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ABSTRACT. We investigate the I'-cohomology of some Hopf algebroids E.E associated with
certain periodic cohomology theories. For KU and E(1), the Adams summand at a prime p, we
show that I'-cohomology vanishes above degree 1 and deduce that these spectra admit unique
E structures. For the Johnson-Wilson spectrum E(n) with n > 1 we prove the analogous
result for the I,-adic completion of E(n).

INTRODUCTION

In homotopy theory it is often not sufficient to have homotopy ring structures on a spectrum in
order to construct for instance homotopy fixed points under a group action or quotient spectra.
For this, it is necessary to have ring structures which are not just given up to homotopy but where
these homotopies fulfill certain coherence conditions. We will prove the existence and uniqueness
of certain E, structures, i.e., spectra with a coherent homotopy commutative multiplication.

Alan Robinson developed in [23] a purely algebraic obstruction theory for E4, structures on
homotopy associative and commutative ring spectra. The device for deciding whether a spec-
trum possesses such a structure is a cohomology theory for commutative algebras, I'-cohomology.
When applied to the Hopf algebroid E.E of a spectrum FE, the vanishing of these cohomology
groups implies the existence of an E,, structure on the spectrum E which extends the given
homotopy ring structure.

We will apply Robinson’s obstruction theory to complex K-theory KU, the Adams summand
E(1), and the I,-completion of the Johnson-Wilson spectra E(n).

The existence of an Eo, structure on KU was already known: in [18] an Eo, structure for the
connected version ku was constructed and the techniques of [11, VIII] lead to an E., model for
KU. But as far as we know the uniqueness of this structure is not documented. The existence
and uniqueness for E(1) appears to be new.

By [12, 21] it is known that the Lubin-Tate spectra E, have unique E structures. In
particular, By = KU, has a unique Ey structure. The results for KU, and E(1), follow
directly from the calculation of continuous I'-cohomology.

We also prove that for each n > 1 the I,,-completion of E(n) possesses a unique E, structure;
the result for E,, then follows using ideas of [25]. However, so far we have not been able to extend
this result to E(n) itself since the I'-cohomology of E(n).E(n) appears to be very non-trivial
in positive degrees for n > 1.
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Notation, etc. All otherwise unspecified tensor products are taken over Z or a localization at
a prime p, Zy). Zp, Qp and 7 denote the rings of p-adic integers, p-adic rationals and profinite
integers respectively, while @ =7® Q.

For the topological part, we work in a good category of spectra with a symmetric monoidal
smash product, for example that of [11]. Where necessary all ring spectra will be assumed to
be fibrant.

1. TECHNICALITIES ON I'-COHOMOLOGY

In this section we discuss some technical issues related to our calculation of I'-cohomology
later in the paper.

Let k be a commutative Noetherian ring and m < k a maximal ideal. We topologize k with
respect the m-adic topology. If

(1.1) [ mF =0,

k>0

then k is Hausdorff with respect to this m-adic topology.

Now let A be a commutative unital k-algebra. The ideal mA = Am < A also generates
a topology on A which is Hausdorff if (1.1) holds. Then the unit homomorphism k — A is
automatically continuous and if A is augmented over k then the augmentation is also continuous.
Furthermore, (A, k) is a topological algebra over the topological ring k.

The m-adic completion of (A, k) is (A, k) where

Ag, = Tim A/mFA, k= lim k Jmk.

We say that (A,k) is m-adically complete if A, = A and k;, = k. When m is clear from the
context we will sometimes simplify notation by writing (4, k) = (AL, k). If (A, k) is augmented
over k then so is (A7, ko).

For a topological left module M over such a topological algebra (A,k) we may consider the
I'-cohomology HI™*(A | k; M); in practise, we will usually consider the m-adic topology on
an A-module M. By [23, 24], this I"-cohomology can be computed using a cochain complex
Hom 4 (CT(A),, M), where CT(A), is a certain complex of free left A-modules. Topologising
CY(A), with the m-adic topology, we can introduce the subcomplex

FHomy(CT(A),, M) C Homy(CY' (A),, M)

of continuous cochains whose cohomology HI™*(A | k; M) we call the continuous I'-cohomology
of A with coefficients in M. Continuous cohomology of profinite groups is described in [26, 27];
for analogues appearing in topology see [4, 5]; our present theory is modelled closely on the
presentations in those references.

Notice that the above inclusion of complexes induces a forgetful homomorphism

(1.2) p: HI'™"(A | k; M) — HI'™(A | k; M).

The continuity condition on I'-cochains is closely connected with an inverse limit which leads
to a Milnor exact sequence relating HT™ to ordinary I'-cohomology. From [14] or [15, Théoréme
2.2], recall that li;ns vanishes for s > 1. The proof of our next result is routine.
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Proposition 1.1. Let M be a complete Hausdorff topological module over A which is finitely
generated over k. Then for each n there is a short exact sequence

0— liianI‘”*l(A/mkA | k/m*; M/mk M) — HT™(A | k; M)
— lillcmHI‘”(A/mkA | k/mF; M/mFM) — 0.

This leads to some usefEI calculational results, versions of which have already appeared in [20,
21]. Notice that for any A-module M and k > 1, there is a natural reduction homomorphism
(1.3) HI™(A | k; M) —s HI™(A | k; M) — HT™(A/m* A | k /m*; M/m* M),
compatible with respect to different values of k. Here the right hand map arises from the
isomorphism

Hom 4(C"(A),, M/m*M) 2= Hom 4 .k o (CT(A/m* A),, M /m* M)

which is inherent in the construction of the complex CT(A), and natural isomorphisms

ABT %(A/mkA) = (Afmk A)Ee/mkT ®k(A/mkA).
k/m

In turn there is a homomorphism

(1.4) HI™(A | k; M) —s HI™(A | k; M) — li;nHI‘”(A/mkA | k/m¥ M/m* ).

Proposition 1.2. Let M be an A-module which is complete and Hausdorff with respect to the
m-adic topology and finitely generated over k. Then the natural homomorphism induces an
isomorphism

HT*(A | k; M) = HI™*(4 | k; M).

Proof. Since M is m-adically complete, there is a short exact sequence

0 — M — [[ M/mkFar 2% T M/mkM — 0
k k

where o is the shift-reduction map. This defines the inverse limit liin M/wFIM = M. The

cochain complex functor Hom E(CP(A\)*, ) commutes with limits, so applying it and taking
cohomology we obtain for each n a short exact sequence

0 — lim"HI™ " (A/T | k /mF; M/m* M) — HI™(A | k; k)
— lim HI™(A/T | k Jm®; M/mFM) — 0.

Now using the naturality provided by (1.3) we obtain a diagram of short exact sequences from
the exact sequence of Proposition 1.1 into the one above. As the homomorphisms at either end
are identities, the natural map HI*(A | k; M) — HI™*(A | k; M) is an isomorphism. O

Remark 1.3. Analogous ideas apply to Hochschild cohomology for which a continuous version
appears in [4].

Note that the sequence in the proof of Proposition 1.2 would be the same if one applies the
cochain functor Hom 4(CT(A),, ), thus in the cases as above we obtain an isomorphism between
HF"(A\ | k; ﬁl;) and HI'™(A4 | k; ﬁli) This leads to the following exact sequence which will be used
in Section 4.
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Proposition 1.4. There is a long exact sequence

.o — HI™Y(A | k; k/k) — HI™(A | k;k) — HI™(A | k; k) — HI™(A | k; k/k)
— HI™ (A | k; k) — -
Finally, we record a result on the I'-(co)homology of formally étale algebras that we will make

repeated use of. We call an algebra formally €étale if it is a colimit of étale algebras.
Lemma 1.5. If (A, k) is a formally étale algebra then for any A-module M,

HI, (A | k; M) =0 = H[*(4 | k; M).
Proof. By [24, Theorem 6.8 (3)], I-homology and cohomology vanishes for étale algebras. Also,
I'-homology commutes with colimits. Hence if A = colim A, with A, étale, for any A-module
r

N we have
HT.(A | k;N) = colimHT, (4, | k; N) = 0.

There is a universal coefficient spectral sequence
Ey* = Exty*(HI. (A4 | k; A), M) = HI™(4 | k; M),
which has trivial Eo-term, therefore HI'(A | k; M) = 0. O

2. LINEAR COMPACTNESS AND COHOMOLOGY

We refer to [9, chapter III] for a reasonably complete (but not very compact) discussion of
linear compactness.

Let k be a commutative Noetherian ring and m <k a maximal ideal. We will assume that k
is complete and Hausdorff with respect to the m-adic topology. For each k > 0, m* is a finitely
generated k-module while m*/mF*1 is a finitely generated k/m-module which is therefore an
Artinian k /m-module.

Recall that a topological k-module M is topologically free on a countable basis {b;};>1 if for
each element m € M and k > 1, in M/m*M considered as an k/m*-module, there is a unique

(finite) expansion
m= Tibi
i>1
with 7; € k /mk, where 6 denotes residue class modulo m*. As a consequence, m has a unique

m = Ztibi

i>1

expansion as a limit sum

where t; — 0 as ¢ — o0o; this means that for each k, there is an nj such that for ¢ > n; we have
t; € m*. The linear topology on M has basic open neighbourhoods of 0 of the form m*A. Now
the Noetherian condition on k implies that

(2.1) mFM = > tib 1 t; € mF}

i>1
Proposition 2.1. Suppose that k is complete and Hausdorff with respect to the m-adic topology
and that M is a finitely generated k-module. If L is a k-module which is complete and Hausdorff
with respect to the m-adic topology and topologically free on a countable basis then Homy (L, M)
1s linearly compact k-module.
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Proof. First note that
Homy (L, M) = Homy(L, li;nM/mkM) = liinﬂ-Comk(L, M/m*M).

If {b;};>1 is a topological basis for L, then using the Noetherian condition on k we find that
the basic neighbourhoods of 0 in L are the submodules m*L C L. From this we find that
Homy (L, M/m* M) = Homy, i (L/m* L, M/m* M)
= Homy, /i (L/m* L, M /m* M)
= H Homk/mk((k/mk)bj, M/mkM)
izl
But
Homy, /i ((k /m*)bj, M/m* M) = M/m* M
and this is Artinian, hence linearly compact. This in turn implies that the final product above is
also linearly compact. The claim now follows since limy, Homy (L, M/m* M) is a closed subspace
of the product
I Homy, e ((k /m*)b;, M/m* M) O
izl
We will apply this in the following situation.

Corollary 2.2. Suppose further that A is a topological k-algebra with respect to the m-adic
topology inherited from k and that L and M are topological A-modules. Then Homa(L, M) C
Homy (L, M) is a closed k-submodule. Hence Homy (L, M) is linearly compact.

Proof. The two continuous action maps
A ®x Homy (L, M) — Homy (L, M)
given by
a®fr—af, a®fr— f(a(-))
are equalised on Homy(L, M), so this is a closed subset of Homy(L, M). O

Let us consider what happens when L is not necessarily Hausdorff in Proposition 2.1. In this
case, Nakayama’s Lemma implies that for any f € Homy(L, M) we have

f ﬂ mfL =0.
k>1

Hence such an f factors through the quotient Ly = L/ ﬂ,@l m¥L, so we might as well replace
L by this Hausdorff quotient. Then we have

(2.2) Homy (L, M) = Homy (Lo, M).
Similarly, in Corollary 2.2, if A is not Hausdorff then setting Ao = A/ ;5 m* A we have
(2.3) Homy (L, M) = Hom g, (Lo, M).

Proposition 2.3. Let (C*,d) be a cochain complez of linearly compact and Hausdorff k-modules
where for each n, the coboundary 6™: C™ —s C™*! is continuous. Then for each n, H*(C*,¥)
is linearly compact.

Proof. Since each C™ is linearly compact and Hausdorff, the submodules Im 6" ! and Ker 6" of
C™ are both closed. Therefore

H"(C*,6) = Kerd™/Im " *. O
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3. RINGS OF NUMERICAL POLYNOMIALS

We begin by recalling the definitions and some properties of certain rings of numerical poly-
nomials. These appeared in a topological setting in [2, 7] and we follow these sources in our
discussion. We will need various basic results on these rings.

Let

A={f(w) € Qu]:Vn€Z, f(n) € Z},
A = {f(w) € Qu,w™"]: ¥n € Z— {0}, f(n) € Z[1/n]}.
We refer to these as the rings of numerical and stably numerical polynomials (over Z). If z,y

are indeterminates, we can work in any of the rings Az, y], A[z,y] or Qw, w™ ][z, y].
We will make use of the binomial coefficient functions

calu) = (1) = e tlle 2t D ¢ ¢ g

n n!

which can be encoded in the generating function
1+2)" = cn(w)a™ € Alz] C Qu][x].
n>0
Notice that this satisfies the formal identity

(3-1a) (1+2)°(1+y)* =1+ (z+y+zy)”.

Thus we have
(3.1b) em(w)ep (w) = <m + n) Cm+n(w) + (terms of lower degree) (m,n > 0).
m

Theorem 3.1. ([1, 7])
(a) A is a free Z-module with a basis consisting of the c,(w) for n > 0.
(b) A® is the localization AS = Alw™!] and it is a free Z-module on a countable basis.

Describing explicit Z-bases for A® seems to be a non-trivial exercise; see [10, 16]. On the other
hand, the multiplicative structure of the Z-algebra AS is in some ways more understandable.
Our next result describes some generators for AS.

Theorem 3.2. [2, 7]

(a) The Z-algebra A is generated by the elements cpy(w) with m > 1 subject to the relations

of (3.1).
(b) The Z-algebra, A® is generated by the elements w™! and cy,(w) with m > 1.
(c) We have

A®Q=Qu], A ®Q=Quww

It is much easier to work with the localizations of these rings at a prime p > 2, A(,) and Afp).

(3.2a) Ap) = {f(w) € Q] : Vu € Zy,), f(u) € Zy)},
(3.2b) Al ={f(w) € Qu] : Vu € Zé) f(u) € Zp}.
Theorem 3.3. [1, 7]

a) Ap) is a free Zp)-module with a basis consisting of the monomials in the binomial
coefficient functions

w0 cp(w)"™ cpa (W)™ -+ - cpe(w)™,

where r, =0,1,...,p— 1.
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(b) The Z(p)-algebra A, is generated by the elements cym(w) with m > 0 subject to relations
of the form
cpm (w)P — epm (W) = pdm1(w),

where dm11(w) € Ap) has deg dpmi1(w) = pmtt

wody (w) da(w)"? - - - dyg(w)",

. In fact the monomials

where ry, = 0,1,...,p—1, form a basis of A, over Zy) and are subject to multiplicative
relations of the form

(W) — dm(w) = pdp 1 (w),

where degdy, | (w) = p™*!.

(c) Al is the localization A, = A, [w™'] and it is a free Z(,)-module on a countable basis.
(d) The Zy)-algebra, Afp) is generated by the elements w and e, (w) € A?p) form > 1
defined recursively by
wP! — 1 = pe;(w), em(w)P — ey (w) = pepy1(w) (m > 1).
Corollary 3.4. Let p be a prime.
(a) As Fp-algebras,
A/pA = TFplcpm(w) : m = 0]/ (cpm (w)P — cpm(w) : m > 0),
AS [phS = Fyw, em(w) : m = 0]/(wP™! — 1, e (w)P — ep(w) : m > 1).
Hence these algebras are formally étale over IF,.
(b) Forn > 1, A/p™A and A® /p" A’ are formally étale over Z/p™.

(c) The p-adic completions Ap = lim, A/p" A and A} = lim, A°/p"A® are formally étale
over L.

Proof. Parts (b) and hence (c) can be proved by induction on n > 1 using the infinite dimen-
sional Hensel lemma of [4, 3.9]. The case n = 1 is immediate from (a). Suppose that we have
found a sequence of elements sg, s1,..., Sk, ... € A(p) satisfying

P —sm =0 (modp™) (m=0).
Taking s/, = s, + (sh, — smm) we find that
S;np — 8m = (sm + (85, — sm))’ — (sm + (55, — 5m))
= b, — (3m + (sh, — sm)) (mod p™*1)
=0.
Hence for every n we can inductively produce such elements s, m € A(,) for which

A/p"A =Z/p"[snm :m = 0]/(s}, ;, — $nm : m > 0)

— ® Z /9" [$n,m]/ (5 m — Snym)-

m>0

Now passing to p-adic limits we obtain elements s,, = lim,_ o0 Sn,m € Ap for which
sb —sm=0.
In these cases we obtain for the module of 1-forms

1 _ _ 1
Qaspn )/ jon = 0=, 1z, =
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There are two natural choices of augmentation for A, namely evaluation at 0 or 1,
eriA—Z; e f(w) = £(0),
xt A—Z; exf(w)=f(1).
For our purposes, the latter augmentation will be used. Notice that there is a ring automorphism
e A— A of(w) = fw+1)

for which e, = £, so these augmentations are not too dissimilar. In fact, they correspond
to different bialgebra structures on A, one of which extends to a Hopf algebra structure on AS.
There are also coproducts

Vit A AR Yy f(w)

flwel+lew),

Yt A—ARA  Puf(w) = flwew),

Pt A — A @ A% iy f(w) = f(wew),
and antipodes

X+1 A —r A x+f(w) = f(—w),

Xt A — A% Xxf(w) = flw™).

Theorem 3.5. (A, ¢4, x+,e+) and (A%, 1y, xx,ex) are cocommmutative Hopf algebras over Z,
while (A, ,e4) is a cocommutative bialgebra.

4. THE I'-COHOMOLOGY OF NUMERICAL POLYNOMIALS

Recall that z/Z and Zp/Zp) for any prime p are torsion-free divisible groups, so they are
both Q-vector spaces which have the same cardinality and (uncountable) dimensions; thus they
are isomorphic. Similarly, we have Z/ 7= @/ Q and Zp/Z ) = Q, /Q.

As remarked earlier, we will use the augmentations ey : A — Z and £« : A> — 7Z and their
analogues for the p-localized versions.

Theorem 4.1. We have
Z)7 ifn=1
HI™(A° | 7:7) = H(A | 2:7) = 4 /2 Hn=1,
0 otherwise.

For a prime p,
ifn=1,
otherwise.

HI" (A%, | Zpy Zp) = HI" (Agp) | Z); Z(p)) = {op v

Proof. Since
HO*(Alw '] | A;Z) = 0 =HI™ (A [w '] | Ap); Z
the Transitivity Theorem [24, 3.4] implies that there are 1somorphlsms
HI*(A | Z;Z) = HT™*(Alw™!] | Z;Z) = HT*(A® | Z;Z),
HT" (&) | Zp); Zp) = HE (A [0 ] | Zp); Zip)) = HI™(Ay) | Zyi Zip)),
hence it suffices to prove the result for A and Ay).

For each natural number n, on writing n = Hp p°"dp " where the product is taken over all
primes p, the Chinese Remainder Theorem gives splittings

Z/n=[z/p"%", Z=]]2
p b
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Since HI'(A | Z; ) commutes with limits, by Proposition 1.2 we have

HL*(A | 2;Z) = [[HD(A | Z;Zp) = [ HT* (A | Zp; Zy).

P P
Now by Corollary 3.4, for each k£ > 1 we have
HI*(A/p* A | Z/p% Z/p%) = 0.
Therefore we obtain
HT*(Ap | Zp; Zp) = lim HI*(A/p" A | Z/p" Z/p") = 0 = lim HT* (4/p* A | Z/p" Z/p").
Now for each n, Proposition 1.4 implies that
HI™ (Ap) | Zipy; Zip) = HO" (M) | Zipy; Zp/ L)),
HI"(A | Z;Z) = HT" YA | Z;Z/ 7).
By [21, 4.1] and the fact that Z,/Z,) and i/Z are -vector spaces, we have
HT™ (A | Zp); Zp/ Zp)) = AT*(A® Q | @ Zyp/Z () = HT™(Qw] | Qs Zyp/ Zp)) = Zp/ Z(p)

and

HI™*(A | Z;Q/Q) = HI*(A® Q| @ Z/Z) = HI*(Q[w] | @ Z/Z) = Z/Z.
Thus we obtain
Zp/ZLpy ifn=1,

HI"(Ap) | Zpy; Z(p)) =
(Ap) | Z(p); Zp)) {0 otherwise,

and

7|7 ifn=1,

HI'M(A | Z;Z) =
0 otherwise.

5. THE RING OF Z/(p — 1)-INVARIANTS IN Alp)

In this section, p always denotes an odd prime.
Since polynomial functions ZE;) — Q are continuous with respect to the p-adic topology

they extend to continuous functions Z,; — Qp; such functions which also map ZE; ) into Zy,)
give continuous functions Z; — Z,. Hence we can regard Al as a subring of [w, w!]
which in turn can be viewed as a space of continuous functions on the p-adic units Z'

There is a splitting of topological groups
Zy =7[/(p—1) x (1+pZp) (p=3),

where Z /(p — 1) identifies with a subgroup generated by a primitive (p — 1)-st root of unity w.
There is also a bicontinuous isomorphism 1 + pZj, = Z,,.
For an odd prime p, the group (w) & Z/(p — 1) acts continuously on Q,[w,w ] by

w- f(w) = f(ww)
and it is immediate that this action sends elements of Asp to continuous functions Z;f — Zp.
It then makes sense to ask for the subring of Afp) fixed by this action, “’A?p).

Recall the elements e, (w) of Theorem 3.3(e). We will write &, (w) for w™?

em(w).
Proposition 5.1. As a Z)-algebra, “’A?p) is generated by the elements wP~! and ey (w) for

m > 1.
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Proof. Tt is clear that
w@[wa w_l] = @[wp_l ) w—(p—l)]-
Also, by construction of the e, (w),
em(w) € “AY,) C QP! w Y],

Consider the multiplicative idempotent

By: Quw,w™] — Quw,w™']; E,f(w)=—= f(ww).

Then we have
“Ap) = Buly)-
Each element f(w) € Qw,w™!] has the form
f(w) = fo(wP™) +wfr(wP™h) + -+ w2 a(wP™)
where fi(z) € Q[z, z], hence
By f(w) = fo(w™).
From this it easily follows that “’A?p) is generated as an Z)-algebra by the stated elements. [

Corollary 5.2. The following hold.
(a) As Fp-algebras,
YAl /(Y Alpy) = Fplw, em(w) : m > 1]/ (WP~ = 1,8n(w)P — en(w) : m > 1).
Hence this algebra is formally étale over I,.
(b) Forn>1, “’Afp) /p"(“’Afp)) is formally étale over Z/p".
(c) The p-adic completion “A; = limj, “Alp) /P"(“A%)(p) is formally étale over Zy.

These results allow us to calculate the I'-cohomology of “’A?p) over Zp, directly as was done
above for A®. Alternatively, we may use the fact that the extension Afp) / “’A?p) is étale since it
has the form B/A, where B = A[t]/(t*~! — v) for a unit v € A where A is a Z,)-algebra. We
can now determine the I'-cohomology of “’Afp) since the Transitivity Theorem of [24, 3.4] gives

Proposition 5.3. For an odd prime p,
A (“Afy) | Zipys Zp) = HI™ (Ay) | Zp); Zp))-
6. APPLICATIONS TO Ey, STRUCTURES ON K-THEORY

Robinson [23] has developed an obstruction theory for Eo structures on a homotopy com-
mutative ring spectrum E. Provided E satisfies a Kiinneth theorem and a universal coefficient
theorem for E,E (both are true if E,E is E, projective), then the obstructions lie in groups
HI™2~"(E.E | Ey; Ey), while the extensions are determined by classes in HI12-"(E,E |
E,; E.); here the bigrading (s,t) involves cohomological degree s and internal degree ¢t. More-
over, relevant values of n are for n > 4.

We want to apply this to the cases of complex KU-theory and the Adams summand E(1) of
KUy at a prime p. Recall that

KU, =Z[t,t7Y, KUy, =Zg)t,t7 ], E(1)s = Zglu,u '],

where ¢t € KUz and u € E(1)y(p—1) The next result implies that the relevant conditions men-
tioned above are both satisfied for KU and E(1).
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Proposition 6.1. We have
KU\KU = A®, KU(p), KUy = Afp), E(1)0E(1) = “’Afp).
Hence,
KU.KU =2 KU, ® A*, KUy KUy = KUy), ® Afp), E(1)E(1) =2 E(1).Q" f‘p).

Thus we may use Theorem 4.1 to show that

Theorem 6.2. For a prime p and n > 4,
HI"2~"(KU,KU | KU,; KU,) =0 = HT" >~ (KU,KU | KU,; KU,),
HI™? KU,y KUy | KUp) ;KU ) =0=HI" 2 ""(KUy,) KUy | KUy s KUg),),
HE™?""(B(1).E(1) | E(1)s; B(1)y) = 0 = HI"" 227 (E(1),E(1) | B(1)s; E(1).).

Hence KU, KU(y), and E(1) each have a unique Ey, structure.

7. Ex STRUCTURES ON THE I,,-ADIC COMPLETION OF E(n)

In this section we describe what we can prove about E, structures on the I,,-adic completion
of Johnson-Wilson spectrum E(n) for a prime p and n > 1.
The coefficient ring

E(n). = Zp[v1, .-, Vn-1, Vn, 0;1]
is Noetherian and contains the maximal ideal
I, = (p,v1,-..,9p—1) <E(n)x.

Here the v; denote the images of the Araki generators of BP, and we sometimes write vy = p.

There is a commutative ring spectrum E(n) for which the coefficient ring E/(\n)* is the I,-adic
completion of E(n),, i.e., its completion at I,. It is known from [8, 13| that E(n) is the K (n)-

—

localization of E(n). We also know from [4] that for each prime p, E(n) possesses a unique Ay
structure and the canonical map l?(;) — JE(;)/ I, ~ K(n) to the n-th Morava K-theory is a
map of Ay ring spectra for any of the Ay, structures on K(n) shown to exist in [22]. Actually
these results were only claimed for odd primes but the arguments also work for the prime 2.

In [13, §1], Hovey and Strickland asked whether one this result can be improved by show-
ing that l?(;) has a unique Eo, structure. We will give an elementary proof which relies on
Robinson’s obstruction theory [23].

For the completed Johnson-Wilson spectrum E/’(;) we have a continuous universal coefficient
theorem, i.e., our obstruction groups live in the continuous E/(\n)—cohomology of (Xm)+ As,,
E"™ where X, is some topological space arising as the filtration quotient of an E., operad.
These cohomology groups can be identified with the continuous l?(;) ,-homomorphisms from
the corresponding E/(\n)—homology groups (compare [23, 5.4] and [4, §1]). Thus the obstruction
groups for an E, structure on 1?(;) live in continuous I'-cohomology HI'*. Here the long exact
sequence of Proposition 1.2 becomes

0 — lim! B L (B(n). E(n)/ I} | E(n). /T B(n). /%)

— HTYH(B(n),E(n) | B(n). /1 E(n),)
— lim HI*(E(n)+E(n)/I¥ | E(n)./IF; E(n),/IF) = 0.
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Theorem 7.1. The T-cohomology of E(n),E(n)/I¥ over E(n),/IF is trivial,

HI* (B(n). E(n)/1} | B(n). /15 E(n),/15) = 0.

Proof. We will use that the algebra E(n),E(n)/IF is formally étale.
We can now apply the infinite dimensional Hensel lemma [4, 3.9] (see the proof of Corol-
lary 3.4) to split E(n),E(n)/I¥ into an infinite tensor product of E(n),/Ik-algebras,

E(n)B(n)/1E = Q) B(n)./I£]s;)/ (vns] — 8 s;).

j>1

We can write E(n).E(n)/I¥ as a colimit of finite tensor products,

B(n).B(n) T} = colim Q) B(n). /T5[s;)/ (onsg — o s5).

We claim that each algebra E(n)*/I,’:[sj]/(vnsé?n —oF s;) is étale over E(n),/I¥. Notice that it
is flat over E(n),/IF and is finitely generated by s;. As the ground ring E(n),/I* is Noetherian,
the only thing that remains to be shown is that the module of Kahler differentials is trivial.

The Kéhler differentials are generated by the symbol ds;, but in E(n).E(n)/I¥ we have the
Vo

relation v, s? = vf, sj. The element v, is a unit in the ring E(n),/I, and thus we can deduce

J

dsj = v, p]d( I;n) Pk x4 I; dsj.

In the quotient E(n)./I¥, p* is zero. So either n already exceeds k or we can iterate this
reformulation as long as the power of p is big enough to make ds; vanish. By Lemma 1.5, we
now have

HTy.(E(n).E(n)/I£ | E(n)./I% E(n),/I}) = 0 = HT%* (B(n).E(n)/I% | E(n)./I% E(n),/I}),
proving Theorem 7.1. O

Combining this result with the Milnor exact sequence for I'-cohomology groups we obtain the
following result.

Theorem 7.2. For p a prime and n > 1, the spectrum E( ) possesses a unique Eo structure.

To extend this result to cover E(n) seems not to be straightforward since the I'-cohomology
of E(n)«E(n) appears to be non-trivial in positive degrees. We expect to return to this issue in
future work.

8. SOME REMARKS ON ANDRE-QUILLEN COHOMOLOGY

In this section we remark that our methods lead to computations of André-Quillen cohom-
ology for rings of numerical polynomials and other examples related to periodic cohomology
theories.

Recall the definitions of André-Quillen homology and cohomology from [17, 27] where it is
denoted D,( ) and D,( ). In particular, for a commutative algebra A over a commutative ring
k and and A-module M, when A is smooth over k we have

(8.1) AQ.(A|k; M) = Q@ M, AQ*(A|k; M) =Dery(4, M),

concentrated in degree 0.
First we record the André-Quillen homology and cohomology of A and A®.
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Theorem 8.1. We have

s . — ; = Q ifn:()’

AQu(A | Z:2) = AQu(A | Z:2) =3
n s . _ n . — @/Q ifn:l’
AQMA® [ Z;2) = AQ™(A | Z;Z) = 0 if n # 1.

Using the ideas of Section 1, we can also deduce
Theorem 8.2. Forn>1 and k > 1, we have

AQ.(E(n)«E(n)/I} | E(n)«/In; B(n)./I}) =

AQ*(E(n).E(n)/If | E(n)./I§; E(n). /1),
AQ,(E(n).E(n);, | B(n),; B(n),) = .

—_———

0=
0 = AQ*(E(n).E(n)], | E(n),; E(n),).

Further calculation of André-Quillen homology and cohomology for E(n).E(n) over E(n), is
complicated and we will return to it in future work.
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