounding applied to the
x,. The y, are pairwise independent random variables with

Pr(yu = 1) = Ty, Pr(yv = 0) =1- Ty, U E U.

Let Y =3 ey yo. Then, E(Y) = 2 —|Br| and Var(Y) = 3 cp2o(1 —2,) <
7. Thus using Tchebichev’s inequality,

1
Pr(|Y —n/2+|Bg|| < 6v/n) > 1 - L

i.e., we can assume that the unbalance of the partition defined by the y, is

O(n'/?). This unbalance can be repaired with an increase of the objective
function O(n®/?).

Let us analyse now the value of the cut y given by the rounding. Let us write
Z = vaev - Zyvev = ZZva

say, with Z, = (2, — yy )€y, v € U. Then E(Z,) =0 and
Var(Z,) = ea,(l—a,)

< <

Var(Z) = > Var(Z,) <> w?
< Y
— logn

the last because each w, is upperbounded by % and the w, sum up to less
than W.
We apply now Theorem 2.7, pp.203 in [MCD98] (see also [BEN] with E(Z) =

0, Var(7) < % and |7, — E(Z,)] < % with probability 1 for each v.

n?

This gives

?1
Pr(|Z| > 1) < 2exp|——ril
2W2 (1 + 55)

c*logn
9 _
exp ( 3 )

< opme/B

IN
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for t = eWW. Thus we have that, for any fixed ¢ > 0, the value of the cut
given by the rounding is w.h.p. not smaller than the value Y} x,e, of the
fractional relaxation of LP(U) by more than eW.

5.2.2 Putting things together

Let OPT be the value of an optimum bisection and let VAL be the value of
the bisection given by the algorithm. It remains to analyse the effect of the
discrepancy between the D(v, L) and their estimates e,. We have

ZJ}UD(U, L)y < Z zy(ey + €w,)
< Z Ty€y + €W,

Also, we have clearly that OPT> > x,D(v,L). This, together with the

above inequality and our analysis of rounding, implies that we have w.h.p.,

VAL OPT + O(n*?) + 2eW
OPT + 3eW

OPT(1 + 15¢),

VAN VAN VAN

the last because we know by Lemma 3 that OPT > W/5.
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