RATIONAL TORUS-EQUIVARIANT STABLE HOMOTOPY 1
CALCULATING GROUPS OF STABLE MAPS.

J.P.C.GREENLEES

ABSTRACT. We construct an abelian category A(G) of sheaves over a category of closed
subgroups of the r-torus G. The category A(G) is of injective dimension r, and can be used
as a model for rational G-spectra. Indeed, we show that there is a homology theory

2 G-spectra — A(G)

on rational G-spectra with values in A(G) and the associated Adams spectral sequence
converges for all rational G-spectra and collapses at a finite stage.

This is the first paper in a series of three. It culminates in [8] where the author and
B.E.Shipley combine the Adams spectral sequence constructed here with the enriched Morita
equivalence of Schwede and Shipley [9] to deduce that the category of differential graded
objects of A(G) is Quillen equivalent to the category of rational G-spectra.
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Part 1. Introduction.
1. SUMMARY.

1.A. The results. The purpose of the present paper is to provide a means for calculation
in the homotopy category of rational G-spectra, where GG is an r-dimensional torus. In Part
2 we construct an abelian category A(G) and 4.4 show it is of injective dimension r. The
category A(G) is a category of sheaves M on the space of subgroups of G, and the value
M (U) of a sheaf on a set U of subgroups captures the information about spaces with isotropy
groups in U. In Part 3 we construct a homology theory

A G-spectra — A(G)

with values in A(G), and show that it is an effective calculational tool in that there is an
Adams spectral sequence. The main theorem is as follows.

Theorem 1.1. There is a spectral sequence

Ext’yig (m(X), 7(Y)) = [X, YIS,

convergent for all G-spectra X and Y .
The category A(G) is of injective dimension r, and so the spectral sequence concentrated
between rows 0 and r it therefore collapses at the E .. 1-page.

The special case r = 1 provided the basis for the results of [5]. In addition to being a
powerful tool, it is a perfectly practical one, since it is easy to make calculations in A(G).
It essentially describes the category of rational G-spectra up to a finite filtration. For many
purposes this is quite sufficient, but the other papers in the series go further. In [8] Shipley
and the author combine the Adams spectral spectral sequence of the present paper with the
work of Schwede and Shipley [9] to show that the category of rational G-spectra is Quillen
equivalent to dg.A(G). The paper [6] provides the information about the algebraic structure
of the category A(G) required in [8].

Convention 1.2. Certain conventions are in force throughout the paper and the series.
The most important is that everything is rational all spectra and homology theories are
rationalized without comment. The second is the standard one that ‘subgroup’ means ‘closed
subgroup’. We attempt to let inclusion of subgroups follow the alphabet, so that when there
are inclusions they are in the pattern L C K C H C (. The other convention beyond the
usual one that H, denotes the identity component of H is that H denotes a subgroup with
1den1:11:y component H and H denotes a subgroup in which H is cotoral (i.e., so that H C H

and H/H is a torus).

1.B. Outline of the argument. First we must construct the the category A(G). This is
a category of sheaves on the space of subgroups of G. In fact we consider the ‘natural’ open
sets

U(K)={H|H 2 K}
of isotropy groups, where K runs through the connected subgroups of GG, and an object M of
A(G) is specified by its values M (U(K)) and the restriction maps M(U(K)) — M(U(H))
when U(K) 2 U(H) (i.e., when K C H). These are required to satisfy certain conditions
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that we explain shortly, but M(U(K)) contains information about isotropy groups H in
U(K).

It is rather easy to write down the functor m*(X).

Definition 1.3. For a G-spectrum X we define 71(X) on U-open subsets by
M X)U(K)) = 78 (DEF, A S®VE) A X)

*

Here EF, is the universal space for the family F of finite subgroups with a disjoint basepoint
added and DEF, = F(EF,,S°) is its functional dual. The G-space S®V(X) is defined by

G§oVIE) — lim sY,

so that when K C H there is a map S®VK) — §>V(#H) inducing the restriction map
TN X)NU(K)) — m{(X)(U(H)). O

*

Remark 1.4. The space S®V() has another role. We have written SV ) to emphasize
its relation with Euler classes, but

=V = B[2 K],

where [2 K] is the family of subgroups of G not containing K, so that
role for the geometric fixed point functor ®% G-spectra — G/K-spectra

E[2 KINX ~E[2 K|A®XX O

SV(K) also has a

The objects of A(G) have the structure of modules over the structure sheaf O introduced
formally in Subsection 3.C. The definition of the structure sheaf is based on the ring

Or = || H*(BG/F.),
FeF
where the product is over finite subgroups F' of G. The sheaf O is defined by

O(U(K)) = £ 05

where Ex = {c(V) | VE = 0} C O is the multiplicative set of Euler classes of K-essential
representations, and the components c¢(V)(F) = cyg(VF) € H*(BG/F,) of an Euler class
are classical ordinary homology Euler classes.

To see that 74(X) is a module over O, the key is to understand S°.

Theorem 1.5. The image of S° in A(G) is the structure sheaf
O = m(S°)
We prove this in the course of Sections 5 to 8.
There are then two requirements on O-modules to be objects of A(G). Firstly they must
be quasi-coherent, in that
M(U(K)) = £ M(U(1)),
where £k is the set of Euler classes of K-essential representations as before. The definition of

72(X) shows that quasi-coherence for m(X) is just a matter of understanding Euler classes,
which we do in Section 7. The second condition involves the ring Oz and its analogue

Or/x = H H*(BG/K+)
KeF/K
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for the quotient modulo a connected subgroup K, where /K is the family of subgroups K
of G with identity component K. The second condition is that the object should be eztended,
in the sense that

M(U(K)) = £¢'OF ®0,,c 9" M

for some Ox x-module ¢¥ M. The extendedness of 77(X) follows from a construction of
the geometric fixed point functor, and it turns out that

¢" D (X) = n/M(DEF. A 9¥(X)),

where ®X is the geometric fixed point functor. This sketches the proof of the following result,
proved formally in Section 8.

Corollary 1.6. The functor m takes values in the abelian category A(G).

This outlines the construction of the functor 7*. To construct the Adams spectral se-
quence we need to realize an injective resolution of 7*(X) in A(G), and to prove the Adams
spectral sequence works for maps into an injective. We must therefore first realize sufficiently
many injectives. We show that there is a right adjoint fx to the evaluation at K functor ¢¥
(described in detail in Subsection 4.A). Thus for a suitable module N over Oz x we may
form an object fx(N) in A(G). Taking N = H,(BG/K) for a subgroup K with identity
component K, viewed as a Oz k-module via projection onto H*(BG/ K), we obtain the ob-
ject I(K) = fx(H,(BG/K)). This is injective since H,(BG/K) is injective over H*(BG/K).

It turns out (Lemma 9.2) that a suspension of I(K) is realized by the G-spectrum E(K)
defined in 6.1 in the sense that

I(K) = n(S°E(K))
where K is of codimension ¢. Next we need to understand maps into injectives, showing that

74 (X, 1] ¢ = Homu(rA(X), 7A(1))

* * *

for these sufficiently many injectives I. This constructs a spectral sequence with the correct
Es-term. Finally we must show convergence by showing that 74(X) = 0 implies X ~ x.
This is an easy consequence of the geometric fixed point Whitehead theorem 9.4.

2. FORMAL BEHAVIOUR OF EQUIVARIANT HOMOLOGY THEORIES.

There are two ways one may hope to encode data about the homology of fixed point sets.
They are close enough to be confusing, so it is worth making them explicit at the outset. We
consider the case that G is a torus, and the reader may want to bear in mind the examples
of stable homotopy and K theory.

Given a G-equivariant homology theory EY(-) and a G-space X we may consider the
system of values

H+— ECH(@HX),
where ® X denotes the (geometric) H-fixed point set of X. If K C H there is an inclusion
®HX — ®KX of G/K-spaces and hence a map EC/X(®7X) — EZF(®KX), but in
general there will not be a map ES/#(®#X) — ES/®(®KX). However in favourable
circumstances there are maps of this sort, and we accordingly call a contravariant functor
F on subgroups an inflation functor. If we are just given the values ES / T(@®HX) and no
structure maps between them we refer to an inflation system. Because of the variance and
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the motivation we sometimes write F'(G/H) to suggest dependence on the quotient group
G/H.
On the other hand, we may always consider

X ANE[2 H|~®"X N E[2 H]

where [2 H] is the family of subgroups not containing H. If K’ C H then there is a natural
map E[2 K| — E[2 H], and hence a map

ES(®XX NE[P K]) — ES(®" X A E[2 H))

Since G is abelian,

- ) v

E[2 K] = 11_I>HVK:0 S,
and, under orientability hypotheses, ES(®X X A E[2 K]) may be expressed as a localization
Ex'EL(X) of ES(X), where £k is some multiplicatively closed subset of E¢, generated by
“Euler classes” e(V) with VX = 0. We will call a covariant functor on subgroups of this
form a localization functor.

Two major differences should be emphasized. First, inflation functors are contravariant in
the subgroup whilst localization functors are covariant. Second, a localization functor takes
values which are modules over E¢, whereas an inflation functor typically does not.

When we are fortunate enough that E gives an inflation functor and also has a localization
theorem it may happen that the two structures are related in the sense that

ES(®"X A E[P K)) = E'EY ® jo/x ES/F (DX X)

In other words, the favourable case is when we have the following structure, which will be

properly defined and axiomatized in later sections.

(1) R, a ring-valued inflation functor (such as K — EZ/%)

(2) M an inflation system, which is module valued functor over R, (such as K +——
ES X (@K X))

(3) EM a localization functor, which is module valued over R(G/1), (such as K +—
ES(®XX A E[2 K]), and

(4) an isomorphism

EM(K) = £¢"R(G/1) ®r(c/x) M(G/K)

In this case we say that the localization functor EM is extended with associated inflation sys-
tem M. However, be warned that, even if M is an inflation functor (i.e., it has contravariant
structure maps), this does not supply the structure maps for £g'R(G/1) ®re/x) M(G/K),
so that EM requires further data.

Part 2. Categories of U-sheaves.

The objects of the abelian category A(G) are sheaves of modules over a sheaf O of rings.
Accordingly we begin Section 3 by describing the inflation functor on which the structure
sheaf O is based; we can then define Euler classes and proceed with the definition. Once
A(G) is defined we begin to control it in Section 4 first we import objects from module
categories, and then show that these suffice to build all the objects and prove that A(G) has
injective dimension equal to the rank of G.
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3. THE STANDARD ABELIAN CATEGORY.

The present section leads up to the definition of the standard model as a certain category
of U-sheaves of O-modules. Before we can express the definition we need to introduce
the structure sheaf O, and before we can do this (Subsection 3.C) we need to describe its
associated inflation functor (Subsection 3.A) and Euler classes (Subsection 3.B).

3.A. The fundamental inflation functor. The entire structure we discuss is founded on
the inflation functor described in this section. We let ConnSub(G) denote the category of
connected subgroups of G and inclusions. An inflation functor is a contravariant functor

M ConnSub(G) — AbGp

We write Mg g for its value on H. The purpose of this section is to introduce a ring valued
inflation functor
Oz ConnSub(G) — Rings,

whose value at K is written Oz k. Other notations can be convenient and have been used
elsewhere, for example Oz/x = Ork) = O(K) = Rg/k, but we will stick to the above
notation in this series.

For any connected subgroup K, we let

F/K = {K | K of finite index in K}

denote the set of subgroups of G with identity component K, which is in natural correspon-
dence with the finite subgroups of G/K. Now take

Orx = || H*(BG/K)
KeF/K

where the product is over the set of subgroups with identity component K.
To describe the inflation maps, suppose K and L are connected and L C K and L is of
finite index in L. The inclusion defines a quotient map ¢ G/L — G /K and hence

¢ F/L— F/K
The inflation map Oz g — O/ has Lth component

Orx = || H'(BG/K)— H*(G/q.L) — H*(BG/L)
KeF/K

given by projection onto the term H*(BG/q.L) followed by the inflation map induced by
the quotient G/L — G/q.L.

Now an inflation system of Or-modules is given by specifying an Oz x-module Mg,k for
each subgroup K. No structure maps relating these modules are required.

3.B. Euler classes. We are now in a position to describe the Euler classes which are used
in the localization process. This will allow us to discuss localization functors, and hence
quasi-coherent and extended U-sheaves.

The Euler classes provide functions which are an intimate part of the structure. Since G is
abelian, we need only define Euler classes e(a) € O# for one dimensional representations o
the Euler class of an arbitrary representation is defined by the product formula e(V @ W) =
e(V)e(W).
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We take
e(a) € O = || H'(BG/F),
FeF
to be defined by
1 if o =0
e(a)(F) = { c1(a) if o is trivial on F.

This is not a homogeneous element. The best way to sanitize this is to introduce an
invertible sheaf associated to a representation (corresponding to suspension), and make e(a)
a section of that. Thus e(«) should be thought of as a section of a line bundle vanishing at
a finite group F' if and only if F' acts trivially on a. Since H acts trivially on « if and only
if all finite subgroups of H act trivially, we can think of e(«) as defining the ‘U-closed’ set
of subgroups of ker(a).

There are enough representations on G in the sense that if H is fixed, it is separated
from all subgroups (except those containing it) by an Euler class if H ¢ K there is a
representation « trivial over K and non-trivial over H. Accordingly, if H is connected, the
open set U(H) of subgroups containing H is defined by inverting the set

En = {e(a) | o =0}

of Euler classes of representations not arising from G/H. If H has identity component H
we let £ = Eq.
Example 3.1. For example if G is the circle group and z is the natural representation, e(z)
is supposed to define {1}. We think of e(z) as the function (or rather global section) given
on finite subgroups by
c itF=1

=15 Hha
Remark 3.2. The correspondence with divisors can be very important (see [7]). By defini-
tion e(«) vanishes to the first order at finite subgroups of ker(«). It is thus natural to view

the line bundle of which e(«) is a generating section as corresponding to the ‘divisor’ ker(a),
and call it O(ker(a)).

3.C. The structure sheaf and the category A(G). We now turn to localization functors.
We introduce terminology so that we can view them as giving sheaves of functions on the
space of subgroups.

For each closed connected subgroup K of G we consider the set U(K') of subgroups con-
taining K (which can be identified with the set of subgroups of G/K). We view the collection

U={U(K) | K a connected subgroup }

as the generating set for the U-topology on the set of subgroups of G. We carry the letter
U throughout the discussion to distinguish it from a second topology introduced in [6].

A U-sheaf M is a contravariant functor M U/ — AbGp. (The terminology is reasonable
since any cover of a set U(K) by sets from U must involve U(K) itself, so the sheaf condition
is automatically satisfied). Thus if K and L are connected with L C K then U(L) D U(K)
and there is a restriction map M(U(L)) — M(U(K)). Note that this is covariant for
the inclusion of subgroups and is therefore simply another way of speaking of a localization
functor.

We may construct a U-sheaf from the ring Of.
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Definition 3.3. (i) The structure U-sheaf O is defined by
O(U(K)) = &' Or,

and the structure maps are the localizations. Thus O is a U-sheaf of rings, and its ring of
global sections is O.
(ii) A sheaf of O-modules is a U-sheaf M with the additional structure that M(U(H)) is a
module over O(U(H)) = £;'Oz. The restriction maps are required to be module maps if
L C K, the restriction map

M(U(L)) — M(U(K)),
for the inclusion U(L) D U(K) is required to be a map of O(U(L))-modules.

We shall be working almost exclusively with sheaves M of O-modules the standard
model for rational G-spectra will be a category of dg sheaves of O-modules with additional
structure.

First we restrict attention to modules which are determined by their value on U(1). This
is analogous to forming a sheaf over spec(R) from an R-module its values over the open
set on which z is invertible is M[1/xz]. We also borrow the well-established and unwieldy
terminology from this situation.

Definition 3.4. A quasi-coherent U-sheaf (qc U-sheaf) of O-modules is one in which for
each connected subgroup K, the restriction map M(U(1)) — M(U(K)) is localization so
as to invert £g.

Remark 3.5. (i) The structure sheaf O is quasi-coherent.

(ii) For a quasicoherent sheaf, all values M(U(H)) are determined by the value M (U(1)).
(iii) The quasi-coherence condition has a major effect. For example, if M is a quasi-coherent
module only nonzero on U(1) then M(U(1)) is necessarily a torsion module.

The second restriction is to sheaves of O-modules which are extended from quotient groups
in the following sense.

Definition 3.6. A sheaf M of O-modules is extended if we are given a tensor decomposition
M(U(K)) = €' OF ®0, ) 9" M

where ¢ M is an O k-module, so that {¢*M} is an inflation system of Ox-modules. This
splitting must be compatible with restriction maps in that if L C K, the restriction is
obtained from a map

¢LM — 8[}}LOF/L ®O}‘/K ¢KM

by extension of scalars. A morphism of extended modules is required to arise from a map of
inflation systems if &6 M — N is a morphism of extended modules, for each K we have a
diagram
MUE) " NUEK)
= 1=
K
ELOr KM 250 £10, @ ¢KN
We write e-O-mod for the category of extended O-modules.

Remark 3.7. (i) The condition on restriction maps makes sense since

£ 05 @0, 51;;LOF/K ©0s/x () = Ex' OF B0z ()
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The point here is that representations a of G/L with of/L = 0 (whose Euler classes lie
in £x,) map to representations of G with a® = 0 (whose Euler classes lie in k) under
inflation.

(ii) The structure sheaf O is extended since

Ex' O = €' OF ®oyyc Or
(iii) The splitting of M(U(K)) is specified by the basing map
¢"“M — M(U(K))

corresponding to the inclusion of the unit.
(iv) The reason for the notation is that ¢* M is analagous to the value ES'X(®XX) of a
cohomology theory on geometric fixed points (see also 3.10).

Remark 3.8. We may therefore think of a quasi-coherent extended U-sheaf M of O-modules
as an Or-module M(U(1)) together with additional structure. The additional structure
specifies particular “relative trivializations” of ' M (U(1))

E'MUL)) = €' OF o, 6" M
The whole structure is given by M (U(1)) together with basing maps ¢X M — E'M(U(1))
giving the splittings.
Finally, we may introduce the class of sheaves directly relevant to us.
Definition 3.9. The standard abelian category
A = A(G) = qce-O-mod

is the category of all quasi-coherent extended U-sheaves of O-modules (qce O-modules).

It is useful to have an algebraic analogue of the fixed point functor. This is defined on
extended O-modules.

Lemma 3.10. There is a functor
L -0 g-mod — e-Og/-mod
defined by
(®"M)(U(K/L)) = &4, OF/1 @0y ¢ M,
or equivalently
orH(@M) = ¢" M

This functor takes quasi-coherent modules to quasi-coherent modules. O

Example 3.11. The fixed point functor takes the G-structure sheaf O to the G/L-structure
sheaf there is an equivalence

(I)LOG = Og/L

of sheaves of modules on the toral chain category for G/L. O
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4. A FILTRATION OF THE STANDARD ABELIAN CATEGORY A(G).

In this section we show that any object of the abelian category A(G) can be built up from
objects fu (V) arising from modules N over the rings O,y for various connected subgroups
H. The object fg(N) is zero on U(K) unless K C H, and it is constant where it is non-zero.

The underlying reason we can decompose objects in this way is the fact that all restriction
maps M(U(L)) — M(U(K)) go in one direction they increase the dimension of the
subgroups. The topological explanation of this phenomenon is just as in [4]. Because we
work over the rationals we may express transfer maps (which would go in the other direction)
entirely in terms of idempotents from Burnside rings.

This filtration is fundamental for calculation, and perhaps the first striking consequence
is that the category A(G) has finite injective dimension (equal to the rank of G). This is
the key to the power of A(G) in the study of G-equivariant cohomology theories.

Subsection 4.A introduces the method for constructing objects of A(G) from modules,
Subsection 4.B shows how arbitrary objects can be constructed from these, and Subsection
4.C deduces consequences homological algebra.

4.A. Evaluation and extension. For a chosen connected subgroup K, evaluation gives a
functor

evg O-mod — O(U(K))-modules
defined by
M+— M((U(K))
This functor has a right adjoint
cx O(U(K))-modules — O-mod
given by taking the sheaf constant below K
N ifHCK
@) ={ o THEk
The unit of the adjunction
n M — cgevgM
is defined to be the restriction n(U(L)) M(U(L)) — M(U(K)) if L C K and is zero
otherwise. The counit
€ ev gcgN — N

is the identity. Thus we have an adjunction

evg O-mod O(U(K))-modules f k

with the left adjoint on top.

This adjunction obviously restricts to an adjunction between extended (O-modules and
extended O(U(K))-modules, and if we identify extended O(U(K))-modules with modules
for OF g, this gives the adjunction

¢ e-O-mod Or/k-modules f

Explicitly, fx (V) is constant below K at £x'OF @0, x V. In other words,
fe(V) = ek (€ OF Qo) V)
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A little more care is necessary for quasi-coherent sheaves. Indeed, the U-sheaf cx(N)
will not be quasi-coherent unless £x is invertible on N and £4'N = 0 when K' ¢ K.
We call modules of this sort Ex-invertible K-torsion Or-modules, and we call sheaves with
M(U(K')) = 0 when K' Z K, sheaves concentrated below K. Since quasi-coherent sheaves
form a full subcategory, this is the only obstacle, and we have an adjunction

evg qc-O-mod-below-K Ex-inv-K-torsion-Or-modules ¢ g

Finally, on qce O-modules we combine these to give the adjunction we actually need.

Lemma 4.1. For any connected subgroup K there is an adjunction

¢ qee-O-mod-below-K

torsion-Or x-modules f

Furthermore, for any torsion O, x-module V' and an arbitrary extended module M,

Homo, , (¢" M, V) = Hom(M, fx(V)) O

4.B. U-sheaves are constructed from constant ones. The category of qce U-sheaves
is an abelian category, and we will need to do homological algebra in it. The fact that it
has finite injective dimension is fundamental, and the method for proving it in the following
theorem is a practical method of calculation.

Theorem 4.2. The gce U-sheaves constant below connected subgroups (i.e., the sheaves of
the form fx (V') for some connected subgroup K and some torsion O k-module V') generate
the category of all qce U-sheaves using short exact sequences and sums.

Proof We say that a U-sheaf is supported on a set of subgroups K if M(U(K ')) = 0 when
K' ¢ K. We argue by finite induction on s that qce sheaves supported on subgroups of
dimension < s are generated by U-sheaves constant below some point. The induction begins
since the statement is obvious with s = —1, and the theorem is the case s = r.

Suppose then that qce U-sheaves supported on subgroups of dimension < s — 1 are gen-
erated by U-sheaves constant below some point, and that M is a qce U-sheaf supported on
subgroups of dimension < s. For each connected subgroup L of dimension s we note that
M(U(L)) is torsion and lift the identity map M(U(L)) to amap M — f(M(U(L))). Now
combine these to a map

M— [ fMUL))
dim(L)=s
The product is the termwise product of vector spaces, and therefore not a qce sheaf.
The following lemma is crucial in understanding what torsion modules look like.

Lemma 4.3. Suppose M is a qc U-sheaf. If ¢ € ker(M(U(1) — M(U(K))) for all con-
nected subgroups K of dimension s + 1 then x maps to zero in M(U(L)) for almost all
connected subgroups L of dimension s.

Proof The hypothesis states that for each (s+ 1)-dimensional connected subgroup K, there
is a representation V(K) with V(K)X =0, and e(V(K))x = 0. Accordingly x maps to zero
in M(U(L)) whenever V(K)* = 0 for some K.

However if V(K) = au(K) @ -+ & ai)(K), the fixed point set V(K)* = 0 unless
L C ker(a;(K)) for some i. In particular, for each ¢ we have K ¢ ker(a;(K)).

We argue by induction on ¢ that for t = 0,1, ,r — s the element z is only non-zero in
M(U(H)) where H lies in an ¢-fold generic intersection of maximal subgroups from a finite
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list. If we can show this when ¢ = r — s the lemma is proved, since each (r — s)-fold generic
intersection specifies a unique connected s-dimensional subgroup H.

The assertion is vacuous if ¢ = 0, so suppose 0 < t < r — s and that any H lies in
some (t — 1)-fold generic intersection of the maximal subgroups My, ,M y(—1). Now since
r—(t—1) > s+ 1 for each (¢ — 1)-fold generic intersection M}, we may choose an (s + 1)-
dimensional connected subgroup K, C Mj. Thus if z is non-zero in M(U(H)) then H
lies in an intersection M} M [, ker(au(;)(K,)) and hence in the t-fold generic intersection
M3 M ker(ou(jy(K)). This gives the required assertion and hence completes the inductive
step. [

Since the particular module M that concerns us is supported in dimension < s, it follows
that the map into the product actually maps into the sum, and we obtain

g M— @ fMUL))

dim(L)=s

The first point is that the sum is a qce U-sheaf since localization and tensor products
commute with direct sum.

Next the map g is an isomorphism at U(H) whenever dim(H) > s. The kernel and cok-
ernel are then supported on subgroups of dimension < s — 1 and hence constructed from
constant sheaves by induction. O

4.C. Homological algebra of categories of sheaves. We use the modules constant below
some point to import convenient objects into the category of O-modules from categories of
modules over suitable rings. Since we want to use them to construct injective resolutions,
it is very convenient that these constructions are right adjoints to evaluation on suitable
subcategories.

Theorem 4.4. The category of gce O-modules has injective dimension equal to the rank r
of G.

Proof Using torsion modules for H *(BG) = Q[z1, ,z ] it is easy to see the injective
dimension is at least r, so we concentrate on showing this is an upper bound.

We prove by induction on the dimension that any sheaf supported on subgroups of dimen-
sion < s is of injective dimension at most 7.

The result is true if s = 0 since the category of sheaves supported at 1 is equivalent to the
category of torsion Oz-modules. Indeed, by Lemma 4.3, any torsion Oz-module 7" is a sum
@5 Tr where Tp is a torsion H*(BG/F')-module.

Now if M is supported in dimension s, we may consider the subgroups L of dimension s
and the map

M-—E= (D fu(¢"M)
dim L=s
of 4.2. By definition this map is an isomorphism at each subgroup L of dimension s, so that

its kernel and cokernel are supported in dimension < s — 1. Thus we have two short exact
sequences

0— M —M-—1—0
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and

0—I1—F—M—0
Note that E is of injective dimension < r since this is true of H*(BG/L)-modules (again
using Lemma 4.3). Now M’ and M" are supported in dimension < s — 1 by construction,
and hence of injective dimension < r by induction. Thus I is of injective dimension < s
from the second exact sequence, and so M is of injective dimension < s from the first. [

When we come to connections with G-spectra we need to know we can realize enough
injectives, and accordingly it is good to have a small list of injectives.

Lemma 4.5. There are enough injective quasi-coherent extended O-modules which are sums
of those of the form

I(L) = fu(H.(BG/L))
where L is a subgroup with identity component L.
Proof First note that H ,(BG/L) is the Q-dual of H*(BG/L) and therefore injective over it.
Any torsion H*(BG/L)-module may be embedded in a product of suspensions of H,(BG/L)
and takes values in the sum. Accordingly enough injective H*(BG/L)-modules are sums of
suspensions of H,(BG/L).

Now, even though O/ = [[; H*(BG/L), Lemma 4.3 shows a torsion module M is a
sum of its idempotent pieces M = @;e;M. Therefore H,(BG/L) is also an injective
Oz/r-module, and any torsion module can be embedded in a sum of suspensions of modules
H,(BG/L) for subgroups L with identity component L. O

Part 3. The Adams spectral sequence.

In Part 2 we introduced the algebraic category A(G), and in Part 3 we provide the con-
nection with G-equivariant cohomology theories by defining the functor 7 and constructing
an Adams spectral sequence based on it.

The basis of the connection is the calculation

OF = [EF., Ef+]*G

of the endomorphism ring of EF . This is completed in Section 6. In preparation we begin
by understanding the basic building blocks and how they are related to each other.

5. BASIC CELLS.
The familiar generators in topology are the natural cells G/K . It is more convenient to
consider the basic cells.
Definition 5.1. The basic cell for the closed subgroup K is defined by
0'2( = eK/KlG/K+,
where eg/k, € A(K/K;) is the primitive idempotent in the Burnside ring corresponding to
the group K/K; of components of K.

The usefulness of the basic cells is that they provide decompositions of all the natural
cells.
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Lemma 5.2. Suppose K is a subgroup with identity component K. There is a decomposition

G/K, ~ \/ o

K1CKCK
where the splitting is indezxed by subgroups K/K; of the group R’/Kl of components of K.
Proof We follow the pattern of [5, 2.1.5]. It suffices to show that if K ; C K C K then
G, Nk exS® = 0% ~ G, N exS°. Indeed, we need only show that G, Ag eKI{(ZF/( is
contractible where I{(;_I/( — cofibre(K /K, — 8°).

We suppose G = G’ x G" with K C G’ a product of inclusions of a cyclic group in a circle.
It suffices to prove the analogous result with G replaced by G’. The analogue of [5, 2.1.4]
replaces a single cofibre sequence by ' = rank(G’) of them. For each of the cyclic factors we

apply the method of [5, 2.1.5] to the permutation representation of K /K. O

Lemma 5.3. Maps between basic cells in degree 0 are as follows

[ 0 O]G | Q i K is cotoral in L
9K:9l0 =\ otherwise

Proof We need only apply idempotents to the corresponding statements with natural cells.

Indeed [G/K,,0%]¢ = [S° 0%]%. This is zero unless L is of finite index in K. If L is of
finite index the idempotents ex and e; are orthogonal unless K = L. Finally, if K = L we
note that G/L, is L-equivariantly obtained from S° by attaching cells of dimension > 1,
and hence the desired group is a quotient of ex[S° S°|¥ = Q. It is non-trivial since o¥% is

not contractible. O

Lemma 5.4. If F is finite, the endomorphism ring of 0% is exterior on r generators,
0%, o] = A(HL(G/F))

Proof Additively the calculation is correct since [0 %,0%¢ = [G/F,,0%¢ = [S°,G/F,]F
and G/F, is F-fixed and a torus with added basepoint. The ring structure may be seen by
passing to non-equivariant homology
o, opl — Hom(H.(0F), Hi(op))

This is a ring map and, since H,(c%) = H,(G/F,), the codomain is exterior. It remains
to note that this is surjective in degree 1. This in turn follows from the rank 1 case by the
Kiinneth theorem. The rank 1 case is clear since the degree 1 map is tautologously detected
in F-equivariant homotopy and hence in homology. U

Finally we record the Whithehead theorem for spectra with stable isotropy only at F'.
Lemma 5.5. If F' is finite, and X is a spectrum so that

(1) X has stable isotropy only at F' and
(2) [o3, X]¢ =0

then X 1s contractible.
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Proof By (i) we have ® XX trivial unless K is a subgroup of F. It therefore suffices to
show that [G/K,,X|¢ = 0if K C F. However, G/K, splits as a wedge of basic cells for

finite subgroups. Since X only has isotropy at F', the only possible contribution is from the

summand [0%, X]%, and this is zero by hypothesis. O

6. ENDOMORPHISMS OF INJECTIVE SPECTRA.

The basis for the correspondence between algebra and topology is the universal space
EF, for the collection F of finite subgroups of G. This plays a central role because its
endomorphism ring is so well behaved the simplicity we see here will have even more power
in [8].

We follow the strategy of [5], adapted to account for the fact that the exterior algebra
H,(G.) and the polynomial algebra H*(BG ) now have r generators, rather than the single
generator in the case of the circle.

First it is convenient to introduce injective counterparts of the basic cells.

Definition 6.1. For any subgroup K we define the G-space E(K) by
E(K) = cofibre(E[C K|, — E[C K],)
Example 6.2. (i) If K =1 we have E(1) = EG,.
(ii) If K = G we have E(G) = E'P where P is the family of proper subgroups of G.
Between them these give the general picture.
Lemma 6.3. If K is a subgroup with identity component Ky, then there is an equivalence
¥ B(K) ~ B(K/K,)
of G/ Ky-spaces and an equivalence
E(K) ~ §®VE) A B(K/K,)
of G-spaces.
Proof For any family H of subgroups and any subgroup L
P*EH,. ~ EH/L,

where # /L is the family of subgroups of G/L which are images of those of . This gives
the first statement.
For the second, note that nothing is changed by smashing with SV (Ko), O

We are now ready to identify homotopy endomorphism rings.
Theorem 6.4. The homotopy endomorphism ring of EF, is given by
[EF.,EF,)¢ =0 = || H(BG/F,)
FeF
Proof First, as in [3] we may use idempotents to split EF |
EF.~ \/ E(F)
FeF
It therefore suffices to prove the corresponding result, Theorem 6.5, about the summands. [J
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Theorem 6.5. The homotopy endomorphism ring of E(F) is given by
[E(F), E(F)]{ = H'(BG/F})
The first tool is a characterization of E(F').

Proposition 6.6. If F' is finite, the spaces E(F) are characterized by

(1) E(F) has isotropy only at F' and

(2) [oF, B(F)]Z = Q.
Proof First note that [0 % E(F)]¢ = Q. Now we proceed by cellular approximation to con-
struct a map X — E(F), where X is constructed from cells o% which is an isomorphism

of [0%,]¢. This is an equivalence by the Whitehead theorem 5.5. O

We may now identify the endomorphism ring of E(F).
Proof of 6.5 Note that [E(F), E(F)] & = [E(F), S°]¢ so the result will follow additively
if we can construct E(F') with basic cells in even degrees corresponding to the monomials in
H*(BG/Fy). The proof is by killing homotopy groups.

In the proof of 6.6 we noted that E(F) can be constructed using the basic cell o%. We
repeat the proof, but this time keep track of the cells. By 5.4, the endomorphism ring of o
is exterior on r generators. Indeed, let

Q+— Fp+— P +—Py+—---
be the standard Koszul resolution of Q by free AH;(G/F)-modules. Thus
P = A(HIG/F)[CMCZ’ , C r]

Note that the kernel of each map P, — P,_; is generated by its bottom degree elements
and these are in bijective correspondence with monomials of degree n.

We argue inductively that we may construct (1) a 2n-dimensional complex X (2n) with
basic cells in bijective correspondence with monomials of degree < n in the c¢i,c2, ,c
so that its cellular chain complex is the first n stages of the Koszul resolution and (2) a
map X® —; E(F') which is 2n-connected. This is certainly true for » = 0, so we need
only describe the inductive step. However, by construction the bottom degree homotopy
generates nth syzygy in the Koszul resolution, so there is no obstruction.

It remains to comment on the ring structure. Consider the cellular filtration, and the
resulting spectral sequence for [S?,-]¢. We obtain a ring map

[E(F), B(F)]{ — Hom(H"(BG/F,), H*(BG/F.))

Each generator ¢; € H?(BG/F,) corresponds to a map of resolutions, and we may realize
this by a map E(F) — Y2E(F). It follows that the ring map is surjective. By the additive
result, it is an isomorphism. 0

We also need to know this identification is natural for quotient maps.
Now there is a natural map EF, — EF/K, of G-spaces, since every finite subgroup
of G has finite image in G/K. Viewing this is a map of spectra and dualizing, we obtain

a map DEF/K, — DEF,. Combined with the inflation map [SO,DE]:/K+]*G/K —
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[S°, DEF/K]¢, and using 6.4 for G and G/K, we obtain a ring homomorphism Oz x —
Or.

Lemma 6.7. The geometrically induced ring homomorphism coincides with the map ¢*
Or/k — OF described in Subsection 8.A, which is the product of the ring homomorphisms

¢ Ok —Opiy= |] H(BG/F,)
gx(F)=K/K
where ¢, F — F/K 1is reduction mod K, and the components of q % are induced by the
quotient maps G/F — G/K.
Proof We have the splitting EF | ~ \/ . E(F) of rational G-spectra [3]. Similarly the sta-
ble rational G/K-splitting EF /K >~ \/ ¢ g c r/p E(K/K) may be inflated to a G-splitting.
(From fixed points one sees that the map EF, — EJF /K, respects the splitting in the

sense that E(F) maps trivially to E(K/K) unless ¢(F) = K/K. Since duality takes sums
to products, 6.5 completes the proof. O

7. TOPOLOGY OF EULER CLASSES.

The next ingredient is to show that the inclusions S® — SV induce suitable Euler classes.
The relevant input from topology comes from the Thom isomorphism for an individual
stalk. We once again use the basic injectives 6.1.

Lemma 7.1. For any finite group F' there is an equivalence
SV A E(F) ~ SVl A E(F)

Proof The cofibre of the map S V" — SV is built from cells with isotropy not containing
F. Tt is therefore contractible when smashed with E(F"). We may thus suppose V' is F-fixed.
Now E(F) may be built from basic cells ¢%. Since

G/F. NSV ~Gynp SV ~G/F. NSV
we find that
ah A SV~ on A SIvTl
Accordingly, E(F) A SV" is also built from cells ¢% and
(0%, B(F) A 8719 = [o%, B(F) A SV"I)¢ = 5V"IQ
Thus the result follows from 6.6. 0

Remark 7.2. Note that the proof displays a specific equivalence on the bottom cell, and
hence determines the homotopy class of the equivalence.

As usual, the Thom isomorphism gives rise to an Euler class.
Definition 7.3. The F' Euler class ¢(V)(F') of a representation V' is the map

SO A B(F) — SV A B(F) ~ SVl A B(F)

We may identify these Euler classes in familiar terms.
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Lemma 7.4. Under the identification [E(F), E(F)|¢ = H*(BG/F,), the Euler class c(V)(F)
is the ordinary cohomology Euler class cy(V'T).

Proof Since both Euler classes take sums of representations to products, it suffices to
consider a 1-dimensional representation V. If V¥ = 0, both Euler classes are 1. If V is fixed
by F, then V is a faithful representation of G/K for some (r — 1)-dimensional subgroup K
containing F'. Both maps are given by multiplication by a degree 2 class.

It therefore suffices to consider the case of the circle and the representation z". The stan-
dard generator is the first Euler class cy(z) and the additive formal group shows cy(z") =
ncy(z). On the other hand, the identification of G; A S*" ~ G A S? letst(gAz) =tgAx
in G, A S? correspond to t(g A z) = tg A t"r in G, A S*", which is a map of degree n. [

In view of the splitting theorem EF, ~ \/p., E(F) we obtain a general Thom isomor-
phism.
Corollary 7.5. For any virtual complex representation V and associated dimension function
v F — Z defined by v(F) = dim g(VT), there are equivalences

SY NEF. ~\[S"") A B(F),
F

and

SY ADEF, ~ [ s*"") A DE(F)
F

We may now define the global Euler class.
Definition 7.6. The Euler class of a complex representation V' is

S*NEF, — SV NEF, ~\[$"P) A E(F),
F

as a non-homogeneous element of O.
Corollary 7.7. The Euler class, viewed as an element of Oz has F'th component.

c(V)(F)=cy(VF) e H*(BG/F,) O

8. SHEAVES FROM SPECTRA.

Now that we understand the homotopy endomorphism ring of EF, we may forge the link
with algebra since [EF ., EF.]¢ = O by 6.4, any spectrum X A DEF, has homotopy
groups which are Or-modules. In this section we give the proof that 7 takes values in
A(G) (stated as 1.6).

;From the definition of Euler classes we see that 74(X) is quasi-coherent.

Proposition 8.1. For any G-spectrum X the object (X)) is quasi-coherent in the sense

that for any connected subgroup K,
T (X)(U(K)) = E'mH(X)(U(1))

*

Proof We combine the definition of 7 * with that of Euler classes to obtain
T (X)(U(K)) =7 (X ADEF, A S*VW) = g1l (X A DEF,) = M (X)(U(1))
O
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We may now complete the proof that S° corresponds to the structure sheaf O.
Proof of Theorem 1.5 By 6.4, 7 (S°)(U(1)) = Ox. By 8.1

T (S)(U(K)) = €' OF = O(U(K))
0

Lemma 8.2. The quasi-coherent U-sheaf 4(X) of O-modules is extended. In fact, the
value at U(K) splits with

KA (X) = nS/K(®KX AN DEF/K )

since
78 (X NDEF, A S®VE)) = €105 ®0,,, 78M(2XX N DEF/K,)

*

Proof There is a natural transformation arising from
inf¢  (®¥X ADEF/K,) — X ADEF, A S®VE)

This gives a natural transformation of homology theories of X, so we need only check it is an
isomorphism for various cells X = G/H,. If X = S® = G/G, the map is an isomorphism by
definition. The general case follows by the Rep(G)-isomorphism argument (Theorem 10.2)
since we have Thom isomorphisms on both sides. 0

9. ADAMS SPECTRAL SEQUENCES.

It is clear that 7 is functorial and exact, and therefore by 1.6 it defines a homology
functor
7 G-spectra — A(G)
with values in the abelian category A(G) with injective dimension r.

Theorem 9.1. The homology theory m* gives a convergent Adams spectral sequence which
collapses at E, 1.

In the usual way, we attempt to construct an Adams spectral sequence based on a homol-
ogy theory H with values in an abelian category A by geometrically realizing an algebraic
resolution of the homology.

We need to prove

(1) enough injective objects I of A are realized (i.e., in the sense that there are spectra
X with H,(X) =1)

(2) the injective case of the spectral sequence is correct in that homology gives an iso-
morphism

[X,Y] — Hom(H.(X), H.(Y))

if H.(Y) is injective, and

(3) the homology theory detects isomorphisms in the sense that H,(X) = 0 implies that
X is contractible. This will give convergence of the spectral sequence, at least when
resolutions are of finite length.

To proceed, we need the basic injective G-spectrum E(K) of 6.1 which has stable isotropy
only at the subgroup K. The essential property is that this realizes the basic injectives I(K)
in A(G).
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Lemma 9.2. If K is of codimension ¢ we have
I(K) = fx,(S°H(BG/K,)) = m{(B(F))
and hence there are enough realizable injectives.
Proof First, by 6.3, we have
E(K) = S®°VE) A B(K/K,),
so that
7$(DEF, NE(K)) = £} OF ®o,,, 78" (DE(F/K1); A E(K/K1))

The result therefore follows from the special case in which K = F is finite and ¢ = r.
Now DEF, A E(F) ~ E(F) and therefore

r$(DEF, N E(F)) = H,(X"BG/F),)
Since this is a torsion module
7T14(E]:+) = f1(E"BG/F)

We may now prove the injective case of the Adams spectral sequence.
Lemma 9.3. For any G-spectrum X, application of 7 induces an isomorphism

X, B(K)] — Hom(xA(X), 7\(B(K)))

) *

Proof Let N = m /(X), and argue by induction on the dimension of G.
For E(K) we combine the following diagram

X, B(K)) Hom(N, fi(S°H,(BG/K )

- |

[®X X, EG/K %X —— Hom(¢¥ N, S°H,(BG/K.))

with a result for G/K to show the bottom horizontal is an isomorphism.
For notational simplicity we treat the case K = 1, where we are left to show

7% [X,EG ,]° = Hom(x%(X A DEG,),Y" H,(BG.))

*

It is easy to see the groups are isomorphic for X = S° Passage to homology is injective
because 7¢(S%) — 7¢(S° A DEG,) is a monomorphism in degree 0. Since 7¢ compares
rational vector spaces of equal finite dimension when X = S°, it is an isomorphism. There
are Thom isomorphisms in algebra and topology, so it follows that passage to homology is
an isomorphism for X = SV for any complex representation V. By the Rep(G)-isomorphism
argument (Theorem 10.2) it is an isomorphism for X = G/K, for any subgroup K and

hence in general. O

Finally, we may prove the universal Whitehead theorem.

Lemma 9.4. The functor m detects isomorphisms in the sense that if f Y — Z is a

map of G spectra inducing an isomorphism f, m XY) — wA(Z) then f is an equivalence.

*
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Proof Since 7 A is exact, it suffices to prove that if 74(X) = 0 then X ~ *. We argue by

induction on the dimension of G.
Suppose mA(X) = 0. From the geometric fixed point Whitehead theorem it suffices to show

that ®% X is non-equivariantly contractible for all K. Since ¢X7A(X) = 7/ (#X X), and
E 1?1 Oy is faithfully flat over Oz i, the result follows by induction from the G/ K-equivariant
result provided K # 1.

It remains to deduce X A EG., is contractible. Since we have Thom isomorphisms we
note that by the Rep(G)-isomorphism argument (Theorem 10.2), it suffices to show that
78 (X AN EG,) = 0. Now EF, — S° is a non-equivariant equivalence so that DEF, A
EG,. ~DS° AN EG, = EG,, so that it is enough to show 7%(X A DEF, AN EG,) = 0.

However if Y has Thom isomorphisms and C is a one dimensional representation then the
cofibre sequence

Y AS(00C)y — Y — Y A S

shows that if 7¢(Y) = 0 then also 7¢(Y A S(0oC), ) = 0. Writing EG | = S(c0Cy); A A
S(00C, )4 we reach the desired conclusion in 7 steps. O

10. THE Rep(G)-ISOMORPHISM ARGUMENT.

The present section records a method that is useful rather generally in equivariant topol-
ogy. It has nothing to do with the fact that we are working rationally.

When trying to establish an object is contractible or a map is an equivalence we want to
use the most convenient test objects. The Whitehead theorem says it suffices to use the set
{G/H, |H C G} if [G/H ,,X]¢ = nH(X) = 0 for all H then X is contractible.

Definition 10.1. A G-spectrum is Rep(G)-contractible if [SV, X]¢ = 0 for all complex
representations V.

It is often easy to see 7¢(X) = 0. If we happen to have Thom isomorphisms SV A X ~

SIVIAX for complex representations V this shows that X is Rep(G)-contractible. It does not
necessarily follow that X is contractible even if X is rational and G is abelian (for example if
G is cyclic of order 3 and X is a Moore spectrum for a two dimensional simple representation
[2]) but it is useful to have a sufficient condition.

Theorem 10.2. Suppose G is an abelian compact Lie group. If X is a Rep(G) contractible
G-spectrum and G/H acts trivially on 72 (S™V A X) for all H and all desuspensions of X

*
then X 1is contractible. If G is a torus the condition of trivial action may be omitted.

Proof We argue by induction on the size of G since compact Lie groups satisfy the descend-
ing chain condition on subgroups we can assume the result is true for all proper subgroups.
We know 7¢(X) = 0 by hypothesis, so by the Whitehead theorem it suffices to show that
7K(X) = 0 for all proper subgroups. Now any proper subgroup K lies in a subgroup H
with G/H a subgroup of the circle. It therefore suffices by induction to establish that X is
Rep(H)-contractible. Since H C @, any trivial action condition will certainly be inherited
by subgroups.

If G/H is a circle, we use the cofibre sequence G/H, — S° — SV(H) where V(H) has
kernel H. We conclude that [G/H,, X]¢ = 0, and more generally, by smashing with SV,
that [SY, X]H = 0 for any representation V of G. Since G is abelian, every representation
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of H extends to one of G, and so X is Rep(H )-contractible, and hence we conclude X is
H-contractible by induction.

If G/H is a finite cyclic group we choose a faithful representation W(H) of G/H and use
the cofibre sequence S(W(H)), — S® — SW(H) and the stable cofibre sequence

G/H. ~%G/H, — S(W(H)),,

where g is a generator of G/H, . The first shows that [S(W (H)),, X]¢ = 0, and the second
shows that 1 — g gives an isomorphism of [G/H,, X]¢. By the trivial action condition we

conclude [G/H,, X]¢ = 0, and more generally [SV, X]H = 0. O

Remark 10.3. (i) It suffices to assume that G acts unipotently on 72 (X) for all H. This
is useful for p-groups in characteristic p.

(ii) Variants on this theorem are useful in other contexts. For instance any nilpotent or
supersoluble finite group has maximal subgroups which are normal with cyclic quotient.
However, not every representation of a maximal subgroup extends to one for G, so addi-
tional hypotheses are necessary.

(iii) If we admit real representations, then no trivial action condition is necessary for sub-
groups of index 2 since the mapping cone of G/H, — S is SV for a real representation
V.
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