The vertex degree distribution of random intersection graphs

Dudley Stark
School of Mathematical Sciences
Queen Mary, University of London
London E1 4NS U.K.

December 3, 2002

ROUGH DRAFT: NOT FOR CIRCULATION

Abstract

Random intersection graphs are a model of random graphs in which each vertex is assigned a subset of a set of objects independently and two vertices are adjacent if their assigned subsets are not disjoint. The number of vertices is denoted by n and the number of objects is supposed to be $\lfloor n^{\alpha} \rfloor$ for some $\alpha > 0$. We determine the distribution of the degree of a typical vertex and show that it changes sharply between $\alpha < 1$, $\alpha = 1$, and $\alpha > 1$.

1 Introduction

Random intersection graphs were introduced in [4]. Given a set V of n vertices and a set W of m objects, define a bipartite graph $\mathcal{G}^*(n, m, p)$ with independent vertex sets V and W and edges between $v \in V$ and $w \in W$ existing independently and with probability p. The random intersection graph $\mathcal{G}(n, m, p)$ derived from $\mathcal{G}^*(n, m, p)$ is defined on the vertex set V with vertices $v_1, v_2 \in V$ adjacent if and only if there exists some $w \in W$ such that

both v_1 and v_2 are adjacent to w in $\mathcal{G}^*(n, m, p)$. We may interpret the vertices of $W_v \subset W$ adjacent to $v \in V$ as a random subset of W, in which case two vertices $v_1, v_2 \in V$ are adjacent iff $W_{v_1} \cap W_{v_2} \neq \emptyset$.

The properties of $\mathcal{G}(n, m, p)$ were studied in [1, 4] and contrasted with the well known random graph model $\mathcal{G}(n, p)$, in which vertices are made adjacent to each other independently and with probability p. In [1, 4] the number of objects m is taken to be $m = \lfloor n^{\alpha} \rfloor$ for a fixed $\alpha > 0$. It is found in [4] that the thresholds for the existence of small subgraphs in $\mathcal{G}(n, m, p)$ show different behaviors from what is seen in $\mathcal{G}(n, p)$. When $\alpha > 6$ [1] showed that the total variation distance between the distributions of $\mathcal{G}(n, m, \hat{p})$ and $\mathcal{G}(n, p)$ converges to 0 when \hat{p} is defined appropriately.

Intersection graphs can be viewed as relationship graphs. For example, if V represents mathematicians and W represents mathematics papers, and an edge is put between $v \in V$ and $w \in W$ iff mathematician v was an author of paper w, then the resulting intersection graph is the collaboration graph on V, where two mathematicians are connected by an edge iff they have written a paper together. The roles of V and W can be interchanged, in which case two papers are adjacent iff they have an author in common. The random graph $\mathcal{G}(n,m,p)$ is dual in this way to $\mathcal{G}(m,n,p)$. If $m = \lfloor n^{\alpha} \rfloor$, then $n \in [m^{1/\alpha}, (m+1)^{1/\alpha})$ and so the dual of $\mathcal{G}(n,m,p)$ with $\alpha = \beta > 1$ is basically $\mathcal{G}(n,m,p)$ with $\alpha = \beta^{-1} < 1$. Data sets for relationship graphs and models of random intersection graphs with fixed degree sequences are analyzed in [5].

Interest was expressed in [1] in further understanding the differences between $\mathcal{G}(n,m,p)$ and $\mathcal{G}(n,p)$. In [1, 4] thresholds for various quantities were looked at, but not much attention was paid to limiting distributions. A fundamental quantity that has not been studied for random intersection graphs is the distribution of the degree of a typical vertex. We give the precise distribution for $\mathcal{G}(n,m,p)$ in the form of a probability generating function in Theorem 1. The corresponding distribution for $\mathcal{G}(n,p)$ is, of course, Binomial(n-1,p).

Let X = X(n, m, p) be the number of vertices $V - \{v\}$ adjacent in $\mathcal{G}(n, m, p)$ to a vertex $v \in V$. The probability generating function of X(n, m, p) is defined to be $\mathbb{E}x^X = \sum_{k=0}^{\infty} \mathbb{P}(X = k)x^k$.

Theorem 1 The probability generating function $F(x) = \mathbb{E}x^X$ is given by

$$F(x) = \sum_{j=0}^{n-1} {n-1 \choose j} x^j (1-x)^{n-1-j} \left[1 - p + p(1-p)^{n-1-j} \right]^m.$$

Theorem 1 is proved by using a generating function version of the sieve method.

The expectation of X is given by

$$\mathbb{E}X = (n-1) \Big[1 - (1-p^2)^m \Big] \tag{1}$$

because the expression in square brackets is the probability that two vertices v, v_1 in V are simultaneously adjacent to some vertex $w \in W$ in $\mathcal{G}^*(n, m, p)$. The derivative F'(1) also gives (1). If we let

$$p = \sqrt{c}n^{-(1+\alpha)/2},\tag{2}$$

then

$$\mathbb{E}X = (n-1)\Big[1 - (1 - mp^2 + O(mp^4))\Big] = c + o(1).$$

With respect to vertex degree, defining p = p(n) by (2) for $\mathcal{G}(n, p)$ is therefore analogous to defining $p = cn^{-1}$ for $\mathcal{G}(n, p)$.

The vertex degree distribution for $\mathcal{G}(n,p)$ converges to the Poisson distribution with parameter c as $n \to \infty$ when $p = cn^{-1}$. With $p = \sqrt{c}n^{-(1+\alpha)/2}$ the vertex degree distribution of $\mathcal{G}(n,m,p)$ converges to a Poisson distribution in the limit if and only if $\alpha > 1$. We say that X_n is asymptotically almost surely a_n if $\mathbb{P}(|X_n/a_n - 1| > \epsilon) \to 0$ as $n \to \infty$ for each $\epsilon > 0$.

Theorem 2 Let $\mathcal{G}(n, m, p)$ denote the random intersection graph with $m = \lfloor n^{\alpha} \rfloor$ and $p = \sqrt{c}n^{-(1+\alpha)/2}$.

- (i) If $\alpha < 1$, then the number of non-isolated vertices is asymptotically almost surely $\sqrt{c}n^{(1+\alpha)/2} = o(n)$. It follows that the degree of a fixed vertex in V has a distribution which converges to δ_0 , the probability distribution with all mass at 0.
- (ii) If $\alpha = 1$, then the degree of a fixed vertex in V has a distribution which converges weakly to the compound Poisson distribution of the random variable $Z_1 + Z_2 + \cdots + Z_N$, where N, Z_1, Z_2, \ldots are i.i.d. Poisson(\sqrt{c}) random variables.

(iii) If $\mathcal{G}(n, m, p)$ with $\alpha > 1$ and $p = \sqrt{c}n^{-(1+\alpha)/2}$, then the degree of a fixed vertex has distribution which converges weakly to a Poisson limiting distribution with parameter c.

Theorem 2 can roughly be explained in the following way. When $\alpha < 1$ the probability in $\mathcal{G}^*(n, m, p)$ that any one vertex $v \in V$ is connected to a vertex in W goes to 0 and so the degree distribution in $\mathcal{G}(n, m, p)$ converges to δ_0 and most of the vertices are isolated. When $\alpha = 1$ a vertex $v \in V$ will have approximately a Poisson(\sqrt{c}) number of neighbors in W and each of those neighbors have independently about Poisson(\sqrt{c}) number of neighbors in V, not including v. When α is large enough, [1] shows that it becomes unlikely that a vertex $w \in W$ has more than two neighbors in V and as a result the events that different edges in $\mathcal{G}(n, m, p)$ exist become independent.

Theorem 3 shows that if $\alpha > 1$ and p grows faster than $n^{-(1+\alpha)/2}$, but not as fast as min $(n^{-2/3-\alpha/3}, n^{-1/3-\alpha/2})$, then X converges to normal when it is rescaled.

Theorem 3 Let $\mathcal{G}(n,m,p)$ denote the random intersection graph with $m = \lfloor n^{\alpha} \rfloor$, suppose that $\alpha > 1$, and suppose that p satisfies $nmp^2 \to \infty$ and $p = o\left(n^{-2/3 - \alpha/3}\right)$ if $1 < \alpha \le 2$, $p = o\left(n^{-1/3 - \alpha/2}\right)$ if $\alpha > 2$. Under these assumptions,

$$\frac{X - \mathbb{E}X}{\sigma(X)} \Rightarrow N(0, 1),$$

where $\sigma(X)$ is the standard deviation of X and N(0,1) is the standard normal distribution.

The formula in Theorem 1 is derived in Section 2. In Section 3 Theorem 2 is proven for $\alpha < 1$ by using Chebyshev's inequality. Section 4 proves Theorem 2 for $\alpha \geq 1$ and Theorem 3 by analyzing the probability generating function found in Section 2.

2 The probability generating function

We will determine F(x) by using Lemma 1, which is a probability generating function version of the sieve method. Lemma 1 is used, for example, by Takács in [7], though according to [3] it may also have been known to Jordan. For completeness we give a proof of Lemma 1. It is similar to an argument in

Section 4.2 of [8]. Let P be a set of properties that a random object can take on. Let p_k be the probability that the object takes on exactly k properties in P. We are interested in the probability generating function

$$F(x) = \sum_{k} p_k x^k.$$

Lemma 1 For $S \subset P$, we define N_S to be the event that the random object possesses the properties S. Define N_r to be

$$N_r = \sum_{|S|=r} \mathbb{P}(N_S)$$

and define N(x) to be

$$N(x) = \sum_{r>0} N_r x^r.$$

With the definitions above, we have

$$F(x) = N(x - 1).$$

Proof The proof is similar to the argument in Section 4.2 of [8], but replacing certain summations with expectations. Let I_{N_S} be the indicator function of the event N_S . Let Y be the number of properties that the random object possesses. We have

$$N_r = \sum_{|S|=r} \mathbb{P}(N_S) = \sum_{|S|=r} \mathbb{E}(I_{N_S}) = \mathbb{E}\left(\sum_{|S|=r} I_{N_S}\right) = \mathbb{E}\binom{Y}{r}.$$

Therefore,

$$N(x) = \sum_{r\geq 0} N_r x^r = \sum_{r\geq 0} \mathbb{E}\binom{Y}{r} x^r = \mathbb{E}\left(\sum_{r\geq 0} \binom{Y}{r} x^r\right)$$
$$= \mathbb{E}\left((1+x)^Y\right) = F(1+x)$$

and
$$F(x) = N(x - 1)$$
.

In our application to random intersection graphs, there are n-1 properties consisting of the non-adjacency of the fixed vertex to the other n-1

vertices. We use non-adjacency rather than adjacency in the initial analysis for ease of calculation; the generating function for the number of adjacent vertices follows immediately.

Proof of Theorem 1

Let G(x) be the generating function of p'_k , the probability that exactly k vertices in $V - \{v\}$ are not adjacent to $v \in V$. The probability that the fixed vertex v is adjacent to none of the vertices represented by $S \subset V - \{v\}$ is given by

$$\mathbb{P}(N_S) = \sum_{k=0}^{m} {m \choose k} p^k (1-p)^{m-k} (1-p)^{k|S|},$$

where the index k counts the number of elements of W adjacent to v in $\mathcal{G}^*(n, m, p)$. Therefore,

$$N_{r} = {\binom{n-1}{r}} \sum_{k=0}^{m} {\binom{m}{k}} [p(1-p)^{r}]^{k} (1-p)^{m-k}$$
$$= {\binom{n-1}{r}} [1-p+p(1-p)^{r}]^{m}.$$

Lemma 1 implies that G(x) = N(x - 1), where

$$N(x) = \sum_{r=0}^{n-1} N_r x^r = \sum_{r=0}^{n-1} \binom{n-1}{r} x^r \Big[1 - p + p(1-p)^r \Big]^m.$$

Hence,

$$G(x) = \sum_{r=0}^{n-1} {n-1 \choose r} (x-1)^r \Big[1 - p + p(1-p)^r \Big]^m$$
$$= \sum_{j=0}^{n-1} {n-1 \choose j} (x-1)^{n-1-j} \Big[1 - p + p(1-p)^{n-1-j} \Big]^m.$$

Now use the identity $F(x) = x^{n-1}G(x^{-1})$.

3 The number of isolated vertices

In this section we prove Theorem 2 for $\alpha < 1$.

Lemma 2 Consider a random intersection graph $\mathcal{G}(n, m, p)$ with $\alpha < 1$ and $p = o(n^{-\alpha})$. Let Y be the number of non-isolated vertices. If $nmp \to \infty$, then asymptotically almost surely $Y \sim nmp$. In particular, if $\alpha < 1$ and $p = \sqrt{c}n^{-(1+\alpha)/2}$, then $Y \sim \sqrt{c}n^{(1+\alpha)/2} = o(n)$.

Proof Write $W = \sum_{v \in V} I_v$, where I_v is the indicator that vertex $v \in V$ is isolated, so that the number of non-isolated vertices is Y = n - W. The probability that v is isolated is

$$\mathbb{E}I_{v} = \sum_{k=0}^{m} {m \choose k} p^{k} (1-p)^{m-k} (1-p)^{(n-1)k}$$
$$= \left[1-p+p(1-p)^{n-1}\right]^{m},$$

where the index k represents the number of vertices in W which are adjacent to v in $\mathcal{G}^*(n, m, p)$. Hence

$$\mathbb{E}W = n \Big[1 - p + p(1-p)^{n-1} \Big]^m,$$

a formula computed in [6] by different means. When $\alpha < 1$ and $p = o(n^{-\alpha})$ the expectation of Y is

$$\mathbb{E}Y = n - \mathbb{E}W
= n - n \Big[1 - p + p(1 - p)^{n-1} \Big]^m
= n - n (1 - p)^m (1 + O(mpe^{-(n-2)p}))
= n - n (1 - p)^m (1 + O(mp \exp(-n^{1-\alpha})))
= nmp + O(nm^2p^2).$$

Next we calculate the variance of Y. We have

$$\mathbb{E}W(W-1) = \sum_{v_2 \neq v_2} \mathbb{E}I_{v_1}I_{v_2}$$

$$= n(n-1)\sum_{s=0}^m \binom{m}{s} (1-p)^{2s} [2p(1-p)]^{m-s} (1-p)^{(m-s)(n-2)}$$

$$= n(n-1) \left[(1-p)^2 + 2p(1-p)^{n-1} \right]^m,$$

where s counts the number of vertices in W adjacent to neither v_1 or v_2 in $\mathcal{G}^*(n, m, p)$, leaving m-s vertices in W adjacent to exactly one of v_1, v_2 . The factor $(1-p)^{(m-s)(n-2)}$ is the probability that none fo the m-s vertices are adjacent to other vertices in V. Now,

$$Var(Y) = Var(W)$$

$$= n(n-1) \Big[(1-p)^2 + 2p(1-p)^{n-1} \Big]^m + n \Big[1-p+p(1-p)^{n-1} \Big]^m$$

$$- \Big(n \Big[1-p+p(1-p)^{n-1} \Big]^m \Big)^2$$

$$= n(n-1)(1-p)^{2m} \Big(1+O(\exp(-n^{1-\alpha})) + n(1-p)^m \Big(1+O(\exp(-n^{1-\alpha})) + n^2(1-p)^{2m} \Big(1+O(\exp(-n^{1-\alpha})) + n(1-p)^m \Big(1+O(\exp(-n^{1-\alpha})) + n(1-p)^m \Big) + n(1-2p+p^2)^m + O(n^2 \exp(-n^{1-\alpha}))$$

$$= O(nmp).$$

An application of Chebyshev's inequality completes the proof.

4 Limit laws for the vertex degree

In this section we prove Theorem 2 for $\alpha \geq 1$ and Theorem 3.

Lemma 3 Consider the random intersection graph $\mathcal{G}(n, m, p)$ with $m = \lfloor n^{\alpha} \rfloor$ and $p = \sqrt{c}n^{-(1+\alpha)/2}$ with $\alpha = 1$. When $x \leq 1$, the probability generating function $\sum_{k} \mathbb{P}(X(n, m, p) = k)x^{k}$ satisfies

$$F(x) = \exp\left(-\sqrt{c} + \sqrt{c}e^{-\sqrt{c}(1-x)}\right) + O\left(n^{-1/4}\right)$$

It follows that the probability that a fixed vertex of V in $\mathcal{G}(n, m, p)$ equals $k \geq 0$ asymptotically approaches the compound Poisson distribution given by $\mathbb{P}(Z_1 + Z_2 + \cdots + Z_N = k)$, where N, Z_1, Z_2, \ldots are i.i.d. Poisson(\sqrt{c}) distributed random variables.

Proof Write the formula for F(x) given by Theorem 1 for fixed $x \leq 1$ as

$$F(x) = \sum_{|j-nx| \le n^{3/4}} {n-1 \choose j} x^j (1-x)^{n-1-j} \left[1 - \sqrt{c}n^{-1} + \sqrt{c}n^{-1} (1 - \sqrt{c}n^{-1})^{n-1-j} \right]^n$$

$$+ \sum_{|j-nx|>n^{3/4}} {n-1 \choose j} x^j (1-x)^{n-1-j} \left[1 - \sqrt{c} n^{-1} + \sqrt{c} n^{-1} (1 - \sqrt{c} n^{-1})^{n-1-j} \right]^n.$$

The second sum is bounded by $\sum_{|j-nx|>n^{3/4}} {n-1 \choose j} x^j (1-x)^{n-1-j}$, which is o(1) by large deviation bounds for the binomial; see Theorem 2.1 of [2], for example.

As for the first sum, we have

$$(1 - \sqrt{c}n^{-1})^{n-1-j} = e^{-\sqrt{c}(1-x)} + O(n^{-1/4}).$$

uniformly for all j such that $|j - nx| \le n^{3/4}$. Hence,

$$\left[1 - \sqrt{c}n^{-1} + \sqrt{c}n^{-1}(1 - \sqrt{c}n^{-1})^{n-1-j}\right]^n = \exp\left(-\sqrt{c} + \sqrt{c}e^{-\sqrt{c}(1-x)}\right) + O\left(n^{-1/4}\right)$$

uniformly for all j such that $|j - nx| \le n^{3/4}$ and

$$\sum_{|j-nx| \le n^{3/4}} \binom{n-1}{j} x^j (1-x)^{n-1-j} \left[1 - \sqrt{c} n^{-1} + \sqrt{c} n^{-1} (1 - \sqrt{c} n^{-1})^{n-1-j} \right]^n$$

$$= \exp\left(-\sqrt{c} + \sqrt{c} e^{-\sqrt{c}(1-x)} \right) + O\left(n^{-1/4}\right).$$

The Laplace transform $F(e^{-t})$ converges pointwise to $\exp\left(-\sqrt{c} + \sqrt{c}e^{-\sqrt{c}(1-e^{-t})}\right)$ which, as is easily checked, is the Laplace transform of $Z_1 + Z_2 + \cdots + Z_N$.

Lemma 4 Consider the random intersection graph $\mathcal{G}(n, m, p)$ with $m = \lfloor n^{\alpha} \rfloor$ and $p = \sqrt{c} n^{-(1+\alpha)/2}$ with $\alpha > 1$. When $x \leq 1$, the probability generating function $\sum_{k} \mathbb{P}(X(n, m, p) = k) x^{k}$ satisfies

$$F(x) = e^{-c+cx} + O(n^{-1}) + O(n^{(1-\alpha)/2}).$$

It follows that the probability p_k that a fixed vertex of V in $\mathcal{G}(n, m, p)$ equals $k \geq 0$ is asymptotically Poisson: $p_k \sim e^{-c}c^k/k!$.

Proof Expand $(1-p)^{n-1-j}$ for $j \in [1, n]$ as

$$(1-p)^{n-1-j} = 1 - \sqrt{c}(n-1-j)n^{-(1+\alpha)/2} + O(n^{1-\alpha}).$$

It follows that

$$\begin{bmatrix}
1 - p + p(1-p)^{n-1-j}
\end{bmatrix}^m = \begin{bmatrix}
1 - c(n-1-j)n^{-1-\alpha} + O(n^{(1-3\alpha)/2})
\end{bmatrix}^m \\
= \exp(-c(n-1-j)n^{-1} + O(n^{(1-\alpha)/2}))$$

uniformly for $j \in [1, n]$. Now, for $x \in [0, 1]$,

$$F(x) = \sum_{j=0}^{n-1} {n-1 \choose j} x^{j} (1-x)^{n-1-j} e^{-c(n-1-j)/n} + O\left(n^{(1-\alpha)/2}\right)$$

$$= e^{-c(n-1)/n} \left(1 - x + xe^{c/n}\right)^{n-1} + O\left(n^{(1-\alpha)/2}\right)$$

$$= e^{-c(n-1)/n} \exp\left(xc(n-1)n^{-1} + O\left(n^{-1}\right)\right) + O\left(n^{(1-\alpha)/2}\right)$$

$$= e^{-c+cx} + O\left(n^{-1}\right) + O\left(n^{(1-\alpha)/2}\right).$$

The Laplace transform $F(e^{-t})$ converges pointwise to $\exp(-c + ce^{-t})$, the Laplace transform of the Poisson distribution with parameter c.

Proof of Theorem 3

Suppose that x_n is a sequence of complex numbers such that $|x_n| = O(1)$. By the assumptions on p we have $n^2mp^3 = o(1)$, $nm^2p^4 = o(1)$, $n^2m^2p^5 = o(1)$, and $n^2m^3p^6 = o(1)$. Therefore,

$$(1-p)^{n-1-j} = 1 - p(n-1-j) + O(n^2p^2)$$

and

$$\begin{bmatrix}
1 - p + p(1-p)^{n-1-j} \end{bmatrix}^m = \begin{bmatrix}
1 - p^2(n-1-j) + O(n^2p^3) \end{bmatrix}^m \\
= \exp(-mp^2(n-1-j) + O(n^2mp^3)) \\
= (1 + o(1)) \exp(-mp^2(n-1-j)).$$

Furthermore,

$$F(x_n) = (1+o(1)) \sum_{j=0}^{n-1} {n-1 \choose j} x_n^j (1-x_n)^{n-1-j} e^{-mp^2(n-1-j)}$$
$$= (1+o(1)) e^{-mp^2(n-1)} \sum_{j=0}^{n-1} {n-1 \choose j} (x_n e^{mp^2})^j (1-x_n)^{n-1-j}$$

$$= (1+o(1))e^{-mp^2(n-1)}(1-x_n+x_ne^{mp^2})^{n-1}$$

$$= (1+o(1))e^{-mp^2(n-1)}(1+x_nmp^2+O(m^2p^4))^{n-1}$$

$$= (1+o(1))e^{-\mu+\mu x_n},$$

with $\mu = mp^2(n-1)$. The equality (1) shows that $\mathbb{E}X = \mu + o(1)$, Suppose that $\mu/\sigma(X)^2 \to 1$ as $n \to \infty$. Writing σ for $\sigma(X)$, the characteristic function of $(X - \mathbb{E}X)/\sigma$ is

$$e^{-it\mathbb{E}X/\sigma}F(e^{it/\sigma}) = (1+o(1))e^{-it\mu/\sigma}F(e^{it/\sigma})$$

$$= (1+o(1))e^{-it\mu/\sigma}\exp\left(-\mu + \mu e^{it/\sigma}\right)$$

$$= (1+o(1))e^{-it\mu/\sigma}\exp\left(\mu it/\sigma - \mu t^2/(2\sigma^2) + O(\mu/\sigma^3)\right)$$

$$= (1+o(1))e^{-t^2/2},$$

which converges to the characteristic function of the standard normal distribution.

It remains to be shown that $\mu/\sigma^2 \to 1$. By Theorem 1, the second derivative of F(x) at 1 equals

$$F''(1) = \mathbb{E}X(X-1) = (n-1)(n-2)\left[1 - 2(1-p^2)^m + (1-2p^2+p^3)^m\right],$$

from which

$$\begin{split} \sigma^2 &= (n-1)(n-2)\Big[1-2(1-p^2)^m+(1-2p^2+p^3)^m\Big] \\ &+(n-1)\Big[1-(1-p^2)^m\Big]-(n-1)^2\Big[1-(1-p^2)^m\Big]^2 \\ &= (n-1)(1-p^2)^m+(n-1)(n-2)(1-2p^2+p^3)^m \\ &-(n-1)^2(1-2p^2+p^4)^m \\ &= (n-1)\Big[1-mp^2+O(m^2p^4)\Big] \\ &+(n-1)(n-2)\Big[1-2mp^2+2m^2p^4+O(mp^3)+O(m^2p^5)+O(m^3p^6)\Big] \\ &-(n-1)^2\Big[1-2mp^2+2m^2p^4+O(mp^4)+O(m^3p^6)\Big] \\ &= \mu+o(1). \end{split}$$

Acknowledgement The author thanks Janos Galambos for reference [7] and Karen Singer-Cohen for supplying a copy of [6].

References

- [1] J. A. Fill, E. R. Scheinerman, K. B. Singer-Cohen. Random intersection graphs when $m = \omega(n)$: An equivalence theorem relating the evolution of the G(n, m, p) and G(n, p) models. Random Structures Algorithms 16 (2000) 156 176.
- [2] S. Janson, T. Łuczak, A. Ruciński. Random Graphs, Wiley-Interscience.
- [3] J. Galambos, email communication.
- [4] M. Karoński, E. R. Scheinerman and K. B. Singer-Cohen. On random intersection graphs: the subgraph problem. *Combin. Probab. Comput.* 8 (1999) 131 159.
- [5] M. E. J. Newman, S. H. Strogatz, D. J. Watts. Random graphs with arbitrary degree distributions and their applications. *Phys. Rev. E* 64 (2001) 026118.
- [6] K. B. Singer, Random Intersection Graphs, Dissertation, Johns Hopkins University, (1995).
- [7] L. Takács, On the method of inclusion and exclusion. J. Amer. Stat. Assn. 62 (1967) 102–113.
- [8] H. S. Wilf Generatingfunctionology, Academic Press.