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Abstract

Random intersection graphs are a model of random graphs in which
each vertex is assigned a subset of a set of objects independently and
two vertices are adjacent if their assigned subsets are not disjoint.
The number of vertices is denoted by n and the number of objects is
supposed to be [n®] for some a > 0. We determine the distribution
of the degree of a typical vertex and show that it changes sharply
between « < 1, a =1, and o > 1.

1 Introduction

Random intersection graphs were introduced in [4]. Given a set V of n ver-
tices and a set W of m objects, define a bipartite graph G*(n, m,p) with
independent vertex sets V and W and edges between v € V and w € W ex-
isting independently and with probability p. The random intersection graph
G(n,m,p) derived from G*(n,m,p) is defined on the vertex set V' with ver-
tices vy, vy € V adjacent if and only if there exists some w € W such that



both v; and v, are adjacent to w in G*(n,m,p). We may interpret the ver-
tices of W,, C W adjacent to v € V' as a random subset of W, in which case
two vertices vy, vy € V' are adjacent iff W,, N W,, # 0.

The properties of G(n, m, p) were studied in [1, 4] and contrasted with the
well known random graph model G(n, p), in which vertices are made adjacent
to each other independently and with probability p. In [1, 4] the number of
objects m is taken to be m = |n®| for a fixed @ > 0. It is found in [4]
that the thresholds for the existence of small subgraphs in G(n,m,p) show
different behaviors from what is seen in G(n,p). When a > 6 [1] showed
that the total variation distance between the distributions of G(n,m, p) and
G(n,p) converges to 0 when p is defined appropriately.

Intersection graphs can be viewed as relationship graphs. For example,
if V represents mathematicians and W represents mathematics papers, and
an edge is put between v € V and w € W iff mathematician v was an author
of paper w, then the resulting intersection graph is the collaboration graph
on V', where two mathematicians are connected by an edge iff they have
written a paper together. The roles of V' and W can be interchanged, in
which case two papers are adjacent iff they have an author in common. The
random graph G(n,m,p) is dual in this way to G(m,n,p). If m = |n®],
then n € [m'/®, (m + 1)"/%) and so the dual of G(n,m,p) with a = 8 > 1
is basically G(n,m,p) with a = 371 < 1. Data sets for relationship graphs
and models of random intersection graphs with fixed degree sequences are
analyzed in [5].

Interest was expressed in [1] in further understanding the differences be-
tween G(n, m,p) and G(n,p). In [1, 4] thresholds for various quantities were
looked at, but not much attention was paid to limiting distributions. A
fundamental quantity that has not been studied for random intersection
graphs is the distribution of the degree of a typical vertex. We give the
precise distribution for G(n,m,p) in the form of a probability generating
function in Theorem 1. The corresponding distribution for G(n,p) is, of
course, Binomial(n — 1, p).

Let X = X(n,m,p) be the number of vertices V — {v} adjacent in
G(n,m,p) toavertex v € V. The probability generating function of X (n, m, p)
is defined to be Ex* = "7 ' P(X = k)z*.



Theorem 1 The probability generating function F(x) = ExzX is given by

n—1

F(x) = Z (n ]— 1>a:j(1 )l [1 Cpp(l— p)n_l_j]m

=0

Theorem 1 is proved by using a generating function version of the sieve
method.
The expectation of X is given by

EX =(n—1)|1-(1-p")" (1)

because the expression in square brackets is the probability that two vertices
v,v1 in V are simultaneously adjacent to some vertex w € W in G*(n, m, p).
The derivative F'(1) also gives (1). If we let

p=en U2, (2)

then
EX = (n— 1) [1 — (1= mp? + O(mp*))| = e+ o(1).

With respect to vertex degree, defining p = p(n) by (2) for G(n, p) is therefore
analogous to defining p = cn™! for G(n, p).

The vertex degree distribution for G(n, p) converges to the Poisson distri-
bution with parameter ¢ as n — oo when p = cn™'. With p = \/en~(1+)/2
the vertex degree distribution of G(n,m, p) converges to a Poisson distribu-
tion in the limit if and only if @ > 1. We say that X, is asymptotically
almost surely a,, if P(|X,,/a, — 1| > €) — 0 as n — oo for each € > 0.

Theorem 2 Let G(n,m,p) denote the random intersection graph with m =
|n®] and p = \Jen= (142,

(i) If a < 1, then the number of non-isolated vertices is asymptotically
almost surely \/cnU+®/2 = o(n). It follows that the degree of a fived
vertex in V' has a distribution which converges to &g, the probability
distribution with all mass at 0.

(i1) If « =1, then the degree of a fized vertex in V has a distribution which
converges weakly to the compound Poisson distribution of the random
variable Zy + Zo+ -+ -+ Zn, where N, Zy, Zs, ... are i.i.d. Poisson(\/c)
random variables.



(i4i) If G(n,m,p) with a > 1 and p = \/en=(H9/2 then the degree of a fived
vertex has distribution which converges weakly to a Poisson limiting
distribution with parameter c.

Theorem 2 can roughly be explained in the following way. When o < 1
the probability in G*(n,m,p) that any one vertex v € V is connected to a
vertex in W goes to 0 and so the degree distribution in G(n, m,p) converges
to dp and most of the vertices are isolated. When aw = 1 a vertex v € V will
have approximately a Poisson(y/c) number of neighbors in W and each of
those neighbors have independently about Poisson(y/c) number of neighbors
in V, not including v. When « is large enough, [1] shows that it becomes
unlikely that a vertex w € W has more than two neighbors in V' and as a
result the events that different edges in G(n, m, p) exist become independent.

Theorem 3 shows that if & > 1 and p grows faster than n=(17®/2_ but not
as fast as min (n=%/3-%/3 n=1/3-2/2) "then X converges to normal when it is
rescaled.

Theorem 3 Let G(n, m,p) denote the random intersection graph with m =
|n®]|, suppose that o > 1, and suppose that p satisfies nmp® — oc and
p=on B ifl <a<2 p=o(nt3?) if a > 2. Under these
assumptions,

X —EX

o(X)

where o(X) is the standard deviation of X and N(0, 1) is the standard normal
distribution.

= N(0,1),

The formula in Theorem 1 is derived in Section 2. In Section 3 Theorem
2 is proven for a < 1 by using Chebyshev’s inequality. Section 4 proves
Theorem 2 for @ > 1 and Theorem 3 by analyzing the probability generating
function found in Section 2.

2 The probability generating function

We will determine F'(x) by using Lemma 1, which is a probability generating
function version of the sieve method. Lemma 1 is used, for example, by
Takécs in [7], though according to [3] it may also have been known to Jordan.
For completeness we give a proof of Lemma 1. It is similar to an argument in



Section 4.2 of [8]. Let P be a set of properties that a random object can take
on. Let p, be the probability that the object takes on exactly k properties
in P. We are interested in the probability generating function

F(z)= Zpkxk.

Lemma 1 For S C P, we define Ng to be the event that the random object
possesses the properties S. Define N, to be

N, =) P(Ns)
|S|=r

and define N(x) to be
N(z) = Z N, z".

With the definitions above, we have
F(z) = N(z —1).

Proof The proofis similar to the argument in Section 4.2 of [8], but replacing
certain summations with expectations. Let Iy, be the indicator function of
the event Ng. Let Y be the number of properties that the random object
possesses. We have

N, =Y P(Ns)= Y E(Iy)=E| Y Iy, :]E<};>.
|S|=r |S|=r |S|=r
Therefore,
N(z) = ;Nrﬂ = ;E(i):rr =FE (Z; <l:>x’")
_ ];:_(a + x)Y)r_: F(1+ 1) -

and F(z) = N(z —1). u

In our application to random intersection graphs, there are n — 1 prop-
erties consisting of the non-adjacency of the fixed vertex to the other n — 1
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vertices. We use non-adjacency rather than adjacency in the initial analysis
for ease of calculation; the generating function for the number of adjacent
vertices follows immediately.

Proof of Theorem 1

Let G(x) be the generating function of pj, the probability that exactly k
vertices in V' — {v} are not adjacent to v € V. The probability that the fixed
vertex v is adjacent to none of the vertices represented by S C V — {v} is
given by

m

P(Ns) = <7Z>p’“(1 —p)" (1 —p)H,

k=0
where the index k counts the number of elements of W adjacent to v in
G*(n,m,p). Therefore,

Vo= ("] )fj( )tt =1 -y
= ( )1 p+p(l— )]m.

Lemma 1 implies that G(z) = N(z — 1), where

n—1 n—1

N(z)=> Na" =) (”;1>x [1 —p+p(1 —p)’”]

r=0 r=0

m

Hence,

Now use the identity F(z) = z"7'G (z71). ]



3 The number of isolated vertices

In this section we prove Theorem 2 for o < 1.

Lemma 2 Consider a random intersection graph G(n, m,p) with o <1 and
p = o(n~%). LetY be the number of non-isolated vertices. If nmp — oo,
then asymptotically almost surely Y ~ nmp. In particular, if « < 1 and

p=+/cn T2 then Y ~ /en(1+9)/2 = o(n).

Proof Write W = ZvEV I,, where I, is the indicator that vertex v € V
is isolated, so that the number of non-isolated vertices is Y = n — W. The
probability that v is isolated is

= [1 —p+p(l —'p)"‘l]m,

where the index k represents the number of vertices in W which are adjacent
to v in G*(n, m, p). Hence

EW = n[l —p+p(l —p)"‘l]m,

a formula computed in [6] by different means. When o < 1 and p = o(n™%)
the expectation of YV is
EY = n—-EW
= n- n[l —p+p(l —p)””]
= n—n(l-p)" (1+O(mpe"=2r))
= n—n(l—p)™(1+O(mpexp (—n'")))
= nmp + O(nm?p?).

Next we calculate the variance of Y. We have

EWW -1) = Y EI,I,

-
= =03 () 0=t ==
= n(n—1) [ +2p1—p)"_1]m,
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where s counts the number of vertices in W adjacent to neither v; or vy in
G*(n,m, p), leaving m — s vertices in W adjacent to exactly one of vy, vy. The
factor (1 — p)(m_s)(”_Q) is the probability that none fo the m — s vertices are
adjacent to other vertices in V. Now,

Var(Y) = Var(W)
= n(n—1) [(1 —p)* +2p(1 — p)’“]m + n[l —p+p—prt]”

~(n[1=p+p-p]")
= n(n—1)(1—p)* (1 + O(exp (—n'"%))

+n(1 —p)™ (1+ O(exp (—n'"))

—n*(1 = p)*™ (1 + O(exp (—n'"%))
= n(l—p)" —n(l—2p+p*)" + O (n*exp (—n'"?))
= O(nmp).

An application of Chebyshev’s inequality completes the proof. [

4 Limit laws for the vertex degree

In this section we prove Theorem 2 for & > 1 and Theorem 3.

Lemma 3 Consider the random intersection graph G(n,m,p) with m =
|n®] and p = Jen=(F9/2 with « = 1. When x < 1, the probability gen-
erating function Y, P(X (n,m,p) = k)z* satisfies

F(z) = exp (—\/E + \/567\/5(1—:1:)> +0 (n’1/4)

It follows that the probability that a fixed vertex of V in G(n,m,p) equals
k > 0 asymptotically approaches the compound Poisson distribution given
by P(Zy + Zy+ -+ Zn = k), where N, Zy, Zs, ... are i.i.d. Poisson(y/c)
distributed random variables.

Proof Write the formula for F'(x) given by Theorem 1 for fixed z <1 as

Fa) = ), (n B 1>37j(1 — )" L= Ven™ + Ven M (1 - \/En—l)n—l—j]”

J

|j—na|<n3/4



+ 2 <n j_ 1) 2 (1= 2) 11— Ve 4 Ven (1= en )1 "

|j—nz|>n3/4

The second sum is bounded by »7 .-,/ ("gl)xj(l — x)" ' which is
o(1) by large deviation bounds for the binomial; see Theorem 2.1 of [2], for
example.

As for the first sum, we have
(1—+/en )" 177 = e Vell=2) L 0 (n_1/4) i

3/4

uniformly for all j such that |j — nz| < n**. Hence,

[1—\/En_l—h/En_l(l—ﬁn_l)"_l_j]n = exp (—ﬁ + \/Ee_‘/é(l_”’))nLO (n_1/4)

uniformly for all j such that |j — nz| < n3/* and

o G S ——

|j—na|<n3/ J

= exp (—\/E + \/Ee*\/E(lf:c)) +0 (n—1/4) _

The Laplace transform F'(e™") converges pointwise to exp (—\/E + \/Ee*\/z(lfe_t)>
which, as is easily checked, is the Laplace transform of 71+ Zs+---+ Zy.

Lemma 4 Consider the random intersection graph G(n,m,p) with m =
|n®] and p = Jen=(F9/2 with o > 1. When x < 1, the probability gen-
erating function Y, P(X (n,m,p) = k)z* satisfies

Flz)y=e " 4+0((n ") +0 (n(l_a)/z) .

It follows that the probability py that a fized vertex of V' in G(n,m,p) equals
k > 0 is asymptotically Poisson: py ~ e c*/k!.

Proof Expand (1 —p)"~'=7 for j € [1,n] as
L=p" ' =1=e(n—1—jin 210 (n'*).
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It follows that
1= pp =] = [L=en— 1 j)n~= 4+ 0 (n=/2)]"
= exp (—c(n —1—j)n"' + 0O (n'79/2))

uniformly for j € [1,n]. Now, for z € [0, 1],

n—1
1\ . ' .
F(z) = E : (n ; )xj(l _ x)n—l—]e—c(n—l—j)/n L0 (n(l_a)/2)

Jj=0

— e¢n=1/n (1 o+ xec/n)”*l +0 (n(lfa)/Q)
e m=D/m exp (ze(n—=1)n'+0 (n ")) + 0O (n(l_o‘)/z)
— e ctex +0 (nfl) +0 (n(lfa)/Q) )

The Laplace transform F'(e~!) converges pointwise to exp (—c + ce™"), the
Laplace transform of the Poisson distribution with parameter c. [

Proof of Theorem 3

Suppose that x, is a sequence of complex numbers such that |z,| = O(1).
By the assumptions on p we have n’*mp® = o(1), nm?p* = o(1), n*m?p° =
o(1), and n*m3p® = o(1). Therefore,

1—p" "7 =1—-pn—1-j)+0(n*p"

and
Loptpl=p 2" = 121 )+ 0]
— exp (mp(n — 1 - ) + O(ump)
= (L+o(1))exp (—mp*(n—1-7)).
Furthermore,
F(zn,) = (1+40(1)) y <n j_ 1) z (1 — xn)n—1_j6_mp2(n—1—j)



= (1+0(1)e ™ =(1 — 2, 4 3™ )
= (1+o0(1)e ™ ™ D(1 4 z,mp* + O(m?p*))"!
= (14 o(1))e #rHan

with = mp?(n — 1). The equality (1) shows that EX = p + o(1), Suppose
that /o (X)? — 1 asn — oco. Writing o for o(X), the characteristic function
of (X —EX)/o is

e—itEX/aF(eit/a) _

which converges to the characteristic function of the standard normal distri-
bution.

It remains to be shown that p/o? — 1. By Theorem 1, the second
derivative of F(z) at 1 equals

F'(1) =EX(X = 1) = (n = 1)(n— 2) |1 = 2(1 = p)" + (1 - 2% + p")",
from which
o2 = (n—1)(n—2) [1 —2(1—p*)™ + (1 —2p? +p3)m]
Ho-D[1- =) = -2 [1- -]
= (n=D1=p)"+(n—1(n-2)(1-2p* +p")"
—(n—1)*(1 —2p" +p")"
= (n—1)[1 - mp? + O(m*p")]
+(n—1)(n-2) [1 = 2mp? + 2m°p* + O(mp®) + O(m*p°) + O(m’p°)
—(n—1)* [1 —2mp” + 2m*p* + O(mp*) + O(m’p°)
= p+o(l).
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