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Abstract

We give first polynomial time approximation schemes (PTASs) for
the problem of partitioning an input set of » points into a fixed number
k of clusters so as to minimize the sum over all clusters of the sum
of pairwise distances in a cluster. Our algorithms work for arbitrary
metric spaces as well as for points in R? where the distance between
two points @,y is measured by ||z — y||2 (notice that (RY || -|3) is
not a metric space). Our algorithms can be modified to handle other
objective functions, such as minimizing the sum over all clusters of the
sum of distances to the best choice for a cluster center. The method
of solution of this paper depends on some new techniques which could
be also of independent interest.
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1 Introduction

Problem statement and motivation. The problem of partitioning a
data set into a small number of clusters, each containing a set of seemingly
related items, has a crucial role in many information retrieval and data analy-
sis applications, such as web search and classification [5, 19], or interpretation
of experimental data in molecular biology [24]. For example, when searching
or mining massive unstructured data sets, data items are often processed and
represented as points in a high dimensional space R? where some standard
distance function measures affinity (see, for example, [7, 25, 11, 5]).

This paper deals with the question of designing good algorithms for an
attractive criterion for clustering quality in such a setting. More specifically,
we consider a set V' of n points endowed with a distance function § : VxV —
R. These points have to be partitioned into a fixed number k of subsets
C1,C4,...,Ck so as to minimize the cost of the partition, which is defined
to be the sum over all clusters of the sum of pairwise distances in a cluster.
We call this problem k-Clustering. We also deal with the k-Median and
the k-Center problems. In the k-Median problem the cost of a clustering is
the sum over all clusters of the sum of distances between cluster points and
the best choice for a cluster center. In the k-Center problem, the cost of a
clustering is the maximum distance between a point and its cluster center.
In the settings that we consider, these optimization problems are N P-hard
(by similar arguments as in [9, 8]) to solve exactly even for k = 2.

Our results. Our algorithms deal with the case that ¢ is an arbitrary
metric (including, in particular, points in R? with distances induced by some
norm). We also handle the non-metric case of points in R? where the distance
between two points x,y is measured by d(z,y) = ||z — y||3. We refer to
instances of the latter form as (3 instances.

For the k-Clustering problem, we present algorithms for every fixed in-
teger k and for every fixed € > 0 that compute a partition into & clusters
Ci,05,...,C} of cost at most 1 + ¢ times the cost of an optimum partition.
The algorithm is randomized and its running time is O(n?* —|—nk+120(1/53k+1)).
In the (3 case, the algorithms are deterministic, and their running time is
nP# <) Our algorithms can be modified to output, for all ¢ > 0, a clus-
tering that excludes at most (n outliers and has cost at most 1 4 € times
the optimum cost. In the case of the square of Euclidean distance, we can
do this in probabilistic time O(n®logn), where the hidden term in the O()



grows (rapidly) with k, %, and % We do not present the modification in this
extended abstract.

The k-Median problem can be solved optimally in polynomial time for
fixed k in finite metrics, because the number of choices for centers is polyno-
mial. However, if the points are located in a larger space, such as R? and the
centers can be picked from this larger space, the problem may become hard.
For /% instances, we give k-Median algorithms that partition the input point-
set into k clusters of cost at most 1 + ¢ of the optimum cost in probabilistic
time O(g(k,¢) - n - (logn)*), where g grows (rapidly) with k& and L. Some of
our algorithms can be modified trivially to derive polynomial time approxi-
mation schemes for other objective functions, such as the k-Center problem.
We do not elaborate on these modifications in this extended abstract.

Related work. The k-Clustering problem was proposed by Sahni and Gon-
zalez [22] in the setting of arbitrary weighted graphs. Unfortunately, only
poor approximation guarantees are possible [17, 12]. Guttman-Beck and
Hassin [15] initiated the study of the problem in metrics. Schulman [23] gave
probabilistic algorithms for clustering /3 instances. (Thus he also handled
other interesting cases of metrics that embed isometrically into this distance
space, such as Euclidean metrics or L' metrics.) His algorithms find a clus-
tering such that either its cost is within a factor of 1 4 € of the optimum
cost, or it can be converted into an optimum clustering by changing the as-
signment of at most an € fraction of the points. The running time is linear
if d = o(logn/loglogn) and otherwise the running time is n?U°81°8™)  Thus
our results improve and extend Schulman’s results, giving a true polynomial
time approximation scheme for arbitrary dimension.

Earlier, Fernandez de la Vega and Kenyon [9] presented a polynomial time
approximation scheme for Metric Max Cut, an objective function that is the
complement of Metric 2-Clustering. Indyk [16] used the Max Cut algorithm
as a black box ingredient to derive a polynomial time approximation scheme
for the latter problem. Thus our results extend Indyk’s result to the case of
arbitrary fixed k.

As mentioned above, instances of k-Median in finite metrics with fixed
k are trivially solvable in polynomial time. (For arbitrary k, the problem is
APX-hard [14].) This is not the case in geometric settings, including the /3
case discussed in this paper. This case was considered by Drineas, Frieze,
Kannan, Vempala, and Vinay [10], who gave a 2-approximation algorithm.



Ostrovsky and Rabani [21] gave a polynomial time approximation scheme
for this case and other geometric settings. Badoiu, Har-Peled, and Indyk [4]
gave a polynomial time approximation scheme for points in Euclidean space
with much improved running time (as well as results on other clustering
objectives). Our results, derived independently of [4], improve significantly
the running time for the (3 case. Our k-Median algorithms and analysis
are in many respects similar to the algorithms in [4] (though they handle a
different distance function).

It is interesting to note that both Schulman’s algorithm for k-Clustering
and the algorithm of Fernandez de la Vega and Kenyon for Metric Max
Cut use a similar idea of sampling data points at random from a biased
distribution that depends on the pairwise distances. In recent research on
clustering problems, sampling has been the core idea in the design of provably
good algorithms for various objective functions.

Notations. Throughout the paper we use V' to denote the input set of
points and ¢ to denote the distance function over pairs of points in V. The
function § can be given explicitly or implicitly (for example, if V' C R?
and § is derived from a norm on R?). Our time bounds count arithmetic
operations and assume that computing d(x,y) is a single operation. The
reader may assume that the input is rational to avoid having to deal with
unrealistic computational models. We use k, a fixed constant, to denote the
desired number of clusters. We omit the ceiling notation from expressions
such as [1/€]. Our claims and proofs can be modified trivially to account for
taking the ceiling of non-integers wherever needed.

Let X,Y C V and 2 € V. With a slight abuse of notation, we use §(x,Y)
to denote »_ .y d(x,y), and we use §(X,Y’) to denote > §(z,Y).! We
use §(X) to denote §(X, X).

Let Cy,C5,...,Cy be a partition of V' into k disjoint clusters. Then,
for all i = 1,2,...,k, we use cost(C;) to denote the cost of C;, and we use
c = cost(Cy,Cy,...,Ck) = Y. cost(C;) to denote the cost of the clustering.
In the k-Clustering problem, cost(C;) = 26(C;). In the k-Median prob-
lem, cost(C;) = mingera{d(x,C;)}. In the k-Center problem, cost(C;) =
Mingepamaxyec; 16(2,y)}, and cost(Cy, Cy,...,Cp) = maxi = 1%cost(C;).
We use (7,05, ...,C} to denote a clustering of V' of minimum cost ¢*.

'Notice that §(-,-) is a symmetric bilinear form but is not a distance in the power set

of V.



Our polynomial time approximation schemes handle the case where §
induces an arbitrary metric on V. as well as the non-metric case of V C R?
and &(z,y) = ||z — y||2. Instances of points in R? are computationally hard
if d is part of the input.?

2 A PTAS for Metric Instances

In this section we present our algorithm for clustering metric spaces. Before
we describe the algorithm, we need some definitions.

2.1 Preliminaries

The main property of metric spaces that we use is the following proposition,
which follows easily from the triangle inequality.

Proposition 1. Let X,Y, 7 C V. Then,
[ Z]6(X,Y) < [X]6(Y, Z) + |[Y]6(Z, X).

It is straightforward to generalize this to more than 3 sets, and we will
occasionnally do so. Here is a useful corollary.

Corollary 2. Let C' C V. For every vertex v € C' we have

3(C)
d(v,C) > 20T

Let ny > ny > -++ > ni be given.
Definition 1. Define the sequence (¢;) by:

60:1
€1 = ¢
: 2 2
Vi>1, ¢ =¢_i¢

Let I; = (€j41,¢€j]. Let jo < k be the minimum j such that for every ¢, the
ratio n;/ny is outside the interval ;. Call a cluster index ¢ large if n; > €;,ny
and small if n; < €j,411;.

ZAn exception to this rule is the case of Euclidean distance. The hardness of the
problems considered here in the Euclidean case is an open problem.



In our proofs, the following quantities will come up frequently as upper
or lower bounds to various cluster sizes, so we use some specific notations for
them.

Notation 1.

M = n; = max{n;}
m = min{n; | ¢ large}

s = max{n; | ¢ small}

The advantage of the above definition is that there is a large gap between
the sizes of large and of small clusters, much larger than between the sizes
of any two large clusters. This will be useful in several places in the analysis
and is expressed in the following fact.

Fact 3.

< e

SE

s

m

Consider two large clusters. They can be far apart, or they can be close
together.

Notation 2. Let
g = M

me
Definition 2. Let A and B be two large clusters.We say that A and B are
close if

3(A, B) < B(6(A) +4(B)),

and that they are large otherwise.

Now, the algorithm uses random sampling to have some rough estimate
of the position of the clusters in the metric space. In fact, we will use just
one sample point per cluster. For the algorithm to work, those sample points
must be representative.

Definition 3. Let C' be a set of points. An element ¢ of C' is representative

of O if )
3(c,C) < 222
(.0) < 297



The following is an easy observation from elementary probability.

Lemma 4. Consider a partition (Cy,...,Cy) of V such that C; has size
n;. For each large i, let ¢; be a random uniform element of V. Then, with
probability at least (¢;,/(2k))*, we have the following: for every large 7, point
¢; is a representative element of (.

The algorithm will only work when that event occurs. (As usual, we can
always run the algorithm several times to boost up its success probability).
When this occurs, the large cluster representatives have the following addi-
tional property, which will also come into play in the course of the analysis.

Lemma 5. Let C7 and (7 be two large clusters, and ¢;, ¢; their represen-
tatives. Assume that C7 and C7 are close to each other. Then:

2M OPT

2

(S(Ci, C]‘) S

me m

We also use the following propoerty of representatives, which follows eas-
ily from Proposition 1.

Lemma 6. Let ¢ be a representative point of cluster C'. Then, for any = in
V', we have:

6(2,C) — |C|6(x, )| < 220
|C]

Our algorithm uses, as a black box, an approximation scheme for Metric
Max-k-Cut which is already known in the litterature. The Metric Max-k-Cut
problem takes as input a set V' of n points from an arbitrary metric space, and
outputs a partition of V into k clusters Cy, (s, ..., C} so as to maximize the
total distance between pairs of points in different clusters, ). 2j>i Oy, Cy).
For any partition into k& clusters, the sum of the Max-k-Cut value and of the
k-Clustering value is constant and equal to the sum of all distances, thus the
same partition is optimal for both objective functions. Unfortunately, from
the viewpoint of approximation, which involves controlling the relative error,
the two problems are quite different, since in general the optimal k-clustering
value could be much smaller than the optimal Max-k-Cut value. However,
the Max-k-Cut approximation algorithm is still useful when the clusters are
close together.



Theorem 7 ([9, 8]). Let k& be a fixed integer. Then there is a polynomial
time approximation scheme for Metric Max-k-Cut.> The running time is

O(n* + nkQO(l/ES)).

2.2 The k-Clustering Algorithm

We are now ready to describe the k-clustering algorithm. Intuitively, this
algorithm is natural: imagine that the space has a huge number of points. In
a nutshell, here is the algorithm. Take a small sample of points. By exhaus-
tive search, find their classification in the(unknown)optimal clustering. Use
the information on the sample to classify the rest of the points. Temporarily
merge clusters which are too close to one another. Remove outliers. Separate
close clusters using the more sophiticated Max-h-Cut algorithm from the lit-
terature, and recursively cluster the outliers into the appropriate number of
(small) clusters.

Now, here is the formal description. Fix € > 0. Our algorithm consists of
taking the best of all partitions that are generated as follows.

1. By exhaustive search, guess the optimal cluster sizes ny > ny > --- >

nk. Define large and small as in Definition 1.

2. Define far and close as in Definition 2. By exhaustive search, for each
pair of large cluster indices ¢ and j, guess whether C'7 and C7 are close
to each other.

3. Taking the equivalence relation which is the transitive closure of the
relation “C7 and (7 are close to each other”, define a partition of large
cluster indices into groups.

4. For each large cluster C7, let ¢; be a random uniform element of V.

Assign each point @ € V to the group & which minimizes

E%gl[nﬁ(x, )]

3Theorem 7 is actually an easy extension of the Max Cut approximation scheme of [9].
The same reduction which is used for Max Cut also applies to Max-k-Cut, and the resulting
weighted dense graph is only a variant of dense graphs in the usual sense, so that the Max-
k-Cut approximation schemes for dense graphs (see [13, 3]) apply. An alternative algorithm
can be found in [8].
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Figure 1: A typical situation for k-clustering. Here k = 7, there are 4 large
clusters, of which three form a group and one is well-separated from the
others, and 3 small clusters, for which the problem will be solved recursively.

5. By exhaustive search, for each group G thus constructed, guess |G N
S|, where S = U, ¢,,11C7 is the union of small clusters. For each x
assigned to group G, let

flz) = mind(z, ).

1€G
Remove from (s assignment the |G' N S| elements with largest value

f(z).

6. Partition each group of large clusters into the appropriate number h
of clusters using the PTAS for Max-h-Cut with error parameter ¢ =
el [(3K%).

7. Recursively partition the removed elements into the appropriate num-
ber of clusters.

A typical case is presented in figure 2.2.

Theorem 8. For any fixed positive integer k, the algorithm presented in
Section 2.2 is a PTAS for the Metric k-Clustering problem. The running
time of the algorithm is O(n** f(k, ¢)), where f(k,¢) has a leading factor of

cxp((1/€)*).

The running time analysis can be proved by inspection of the algorithm.
The rest of this section will be devoted to analyzing the cost of the cluster-
ing constructed by the algorithm. The proof is a rather long and technical,

9



sometimes tricky, but not particularly interesting elementary calculation, in-
volving a careful management of the various error terms. The interesting
facts have already been spelled out in subsection 2.1. We only provide the
proof sketches to enable the dedicated reader to verify correctness.

2.3 Analysis of step 4

We first analyze the mistakes made in step 4 of the algorithm. For any two
large clusters ¢ and 7 which belong to different groups, let F'(¢, 7) denote the
set of points @ € CF such that minyne(x,¢/) = n;é(x,¢;). These points,
which really should be in ¢’s group, are mistakenly placed by the algorithm
in j’s group.
Let
Ci = C7 + Ul (j.1) = U F'(4, )

for ¢ large, and C; = C} for ¢+ small cluster.

Proposition 9.
D H(C) <) 8(C)(1 + 80ke).

To prove this Proposition, we need the following Lemma.

Lemma 10.

S(F(j,1),C7) = 6(F(7,1), CF) < —(6(C7) 4 o(CT)IF (G, 8)]-

2
m
Proof: Let x € F(j,7). By Lemma 6, we have

5(CF)

K3

O, CF) < nid(x,e) + 2

L2

By the choice of the algorithm, n;é(x,¢;) < n;é(x,¢;). By Lemma 6 again,
we have

(O
n;o(x,c;) < o(x,C7) + ZM.
n;
Thus 5
8z, C7) < 6(2, CF) + —((C7) + 6(C5))-
Summing over @ € F'(j,¢) concludes the proof of the lemma. O

To be able to use Lemma 10, we need an upper bound on |F(7,17)].

10



Lemma 11.
[F'(5,0)] <

me.
1 — 8e

Proof: Let F' = F(j,1) for shorthand. Since ¢ and j are in different groups,
C'7 and C7 are far from each other, so

S(CTUCT) > BO(CT) +6(C7)). (1)
Consider @ € F'. By Proposition 1, we have
S(CTUCT) <26(x, CTUCT)|CTUCT].
Summing over x € I, we get
[F6(CTUCT) <AM(S(F,C7) +0(F,C7)).

We now use the result of Lemma 10.

[FIS(C7UC7) < 4M(28(F,C3) + %(5(0;) +5(C)IF)).

Since I' C C%, we have §(F,C7) < §(C7). Combining with Equation 1 and

77
factoring in |F| gives

IS + 5073~ oy < 8M3(C).

We conclude that |F| < B_Z%/m, and it only remains to replace 8 by its value
to get the statement of the Lemma. O

Plugging the result of Lemma 11 into Lemma 10 (for the first inequality),
or using Proposition 1 followed by Lemma 11 (for the next two inequalities),

yields the following Corollary.
Corollary 12.




Lemma 13.

Proof: By Proposition 1, we have

[FG DG, 1), OF) + [F(5, IS 1), CF)

S(F(5,2), F(5',4)) < |C7]

By Lemma 11, this yields

8

O(F (1), F(50)) < T2

IN

By the first statement of Corollary 12, this can be replaced by

8 . . 32
(B(F(J,1),C5) + 8P (1), € + e

S(F(5,1), F'(j" 1)) < OPT).

—_

— 8¢
Since F'(j,i) C C7 and F(j',1) C C%, we have:
S(F(4,1),C)+8(F(5,1),C < OPT,

hence the Lemma. O
We are now equipped to prove Proposition 9.
Proof: We write:

Sy = > 8(Cr+UF(G, i) — UiF (i, )
= D HCH)+ DD (CF i) =Y 8(Cr F i, 5))] +
i i, g
> S(UF(G,i) = Ui F(i, ).
We exchange the roles of ¢ and j in the third sum to bound the brackedted
quantity using the first statement of Corollary 12. We use bilinearity of (-, -)
and appeal to the rest of the Corollary to bound the other terms. This gives

the bound of the Proposition. O

12



2.4 Analysis of step 5

Before we can continue modifying the clustering, we need to prove that
(), 1s not too different from C;. The following Lemma easily follows from
Lemma 11.

Lemma 14.

|Cu] = 1C31] < |71

1 —Re
Let (C!) denote the clustering obtained from (C;) as follows. Let G denote
a group, and for each cluster C; of GG, let Out(z) denote the elements of C;
which are (mistakenly) removed from G by the algorithm. Let In(G') denote
the elements of S which (mistakenly) get to stay in G. We have:

In(G)| = > [Out(d)].

i cluster of &

Thus, we can pair up the vertices of U;Out(7) in a one-to-one fashion with
the vertices of In(G).

For ¢ large, let C! denote the elements of C; which get to stay in G, plus
the elements of In((G) which are paired up with elements of Out(s).

For 7 small, let C! denote the elements of C; which stay outside the groups,
plus the elements paired up with elements of C; which end up in large groups.

By convention, we will always use (v,v’) for elements which are paired,
with v denoting the element which goes out of the large cluster and v’ the
element which goes out of the small cluster.

Lemma 15. OPT
Z(S(v,v’) < (2—|—6k62 —|—2k26) )

m

Proof: Let a be a large cluster and v € Out(a), and let v’ be the element
which is paired with v, and let G denote a’s group. Why did v’ end up in G
rather than v 7 Because there is some large cluster b also in group &, such
that

5(0'se5) = F(o) < F(0) < 80y c4).
This yields

§(v,v") < (v, c.) + 8(ca, ) + 0(cp,v") < 28(v, ) + 6(ca, ).

13



Since a and b are in the same group, there is a chain of at most k clusters
connecting them, such that consecutive clusters along the chain are close.
By Lemma 5, this implies
2M OPT
d(cayp) < k— 5

me m

By Proposition 1, we have:

d(v,Cy) 4+ 6(Cy,ca)

(v, c,) <
(o) [

By the choice of the algorithm, we have
8k 5(Cx) - 3OPT

a

< * <
Flea, Ca) < 8lex, COICMICE < 204 =g 75 <37

Hence
d(v,C,) OPT 2M OPT
+6 —+ k —-

m me m

§(v,v") <2

Summing and realizing that the number of terms is at most the sum of the
cardinalities of the small clusters, which is at most ks, we get

2M PT
Z(Sv v 2—|—6k——|—k2—i)0—.

mem m

Now, remember Fact 3:

PT
Z(va 2—|—6k6 —|—2k2)0 )

m

O
Equipped with this Lemma, we are now ready to attack the analysis of
the clustering (CY).

Lemma 16. For every small 7,
§(C1) < 8(C;) + 3k(2 + 6ke® 4 2k%¢)*OPT.

Proof: Let b be a small cluster. Let C] = Cy + P(b) — M(b). By bilinearity,

we can write
6(Cy) = 6(Cy) + [6(Ch, P(b)) — 8(Cy, M ()] + [6(L (b)) — (L (D), M(b))]

14



+O(M(b)) — 6(M(b), P(b))].
Since §(u,v) — d(u,v") < d(v,v’), it is easy to see that

S(P(b)) = 8(P(b), M(b)) < |P(B)]' Y 6(v,v) < ks(2 + 6ke® + o2y 21T

< k(24 6ke? + 2]{26)620PT.
Similarly,

S(M (b)) — 6(M(b), P(b)) < k(2 + 6ke* 4 2k*¢)*OPT.
Now, let v € P(b) and v’ paired with v. We write with Proposition 1
§(v,Cy) < |Cyld(v,0") 4+ 8(v', Cy).
Summing, we get

S(P(b),Cy) < ks> 8(v,0) + 8(M(b), Cy).

We apply Lemma 15 to yield

S(P(b), Cy)—8(M(b),Cy) < k5(2+6k62+2k26)0PT

m

< k(2—|—6k62—|—2k26)620PT.

Summing our various inequalities gives the lemma. O
The only thing left to do is analyze the modifications to the large clusters.

Lemma 17. For every large a, 6(Cl) < §(C,) + (6k62 + Zkze)OPT.

Proof: We use the same notations as in the proof of Lemma 15. Similarly
to the pervious Lemma we can easily get

S(CM) < 6(C) +[8(Cy, P(a)) — 8(Cyy M(a))] 4 2k(3 + 2k%¢)OPT.
Now, recall that é(¢c,,C,) < 30PT/m. By Proposition 1,

§(v',C,) <6V, e)|Col + 302.
m

5(7/7 ) < 5(1)/, ) + 0(ep, ca) < 6(v,e,) + k%OPT

me m?2

15



Hence

2M OPT OPT
+3 .

me m m

§(v',Cy) <10 |0(v,ca) + K

Now,

CLl8(0, c0) < (0, Ca) + 8(Cara) < (0, Co) + 3L

m

Replacing and summing over v’ € P(a), and remembering that |P(a) =
|M(a)| < ks, we obtain

oM OPT
§(P(a),C.) < 8(M(a),C) + (6 + k=)
me m
< §(M(a),Co) + (6k— + Qk—%i)OPT
m c mim
< d(M(a),Cy) + (6k62 + kac)OPT.

2.5 Analysis of step 6

Finally, we need to analyze the use of Max-h-Cut in step 6 of the algorithm;
we will present the analysis as if the group was perfect, i.e. consisted of the
clusters C7. (It is easy to see that the proof also goes through when replacing
the C* by C7, at the cost of some bookkeeping of the small errors introduced
at every step of the calculation.) In the groups of large clusters, we can prove
that ¢ is Q> 0(z,y)) as follows.

Consider a group CruCs;U---UC). Let ¢ = 6(CT) 4+ --- 4+ 0(C}) and

W =68(Cru-- Ul = 2”5(0* 7). We have:
§(Cr,C7) < nid(CFyei) + nimjd(ei, ) + nid(ey, CF)
] 5(Cx
m mem m

Summing over the k? terms gives

M 2K° M k?
W<4—kc—|——(—) <3—(1/e]0)
m

Run the PTAS for Max-h-Cut with error parameter

3
r €€

€ = 3]{36'

16



The error is then at most €W < ec.
Overall, the algorithm produces a cut of value at most (1 + O(k46 +
E*e*))OPT. Assuming that € < 1/k, this is OPT(1 4+ O(k*e?)).

3 Properties of the Square of Euclidean dis-
tance

Throughout this section we put §(x,y) = ||z — y||3. For a finite set X C R?
we denote by conv(X) the convex hull of X. Let X = {a' 2% ... 2"}. Let
y = >, o;x' be a point in conv(X), and suppose that there are integers
T 1,2y - - -5 qn such that o; = ¢;/r for all « = 1,2,...,n. We associate
with y a multi-subset Y of X of size r, obtained by taking ¢; copies of
2t for all i = 1,2,...,n. We denote by Y the center of mass of Y. le.,
Y =3, ¢a'/r. Notice that y =Y.

The following proposition characterizes the edge-cost of a cluster in terms
of the center of mass.

Proposition 18. Tor every finite X C R?, §(X) = | X|§(X, X).
Proof: On the one hand,

5(X,X) = Z||x—|j(—|zy||§

r€X yeX

D> (||x||3+ﬁzzy-z—|§—|zx-y)
reX veX zeX yeX

- Z||x||§—|j(—|zzx-y.
rz€X reX yeX

On the other hand,

5X) = 23S eyl

zeX yeX
1
= 32 2 Ul + flwlly = 22 - )
zeX yeX
= (XD ll=l5 =) -y =
r€X reX yeX
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The following simple propositions will come in handy.

Proposition 19. Let Y be a multi-subset of R? Then Y minimizes §(Y, 2)
over z. In other words, Y = argmin,cra{d(Y, 2)}.

Proof: As (Y, z) = 2?21 > yey (¥ — z0)?, we can minimize each coordinate
separately. The derivative of §(Y,2) with respect to 2z; is =237 (v — 2i),
which is 0 exactly when z; = |51/_| Eer y;. As the second derivative with
respect to z; is 2|Y| which is positive, this is the unique global minimum.
0

Proposition 20. For every z,y,z € RY §(x,2) < §(x,y) + 3(y, 2)
+24/8(x,y) - 8(y, 2)-

Proof: By the triangle inequality for Euclidean distance, \/§(z,z) < \/d(z,y)+
\/0(y, z). Squaring this inequality gives the desired result. O

Proposition 21. For every z € R? for every multi-subset Y of R% we
have:

3(z,Y) > |Y]6(z, 7).

Proof: It is easy to see that

On the other hand, it is also easy to see that
75 z,Y) Z Z
Y] er

Now, apply the Cauchy-Schwartz inequality to each of the d terms. O
The first part of the following lemma is attributed to Maurey [6]. We
provide a proof for completeness. We denote the diameter of Y by diam(Y") =

max, yey 6(z,y).

Lemma 22. Let Y C R%and ¢ > 0.
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1. (Maurey) For every « € conv(Y), there exists a multi-subset Z of Y
containing £ points and whose center of mass is close to a:

§(z,7) < e diam(Y).

2. There exists a multi-subset Z of Y containing % points and whose center
of mass is close to the center of mass of Y:

3(Y,Y)
Y|

S(Y, 7)< e

Proof: We start with the first assertion. Let ¢t = 1/c and = = 3 .y oy,
where the o,’s are non-negative and sum up to 1. We use the probabilistic
method. Pick a multiset Z = {z!,2%,..., 2"} at random, where the z‘-s are
i.i.d. random variables with Pr[2' = y] = . Now, it is easy to see that

DR NEEREE]

=1 j=1

- %k;(EUM—zWﬂ+§:EK¢—f>%x—%ﬂ>-

J#i

El§(x,Z)] = E

Since z' and 27 are independent, we have E [(z — 2') - (z — 27)]
= El VE(x =) E (20— Zl>] which is 0 by our choice of distribution.
Thus,
T 1
E((x ==Y Elfla—z3] < ?diam(Y).

12
=1

Therefore there exists a choice of Z such that §(z, Z) < tdiam(Y).

For the second assertion, we start the proof in the same way, with z =Y,
and replace the last part of the calculation by the following slightly finer
estimate:

1 S(Y,Y)
— I = .
+2 ( »2 t2 ZZ |y| Y| -

i =Y

Lemma 22 can be used to derive a high-probability result as follows.
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Lemma 23. There exists a constant k£ such that the following holds. Let
Y € R? and ¢,p > 0. Let Z be a random multi-subset of Y generated
by taking & - }2 . log% i.i.d. points distributed uniformly in Y. Then, with

probability at least 1 — p, we have:

3(Y,Y)

(Y, 7)< e—~L—
(Y, 2) ¥

Proof: Let s = £-1.log(1/p) and ¢t = 2. Consider Z as s samples
1y Zay .oy Zs of size t each. By Proposition 21, §(Y, Z) < Ly 5(Y, Z;).
Therefore, Pr [§(Y,Z) > ¢ 3(Y,Y)/|Y]]

<Pr [0, 0(Y,Z) > es-8(Y,Y)/|Y]]. Put x; = [Y|8(Y,Z;)/6(Y,Y) for all
1 =1,2,...s. The y; are 1.i.d. random variables taking values in the range
[0,1]. By Lemma 22, E'[x;] < e for all 7. Using standard Chernoff bounds

we get that Pr> 7, xi > es] < (i)es/z. Defining x = 4/log(4/e), the right
hand side is equal to p. O

4 A PTAS for E% Instances

In this section we consider V C R? and the distance function §(z,y) =
|z — y||3. The main idea behind this algorithm is similar to that of the
metric algorithm. The center of mass of a cluster acts as its representative
element. It is also the point that minimizes the sum of distances to cluster
points. This latter property allows us to ignore the difference between well-
separated and not well-separated clusters. The main difficulty is that there
is an exponential number of potential centers of mass.

4.1 The £2 Algorithm

1. By exhaustive search, guess the optimal cluster sizes |C;| = n;, n1 +
ng+---+mn, = n. By exhaustive search, consider all possible sequences
Ay, Ag, ..., Ay, where the A;-s are mutually disjoint multisets, each
containing 16/¢? (not necessarily distinct) points from V.

2. Compute a minimum cost assignment of points to clusters Cy, Cs, ..., C,
subject to the conditions that exactly n; points are assigned to (;, and
the cost of assigning a point = to C; is é(x,C;) = n; - §(x, A;), for all
1=1,2,... k.
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3. Output the best such clustering over all choices of A = (Aq,..., A)
and N = (nyg,...,ng).

4.2  Analysis of the £2 Algorithm
Our algorithm is motivated by the following bound.

Lemma 24. Let Y be a multi-subsetof V and 1 > ¢ > 0. Then there exiits
a multi-subset Z of Y of size | 7| = 16/¢* such that §(Y, Z) < (1 +¢)6(Y,Y).
Proof: By Proposition 20, for every y € Y, 8(y, Z) < §(y,Y) + (Y, Z) +

2\/5(y,?)5(?,7). By the Cauchy-Schwarz inequality, > _, 1/8(y,Y) <

yey

\/|Y| > ey (v, Y). Therefore, summing the previous expression over y € Y,

we get that §(Y,7) < §(Y,Y) + [Y|§(Y, Z) + 2\/|Y|5(Y,?)5(?,7). Plug-
ging in the bound for §5(Y,7) from Lemma 22, we get that (Y, 7) <
(1+ 5+ 5)0(Y,Y) < (14 €)d(Y,Y). =

We are now ready for the analysis of our algorithm.

Theorem 25. The algorithm presented in Section 4.1 is a PTAS for the /3
k-Clustering problem. Its running time is n®®*/<).

Proof: By Lemma 24 applied to Y = C7, for every ¢ = 1,2,...,k, there
exists a multi-subset Z; of CF of size |Z;] = 16/¢?, such that §(C}, Z;) <
(1 + €)6(Cr,Cr). Consider the iteration of the algorithm where A; = Z;

and n; = |C7] for every 1 = 1,2,... k. Let C1,C5,...,C) be the clustering
computed by the algorithm in this iteration. Then,

k
cost(Cy, Cay. .., Ck) = Y _|Cil- Y 8w, CY)
=1

reC;

k
Z n; - Z §(x, A;) by Proposition 19 for C;

=1 reC;

IN

k
Z n; - Z §(x, A;) as we compute the minimum

=1 zeC’

IN

cost assignment
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k

< (L4 [c7]-5(Cr,CF)
=1

= (14¢€)-cost(C,C5,...,CF).

The performance guarantee follows because the algorithm finds a partition
whose cost is at least as good as cost(Cy,Cy, ..., Cy).

As for the running time of the algorithm, there are less than n* possi-
ble representations of n as a sum n; + ny + -+ + ng. There are less than
n'%/< possible choices for A. Computing a minimum cost assignment to
clusters can be done using a minimum cost perfect matching algorithm in
time O(n”logn). o

5 A PTAS for E% Instances of k-Median

A simple variant of the algorithm presented in Section 4.1 solves the k-
Median case and has similar running time. Here we give a faster randomized
polynomial time approximation scheme for /3 instances of k-Median. The
running time of our algorithm, for fixed &, €, and failure probability p, is just

O(n(logn)°M).

5.1 The k-Median algorithm

The approximation scheme works as follows.

1. By exhaustive search, guess an approximation ny > ny > -+ > nj on
the sizes of the k clusters, where n; is the power of (1 + ¢) larger than
and closest to |C7].

2. Partition the k clusters into groups in a greedy fashion: 1 goes into the
first group, and for ¢ going from 2 to k, 7 goes into the current group
if n; > (€/16k)*n;_y, and into a new group otherwise. Let T" be the
number of groups and let m; denote the size of the largest cluster in
the t'* group. Put myy, = 0.

3. For t going from 1 to T', do the following:

(a) Let U; denote the points not yet clustered (initially U; = V).
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(b) Let Z denote a random uniform sample of U;, with replacement,
of constant size (size k*/(16¢)%* - (Ink)y /%, where v > 0 is a
constant).

(c) By exhaustive search, guess A; = Z N7 for all 7 in the ¢ group.
Define, for each such cluster C;, the representative point as ¢; =
A;. (If A; = 0, take an arbitrary point as the representative of

C.)
(d) Assign |U;|—my4116k% /€ points from U, to the clusters in groups 1

through ¢, where point x is assigned to a cluster C; that minimizes

oz, ).
4. Output the best clustering of all the ones constructed above.

This completes the specification of the algorithm. We now proceed with
its analysis.

5.2 Analysis of the k-Median algorithm

Consider the iteration of the algorithm where all the guesses are correct. For
all t = 1,2,...,T, let a; denote the index of the first and largest cluster in
the t'* group (so that m; = ng,), and let b; denote the index of the last and
smallest cluster in that group.

Lemma 26. For all ¢t € {1,2,...,7}, the number of points in the smallest
and in the largest clusters of group t are not very different:

€ \2k-1)
<16—k‘> nat S nbt S nat-

Proof: Use the definition of group ¢ and the fact that a group contains at
most k clusters. O

Consider the situation when the algorithm starts iteration {. For each j in
group ¢, let U;; = C'rNU; denote the points which have not yet been classified
and which we hope the algorithm will place in cluster ;7 during iteration .

Definition 4. For j € [a,b], we say that C7 is a well-represented cluster
if |Uj| > €16 - nj. Otherwise C is called poorly represented.
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Lemma 27. Fix a cluster index j and let ¢ be j’s group. For every p > 0
and for every sufficiently large A > 0, there exists v > 0 (the v used to define
the size of Z) such that with probability at least 1 — £, if j is a surviving
index then we have:

A
4j] = S ink.

Proof: Use Lemma 26 and survivability so as to bound |U;|/|U;| from below,
then use standard Chernov bounds for A;. O

The following Lemma motivates the terminology of well-represented clus-
ters.

Lemma 28. For every p > 0 there exist A > 0 and v > 0 such that with
probability at least 1 — p, we have:

Vi,V surviving index, ‘5(Uﬁ,cj) — §(Uys, jt)‘ <

Proof: (Suggested sketch): Combines Lemma 23, Lemma 27, Cauchy-
Schwartz, and the union bound. O

Proof: Apply Lemma 23 to the sample A; in Uj;, so that for j surviving
and |A;| large enough, with probability at least 1 — p/(3k) we have

. 2

€ -
(e, Uy) < 910 6(Use, Uje) /| Uje].- (3)

(this defines X). Set 4 according to Lemma 27 so that if j is surviving,
then A; is large enough with probability at least 1 — p/(3k). By the proof
of Lemma 24, Equation 3 then implies ‘5(Uﬁ,cj) —5(Uﬁ,U—ﬁ)‘ < (€/8) -
§(U;s, Uyr). Summing failure probabilities then concludes the proof. O

JFrom now on, in the rest of the analysis we will assume that Equation 2
holds.

For x € X, denote by j, the index of the cluster that = gets assigned
to by the algorithm, and denote by jr the index of the cluster that = gets
assigned to by the optimal clustering.

Let D; denote the set of points which are assigned during iteration ¢ of
the loop in step 3 of the algorithm. Such points can be classified into three
categories:

o regular points: = € Dy is regular if its optimal cluster j; has 57 < by
and is well-represented.
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e premature points: x € Dy is premature if j7 > b, i.e. the optimal
cluster of x is too small to bet taken into consideration yet. Let P,
denote the premature points in D.

o leftover points: = € Dy is leftover if 7% < b; and cluster 57 is poorly
represented. Let L; denote the premature points of D;.

We start the analysis with the easiest category, that of regular points.

Lemma 29.

Y e (l4g) X HCLT.

= regular ; well-represented

Proof: (Suggested sketch): When x is assigned, its cluster representative
¢j» is already in existence, so §(x,¢;,) < 8(x,¢jx). We then use Lemma 28
and Proposition 19. i

Proof: Take z a regular point and let ¢ be the group containing j%. Then
x € Ujs. Thus the left hand side of the sum ranges over Uj, where j is
well-represented. The assignment of x by the algorithm has value é(x,¢;,) <
d(x, ¢;x) by definition of the algorithm. Thus:

Yo dwe,) <00 e

= regular = regular

< > 6(Ujt, ¢5)
; well-represented
< (14 g) Z §(Uss, Ujt) by Lemma 28
; well-represented
< (14 g) Z 5(Uﬁ,C_j*) by Proposition 19
; well-represented
€ e
< (1+3) >, 8(C5.C5).

; well-represented

m
We now deal with the next easiest category, that of premature points.
The proof of this lemma crucially uses the specific feature of the algorithm
according to which one keeps assigning unsufficiently many points to the
clusters under consideration. Thus this is one of the key points in the analysis.
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Lemma 30.

Z dx,c;,) < é . Z oz, cj,).

« premature « not premature

Proof: First note that by definition of premature points, P, has size at most
| Ujsp, CF] < kg

By definition of the algorithm, the number of points in U,y is exactly
16k*myyy /€. Since | Ujsp, C]*| has size at most kmyy1, in U4y there must be
at least my41(16k* /e — k) > my118k* /e points which belong to C¥U---U Cr
(hence which are not premature). Among those, let S; denote the || points
such that é(z, ¢;») is smallest.

Since the algorithm chooses a minimum cost assignment and prefers P
over S; in doing so during iteration ¢, we have:

Y ae) <Y d(wieg)
[ Z oz, c5,)

S * *
|Ut_|_1 N (Cl U---u Cbt)| weUiy1,@ not premature

@

« not premature

Summing over ¢ yields the Lemma. O
Finally, we deal with the leftover points.

Lemma 31.

Y dee) < > 5(CLCHFOE) Y Slyses, )+

« leftover j poorly represented y premature
2 Z 5(0170_1‘*)0(63) Z 5(y,ij).
j poorly represented y premature

Proof: Suggested sketch: Let €7 be a poorly represented cluster and ¢ be
its group. By definition of poor representation, most of the points of €' were
assigned before their turn, i.e., they got assigned to some cluster of index
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< ay; thus most of the points of U7 were premature. Take x € C7, @ leftover,
and y € C7, y premature. We have:

8(z,e1.) < 8(x,¢5,) < () + 8y, e3,) +2/0(2,9)0(y, 3,).

We sum over x € C7NL (leftover) and y € C7NP (premature), and appealing

to Cauchy-Schwartx twice and to Proposition 18. 0

Proof: Let (7 be a poorly represented cluster and ¢ be its group. By

definition of poor representation, most of the points of C7 were assigned

before their turn, i.e., they got assigned to some cluster of index < a;; thus

most of the points of C7 were premature. Take x € (7, x leftover, and
€ (7, y premature. We have:

8(z,e1.) < 8(x,¢5,) < () + 8y, e3,) +2/0(2,9)0(y, 3,).

Summing over x € C7 N L (leftover) and y € C¥ N P (premature), and using
Cauchy-Schwartz, we get:

€3 PLY b(a,e,) <S(CH+1CIN LS dy.cy,)

ijL ijP

+z\/5<0;>|0;mL| > dly.ci,):

ijP

Now, by definition of leftover points, we have

3 3

CrN L] < T and [CT N P| > n;(1 — E)

Thus, replacing, we have:

) C
> o) 0+ 0D G +0) 3 ey

C*OL C*OP

+2 |C* O(e?) Z 5y, cj, )

C*OP

It only remains to apply Proposition 18, sum over j, use Cauchy-Schwartz
again to deduce the statement of the Lemma. O
We are now ready to prove the main theorem of this section.
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Theorem 32. With constant probability the algorithm in section 5.1 com-
putes a solution whose cost is within a factor of 1 4+ ¢ of the optimum
cost. The running time of the algorithm is O(g(k,¢) - n - (logn)*), where
g(k,e) = exp (}8 K Ink - <1H% + lnk>>.

Proof: Suggested sketch: The clustering output by the algorithm has value
less than ) .y d(x,c;,). We separate the sums into three parts R, P, L
corresponding to regular, premature and leftover points, apply the three
lemmas above to each parts, and a short algebraic manipulation then yields
that the cost is OPT(1 + O(¢)).

The running time result follows by inspection of the algorithm. O
Proof: The clustering output by the algorithm has value

k
cost(C,Cay ..., Cy) = ZZ(S(%@)

7=1 z€C;

< Z Z d(x,¢))

j=1 z€Cy

= Z oz, cj,).

rzeX

We separate the sums into three parts R, P, L corresponding to regular, pre-
mature and leftover points, apply the three lemmas above to each parts, and
a short algebraic manipulation then yields that the cost is OPT'(1 + O(e)).
As for the running time of the algorithm, the number of sequences n,
ng,...,ny that the algorithms has to enumerate over is O <<10g1_|_E n) k> The
size of T is at most
o Ink(In t4ink))

Computing the augmentation at each node of T' requires O(n) distance com-
putations, where the hidden constant depends mildly on & and e. O
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