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Introduction

The purpose of this paper is to display a different approach to the construction
of the homotopy theory of simplicial sets and the corresponding equivalence with
the homotopy theory of topological spaces. This approach is an alternative to
existing published proofs [4],[11], but is of a more classical flavour in that it
depends heavily on simplicial approximation techniques.

The verification of the closed model axioms for simplicial sets has a reputa-
tion for being one of the most difficult proofs in abstract homotopy theory. In
essence, that difficulty is a consequence of the traditional approach of deriving
the model structure and the equivalence of the homotopy theories of simplicial
sets and topological spaces simultaneously. The method displayed here starts
with using an idea from localization theory (specifically, a bounded cofibration
condition) to show that the cofibrations and weak equivalences of simplicial sets,
as we've always known them, together generate a model structure for simplicial
sets which is quite easy to derive (Theorem 6).

The fibrations for the theory are those maps which have the right lifting
property with respect to all maps which are simultaneously cofibrations and
weak equivalences. This is the correct model structure, but it is produced at
the cost of initially forgetting about Kan fibrations. Putting the Kan fibrations
back into the theory in the usual way, and deriving the equivalence of homotopy
categories is the subject of the rest of the paper. The equivalence of the combi-
natorial and topological approaches to constructing homotopy theory is really
the central issue of interest, and is the true source of the observed difficulty.

Recovering the Kan fibrations and their basic properties as part of the theory
is done in a way which avoids the usual theory of minimal fibrations. Histori-
cally, the theory of minimal fibrations has been one of the two known general
techniques for recovering information about the homotopy types of realizations
of simplicial sets. The other is simplicial approximation. I have chosen to dis-
play the simplicial approximation method here, partly for its own sake, but
also because of a collection of existing and expected analogies for the homotopy
theory of cubical sets [7].

Simplicial approximation theory is a part of the classical literature [1],[2],
but it was never developed in a way that was systematic enough to lead to



results about model structures. That gap is addressed here: the theory of the
subdivision and dual subdivision is developed, both for simplicial complexes and
simplicial sets, in Sections 2 and 3, and the fundamental result that the double
subdivision of a simplicial set factors through a polyhedral complex in the same
homotopy type (Lemma 14 and Proposition 15) appears in Section 4. The
simplicial approximation theory for simplicial sets is most succintly expressed
here in Theorem 17 and Corollary 18.

The double subdivision result is the basis for everything that follows, in-
cluding excision (Theorem 20), which leads directly to the equivalence of the
homotopy categories of simplicial sets and topological spaces in Theorem 22
and Corollary 23. The Milnor Theorem which asserts that the combinatorial
homotopy groups of a fibrant simplicial set coincide with the ordinary homotopy
groups of its topological realization (Theorem 30) is proved in Section 6, in the
presence of a combinatorial proof of the assertion that the subdivision functors
preserve anodyne extensions (Lemma 26).

One of the more interesting outcomes of the present development is that,
with appropriately sharp simplicial approximation tools in hand, the subdivi-
sions of a finite simplicial set behave like coverings. In particular, from this
point of view, every simplicial set is locally a Kan complex (Lemma 31), and
the methods for manipulating homotopy types then follow almost by exact anal-
ogy with the theory of locally fibrant simplicial sheaves or presheaves [5], [6]. In
that same language, we can show that every fibration which is a weak equiva-
lence has the “local right lifting property” with respect to all inclusions of finite
simplicial sets (Lemma 33), and then this becomes the main idea leading to
the coincidence of fibrations as defined here and Kan fibrations (Corollary 36).
The same collection of techniques almost immediately implies the Quillen result
(Theorem 37) that the realization of a Kan fibration is a Serre fibration. The de-
velopment of Kan’s Ex functor (Lemma 39, Theorem 40) is also accomplished
from this point of view in a simple and conceptual way.

This paper is not a complete exposition, even of the basic homotopy theory
of simplicial sets. I have chosen to rely on existing published references for
the development of the simplicial (or combinatorial) homotopy groups of Kan
complexes [4], [9], and of other basic constructions such as long exact sequences
in simplicial homotopy groups for fibre sequences of Kan complexes, as well as
the standard theory of anodyne extensions. Other required combinatorial tools
which are not easily recovered from the literature are developed here.

This paper was written while I was a member of the Isaac Newton Institute
for Mathematical Sciences during the Fall of 2002. I would like to thank that
institution for its hospitality and support.
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1 Closed model structure

Say that a map f : X — Y of simplicial sets is a weak equivalence if the
induced map f. : |X| — |Y| of topological realizations is a weak equivalence.
A cofibration of simplicial sets is a monomorphism, and a fibration is a map
which has the right lifting property with respect to all trivial cofibrations. All
fibrations are Kan fibrations in the usual sense; it comes out later (Corollary
36) that all Kan fibrations are fibrations. As usual, we say that a fibration
(respectively cofibration) is trivial if it is also a weak equivalence.

Lemma 1. Suppose that X is a simplicial set with at most countably many non-
degerate simplices. Then the set of path components mo|X| and all homotopy
groups 7;(| X |, z) of the realization of X are countable.

Proof. The statement about path components is trivial. We can assume that X
is connected to prove the statement about the homotopy groups, with respect
to a fixed base point z € Xj.

The fundamental group 7 (| X|, z) is countable, by the Van Kampen theo-
rem. The space |X| plainly has countable homology groups

in all degrees.

Suppose that the continuous map p : ¥ — Z is a Serre fibration with
connected base Z such that Z and the fibre F' have countable integral homology
groups in all degrees, and such that 7 Z is countable. Then a Serre spectral
sequence argument (with twisted coefficients) shows that the homology groups
H.(Y,Z) are countable in all degrees.

This last statement applies in particular to the universal cover p: Y7 — | X]|
of the realization | X|. Then the Hurewicz theorem (in its classical form — see
[15], for example) implies that

7T2|X| = 7T2Y1 = Hz(Yi,Z)



is countable.
Inductively, one shows that the n-connected covers Y,, — | X| have countable
homology, and in particular countable groups

7Tn+1|X| STy Yy & Hn-l—l(YnyZ)'
O

The class of trivial cofibrations of simplicial sets satisfies a bounded cofibra-
tion condition:

Lemma 2. Suppose that A is a countable simplicial set, and that there is a
diagram
X

A——Y

of simplicial set maps in which i is a trivial cofibration. Then there is a countable
subcomplex D C'Y such that A =Y factors through D, and such that the map
DNY — D is a trivial cofibration.

Proof. We can assume that A is a connected subcomplex of Y. The homotopy
groups 7;(|A|) are countable by Lemma 1.

Suppose that z is a vertex of A = By. Then there is a finite connected
subcomplex L, C Y which contains a homotopy z — i(y) where y is a vertex
of X. Write C; = AU ({J, L.). Suppose that w, z are vertices of C; N X which
are homotopic in C;. Then there is a finite connected subcomplex K,, , C X
such that w ~ z in K, ,. Let B; = C1 U (UmZ K, ,2). Then every vertex of A is
homotopic to a vertex of C; N X inside C, and any two vertices z,w € C1 N X
which are homotopic in C'; are also homotopic in B; N X. Observe also that the
maps By C iy C By are mg isomorphisms.

Repeat this process countably many times to find a sequence

A=BycCicBicCyCByC...

of countable subcomplexes of Y. Set B = |JB;. Then B is a countable sub-
complex of Y such that 7o(B N X) = 7o(B) = m(4) = *.

Pick z € BN X. The same argument (which does not disturb the connectiv-
ity) can now be repeated for the countable list of elements in all higher homotopy
groups mq(B, ), to produce the desired countable subcomplex D C Y. O

Lemma 3. Suppose that p: X — Y is a map of simplicial sets which has the
right lifting property with respect to all inclusions OA™ C A™. Then p is a weak
equivalence.



Proof. The map p is a homotopy equivalence, by a standard argument. In effect,
there is a commutative diagram

)——X
K4
¢
Y —Y
Y
and then a commutative diagram

(1x,ip)

XuX —: X
)

-~ H
Y

X x A? rr iR
so that pi = 1y and then H is a homotopy 1x =~ ip. Here, 0 : X x Al = X is
the projection onto X. O

Lemma 4. Every map f: X — Y of simplicial sets has factorizations

N

where 1 is a trivial cofibration and p is a fibration, and j is a cofibration and q
18 a trivial fibration.

Proof. A standard transfinite small object argument based on Lemma 2 pro-
duces the factorization f = p-i. Also, f has a factorization f = ¢ - j, where j is
a cofibration and ¢ has the right lifting property with respect to all inclusions
OA™ C A™. But then ¢ is a trivial fibration on account of Lemma, 3. O

Lemma 5. Every trivial fibration p: X — Y has the right lifting property with
respect to all inclusions OA™ C A™.

Proof. Find a factorization



where j is a cofibration and the fibration ¢ has the right lifting property with
respect to all DA™ C A"™. Then ¢ is a trivial fibration by Lemma 3, so that j is
a trivial cofibration. The lifting r exists in the diagram

1x

X —
v
J —

q

b

p

D ——

>-<

It follows that p is a retract of ¢, and so p has the desired lifting property. [

Theorem 6. With these definitions, the category S of simplicial sets satisfies
the axioms for a closed simplicial model category.

Proof. The axioms CM1, CM2 and CMS3 have trivial verifications. The fac-
torization axiom CMS5 is a consequence of Lemma 4, while the axiom CM4 is
a consequence of Lemma 5.

The function spaces hom(X,Y') are exactly as we know them: an n-simplex
of this simplicial set is a map X x A" - Y.

Ifi: A— B and j: C — D are cofibrations, then the induced map

(BxC)Uaxc (Ax D)= BxD

is a cofibration, which is trivial if either ¢ or j is trivial. The first part of the
statement is obvious set theory, while the second part follows from the fact that
the realization functor preserves products. O

Lemma 7. Suppose given a pushout diagram
c
D
where 1 is a cofibration and g is a weak equivalence. Then g. is a weak equiva-
lence.

g
R

<0

—_—
gx

Proof. All simplicial sets are cofibrant, and this result follows from the standard
formalism for categories of cofibrant objects [4, I1.8.5]. O

The other axiom for properness, which says that weak equivalences are stable
under pullback along fibrations, is proved in Corollary 38.



2 Subdivision operators

Write NX for the poset of non-degenerate simplices of a simplicial set X, or-
dered by the face relationship. Here “z is a face of y” means that the subcomplex
(z) of X which is generated by z is a subcomplex of (y). Let BX = BN X denote
its classifying space. Any simplex € X can be written uniquely as z = s(y)
where s is an iterated degeneracy and y is non-degenerate. It follows that any
simplicial set map f : X — Y determines a functor f, : NX — NY where f.(x)
is uniquely determined by f(z) = t - f.(z) with ¢ an iterated degeneracy and
f+«(z) non-degenerate.

Say that a simplicial set K is a polyhedral complex if K is a subcomplex of
BP for some poset P. The simplices of a polyhedral complex K are completely
determined by their vertices; in this case the non-degenerate simplices of K are
precisely those simplices x for which the list (v;z) of vertices of z consists of
distinct elements.

If P is a poset there is a map v : BBP — BP which is best descibed
categorically as the functor v : NBP — P which sends a non-degenerate simplex
z :n — P to the element z(n) € P. This is the so-called “last vertex map”, and
is natural in poset morphisms P — (. In particular all ordinal number maps
f : m — n induce commutative diagrams of simplicial set maps

BAmLBA"

AM ——— A"

0

Similarly, if K C BP is a polyhedral complex then 7|k takes values in K by
the commutativity of all diagrams

BA"™ —> BBP

A" BP

x

arising from simplices z of K.
For a general simplicial set X, we write

sd X = hgl BA™,
Ar—X

where the colimit is indexed over the simplex category of X. The object sd X
is called the subdivision of X. The maps v : BA™ — A" together determine a
natural map 7 : sd X — X. Note that there is an isomorphism sd A™ = BA™.
Suppose that z is a non-degenerate simplex of X. Then the inclusion (z) C
X induces an isomorphism N(z) = (x) N NX. Every simplicial set X is a
colimit of the subcomplexes (z) generated by non-degenerate simplices z. Also



the canonical maps sd A™ = BA™ — BX which are induced by all simplices of
X together induce a natural map

m:sd X — BX.

The map 7 is surjective, since every non-degenerate simplex z (and any string
of its faces) is in the image of some simplex o : A™ — X.
It follows that there is a commutative diagram

li d S
i b =-ax M

lim B(x)
TCNX

— BX

The bottom horizontal map hﬂ B(z) — BX is surjective, because any string
xg < --- <z, of non-degenerate zgimplices of X isin the image of the correspond-
ing string of non-degenerate simplices of the subcomplex (z,). If o € B(z,)
and 8 € B(y,) map to the same element of BX,, they are both images of
a string v € B({z) N (y))n. This element 7 is in the image of some map
B(z), — B({z) N (y))n. Thus there is a { € B(z), which maps to both «
and S. It follows that o and 3 represent the same element in hﬂx B(z), and so
the map lim B (z) — BX is an isomorphism.

Lemma 8. The map w : sd X — BX is surjective in all degrees, and is a
bijection on wvertices. Consequently, two simplices u,v € sd X,, have the same
image in BX if and only if they have the same vertices.

Proof. We have already seen that 7 is surjective.

For every vertex v € sd X there is a unique non-degenerate n-simplex x € X
of minimal dimension (the carrier of v) such that v lifts to a vertex of sd A"
under the map z, : sd A™ — sd X. Observe that

v=1.(0,1,...,n])
by the minimality of dimension of z. We see from the diagram

sd A"

sd X T>BX

that m(v) = (x). It follows that the function v — 7 (v) = (z) is injective. O

Let K be a polyhedral complex with imbedding K C BP for some poset P.
Every non-degenerate simplex z of K can be represented by a monomorphism
of posets z : n — P and hence determines a simplicial set monomorphism



z: A" — K. In particular, the map x induces an isomorphism A" = (z) C K.
It follows from the comparison in the diagram (1) that the map 7 : sd K — BK
is an isomorphism for all polyhedral complexes K.
Suppose that L is obtained from K by attaching a non-degenerate n-simplex.
The induced diagram
sd OA™ —>sd K

sd A" ——sd L

is a pushout, in which the maps ¢ and i, are monomorphisms of simplicial sets.
It follows in particular that the subdivision functor sd preserves monomorphisms
as well as pushouts (sd has a right adjoint).

Let C' and D be subcomplexes of a simplicial set X such that X = C U D.
Then the diagram of monomorphisms

N(CND)—=ND

L

NC——NX

is a pullback and a pushout of partially ordered sets, and the diagram

B(C N D) ——= BD )

L

BC — BX

is a pullback and a pushout of simplicial sets.

There is a homeomorphism A : | sd A™| — |A"™|, which is the affine map that
takes a vertex o = {vg,...,v;} to the barycentre b, = k_}_—l > wv;. There is a
convex homotopy H : h ~ |y| which is defined by H(a,t) = th(a)+ (1—1t)|y|(a).
The homeomorphism A and the homotopy H respect inclusions of simplices.
Instances of the map h and homotopy H can therefore be patched together to
give a homeomorphism

o

he|sdK| S |K|

and a homotopy
H:h~|y|

for each polyhedral complex K. The homeomorphism A and the homotopy H
both commute with inclusions of polyhedral complexes.
3 Classical simplicial approximation

In this section, “simplicial complex” has the classical meaning: a simplicial
complex K is a set of non-empty subsets of some vertex set V' which is closed



under taking subsets. In the presence of a total order (V, <) on V, a simplicial
complex K determines a unique polyhedral subcomplex K C BV in which an
n-simplex ¢ € BV is in K if and only if its set of vertices forms a simplex of
the simplicial complex K.

Any map of simplicial complexes f : K — L in the traditional sense deter-
mines a simplicial set map f : K — L by first imposing an orientation on the
vertices of L, and then by choosing a compatible orientation on the vertices of
K. Tt is usually, however, better to observe that a simplicial complex map f
induces a map f. : NK — NL on the corresponding posets of simplices, and
hence induces a map f. : BNK — BNL of the associated subdivisions.

Suppose given maps of simplicial complexes

K—=X

]

L

where 7 is a cofibration (or monomorphism) and L is finite. Suppose further
that there is a continuous map f : |L| — |X| such that the diagram

K| —|X|

|Z|
commutes. There is a subdivision sd”™ L of L such that in the composite
|sd" L] *5 L] L | X,

every simplex |o| C |sd” L| maps into the star st(v) of some vertex v € X.
Recall that st(v) for a vertex v can be characterized as an open subset of
| X by
st(v) = |X] = | Xul,

where X, is the subcomplex of X consisting of those simplices which do not
have v as a vertex. One can also characterize st(v) as the set of those linear
combinations > a,v € |X| such that a, # 0. Note that the star st(v) of a
vertex v is convex.

The homeomorphism A : | sd K| — | K] is defined on vertices by sending o to
the barycentre b, € |o|. Observe that if o9 < --- < 0, is a simplex of sd K and
v is a vertex of some o; then the image of any affine linear combination > a;0;
is the affine sum Y «;b,, of the barycentres. Then since v appears non-trivially
in b,, it must appear non-trivially in the sum of the barycentres. This means
that h(st(c)) C st(y(o)), where v : sd K — K is the last vertex map. In other
words v is a simplicial approximation of the homeomorphism A, as defined by
Spanier [14].

10



It follows that 4" is a simplicial approximation of A™; in effect,
R (st(v)) C h" t(st(y(v)) C R 2(st(y*(v)) C ...
There is a corresponding convex homotopy H : |y"| — h™ defined by
H(z,t) = (1 —t)y"(z) + th"(z)

which exists precisely because 4" is a simplicial approximation of A™.
The point is now that the composite

Isd" L] 25 1) L | x,

admits a simplicial approximation for n sufficiently large since fh"(st(v)) C
st(¢p(w)) for some vertex ¢p(w) of X, and the assignment w — ¢(w) defines a
simplicial complex map ¢ : sd"L — sd X — X whose realization ¢, is ho-
motopic to fh™ by a convex homotopy no matter how the individual vertices
¢(w) are chosen subject to the condition on stars above. In particular, the
function w — ¢(w) can be chosen to extend the vertex map underlying the
simplicial complex map avy™. It follows that there is a simplicial complex map
¢ :sd™ L — X such that the diagram of simplicial complex maps

sd"K > K —%> X

o

sd" L
commutes, and such that |¢| ~ fh™ via a homotopy H' that extends the homo-
topy |a|H : |af|y"] = [alp™.
The homotopy fH : f|y"| — fh™ also extends the homotopy aH. It follows
that there is a commutative diagram

soaH,(fH,H'
(|sd™ K| x A?) U (|sd” L| x A2) 20U ))

|

|sd™ L| x A?

Ry

Then the composite

2
|sd" L] x A' 25 |sd” L] x A2 55 | X|

is a homotopy from |¢| to the composite f|y"| rel |sd” K|, and we have proved

Theorem 9. Suppose given simplicial complex maps

K—2>X

|

L

11



where i is an inclusion and L is finite. Suppose that f : |L| — | X| is a continuous
map such that fli| = |a|. Then there is a commutative diagram of simplicial
complex maps

sd" K —> K —= X
sd™ L
such that || ~ f|y"| rel |sd" K|.

One final wrinkle: the maps in the statement of Theorem 9 are simplicial
complex maps which may not reflect the orientations of the underlying simplicial
set maps. One gets around this by subdividing one more time: the corresponding
diagram

Nan

Nsd"K ——> NK —> NX
N¢

Nsd"L

of poset morphisms of non-degenerate simplices certainly commutes, and hence
induces a commutative diagram of simplicial set maps

BN~™
BNsd"K —— BNK 2% BN X
BNj
BN¢
BNsd" L

It follows that there is a commutative diagram of simplicial set maps

n+41
sd" K> K~z X

Zl /
sd"t L
provided that the original maps a and ¢ are themselves morphisms of simplicial

sets. Finally,there is a homotopy |¢| ~ f|y"| rel | sd™ K|, so that |¢y| ~ f|y" 1|
rel | sd"*! K|. We have proved the following:

Corollary 10. Suppose given simplicial set maps

K—"=X

|

L

12



between polyhedral complexes, where i is a cofibration and L is finite. Suppose
that f : |L| — |X| is a continuous map such that f|i| = |a|. Then there is a
commutative diagram of simplicial set maps

sd" K — K —“= X
i
l /
sd" L
such that |@| ~ f|y"| rel |sd™ K|.

4 Approximation results for simplicial sets

Note that sd(A™) = C'sd(0A™), where in general CK denotes the cone on a
simplicial set K. This is a consequence of the following

Lemma 11. Suppose that P is a poset, and that CP is the poset cone, which
s constructed from P by formally adjoining a terminal object. Then there is an
isomorphism BCP = CBP.

Proof. Any functor v : n — C'P determines a pullback diagram
k——P
n—-—s_CP
where k is the maximum vertex in n which maps into P. It follows that
BCP, =BP,UBP,_;U---UBP, U {x},

where the indicated vertex * corresponds to functors n — C'P which take all
vertices into the cone point. The simplicial structure maps do the obvious thing
under this set of identification, and so BCP is isomorphic to CBP (see [4],
p-193). O

Following [2], say that a simplicial set X is regular if for every non-degenerate
simplex « of X the diagram

A1 2% (doa) (3)

|

A" ——— (@)

is a pushout.

It is an immediate consequence of the definition (and the fact that trivial
fibrations are closed under pushout) that all subcomplexes («) of a regular
simplicial set X are weakly equivalent to a point. We also have the following:

13



Lemma 12. Suppose that X is a simplicial set such that all subcomplexes {c)
which are generated by nmon-degenerate simplices o are contractible. Then the
canonical map 7 :sd X — BX is a weak equivalence.

Proof. We argue along the sequence of pushout diagrams

I—laENnX 8<OL> _— Skn—l X

| |

I_laeNnX<a> - Skn X

The property that all non-degenerate simplices of X generate contractible sub-
complexes is shared by all subcomplexes of X, so inductively we can assume
that the natural maps 7 : sd 9{a) — Bd{a) and 7 : sdsk,_1 X — Bsk,_; are
weak equivalences.

But the comparison map v : sd{a) — () is a weak equivalence, and ()
is contractible by assumption. At the same time B{a) is a cone on Bd{a) by
Lemma 11, so the comparison 7 : sd{a) — B{a) is a weak equivalence for all
non-degenerate simplices a. The gluing lemma (see also (2)) therefore implies
that the map « : sdsk,, X — Bsk, X is a weak equivalence. O

Corollary 13. The canonical map 7 : sd X — BX is a weak equivalence for
all regular simplicial sets X .

Write N, K for the poset of non-degenerate simplices of K, with the opposite
order, and write B,K = BN, K for the corresponding polyhedral complex. The
cosimplicial space n — B, A" determines a functorial simplicial set

sd, X = h%m B.A",
Ar—X
and the “first vertex maps” 7, : B,A™ — A" together determine a functorial
map v, : sdy X — X. Similarly, the maps B.A"™ — B, X induced by the
simplices A™ — K of K together determine a natural simplicial set map 7, :
sd, X — B, X. Observe that the map w, : sd, A™ — B,A" is an isomorphism.
We shall say that sd, X is the dual subdivision of the simplicial set X.

Lemma 14. The simplicial set sd, X is regular, for all simplicial sets X.

Proof. Suppose that « is a non-degenerate n-simplex of sd, X. Then there is
a unique non-degenerate r-simplex y of X of minimal dimension (the carrier of
a) and a unique non-degenerate n-simplex o € sd. A" such that the classifying
map a : A" — sd, X factors as the composite

A" % sd, AT L5 ed, XL

This follows from the fact that the functor sd, preserves pushouts and monomor-
phisms. Observe that ¢(0) = [0,1,...r], for otherwise o € sd 0A" and r is not
minimal.

14



The composite diagram

An—l _ Sd* OA"T —— Sd* 8<y> (4)

| 1]

A" ———sd, AT ——5d.(y)

is a pullback (note that all vertical maps are monomorphisms), and the diagram
(3) factors through (4) via the diagram of monomorphisms

(dor) ——sd.. O(y)

L

(@) ———sd.(y)

It follows that the diagram (3) is a pullback.

If two simplices v,w of A”™ map to the same simplex in (&), then o(v)
and o(w) map to the same simplex of sd.(y). But then o(v) = o(w) or both
simplices lift to sd, A", since sd, preserves pushouts and monomorphisms. If
o(v) = o(w) then v = w since o is a non-degenerate simplex of the polyhedral
complex sd. A". Otherwise, o(v) and o(w) both lift to sd. dA”, and so v and
w are in the image of d°. Thus all identifications arising from the epimorphism
A™ — (o) take place inside the image of d° : A"~! — A", and the square (4)
is a pushout. O

Proposition 15. Suppose that X is a regular simplicial set. Then the dotted
arrow exists in the diagram

sd X — BX

X
making it commute.

Proof. All subcomplexes of a regular simplicial set are regular, so it’s enough
to show (see the comparison (1)) that the dotted arrow exists in the diagram

sd(a) —— B(a)

(o)

for a non-degenerate simplex «, subject to the obvious inductive assumption on

15



the dimension of a: we assume that there is a commutative diagram

sd(doat) —— B(dpa)

| AT

(docx)

Consider the pushout diagram

Anfl & <d00[>

|

A" ——— (a)

Then given non-degenerate simplices u, v of A?~! (a(u)) = (a(v)) in (o) if and
only if either u = v or u,v € d°A"~! and (dpa(u)) = (doa(v)) in (dpar).

Suppose given two strings u; < --- < ug and v; < --- < v of non-degenerate
simplices of A™ such that (a(u;)) = (a(v;)) in (@) for 1 <4 < k. We want to
show that these elements of (sd A™); map to the same element of () under the
composite map

sdA™ & A" 2 ().

If this is true for all such pairs of strings, then there is an induced commutative
diagram of simplicial set maps

sd A" —21 s B(a)

b

A" ——— (o)

and the Proposition is proved.
We assume inductively that the corresponding diagram

doot*

sd A1 —— B(dya)

|

At e
exists for dpa.

Set i = k+1 if all u; and v; are in d°A™ L. Otherwise, let i be the minimum
index such that u; and v; are not in d°’A™!. Observe that a non-degenerate
simplex w of A" is outside d° A™~! if and only if 0 is a vertex of w.

If ¢t = k+ 1 the strings u; < --- < uy and v; < --- < v are both in the
image of the map d? : sd A”~! — sd A", and can therefore be interpreted as

16



elements of sd A"~! which map to the same element of B{dya). These strings
therefore map to the same element in (dga), and hence to the same element of
().
If i = 0 the strings are equal, and hence map to the same element of (a).
Suppose that 0 < ¢ < k4 1. Then the simplices u; = v; have more than one
vertex (including 0), and so the last vertices of u; and dou; coincide for j > 1.
It follows that the strings

up <o Sy Sdouy <-- - < douy,

and
vy <ees <y <dovy <o < doug

determine elements of sd A”~! having the same images under the map ¢ :
sd A — A™ as the respective original strings. These strings also map to the
same element of B{dpa) since dou; = dov; for j > 4. The strings uq < --- <y
and v; < --- < v, therefore map to the same element of («). O

Lemma 16. Suppose given a diagram

A—2>X

il f
B—,G)Y

in which i is a cofibration and f is a weak equivalence between objects which are
fibrant and cofibrant. Then there is a map 0 : B — X such that 6 -1 = a and
f -0 is homotopic to B rel A.

Proof. The weak equivalence f has a factorization

X2y

/
-~
_

Y

where q is a trivial fibration and j is a trivial cofibration. The object Z is both
cofibrant and fibrant, so there is a map 7 : Z — X such that 7-j = 1x and
j-m~1z rel X. Form the diagram

41" 5
|
% q
B —5> Y
Then the required lift B — X is 7 - w. O
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Theorem 17. Suppose given maps of simplicial sets

A—">X
B

where i 1s a cofibration of polyhedral complexes and B is finite, and suppose that
there is a commutative diagram of continuous maps

o
Al —

X
il

|B|

Then there is a diagram of simplicial set maps

sd™sd, A 22> 4 —%s x
Z*l /
sd™ sd, B

such that
6] = Flysy™] : | sd™ sd. B| = |X]

rel | sd™ sd. A|

Proof. The simplicial set sd, X is regular (Lemma 14), and there is a (natural)
commutative diagram

sdsd, X —=> Bsd, X

| A

sd, X

by Proposition 15. On account of Lemma 16, there is a continuous map f :
|sdsd, B] — | sdsd. X| such that the diagram

sdsd. A| —2L [sdsd, X|

|

| sd sd. B]

commutes and such that |v.7|f ~ f|y.7| rel |sdsd, A|. Now consider the dia-
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gram

|ca

Isdsd, A 2L |Bsd, X|
|u|l !
el
| sdsd. B|

Then by applying Corollary 10 to the continuous map |c|f the polyhedral com-
plex map ca, and the cofibration of polyhedral complexes ., we see that there
is a diagram of simplicial set maps

sd"sdsd, A 2> sdsd, A -~ Bsd, X

sd" sdsd. B
such that || ~ |¢|f]7"| rel | sd" sdsd, A|. It follows that
Al = el 1™ = v v = Flvenlin™-

Thus ¢ = .5 is the required map of simplicial sets, where m =n + 1. O
Corollary 18. Suppose given maps of simplicial sets

A—>X

|

B

where i is a cofibration and B is finite, and suppose that there is a commutative
diagram of continuous maps

|

|A] — |X]
Ml /
| B|

Then there is a diagram of simplicial set maps

Yay VY™ a

sd”sd,sdsdy A——A——= X
sd™ sd, sdsd,. B

such that
|9l = fl7ray 7™ |sd™ sdy sdsds B] = | X]|

rel | sd™ sd, sd sd. A|
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Proof. The cofibration ¢ induces a cofibration of polyhedral complexes
ix : Bsdy A — Bsd, B.

The simplicial set maps

Bsd*A:r—>sd*AL>A—a>X

Bsd. B
and the composite continuous map
IBsd, B| 2L |sd, B| 22 1B] & x|
satisfy the conditions of Theorem 17. O

Suppose that K is a polyhedral complex, and recall that N K denotes the
poset of non-degenerate simplices of K with face relations, with nerve BK =
BNK = sd K. Recall also that N.K = (NK)° is the dual poset; it has the
same objects as N K, namely the non-degenerate simplices of K, but with the
reverse ordering. The nerve BN, K coincides with the dual subdivision sd, K
of K.

The poset N BK of non-degenerate simplices of BK has as objects all strings

0: 09 <01 < <0y (5)

of strings of non-degenerate simplices of K with no repeats. The face relation
in NBK corresponds to inclusion of strings. The poset N B, K has as objects
all strings

TO>TL> > Tp

of non-degenerate simplices of K with no repeats, with the face relation again
given by inclusion of substrings. Reversing the order of strings defines is a poset
isomorphism

¢x : NBK = NB,K
which is natural in polyhedral complexes K. The poset isomorphism ¢x induces
a natural isomorphism

~

Pr :sdsd K — sdsd, K

of associated nerves.
The composite
sdsd A" Ly sd A™ X5 A
is induced by the poset morphisms

NBNA™ X NA™ Xy n

20



which are defined by successive application of the last vertex map. Thus, this
composite sends the object ¢ (as in (5) to o4(m) € n, where the poset inclusion
04 : m — n defines the m-simplex o, € A™. The composite of poset morphisms

NBNA" % NBN, A" 25 N,A" X5 n

(where 7, is the first vertex map) sends the object o to the element o¢(0) € n.
There is a relation 0¢(0) < o4(m) in the poset n which is associated to all such
objects 0. These relations define a homotopy NBNA™ x 1 — n from 7,y¢
to vy. The maps and the homotopy respect all ordinal number morphisms
f:m — n.

It follows, by applying the nerve construction that there is an explicit sim-
plicial homotopy H : sdsd A" x A! — A" from ~,7®, to vy, and that this
homotopy is natural in ordinal number maps. Glueing together instances of the
isomorphisms ®, : sdsd(A”) — sdsd.(A™) along the simplex for a simplicial
set X therefore determines an isomorphism

$x :sdsd X — sdsd, X (6)
and a natural homotopy
H:sdsd X x A' - X (7

from the composite
sdsd X 2% sdsd, X B sd. X 25 X

to the composite
sdsd X Lsd X 5 X.

5 Excision

Lemma 19. Suppose that U; and Us are open subsets of a topological space
Y such that Y = Uy UUs,. Suppose given a commutative diagram of pointed
simplicial set maps

K —a> S(Ul) U S(UQ)

]

L—ﬁ>S(Y)

where 1 is an inclusion of finite polyhedral complexes. Then for some n the
composite diagram

sd" K —— K —2> 5(U1) U S(Us)

] |

sd” L " L S(Y)
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is pointed homotopic to a diagram
sd® K — S(U1) U S(U3)
d" [ ———= S(Y)
admitting the indicated lifting.
Proof. There is an n such that the composite

sd" L 2 §|sd™ L| 25 s10| 225 sy

factors uniquely through a map 3 : sd™ L — S(U;) U S(Us), where 8, : |L| = Y

is the adjoint of g.
Suppose that A™ C K is a non-degenerate simplex of K. The diagram

|sd™ AT| 2 |A7|

|sd™ L| —— |L|
is homotopic to the diagram

[sd” A7 LA

|sd™ L| —— |L|

and the homotopies of such diagrams respect inclusions between non-degenerate
simplices of K. Thus, each composite diagram

sd" AT —= AT —2> S(Uy) U S(Us)

| |

sd"L——L 5 5()

is homotopic to a diagram

Sa

sd” AT —1> S|sd” AT| S §|AT] 2 S(U1) U S(U)

l/ |

sd" L ——> S|sd" L| I S|L| 5. S(Y)
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and the homotopies respect inclusions between non-degenerate simplices of K.
Note that the map « : A™ — S(U;) U S(Uz) factors through some S(U;) so that
the “adjoint” a is induced by a map |A"| — U;. Observe also that the maps h
and |y"| coincide, and the homotopy between them is constant on the vertices
of K.

It follows that the composite diagram

sd" K —— K —2> 5(U1) U S(Us)

] |

sd"L —— L S(Y)

is pointed homotopic to a diagram

sd" K S(U) U S(Us)

L

sd" L= S[sd" L —go- S|L| —5

O

Theorem 20. Suppose that U; and Uy are open subsets of topological space Y,
and suppose that Y = U; U Us. Then the induced inclusion of simplicial sets
S(U1)US(Us) C S(Y) is a weak equivalence.

Proof. First of all observe that the induced function
7T0|S(U1 U U2)| — 7T0|S(Y)|

is a bijection, by subdivision of paths.

Pick a base point x € Y, and let F,Y denote the category of all finite
pointed subcomplexes of S(Y') containing x, ordered by inclusion. This category
is plainly filtered, and there is an isomorphism

T |S(Y)| = lim | K|
KeF.Y
The natural weak equivalences 7' = v,% : B(sd. K) — K resulting from Lemma
14 and Proposition 15 may be used to replace a finite simplicial set K by a finite
polyhedral complex B(sd, K).

Suppose that [a] € 7,(|S(Y)|, z) is carried on a finite subcomplex w : K C
S(Y) in the sense that [a] = w.[a'] for some [@'] € m4|K|. Then it follows from
Lemma 19 that there is an r > 0 such that the diagram

v'y"

sd” B(sd, A%) —= A? —— S(U1) U S(U-)

o

N

sd" B(sdy K) —— K — S(Y)

vy
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is pointed homotopic to a diagram

Sdr B(Sd* AO) —z> S(Ul) U S(Uz)

sd" B(sdy K) ——— S(Y)

in which the indicated lift o exists. But 7'y" is a weak equivalence, so that
[@'] = (v'7")«["] for some a”. But then [a] = w.(Y'7")«[@"] = ix04[a] so that
i, is surjective on homotopy groups.

Suppose that [5] € m,|S(U1) U S(Usz)| is carried on the subcomplex K C
S(U1)US(Uz) and suppose that i.[5] = 0. Then there is a commutative diagram
of simplicial set inclusions

|

L———5()

12

such that [5] — 0 in m4|L|. There is an s > 0 such that the composite diagram

sd® B(sd, K) 2 K — s S(UL) U S(U:)

sd® B(sd. L) —— L — S(Y)

Yy iz

is pointed homotopic to a diagram

sd® B(sd, K) —2> S(U1) U S(Us)

in which the indicated lifting exists. Again, the maps v'v® are weak equivalences,
so that [8] = (v'7%).[8'] for some [3'] € my|sd® B(sd. K)| and

i1[B] = i1 (YY) [B'] = 11.[8'] = T [B].

Finally, (7'v%).j«[8'] = j«[6] = 0 so that j.[8'] = 0 in 74| sd® B(sd. L)| and so
i14[8] = 0 in 7Tq|S(U1)US(U2)|. O

The category S of simplicial sets is a category of cofibrant objects for a
homotopy theory, for which the cofibrations are inclusions of simplicial sets
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and the weak equivalences are those maps f : X — Y which induce weak
equivalences f, : | X| = |Y| of CW-complexes. As such, it has most of the usual
formal calculus of homotopy cocartesian diagrams (specifically I1.8.5 and I1.8.8

of [4]).
Lemma 21. Suppose that the diagram

|_|i Snfl — s X

|

L e" ——Y
18 a pushout in the category of CW -complexes. Then the diagram
L; (5" 1) —S(X)

L

L S(e") ——5S(Y)
is a homotopy cocartesian diagram of simplicial sets.

Proof. The usual classical arguments say that one can find an open subset U C
Y such that X C U and this inclusion is a homotopy equivalence. The set U is
constructed by fattening up each sphere S”~! to an open subset U; of the n-cell
e™ (by radial projection) such that S”~! C U; is a homotopy equivalence. We
can therefore assume that the inclusion

L] s c(]enu

(2 2
is a homotopy equivalence. We can also assume that there is an open subset
Vi C e such that the inclusion is a homotopy equivalence, such that V;NU; C U;
is a homotopy equivalence, and such that e” = V; U U;. The net result is a
commutative diagram

L; S(8"71) —— S(X)

% m %

SV NU) —3 (U N (L e) —> S(U)

N L

S(V) ——=—L:iS(") ——=S(Y)

of simplicial set homomorphisms in which all vertical maps are cofibrations and
the labelled maps are weak equivalences. The the composite diagram I + IT
is homotopy cocartesian by excision (Lemma 20), so that the diagram IT is
homotopy cocartesian by the usual argument. It follows that the composite
diagram III + IT is homotopy cocartesian, again by a standard argument. O
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Theorem 22. The adjunction map €: |S(T)| = T is a weak equivalence for all
spaces T'.

Proof. The functor T+ S(T') preserves fibrations and trivial fibrations, and
thus preserves weak equivalences since all spaces are fibrant. In particular, the
functor T — |S(T')| preserves weak equivalences. We can therefore presume
that T" is a CW-complex.

All cells e™ are contractible spaces, so that the natural maps € : |[S(e™| — e”
are weak equivalences. If the diagram

I_li Snfl — X (8)

|

|—|i e —Y

is a pushout in the category of CW-complexes, then it follows from Lemma 21
that the induced diagram

U; 1S(S" D] ——1S(X)] (9)

| l

U: [Se™)] —— ISV

is homotopy cocartesian. It follows by induction on dimension that the maps
€ : |S(S" )| — S™! are weak equivalences. The general case follows by
comparison of the homotopy cartesian diagrams (8) and (9), and the usual sort
of transfinite induction. O

The following is now a consequence of Theorem 22 and a standard adjoint-
ness trick:

Corollary 23. The canonical map n: X — S|X| is a weak equivalence for all
simplicial sets X.

6 The Milnor Theorem

Write Sy for the full subcategory of the simplicial set category whose objects are
the fibrant simplicial sets. All fibrant simplicial sets X are Kan complexes, and
therefore have combinatorially defined homotopy groups 7, (X,z), n > 1, z €
Xo, as well as sets of path components m9X. Say that a map f: X — Y of
fibrant objects is a combinatorial weak equivalence if it induces isomorphisms
moX = mY and 7, (X, z) = m,(Y, f(z)) for all n and z. Recall that any fibre
sequence

X

l”

Y

Y k2

F,
AOT>
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(ie. pullback, with p a fibration) induces a long exact sequence in homotopy
groups

o m(Vy) S m(F, 1) S m(X,z) B m(Y,y) S moF, 1 meX 25 mpY
for any choice of vertex = € F),.

Lemma 24. A map p: X — Y between fibrant simplicial sets is a fibration and
a combinatorial weak equivalence if and only if it has the right lifting property
with respect to all inclusions OA™ C A™.

Proof. If p has the right lifting property with respect to all 9A™ C A" then it
has the right lifting property with respect to all cofibrations, and therefore has
the right lifting property with respect to all trivial cofibrations. It follows that
p is a fibration. The map p is also a homotopy equivalence since X and Y are
fibrant, by a standard argument, so it is a combinatorial weak equivalence.
The reverse implication is the standard argument: see [4, 1.7.10], and also
the proof of Lemma 33 below. O

Lemma 25. The category Sy of all fibrant simplicial sets, together with the
classes of all fibrations and combinatorial weak equivalences in the category,
satisfies the axioms for a category of fibrant objects for a homotopy theory.

Proof. With Lemma 24 and the closed simplicial model structure of Theorem 6
in place, the only axiom that requires proof is the weak equivalence axiom. In
other words we have only to prove that, given a commutative triangle

X—f>Y

DN

Z

of morphisms between fibrant simplicial sets, if any two of the maps are combi-
natorial weak equivalences then so is the third. This is a standard argument [4,
1.8.2], which uses a combinatorial construction of the fundamental groupoid. O

I shall say that a finite anodyne extension is an inclusion K C L of simplicial
sets, such that there are subcomplexes

K=KyCKiC---CKny=L
such that there are pushout diagrams

Ay ——K;

L

A" —— K
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The notation means that K;; is constructed from K; by explicitly attaching a
simplex to a horn in K.

Recall [4] that a cofibration is said to be an anodyne extension if it is a
member of the saturation of the set of all inclusions A} C A™. In other words,
the class of anodyne extensions is generated by all inclusions of horns in simplices
under processes involving disjoint union, pushout and filtered colimit, and is
closed under retraction. All anodyne extensions are weak equivalences.

Lemma 26. The functors sd and sd, preserve finite anodyne extensions.

Proof. We will prove that the subdivision functor sd preserves finite anodyne
extensions. The corresponding statement for sd, has a similar proof.

It suffices to show that all induced maps sd A} — sd A" are finite anodyne
extensions. This will be done by induction on n; the case n = 1 is obvious.

Here is the outline of the proof. It is a consequence of Lemma 11 that
sd A™ coincides up to isomorphism with the cone C'sd 9A™ on sd A™. The cone
functor C takes the inclusion JA™ — A" to the anodyne extension AT} C A"+
and hence takes all inclusions K C L of finite simplicial sets to finite anodyne
extensions CK — C'L. There is a commmutative diagram

sd A}

|

Csd A1 — Csd A}

| l

Csd A" —— (C'sd 9A"

in which the square is a pushout since the cone and subdivision functors both
preserve pushouts. The map Csd A} — Csd0A"™ is therefore an anodyne
extension. It thus suffices to show that the canonical map sd A} — C'sd A} is a
finite anodyne extension.

Note that A} has a filtration by subcomplexes F,., where F, is generated
by the non-degenerate r-simplices which have k as a vertex. Then Fy = {k},
F,_1 = A}, and there are pushout diagrams

r
Uy cp A — Fr

L

Uperer A" ——F,

where F,gr) denotes the set of r-simplices in F;.. In particular, the map A° C A}

arising from the inclusion of the vertex k is a finite anodyne extension. It also
follows, by induction, that the map

A = sd A° — sd A}
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which is induced by applying sd to the inclusion {k} C A} is a finite anodyne
extension.
The proof is completed in Lemma 27 below. O

Lemma 27. Suppose that v : A° — K is a finite anodyne extension for some
choice of vertex v in a finite complex K. Then the canonical inclusion K — CK
s a finite anodyne extension.

Proof. Suppose given a pushout diagram

AZL>K

b

A" —— [

where there is some vertex v € K such that the corresponding map v : A? -+ K
is finite anodyne. Assume inductively that the map N — CN is anodyne for all
finite complexes constructed in fewer stages than L, and for all N constructed by
adjoining simplices of dimension smaller than n. Then the inclusions K — CK
and A} — CA} are both anodyne, and there are pushout diagrams

K——L

L

CK ——CKUgL

and
CAZ UA;: A" -~ CK Ug L

| |

CA" — > (CL

The cofibration
CA} Unap A" — CA™

is isomorphic to the anodyne extension AZ“ C AL O

For a simplicial set X, the simplicial set Ex X has n-simplices Ex X,, =
hom(sd A", X). The functor X — Ex X is right adjoint to the subdivision
functor A — sd A. It follows from Lemma 26 that Ex X is a Kan complex if X
is a Kan complex; it is easier to see that Ex X is fibrant if X is fibrant. Write
v : X — Ex X for the natural simplicial set map which is adjoing to the map
y:sd X — X.

Lemma 28. Suppose that X is a Kan complex. Then the map v: X — ExX
18 a combinatorial weak equivalence.
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Proof. The functor Ex preserves Kan fibrations on account of Lemma 26, and
the map 7 plainly induces a bijection

moX = mgEx X.

The functor Ex also preserves those fibrations which have the right lifting prop-
erty with respect to all 9A™ — A", since the subdivision functor sd preserves
inclusions of polyhedral complexes.
Pick a base point z € X, and construct the corresponding comparison of
fibre sequences
Qx PX X

ExQX —ExPX —ExX

Then Ex PX is simplicially contractible, and so there is an induced diagram

7T1X —%> 7T()QX

T

m Ex X —— 1o Ex QX

It follows that the induced map m X — 7; Ex X is an isomorphism for all choices
of base points in all Kan complexes X.

This construction may be iterated to show that the induced map 7, X —
7, Ex X is an isomorphism for all choices of base points in all Kan complexes
X, and for all n > 0. O

There is a similar description of a functorially constructed simplicial set
Ex, X has n-simplices Ex, X,, = hom(sd. A", X). The functor X — Ex, X is
right adjoint to the (dual) subdivision functor A — sd, A. The dual subdivi-
sion functor also preserves weak equivalences, cofibrations and finite anodyne
extensions, and the natural map . : sd. A — A is a weak equivalence. It fol-
lows that Ex, X is a Kan complex if X is a Kan complex, and that Ex, X is
fibrant if X is fibrant. Write 7. : Y — Ex, Y for the adjoint of the natural map
Y4 : 8d. Y — Y. The proof of the following result is formally the same proof as
Lemma 28:

Lemma 29. Suppose that X is a Kan complex. Then the map v, : X — Ex, X
18 a combinatorial weak equivalence.

Theorem 30 (Milnor Theorem). Suppose that X is a Kan complex. Then
the canonical map n: X — S(|X|) induces an isomorphism

mi(X,z) = m(|X],z)

for all vertices x € X and for all i > 0.
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In other words, Theorem 30 asserts the existence of an isomorphism between
the combinatorial homotopy groups of a Kan complex X and the ordinary ho-
motopy groups of its topological realization |X|.

Proof of Theorem 30. The vertical arrows in the comparison diagram

(X, 2) (S| X|,2)

| l

™ (Ex™ Ex, X, z) —— m;(Ex™ Ex, S| X]|, z)

are isomorphisms for all m by Lemma 28 and 29. The simplicial approximation
result Theorem 17 says that any element m;(S|X|,z) lifts to some element of
m;(Ex" Ex, X, z) for sufficiently large r, and that any element of 7;(X, z) which
maps to 0 € m;(S|X],z) must also map to 0 in m;(Ex® Ex, X, z) for some s. O

7 Kan fibrations

Write SD(X) for either the subdivision sd X of a simplicial set X or for the
dual subdivision sd, X, and let T' : SD(X) — X denote the corresponding
canonical map. Similarly, write EX(X) for either Ex X or Ex, X, and also let
I': X — EX(X) denote the adjoint map.

Here is one of the more striking consequences of simplicial approximation
(Theorem 17 or Corollary 18): every simplicial set X is a Kan complex up to
subdivision. More explicitly, we have the following:

Lemma 31. Suppose that o : A} — X is a map of simplicial sets. Then there
is an r > 0 such that a extends to A™ up to subdivision in the sense that there
s a commutative diagram

SD"(A7) > AP 2 x

|

SD"(A™)
of simplicial set maps.

Proof. All spaces are fibrant, so there is a diagram of continuous maps

o
AR ——[X]

e

|A"

Now apply Theorem 17. O
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Remark 32. In fact, although it’s convenient to do so for the moment we
do not have to mix instances of sd and sd, in the proof of Lemma 31 — see
the proof of Lemma 39 below. The point is that the inclusion A} C A™ of
polyhedral complexes induces a strong deformation retraction of the associated
realizations.

Lemma 33. Suppose that p: X — Y is a Kan fibration and a weak equivalence.
Suppose that there is a commutative diagram

aA"a—>X

b

A" ——Y

B

Then there is an r > 0 and a commutative diagram

SD"(9A") - gAn % 5 ¥

SD"(A") —> A" ——Y

In other words all maps which are both Kan fibrations and weak equivalences
have the right lifting property with respect to all inclusions 9A™ C A"”, up to
subdivision. We will do better than that, in Theorem 34.

Proof of Lemma 33. Suppose that ¢ : K C L is an inclusion of finite polyhedral
complexes. If the diagram

K

L

is homotopic up to subdivision to a diagram for which the lifting exists, then
the lifting exists for the original diagram up to subdivision.
In effect, a homotopy up to subdivision is a diagram

_e, (10)

b

-~
3

[

B

~

SDH(K x Al) —> X

|

SDM(L x A') ——=Y

p
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It starts (up to subdivision) at the original diagram if the diagram

d;
SD*(K) —> SDF(K x Al) —2>

> X
| LP
SD*(L) " SD*(L x A') —Y

coincides with the diagram

SD*(K) ——> K —%> X (11)

| i

SDk(L) T>L—5>Y

If the lifting exists at the other end of the homotopy in the sense that there is
a commutative diagram

SDH(K) —= SDF(K x Al) —s X

SD*(L) TMK)T) Y

2
then there is a commutative diagram

dl h1,0’
SD¥(K) —— SD*(K x A') USD*(L) ") x

| |

SD*(L) — SD*(L x A1)

*

Y

ha

The map labelled j is a finite anodyne extension by Lemma 26, so the lifting o’
exists. The outer square diagram is the diagram (11) and the composite ¢’d? is
the required lift.

The contracting homotopy h; : Af x Al — A? onto the vertex 0 extends to
a homotopy of diagrams up to subdivision from the diagram (10) to a diagram

a1

SDF(QA™) — X
|
SD*(A™) —5Y

(12)
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where the composite
SDF(A™1) % SDF(9A™) 21 X

factors through a fixed base point * = «(0) for i # 0.
The composite

0
SDF(A™ 1) Ly SpE(9A™) 24 X
represents an element [|a;d2|] € m,—1|X|, and this element maps to 0 € m,—1|X]|
since the diagram (12) commutes. The homotopy | SD* A"~! x A'| — |X| from
|a1d?| to the base point is homotopic rel boundary and after subdivision to the

realization of a simplicial map SD"(SD*(A”~1) x A!) — X, which extends after
subdivision to a homotopy of diagrams

SD?(SD*(9A™) x A1) —= X

| |

SD*(SD*(A") x Al) ——Y
from a subdivision of the diagram (12) to a diagram

SDs+k HA™ a; X

L)

SD*HE AR Y
B2

such that oz maps all of SD*T* 9A”™ to the base pont of X.

The element [|3s|] € 7,|Y| lifts to an element [y] € m,|X| since p, : 7| X| —
7,|Y| is an isomorphism. The map v : |SD*™ A”| — |X| is homotopic rel
boundary and after subdivision to the realization of a simplicial set map f :
SD*HFHU A 5 X which maps SD* ¥t OA™ into the base point. It follows that,
after subdivision, |32 is homotopic rel boundary to the map |pf|. The homotopy
| SDSTFH A™ 5 Al| — |Y| rel boundary is itself homotopic to the realization of
a simplicial homotopy SD™(SD*T**" A™ x Al) = Y rel boundary after further
subdivision. It follows that 32 lifts to X rel boundary after subdivision. O

Theorem 34. Suppose that p : X — Y is a Kan fibration and a weak equiv-

alence. Then p has the right lifting property with respect to all inclusions
OA™ — A",

Proof. Suppose given a diagram

OA™" —= X

Lk

A"T>Y
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and let z = 0(0) € Y. The fibre F, ) over ¢(0) is defined by the pullback
diagram

Foop—X

)

0 — »
a(0)

and the Kan complex F gy has the property that all maps JA™ — F (g can be
extended to a map SD" A™ — Fj (o) after a suitable subdivision, by Lemma 33.

All maps I'" : F, o) — EX" F, (o) are weak equivalences of Kan complexes,
while the extension up to subdivision property for F; (o) implies that all elements
of the combinatorial homotopy group 7;F, ) vanish in 7; EX" F, ) for some
r. The Kan complex Fy (o) therefore has trivial combinatorial homotopy groups,
and is contractible.

A standard (combinatorial) result about Kan fibrations [4, 1.10.6] asserts
that there is a fibrewise homotopy equivalence

F—— - Fyq x A

where F,, denotes the pullback of p over A™. It follows that the induced lifting
problem
A" — F;

A" —— 4"
can be solved up to homotopy of diagrams, and can therefore be solved. O

Corollary 35. Suppose thati: A — B is a cofibration and a weak equivalence.
Then i has the left lifting property with respect to all Kan fibrations.

Proof. The map ¢ has a factorization

A—sx

N

B

where j is anodyne and p is a Kan fibration. Then p is a weak equivalence as
well as a Kan fibration, and therefore has the right lifting property with respect
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to all cofibrations by Theorem 34. The lifting 6 therefore exists in the diagram
oy
a
p
—_ B

1

?

ST

It follows that 7 is a retract of j, and so ¢ has the left lifting property with
respect to all Kan fibrations. O

Corollary 36. Every Kan fibration is a fibration of simplicial sets, and con-
versely.

Theorem 37 (Quillen). Suppose that p : X — Y is a fibration. Then the
realization |p| : | X| — |Y| of p is a Serre fibration.

Proof. We want to show that all lifting problems in continuous maps

A} —— | X] (13)

l 4 l|p|

AT —— Y|

can be solved. The idea is to show that all such problems can be solved up to
homotopy of diagrams.

We can assume, first of all, that a(k) is a vertex of X. If it is not, there will
be path in | X| from a(k) to some vertex z € X, and that path extends to a
homotopy of diagrams in the usual way.

There is a simplicial set map o' : SD" A} — X such that the realization
a), : |SD"AZ| — |X| is homotopic to a|I'"| relative to the image of the cone
point k£ in |X|. This homotopy extends to a homotopy from S|I'"| to a map
B1: |SD" A™| — |Y| which restricts to |pa’| on | SD" A}|.

There is a further subdivision SD**" A™ such that the composite map £; |I'*|
is homotopic rel | SD**" A7| to the realization of a simplicial map

B':SD*TT A" Y.
It follows that there is a homotopy of diagrams from the diagram

o=+

|SD*" AR [AR] —— |X| (14)
l llpl
|SDs+r An| |F5+r| | n| 5 |Y|
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to the realization of the diagram of simplicial set morphisms

Spotr Ap 2T

L

SD*T" ——

The indicated lift exists in the diagram of simplicial set morphisms, since p is
a fibration and the induced map SD**" A? — SD**" A" is anodyne, by Lemma
26.

The lifting problem can therefore be solved for the diagram (14). The map
[T*+7| is homotopic to a homeomorphism, and the homotopy and the homeo-
morphism are natural in simplicial complexes. It follows that there is a diagram
homotopy from the diagram (14) to a diagram which is isomorphic to the orig-
inal diagram (13), so the lifting problem can be solved for that diagram. O

The following result is an easy consequence of Theorem 37 and the formalism
of categories of fibrant objects [4, I1.8.6]. Its proof completes the proof of the
assertion that the model structure on the category of simplicial sets is proper.

Corollary 38. Suppose given a pullback diagram

AXyX—>f* X

L)

A Y

where p 1s a fibration and f is a weak equivalence. Then the induced map
fe 1 Axy X — X is a weak equivalence.

Write Ex® X for the colimit of the system
X LExX LECX ...

Write 4 : X — Ex® X for the natural map. This is Kan’s Ex* construction,
applied to the simplicial set X. The following result is well known [4], but has
a remarkably easy proof in the present context.

Lemma 39. The simplicial set Ex*® X is a Kan complex.

Proof. The space |A}] is a strong deformation retract of |A"|. By Corollary 10,
there is a commutative diagram of simplicial set homomorphisms

dTAn HA"

|

sd” A"
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This means that any map o : A} — Y sits inside a commutative diagram

r

A2 sy T o pyy

|

ATL
for some r. This is true for all simplicial sets Y, and hence for all Ex" X. O

Theorem 40. The natural map 7 : X — Ex™ X is a weak equivalence, for all
simplicial sets X.

Proof. The Ex* functor preserves fibrations on account of Lemma 26, and the
map 7 : X — Ex X induces a bijection myX = mo(Ex X) for all simplicial sets
X.

Suppose that j : X — X is a fibrant model for X, and let z € X be a choice
of base point. The space of paths PX starting at z € X and the fibration
m: PX — X determines a pullback diagram

XXXPXLPX

X—X

in which the map =, is a fibration and j,. is a weak equivalence by Corollary 38.
The fibre QX for both 7 and 7, is a Kan complex, so that the map 7 : QX —
Ez>0X is a weak equivalence by Lemma 28 and Theorem 30. It follows from
Theorem 37 and the method of proof of Lemma 28 that the map 5 : X — Ex™
is a weak equivalence if we can show that the simplicial set Ex>(X x z PX) is
weakly equivalent to a point.

It is therefore sufficient to show that Ex™ Y is weakly equivalent to a point
if the map Y — * is a weak equivalence. The object Ex™ Y is a Kan complex
by Lemma 39, so it suffices to show that all lifting problems

OA" — = Ex® Y
l 7
X

can be solved if Y is weakly equivalent to a point. By an adjointness argument,
this amounts to showing that the map a. : sd” 9A™ — Y can be extended over
A" after subdivision in the sense that there is a commutative diagram

sd*tT GA? —— sd” 9A" Z—= ¥

/

sd®T" A"
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There is a commutative diagram

sd sdy oy
ikt

sdsd, sd” dA™ sdsd, Y —— Bsd,. Y

sd” A" — Y

on account of Lemma 14 and Proposition 15. The map 7 is a weak equivalence
by Corollary 13 and Lemma 14. The map ~.7 is a weak equivalence since its
realization is homotopic to a homeomorphism. It follows that the polyhedral
complex Bsd, Y is weakly equivalent to a point.

Corollary 10 and the contractibility of the space |Bsd, Y| together imply
that there is a commutative diagram

7 8d sdu oy

sd sd? sd” 9A" —— gd? sd” DA™ — sd, sd" OA™ Bsd.Y

|

sd? sd?sd” A"

The natural homotopy (7) induces a homotopy
h:sd®sd"(0A™) x A =Y
from the composite a7, y®. to a,y2. There is an obvious map
sd?sd” (DA™ x Al) — sd?sd"(9A™) x Al

which, when composed with h, and by taking adjoints gives a homotopy from
a: 0A™ Y to a map (.7« yPs)s : OA™ — Ex™®Y which extends to a map
A" — Ex*®Y. The object Ex*°Y is a Kan complex, so the map a extends over
A" as well, by a standard argument. O

Corollary 41. The map v: X — Ex X is a weak equivalence for all simplicial
sets X.

Proof. The map ¥ : X — Ex™ X is a weak equivalence, as is the map ¥ :
Ex X — Ex* X, and there is a commutative diagram

X — > Ex®X

| A7
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