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Abstract

The class of logconcave functions in Rn is a common generalization of
Gaussians and of indicator functions of convex sets. Motivated by the
problem of sampling from a logconcave density function, we study their
geometry and introduce a technique for “smoothing” them out. This leads
to an efficient sampling algorithm (by a random walk) with no assump-
tions on the local smoothness of the density function. After appropriate
preprocessing, the algorithm produces a point from approximately the
right distribution in time O∗(n4), and in amortized time O∗(n3) if many
sample points are needed (where the asterisk indicates that dependence
on the error parameter and factors of log n are not shown).

1 Introduction

Virtually all known algorithms to sample from a high dimensional convex body
K (i.e., to generate a uniformly distributed random point in K) work by defining
a Markov chain whose states are the points of K (or a sufficiently dense subset
of it), and whose stationary distribution is uniform. Running the chain long
enough produces an approximately uniformly distributed random point. The
most thoroughly analyzed versions are the lattice walk [4, 7], the ball walk
[12, 10, 9] and the hit-and-run walk [21, 22, 5, 13].

For what distributions is the random walk method efficient? These sampling
algorithms can be extended to any other (reasonable) distribution in Rn, but
the methods for estimating their mixing time all depend on convexity proper-
ties. A natural class generalizing uniform distributions on convex sets is the
class of logconcave distributions. For our purposes, it suffices to define these as
probability distributions on the Borel sets of Rn which have a density function
f and the logarithm of f is concave. Such density functions play an important
role in stochastic optimization [19] and other applications [8]. We assume that
the function is given by an oracle, i.e., by a subroutine that returns the value
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of the function at any point x. We measure the complexity of the algorithm by
the number of oracle calls.

The analyses of the lattice walk and ball walk have been extended to log-
concave distributions [1, 6], but these analyses need explicit assumptions on the
Lipschitz constant of the distribution. In this paper, we avoid such assumptions
by considering a smoother version of the function in the analysis. The smoother
version is bounded by the original, continues to be logconcave, and has almost
the same integral, i.e. it is almost equal at most points.

Our main result is that after appropriate preprocessing (bringing the distri-
bution into isotropic position), the ball walk (with a Metropolis filter) can be
used to generate a sample using O∗(n4) oracle calls. We get a better bound of
O∗(n3) if we consider a warm start. This means that we start the walk not from
a given point but from a random point that is already quite well distributed in
the sense that its density function is at most a constant factor larger than the
target density f . While this sounds quite restrictive, it is often the case (for ex-
ample, when generating many sample points, or using a “bootstrapping” scheme
as in [10]) that this bound gives the actual cost of the algorithm per random
point. We also give an O∗(n5) algorithm for bringing an arbitrary logconcave
distribution to isotropic position. Our amortized bound for sampling logcon-
cave functions matches the best-known bound for the special case of sampling
uniformly from a convex set.

Our analysis uses various geometric properties of logconcave functions; some
of these are new while others are well-known or folklore, but since a reference
is not readily available, we prove them in section 3.

A sequel to this paper [15] analyzes the hit-and-run random walk.

2 Results

2.1 Preliminaries.

A function f : Rn → R+ is logconcave if it satisfies

f(αx+ (1− α)y) ≥ f(x)αf(y)1−α

for every x, y ∈ Rn and 0 ≤ α ≤ 1. This is equivalent to saying that the support
K of f is convex and log f is concave on K.

An integrable function f : Rn → R+ is a density function, if
∫
Rn f(x) dx = 1.

Every non-negative integrable function f gives rise to a probability measure on
the measurable subsets of Rn defined by

πf (S) =
∫

S

f(x) dx
/∫

Rn
f(x) dx .

The centroid of a density function f : Rn → R+ is the point

zf =
∫

Rn
f(x)x dx;
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the covariance matrix of the function f is the matrix

Vf =
∫

Rn
f(x)xxT dx

(we assume that these integrals exist).
For any logconcave function f : R → Rn, we denote by Mf its maximum

value. We denote by
Lf (t) = {x ∈ Rn : f(x) ≥ t}

its level sets, and by

ft(x) =
{
f(x), if f(x) ≥ t,
0, if f(x) < t,

its restriction to the level set. It is easy to see that ft is logconcave. In Mf and
Lf we omit the subscript if f is understood.

A density function f : Rn → R+ is isotropic, if its centroid is 0, and its
covariance matrix is the identity matrix. This latter condition can be expressed
in terms of the coordinate functions as

∫

Rn
xixjf(x) dx = δij

for all 1 ≤ i, j ≤ n. This condition is equivalent to saying that for every vector
v ∈ Rn, ∫

Rn
(v · x)2f(x) dx = |v|2.

In terms of the associated random variable X, this means that

E(X) = 0 and E(XXT ) = I.

We say that f is near-isotropic up to a factor of C, if (1/C) ≤ ∫ (uTx)2 dπf (x) ≤
C for every unit vector u. We extend the notions of “isotropic” and “non-
isotropic” to non-negative integrable functions f , in which case we mean that
the density function f/

∫
Rn f is isotropic or near-isotropic.

Given any density function f with finite second moment
∫
Rn ‖x‖2f(x) dx,

there is an affine transformation of the space bringing it to isotropic position,
and this transformation is unique up to an orthogonal transformation of the
space.

For two points u, v ∈ Rn, we denote by d(u, v) their euclidean distance. For
two probability distributions σ, τ on the same underlying σ-algebra, let

dtv(σ, τ) = sup
A

(σ(A)− τ(A))

be their total variation distance.
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2.2 The random walk.

Let f be a logconcave distribution in Rn.
The ball walk (with a Metropolis filter) to sample from f is defined as follows:

• Pick a uniformly distributed random point y in the ball of radius r centered
at the current point.

• Move to y with probability min(1, f(y)/f(x)); stay at the current point
with the remaining probability.

In connection with the second step, we have to discuss how the function is
given: we assume that it is given by an oracle. This means that for any x ∈ Rn,
the oracle returns the value f(x). (We ignore here the issue that if the value
of the function is irrational, the oracle only returns an approximation of f .) It
would be enough to have an oracle which returns the value C · f(x) for some
unknown constant C > 0 (this situation occurs in many sampling problems e.g.
in statistical mechanics and simulated annealing).

For technical reasons, we also need a “guarantee” from the oracle that the
centroid zf of f satisfies ‖zf‖ ≤ Z and that all the eigenvalues of the covariance
matrix are between r and R, where Z, r and R are given positive numbers.

Our main theorem concerns functions that are near-isotropic (up to some
fixed constant factor c). In section 2.4, we discuss how to preprocess the function
in order to achieve this.

Theorem 2.1 If f is near-isotropic, then it can be approximately sampled in
time O∗(n4) and in amortized time O∗(n3) if more than n sample points are
needed; any logconcave function can be brought into isotropic position in time
O∗(n5).

Theorem 2.1 is based on the following more explicit result about a “warm
start”.

Theorem 2.2 Let f be a logconcave density function in Rn that is near-
isotropic up to a factor of c. Let σ be a starting distribution and let σm be
the distribution of the current point after m steps of the ball walk. Assume that
there is a D > 0 such that σ(S) ≤ Dπf (S) for every set S. Then for

m > 1010c2D2n
3

ε2
log

1
ε
,

the total variation distance of σm and πf is less than ε.

2.3 Isoperimetry.

As in all papers since [4], bounding the mixing time depends on a geometric
isoperimetric inequality.
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We will use an extension of Theorem 5.2 from [10] to logconcave functions.
For a logconcave density function f , define

M(f) = Ef (|x− zf |).

Theorem 2.3 Let f be a logconcave density function on Rn. For any partition
of Rn into three measurable sets S1, S2, S3,

πf (S3) ≥ ln 2
M(f)

d(S1, S2)πf (S1)πf (S2).

Note that for an isotropic density function in Rn, M(f) ≤ √n.

2.4 Transforming to isotropic position.

The results of section 2.2 above use the assumption that the given density func-
tion is near-isotropic. To bring the function to this position can be considered
as a preprocessing step, which only needs to be done once, and then we can
generate any number of independent samples at the cost of O∗(n3) or O∗(n4)
oracle calls per sample, as described earlier. But the problem of transforming
into near-isotropic position is closely intertwined with the sampling problem,
since we use sampling to transform an arbitrary logconcave density function
into near-isotropic position.

In this section we describe an algorithm to achieve near-isotropic position.
The following theorem is a consequence of a generalized Khinchine’s Inequality
(Theorem 3.17) and Rudelson’s theorem [20] and is the basis of the algorithm.

Theorem 2.4 Let f : Rn → R+ be an isotropic logconcave function. Let
v1, v2, . . . , vm be independent samples from πf with

m = 100 · n
η2
· log3 n

η2
.

Then

E
∥∥∥ 1
m

m∑

i=1

viv
T
i − I

∥∥∥ ≤ η.

A corollary of this result is the following:

Corollary 2.5 Let f : Rn → R+ be a (not necessarily isotropic) logconcave
function. Let v1, v2, . . . , vm be independent samples from πf (where m is defined
as above). Compute the matrices V = 1

m

∑m
i=1 viv

T
i and W = V −1/2. Then with

probability at least 1− (η/δ), we have

‖V − Vf‖ < δ,

and hence the transformed function f̂(x) = f(Wx) is near-isotropic up to a
factor of 1/(1− δ).
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The error probability of η/δ is not good enough for us; we cannot choose η
small because the number of sample points m depends badly on η. The following
trick reduces the error probability for a moderate cost:

Algorithm A.

• Choose η = 1/100 and δ = 1/10.

• Repeat the construction in Corollary 2.5 q times, to get q matrices
V (1), . . . , V (q).

• For each of these matrices V (i), count how many other matrices V (j) satisfy

‖V (j) − V (i)‖) < .2. (1)

If you find one for which this number is larger than q/2, return this as an
approximation of Vf . Otherwise, the procedure fails.

Theorem 2.6 With probability at least 1−(4/5)q, Algorithm A returns a matrix
V satisfying ‖V − Vf‖ < .3.

Proof. For each 1 ≤ j ≤ k, we have

P
(
‖V (j) − Vf‖) < .1

)
> .9. (2)

Hence (by Chernoff’s inequality) with probability at least 1− (4/5)k, more than
half of the V (j) satisfy (2). If both V (i) and V (j) satisfy (2), then they clearly
satisfy (1), and hence in this case algorithm cannot fail. Furthermore, if V (i)

is returned, then by pigeon hole, there is a j such that both (2) and (1) are
satisfied, and hence ‖V (i) − Vf‖ < .3 as claimed. ¤

Now the algorithm to bring f to near-isotropic position can be sketched as
follows. Define

Tk =
Mf

2(1+1/n)k
k = 0, 1, . . .

The algorithm is iterative and in the k-th phase it brings the function gk = fTk
into near-isotropic position.

Algorithm B.

• Choose p = Cn logn and q = log(p/ε).

• Bring the level set {x : f(x) ≥M/2} to near-isotropic position (using e.g.
the algorithm from [10]).

• For k = 0, 1, . . . , p, compute an approximation V of Vgk using Algorithm
A, and apply the linear transformation V −1/2.
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By Corollary 3.15, we have that after phase k, not only gk is approximately
isotropic, but also gk+1 is near-isotropic; in addition a random sample from gk
provides a warm start for sampling from gk+1 in the next phase. So we need to
walk only O∗(n3) steps to get a point from (approximately) gk+1. By Lemma
3.11 together with Theorem 3.9(e), the measure of the function outside the set
{x : f(x) ≥M/TCn logn} is negligible and so Cn log n phases suffice to bring f
itself to near-isotropic position.

The above description of the algorithm suits analysis, but is not how one
implements it. We don’t transform the body, rather, we transform the euclidean
norm of the space. More precisely, we maintain a basis u1, . . . , un, which is
initialized as ui = ei in phase 0. The ui are fixed throughout each phase. To
generate a line through the current point, we generate n independent random
numbers X1, . . . , Xn from the standard Gaussian distribution, and compute the
vector X1u1 + . . . Xnun. The line we move on will be the line containing this
vector.

At the end of phase k, we have generated m independent random points
v1, . . . , vm from the distribution fTk+1 . We compute the matrix W =(

1
m

∑m
i=1 viv

T
i

)1/2 and update the vectors ui by letting ui = Wei.
Each sample (after the first) takes O∗(n3) oracle calls and hence each phase

takes O∗(n5) calls. The overall complexity of the algorithm is O∗(n5) oracle
calls.

3 The geometry of logconcave functions.

In this section we state geometric properties of logconcave functions that are
used in the analysis of our algorithm. Most of these facts are well-known or even
folklore, but references are not easy to pin down. Since the constants involved
are needed to formalize our algorithm (not only to analyze it), we found that
we have to include this section containing the proofs with explicit constants.

We start with some definitions. The marginals of a function f : Rn → R+

are defined by

G(x1, . . . , xk) =
∫

Rn−k
f(x1, . . . , xn) dxk+1 . . . dxn.

The first marginal

g(t) =
∫

x2,...,xn

f(t, x2, . . . , xn) dx2 . . . dxn

will be used most often. It is easy to check that if f is in isotropic position,
then so are its marginals. The distribution function of f is defined by

F (t1, . . . , tn) =
∫

x1≤t1,...,xn≤tn
f(x1, . . . , xn) dx1 . . . dxn.

Clearly, the product and the minimum of logconcave functions is logconcave.
The sum of logconcave functions is not logconcave in general; but the following
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fundamental properties of logconcave functions, proved by Dinghas [3], Leindler
[16] and Prékopa [17, 18], can make up for this in many cases.

Theorem 3.1 All marginals as well as the distribution function of a logcon-
cave function are logconcave. The convolution of two logconcave functions is
logconcave.

3.1 One-dimensional functions

Let g : R+ → R+ be an integrable function such that g(x) tends to 0 faster than
any polynomial as x→∞. Define its moments, as usual, by

Mg(n) =
∫ ∞

0

tng(t) dt.

Lemma 3.2 (a) The sequence (Mg(n) : n = 0, 1, . . .) is logconvex.
(b) If g is monotone decreasing, then the sequence defined by

M ′g(n) =
{
nMg(n− 1)), if n > 0,
g(0), if n = 0

is also logconvex.
(c) If g is logconcave, then the sequence Mg(n)/n! is logconcave.
(d) If g is logconcave, then

g(0)Mg(1) ≤Mg(0)2.

(i.e., we could append g(0) at the beginning of the sequence in (c) and maintain
logconcavity).

Proof. (a) We have for every real x

0 ≤
∫ ∞

0

(t+ x)2tng(t) dt = x2Mg(n) + 2xMg(n+ 1) +Mg(n+ 2).

Hence the discriminant of the quadratic polynomial on the right hand side must
be non-positive:

Mg(n+ 1)2 −Mg(n)Mg(n+ 2) ≤ 0,

which is just the logconvexity of the sequence.
(b) We may assume (by approximating) that g is differentiable. Then −g′

is nonnegative, which by (a) implies that the sequence M−g′(n) is logconvex.
Integrating by parts,

M−g′(n) = −
∫ ∞

0

tng′(t) dt = −[tng(t)]∞0 +
∫ ∞

0

ntn−1g(t) dt = nMg(n− 1)

for n ≥ 1, and

M−g′(0) = −
∫ ∞

0

g′(t) dt = g(0).
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This proves (b).
(c) Let h(t) = βe−γt be an exponential function (β, γ > 0) such that

Mh(n) = Mg(n) and Mh(n+ 2) = Mg(n+ 2)

(it is easy to see that such an exponential function exists). Then we have
∫ ∞

0

tn(h(t)− g(t)) dt = 0,
∫ ∞

0

tn+2(h(t)− g(t)) dt = 0.

From this it follows that the graph of h must intersect the graph of g at least
twice. By the logconcavity of g, the graphs intersect at exactly two points a < b.
Furthermore, h ≤ g in the interval [a, b] and h ≥ g outside this interval. So the
quadratic polynomial (t−a)(t−b) has the same sign pattern as h−g, and hence

∫ ∞
0

(t− a)(t− b)tn(h(t)− g(t)) dt ≥ 0.

Expanding and rearranging, we get
∫ ∞

0

tn+2(h(t)−g(t)) dt+ab
∫ ∞

0

tn(h(t)−g(t)) dt ≥ (a+b)
∫ ∞

0

tn+1(h(t)−g(t)) dt.

The left hand side is 0 by the definition of h, so the right hand side is nonpositive,
which implies that

Mh(n+ 1) =
∫ ∞

0

tn+1h(t) dt ≤
∫ ∞

0

tn+1g(t) dt = Mg(n+ 1).

In other words, this shows that it is enough to verify the inequality for expo-
nential functions. But for these functions, the inequality holds trivially.

(d) The proof is similar and is left to the reader. ¤

Lemma 3.3 Let X be a random point drawn from a one-dimensional logconcave
distribution. Then

P(X ≥ EX) ≥ 1
e
.

Proof. We may assume without loss of generality that EX = 0. It will be con-
venient to assume that |X| ≤ K; the general case then follows by approximating
a general logconcave distribution by such distributions.

Let G(x) = P(X ≤ x). Then G is logconcave, monotone increasing, and we
have G(x) = 0 for x ≤ −K and G(x) = 1 for x ≥ K. The assumption that z is
the centroid implies that ∫ K

−K
xG′(x) dx = 0,

which by partial integration means that
∫ K

−K
G(x) dx = K.
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We want to prove that G(0) ≥ 1/e.
The function lnG is concave, so it lies below its tangent at 0; this means that

G(x) ≤ G(0)ecx, where c = G′(0)/G(0) > 0. We may choose K large enough so
that 1/c < K. Then

G(x) ≤
{
G(0)ecx if x ≤ 1/c,
1 if x > 1/c,

and so

K =
∫ K

−K
G(x), dx

≤
∫ 1/c

−∞
G(0)ecx dx+

∫ K

1/c

1 dx

=
eG(0)
c

+K − 1
c
,

which implies that G(0) ≥ 1/e as claimed. ¤

Lemma 3.4 Let g : R→ R+ be an isotropic logconcave density function.
(a) For all x, g(x) ≤ 1.
(b) g(0) ≥ 1

8 .

Proof. (a) Let the maximum of g be attained at a point z, and suppose that
g(z) > 1. For i = 0, 1, 2, let

Mi =
∫ ∞
z

(x− z)i g(x) dx,

Ni =
∫ z

−∞
(z − x)i g(x) dx.

Clearly

M0 +N0 = 1, N1 −M1 = z, M2 +N2 = 1 + z2.

So

M2 +N2 = (M0 +N0)2 + (M1 −N1)2

= (M0 −M1)2 + (N0 −N1)2 + 2(M0N0 −M1N1) + 2(M0M1 +N0N1)
≥ 2(M0M1 +N0N1),

since by Lemma 3.2(d), we have M1 ≤ M2
0 /g(z) ≤ M0, and similarly N1 ≤

N2
0 /g(z) ≤ N0.

On the other hand, by Lemma 3.2(c) and (d), we have

M2 ≤ 2M2
1 /M0 ≤ 2M1M0/g(z) < 2M1M0, N2 < 2N1N0,
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and so
M2 +N2 < 2(M0M1 +N0N1),

a contradiction proving (a).
(b) We may assume that g(x) is monotone decreasing for x ≥ 0. Let g0 be

the restriction of g to the nonnegative semiline. By Lemma 3.2(b),

Mg0(0) ≤ g(0)2/3(3Mg0(2))1/3.

Here trivially Mg0(2) ≤ Mg(2) = 1, while Lemma 3.3 implies that Mg0(0) ≥
(1/e)Mg(0) = 1/e. Substituting these bounds, we get

g(0) ≥
√

1
3e3
≥ 1

8
.

¤
Lemma 3.4(a) is tight, as shown by the function

g(x) =
{
e−1−x, if x ≥ −1,
0, if x < −1.

Part (b) is not tight; most probably the right constant is 1/(2 · √3), attained
by the uniform distribution on the interval [−√3,

√
3].

Lemma 3.5 Let X be a random point drawn from a logconcave density function
g : R→ R+.

(a) For every c ≥ 0,
P(g(X) ≤ c) ≤ c

Mg
.

(b) For every 0 ≤ c ≤ g(0),

P(min g(2X), g(−2X) ≤ c) ≥ c

4g(0)
.

Proof. (a) We may assume that the maximum of g is assumed at 0. Let q > 0
be defined by g(q) = c, and let h(t) = g(0)e−γt be an exponential function such
that h(q) = g(q). Clearly such a γ exists, and h(0) = g(0), γ > 0. By the
logconcavity of the function, the graph of h is below the graph of g between 0
and q, and above outside. Hence

∫∞
q
g(t) dt∫∞

0
g(t), dt

≤
∫∞
q
h(t) dt∫∞

0
h(t), dt

Here ∫ ∞
0

h(t) dt =
g(0)
γ

,

∫ ∞
q

h(t) dt =
g(q)
γ

=
c

γ
,

and so we get that ∫ ∞
q

g(t) dt ≤ c

g(0)

∫ ∞
0

g(t) dt.
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Here g(0) = Mg, furthermore
∫ ∞
q

g(t) dt = P(X > q) = P(g(X) < c,X > 0),

and ∫ ∞
0

g(t) dt = P(X > 0),

so we get that
P(g(X) < c,X > 0) ≤ c

Mg
P(X > 0).

Similarly,
P(g(X) < c,X < 0) ≤ c

Mg
P(X < 0).

Adding up these two inequalities, the assertion follows.
(b) We may assume that P(X ≤ 0) ≥ 1/2. Let q > 0 be defined by g(q) = c.

If P(X ≤ q/2) > 1/4 then the conclusion is obvious, so suppose that P(X ≥
q/2) ≤ 1/4. Similarly, we can assume that P(−q/2 < X < 0) ≥ 1

4 .
Let h(t) = βe−γt be an exponential function such that

∫ 0

−q/2
h(t) dt =

∫ 0

−q/2
g(t) dt = a,

and ∫ q

q/2

h(t) dt =
∫ q

q/2

g(t) dt = b.

It is easy to see that such β and γ exist, and that β, γ > 0. From the definition
of h we have

β

γ
(eγq/2 − 1) = a,

β

γ
(e−γq/2 − e−γq = b.

Dividing these equations with each other, we obtain

eγq =
a

b
.

By the logconcavity of the function, the graph of h must intersect the graph
of g in a point in the interval [−q/2, 0] as well as in a point in the interval
[q/2, q]; it is below the graph of g between these two points and above outside.
In particular, we get

c = g(q) ≤ h(q) = βe−γq = β
b

a
,

and
g(0) ≥ h(0) = β,

12



so
b ≥ a c

g(0)
≥ c

4g(0)
.

¤
We conclude with a useful lemma about the exponential function.

Lemma 3.6 Let g be an exponential function restricted to an interval, i.e.,

g(x) =
{
βeγx, if a ≤ x ≤ b,
0, otherwise.

such that ∫ ∞
−∞

(x2 − 1)g(x) dx ≤ 0. (3)

Then, ∫

|x|≤R
g(x) dx ≥ (1− e−R−1)

∫ ∞
−∞

g(x) dx. (4)

Proof. Clearly we may assume that γ ≥ 0, a ≤ −1, b ≥ 1, and either a ≤ −R
or b ≥ R. Further elementary considerations show that we can assume that
equality holds in (3). Then from γ ≥ 0 it follows that |a| ≥ b, so a < −R. If
b > 1, then we can decrease a and increase b so that (3) is maintained, and (4)
will still fail if it failed to begin with. So we may assume that either b = 1 or
a = −∞.

If b = 1, then we can write (4) as

eγ − e−γR
eγ − eγa ≥ 1− e−(R+1,

which is easily seen to hold if γ ≥ 1, so suppose that γ ≤ 1. But then (3) does
not hold unless with equality unless a = −∞.

So assume that a = −∞. In this case, (4) can be simplified to

γ(R+ b) ≥ R+ 1. (5)

Equality in (3) implies that b = (1 +
√
γ2 − 1)/γ. So γ ≥ 1, which implies (5).

¤

3.2 Higher dimensional functions

Now consider a logconcave density function f : Rn → R, where we assume that
n > 5 to exclude some trivial complications.

Lemma 3.3 extends to any dimension without difficulty:

Lemma 3.7 Let f : Rn → R+ be a logconcave density function, and let H be
any halfspace containing its centroid z. Then

∫

H

f(x) dx ≥ 1
e
.
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Proof. We may assume without loss of generality H is orthogonal to the first
axis. Then the assertion follows by applying Lemma 3.3 to the first marginal of
f . ¤

Lemma 3.8 Let L be a level set of an isotropic logconcave density function f
on Rn. If L does not contain a ball of radius t, then

∫
L
f(x)dx ≤ et.

Proof. Let

h(x) =
{
f(x), if x ∈ L,
0, otherwise.

Then h is logconcave. Let z be the centroid of h. Assume that L does not
contain a ball of radius t. Then by the convexity of L, there exists u ∈ Rn,
|u| = 1 such that

max
x∈L

uT (x− z) < t.

Rotate the coordinates so that u = (1, 0, . . . , 0)T , i.e.

max
x∈L

x1 − z1 < t.

The first marginal g of f is also logconcave. Further since f is in isotropic
position, so is g. Lemma 3.4 implies that g ≤ 1. Hence

∫

x1≥z1
h(x) dx ≤

∫

z1≤x1≤z1+t

f(x) dx

=
∫

z1≤x1≤z1+t

g(x1) dx1 ≤ t.

This bounds the probability of one “half” of L. But since h is a logconcave
function, we have by Lemma 3.3 that

∫

L

f(x) dx =
∫

Rn
h(x) dx ≤ et.

¤

Theorem 3.9 Let f : Rn → R+ be an isotropic logconcave density function.
(a) For every v ∈ Rn with 0 ≤ |v| ≤ 1/9, we have 2−9n|v|f(0) ≤ f(v) ≤

29n|v|f(0).
(b) f(x) ≤ 24nf(0) for every x.
(c) There is an x ∈ Rn such that f(x) > 1/

√
2eπ

n
.

(d) 2−7n ≤ f(0) ≤ 10nnn/2.
(e) f(x) ≤ 28nnn/2 for every x.

Proof. (a) We prove the lower bound; the upper bound is analogous. Sup-
pose that there is a point u with |u| = t ≤ 1/9 and f(u) < 2−9ntf(0). Let
v = (1/(9t))u, then by logconcavity, f(v) < 2−nf(0). Let H be a hyperplane

14



through v supporting the convex set {x ∈ Rn : f(x) ≥ f(v)}. We may assume
that H is the hyperplane x1 = a for some 0 < a ≤ 1/9. So f(x) < 2−nf(0) for
every x with x1 = a.

Let g be the first marginal of f . Then g is also isotropic, and hence g(y) ≤ 1
for all y, by Lemma 3.4. We also know by Lemma 3.3 that

∫ ∞
0

g(y) dy ≥ 1
e
.

We claim that

g(2a) ≤ g(a)
2
. (6)

Indeed, using the logconcavity of f , we get for every x with x1 = a

f(2x) ≤ f(x)2

f(0)
≤ f(x)

2n
,

and hence

g(2a) =
∫

(x1=2a)

f(x) dx2 . . . dxn ≤ 2−n2n−1

∫

(x1=a)

f(x) dx2 . . . dxn =
g(a)

2
.

Inequality (6) implies, by the logconcavity of g, that g(x+a) ≤ g(x)/2 for every
x ≥ a. Hence ∫ ∞

a

g(y) dy ≤ 2
∫ 2a

a

g(y) dy ≤ 2a,

and hence
∫ ∞

0

g(y) dy =
∫ a

0

g(y) dy +
∫ ∞
a

g(y) dy ≤ 3a <
1
e
,

a contradiction.

(b) The proof is similar to the proof of (a). Let w be an arbitrary point, and
suppose that f(w) > 24nf(0). Let H be a hyperplane through 0 supporting the
convex set {x ∈ Rn : f(x) ≥ f(0)}. We may assume that H is the hyperplane
x1 = 0. So f(x) ≤ f(0) for every x with x1 = 0. Let g be the first marginal
of f . Let Ht denote the hyperplane x1 = t. We may assume that w ∈ Hb with
b > 0.

Let a = b/2, let x be a point on Ha, and let x′ be the intersection point of
the line through w and x with the hyperplane H0. Then by logconcavity,

f(w)f(x) ≤ f(x′)2,

whence

f(x′) ≥ f(w)1/2f(x)1/2 ≥
(
f(w)
f(x)

)1/2

f(x) ≥ 4nf(x),
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and hence

g(a) =
∫

Ha

f(x) dx ≥ 21−n4n
∫

H0

f(x) dx = 21−n4ng(0),

and so, using Lemma 3.4(b), we get

g(a) ≥ 2n

4

This contradicts Lemma 3.4(a).

(c) Suppose not. For a random point X from the distribution, we have
E(|X|2) = n, and hence by Markov’s inequality, P(|X|2 ≤ 2n) ≥ 1/2. In other
words, ∫

√
2nB

f(x) dx ≥ 1
2
.

On the other hand,
∫
√

2nB

f(x) dx ≤ 6−nvol(
√

2nB) = 6−n(2n)n/2πn <
1
2
,

which is a contradiction.

(d) The lower bound follows from parts (b) and (c). Part (a) implies that
∫

Rn
f(x) dx ≥

∫

|x|≤1/9

f(x) dx ≥ πn 1
9n
f(0)
2n

,

and since this integral is 1, we get that

f(0) ≤ 18n

πn
< 20nnn/2.

(e) is immediate from (d). ¤

Lemma 3.10 Let f : Rn → R+ be an isotropic logconcave density function.
Then for every line ` through 0,

∫

`

f(x) dλ`(x) ≥ 2−7n.

Proof. We may assume that ` is the xn-axis. Consider the marginal

h(x1, . . . , xn−1) =
∫ ∞
−∞

f(x1, . . . , xn−1, t) dt.

This is also an isotropic logconcave density function, so by Theorem 3.9(d) , we
have ∫

`

f(x) dλ`(x) = h(0) ≥ 2−7(n−1) > 2−7n.

¤
The following lemma generalizes Lemma 3.5(a) to arbitrary dimension.
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Lemma 3.11 Let X be a random point drawn from a distribution with a log-
concave density function f : Rn → R+. If β ≥ 2, then

P(f(X) ≤ e−β(n−1)) ≤ (e1−ββ)n−1.

Proof. We may assume that f is continuous, Mf is attained at the origin,
and Mf = f(0) = 1. Let c = e−β(n−1). Using polar coordinates, we have

1 =
∫

Rn
f(x) dx =

∫

u∈S

∫ ∞
0

f(tu)tn−1 dt

and
P(f(X) ≤ c) =

∫

f(x)≤c
f(x) dx =

∫

u∈S

∫

t: f(tu)≤c
f(tu)tn−1 dt

Fix a unit vector u, and let q > 0 be defined by f(qu) = c. By logconcavity,

f(tu)
{
≥ eβ(n−1)t/q, if t ≤ q,
≤ eβ(n−1)t/q, if t ≥ q.

Hence ∫∞
q
f(tu)tn−1 dt∫∞

0
f(tu)tn−1 dt

≤
∫∞
q
eβ(n−1)t/qtn−1 dt∫∞

0
eβ(n−1)t/qtn−1 dt

.

The integrals on the right hand side can be evaluated:
∫ ∞

0

eβ(n−1)t/qtn−1 dt = (n− 1)!
(
β(n− 1)

q

)n
,

and

∫ ∞
q

eβ(n−1)t/qtn−1 dt = (n− 1)!
(
β(n− 1)

q

)n
e−β(n−1)

n−1∑

k=0

λk

k!
.

The last sum can be estimated by 2(β(n− 1))n−1/(n− 1)! < (eβ)n−1. Thus
∫ ∞
q

f(tu)tn−1 dt ≤ (e1−ββ)n−1

∫ ∞
0

f(tu)tn−1 dt,

and so

P(f(X) ≤ c) =
∫

u∈S

∫

t: f(tu)≤c
f(tu)tn−1 dt

≤ (e1−ββ)n−1

∫

u∈S

∫ ∞
0

f(tu)tn−1 dt

= (e1−ββ)n−1.

¤
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Lemma 3.12 Let X ∈ Rn be a random point from an isotropic logconcave
distribution. Then for any R > 1, P(|X| > R) < e−R.

Proof. Since the distribution is isotropic, we have
∫

Rn
(|x|2 − 1)f(x) dx = 0,

and if the assertion is false, then
∫

|x|>R
f(x) dx− e−R

∫

Rn
f(x) dx > 0.

By the Localization Lemma, we have two points a, b and a γ > 0 so that
∫ 1

0

(|(1− t)a+ tb|2 − 1)eγt dt = 0, (7)

and ∫
0≤t≤1
|a+tv|>R

eγt dt− e−R
∫ 1

0

eγt dt > 0. (8)

It will be convenient to re-parametrize this segment [a, b] by considering the
closest point v of its line to the origin, and a unit vector u pointing in the
direction of b− a. Let R′ =

√
R2 − |v|2, then we can rewrite (7) and (8) as

∫ t2

t1

(|u|2 + t2 − 1)eγt dt = 0, (9)

and ∫
t1≤t≤t2
|t|>R′

eγt dt− e−R
∫ t2

t1

eγt dt > 0 (10)

(with some t1, t2). Equation (9) implies that |u| < 1. Introducing the new
variable s = t/

√
1− |u|2, we get

∫ s2

s1

(s2 − 1)eκs ds = 0,

and ∫
s1≤s≤s2
|s|>R′′

eκs ds− e−R
∫ s1

s0

eκs ds > 0,

where R′′ = R′/
√

1− |u|2, and s1, s2, κ are similarly transformed. Now this
contradicts Lemma 3.6. ¤

The following lemma generalizes the upper bound in Theorem 4.1 of [11]:

Lemma 3.13 Let f : Rn → R be an isotropic logconcave function, and let z
be a point where it assumes its maximum. Then |z| ≤ n+ 1.
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The characteristic function of an isotropic regular simplex shows that the
bound is essentially tight.
Proof. Write x = x + tu, where t ∈ R+ and |u| = 1. Let e = z/|z|. We can
write

1 =
∫

Rn
(eTx)2f(x) dx =

∫

|u|=1

∫ ∞
0

(eT(z + tu))2f(tu)tn−1 dt du.

Fix any u, and let g(t) = f(tu). Then the inside integral is
∫ ∞

0

(eT(z+tu))2g(t)tn−1 dt = |z|2Mg(n−1)+2|z|(eTu)Mg(n)+(eTu)2Mg(n+1).

By Lemma 3.2(b), we have here

(n+ 1)2Mg(n)2 ≤ n(n+ 2)Mg(n− 1)Mg(n+ 1),

and so

|z|2n(n+ 2)
(n+ 1)2

Mg(n− 1) + 2|z|(eTu)Mg(n) + (eTu)2Mg(n+ 1) ≥ 0

(since the discriminant of this quadratic form is nonpositive). So

|z|2Mg(n− 1) + 2|z|(eTu)Mg(n) + (eTu)2Mg(n+ 1) ≥ 1
(n+ 1)2

|z|2Mg(n− 1).

Substituting this in the integral, we get

1 ≥ 1
(n+ 1)2

|z|2,

which proves the lemma. ¤

Lemma 3.14 Let f : Rn → R be a logconcave function, let F = max f , and
let L(t) = {x ∈ Rn : f(x) ≥ t}. Then for 0 < s < t < F ,

vol(L(s))
vol(L(t))

≤
(

ln(F/s)
ln(F/t)

)n

Proof. Fix a point z where f(z) = F . Consider any point a on the boundary
of L(s). Let b be the intersection of the line through a and z with the boundary
of L(t). Let b = ua+ (1− u)z. Since f is logconcave,

t ≥ F 1−usu,

and so

u ≥ ln(F/t)
ln(F/s)

.

This means that (ln(F/s)/ ln(F/t))L(t) contains L(s), and hence

vol(L(s))
vol(L(t))

≤
(

ln(F/s)
ln(F/t)

)n
,

as claimed. ¤
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Lemma 3.15 Let f : Rn → R be a logconcave function, let F = max f , and
let ft denote the restriction of f to the level set L(t) = {x ∈ Rn : f(x) ≥ t}.
Let 0 < s < t ≤ F such that tn+1 ≤ snF , and assume that ft is isotropic. Then
fs is near-isotropic up to a factor of 6.

Proof. Lemma 3.14 implies that
∫

Rn
fs(x) dx ≤ 3

∫

Rn
ft(x) dx.

Hence for every unit vector u,

∫

Rn
(uTx)2 dπfs(x) =

∫
L(s)

(uTx)2f(x) dx∫
L(s)

f(x) dx

≥
∫
L(t)

(uTx)2f(x) dx∫
L(s)

f(x) dx
≥ 1

3

∫
L(t)

(uTx)2f(x) dx∫
L(t)

f(x) dx

=
1
3

∫

Rn
(uTx)2 dπft(x).

On the other hand, Let L′ be obtained by blowing up L(t) from center z by a
factor of 1 + 1/n. Then L(s) ⊆ L′ by logconcavity, so

∫

L(s)

(uTx)2f(x) dx ≤
∫

L′
(uTx)2f(x) dx

=
(

1 +
1
n

)n ∫

L(t)

[
uT
((

1 +
1
n

)
x− 1

n
z
)]2

f
((

1 +
1
n

)
x− 1

n
z
)
dx.

Using that f decreases along semilines starting from z, we get
∫

L(s)

(uTx)2f(x) dx

≤
(

1 +
1
n

)n ∫

L(t)

[
uT
((

1 +
1
n

)
x− 1

n
z
)]2

f(x) dx

We can expand this into three terms:
(

1 +
1
n

)n+2
∫

L(t)

(uTx)2f(x) dx

−2
1
n

(
1 +

1
n

)n+1
∫

L(t)

(uTx)(uTz)f(x) dx

+
1
n2

(
1 +

1
n

)n ∫

L(t)

(uTz)2f(x) dx.

Here the middle term is 0 since ft is isotropic, and the last term is

1
n2

(
1 +

1
n

)n ∫

L(t)

(uTz)2f(x) dx
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=
1
n2

(
1 +

1
n

)n
(uTz)2

∫

L(t)

f(x) dx

<
e

n2
|z|2

∫

L(t)

f(x) dx < 3
∫

L(t)

f(x) dx

by Lemma 3.13. The first term is

(
1 +

1
n

)n+2
∫

L(t)

(uTx)2f(x)) dx < 3
∫

L(t)

(uTx)2f(x) dx,

and hence
∫

Rn
(uTx)2 dπfs(x) =

∫
L(s)

(uTx)2f(x) dx∫
L(s)

f(x) dx
≤ 3 + 3

∫
L(t)

(uTx)2f(x) dx∫
L(t)

f(x) dx

= 3 + 3
∫

Rn
(uTx)2 dπft(x) = 6.

¤
We end this section with an important folklore theorem, generalizing Khin-

chine’s inequality to logconcave functions.

Lemma 3.16 For every α ≤ β,

∫ β
α
e−ttk dt

∫ β
α
e−t dt

≤ kk ·
(∫ β

α
e−t|t| dt

∫ β
α
e−t dt

)k

Proof. Routine. ¤

Theorem 3.17 If X is a random point from a logconcave distribution in Rn,
then

E(|X|k)1/k ≤ 2kE(|X|).

Note that the Hölder inequality gives an opposite relation:

E(|X|k)1/k ≥ E(|X|).

Proof. We can write this inequality as

∫
Rn f(x)|x|k dx∫
Rn f(x) dx

≤ (2k)k ·
(∫

Rn f(x)|x| dx∫
Rn f(x) dx

)k
.

By Lemma 2.6 in [11], it suffices to prove that for any two points a, b ∈ Rn and
c ∈ R, we have ∫ 1

0
ect|ta+ (1− t)b|k dt∫ 1

0
ect dt
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≤ (2k)k ·
(∫ 1

0
ect|ta+ (1− t)b| dx∫ 1

0
ect dx

)k
.

Let c be the closest point of the segment [a, b] to the origin. We can write
any point on the segment [a, b] as c+ s(b− a), where α = −|c− a|/|b− a| ≤ s ≤
β = |b− c|/|b− a|. In this case,

|c+ s(b− a)| ≥ max{|c|, |s| · |b− a|}, (11)

and of course
|c+ s(b− a)| ≤ |c|+ |s| · |b− a|.

Hence ∫ β

α

ec(s−α)|c+ s(b− a)|k ds

≤ 2k−1

∫ β

α

ec(s−α)|c|k ds

+2k−1

∫ β

α

ec(s−α)|s|k|b− a|k ds .

Here the first term is easy to evaluate, while the second term can be estimated
using Lemma 3.16. We get that

∫ β
α
ec(s−α)|c+ s(b− a)|k ds

∫ β
α
ec(s−α) ds

≤ 2k−1|c|k + 2k−1|b− a|kkk
(∫ β

α
ec(s−α)|s| ds

∫ β
α
ec(s−α) ds

)k

= 2k−1

(∫ β
α
ec(s−α)|c| ds

∫ β
α
ec(s−α) ds

)k

+2k−1kk

(∫ β
α
ec(s−α)|s||b− a| dt
∫ β
α
ec(s−α) ds

)k

≤ (2k)k
(∫ β

α
ec(s−α)|c+ s(b− a)| ds
∫ β
α
ec(s−α) ds

)k
,

where the last step uses (11). ¤

4 Taming the function

To simplify notation, we introduce the following parameters:

R = 20
√
n log n, C =

ε

100
, r =

C2

5000
√
n
, V0 = vol(rB) = πnr

n.
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4.1 Smoothing out

Next we define a ”smoothed-out” version of the given density function f and
prove its basic properties. Define

f̂(x) = min
C

1
vol(C)

∫

C

f(x+ u) du,

where C ranges over all convex subsets of the ball x+ rB with vol(C) = V0/16.
The quotient

δ(x) =
f̂(x)
f(x)

is a certain measure of the smoothness of the function f at x.
The somewhat complicated definition of the function f̂ serves to assure its

logconcavity (Lemma 4.2). We’ll also show that this function is not much smaller
than f on the average (Lemma 4.3). The value of δ(x) governs the local smooth-
ness of the function f in more natural ways than its definition (in the sequel to
this paper [15] we’ll show further evidence of this relevant to the hit-and-run
walk). We start with a simple observation that shows that we could (at the cost
of a factor of 2) replace equality in the condition on C by inequality:

Lemma 4.1 For every convex subset D ⊆ rB with vol(D) ≥ vol(B)/16, we
have

1
vol(D)

∫

D

f(x+ u) du ≥ 1
2
f̂(x).

Proof. We can slice up D into convex sets D = D1 ∪ . . . ∪ Dm so that
V0/16 ≤ vol(Di) ≤ V0/8. For at least one i, we have

1
vol(Di)

∫

Di

f(x+ u) du ≤ 1
vol(D)

∫

D

f(x+ u) du.

Let C be any convex subset of Di of volume vol(rD)/16, then

1
vol(C)

∫

C

f(x+ u) du ≤ 2
vol(Di)

∫

Di

f(x+ u) du.

Since by definition
1

vol(C)

∫

C

f(x+ u) du ≥ f̂(x),

this proves the lemma. ¤

Lemma 4.2 The function f̂ is logconcave.

Proof. For a fixed convex set C ⊆ rB, the function

fC(x) =
∫

C

f(x+ u) du

is the convolution of the function f with the characteristic function of the convex
set −C, and so it is logconcave by Theorem 3.1. ¤
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Lemma 4.3 We have
∫

Rn
f̂(x) dx ≥ 1− 64r1/2n1/4.

To prove Lemma 4.3, we need a lemma from [10] (in a paraphrased form).

Lemma 4.4 Let K be a convex set containing a ball of radius t. Let X be a
uniform random point in K and let Y be a uniform random point at distance s
from X. Then

P(Y /∈ K) ≤ s
√
n

2t
.

Proof. [of Lemma 4.3]. Consider the set {(X,T ) ∈ Rn×R+ : T < f(X)}, and
select a pair (X,T ) randomly and uniformly from this set. Choose a uniform
random point Z on the sphere of radius r around X. We estimate the probability
that T < f(Z).

First, fix X and Z, and then choose T . Since T is uniform in the interval
[0, f(X)], the probability that T > f(Z) is

PT (T > f(Z)) =
{ 0, if f(Z) > f(X),

1− f(Z)
f(X) , if f(Z) ≤ f(X),

which we can also write as

PT (T > f(Z)) =
∣∣∣∣1−

f(Z)
f(X)

∣∣∣∣
+

.

Taking the expectation also over the choice of Z,

PT,Z(T > f(Z)) =
1
V0

∫

X+rB

PT (T > f(z)) dz

=
1
V0

∫

X+rB

∣∣∣∣1−
f(z)
f(X)

∣∣∣∣
+

dz.

Let C be the convex set attaining the minimum in the definition of f̂(X), then
it follows that

PT,Z(T > f(Z)) ≥ 1
V0

∫

C

(
1− f(z)

f(X)

)
dz

=
1
16

(
1− f̂(X)

f(X)

)
.

Finally, taking expectation in X (which is from the distribution πf ), we get

PT,Z,X(T < f(Z)) ≤ 1
16

∫

Rn

(
1− f̂(x)

f(x)
f(x)

)
dx (12)

=
1
16

(
1−

∫

Rn
f̂(x) dx

)
. (13)
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Next, start by choosing T from its appropriate marginal distribution, and
then choose X uniformly from L(T ), and then choose Z. Let F0 be the smallest
t for which the level set L(t) = {x ∈ Rn : f(x) > t} contains a ball of radius
c1 (which we’ll choose later). If T ≤ F0, then L(T ) contains a ball of radius c1,
and so by Lemma 4.4, the probability that Z /∈ L(T ) is at most r

√
n/c1. Hence

P(T > f(Z)) ≤ P(T > F0) +
r
√
n

c1
P(T ≤ F0) = P(T > F0)(1− r

√
n

c1
) +

r
√
n

c1
.

Here P(T > F0) ≤ πf (L(F0)) ≤ ec1 by Lemma 3.8, and so

P(T > f(Z)) ≤ ec1 − er
√
n+

r
√
n

c1
.

The best choice of c1 is c1 = r1/2n1/4e−1/2, which gives

P(T > f(Z)) ≤ 2e1/2r1/2n1/4.

Together with (12), this proves the lemma. ¤
This lemma implies that the distributions πf and πf̂ are close:

Corollary 4.5 The total variation distance of πf and πf̂ is less than
100r1/2n1/4.

Proof. Let c = 64r1/2n1/4. The density function of πf̂ is f̂/(1− c), and hence
(using that f̂ ≤ f and c < 1/5),

dtv(πf , πf̂ ) =
∫

Rn

∣∣∣∣∣
f̂(x)
1− c − f(x)

∣∣∣∣∣
+

dx ≤
∫

Rn

f(x)
1− c − f(x) dx =

c

1− c
< 80r1/2n1/4.

¤
Using the function f̂ , we can state and prove a bound on the smoothness of

the original function, at least in an average sense.

Lemma 4.6 Let x ∈ Rn, and let U be a uniform random point in x+rB. Then
with probability at least 15/16,

f(U) ≤ 2
f(x)2

f̂(x)
.

Proof. Consider the set

S =

{
u ∈ x+ rB : f(u) > 2

f(x)2

f̂(x)

}
.
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Clearly S is convex, and so is the set S′ obtained by reflecting S in x. Further-
more, for every y ∈ S′ we have by logconcavity

f(y)f(2x− y) ≤ f(x)2,

and since f(2x − y) > 2f(x)2/f̂(x) by definition, we have f(y) < 1
2 f̂(x). By

Lemma 4.1, this can only happen on a convex set of measure less than 1/16,
which proves the lemma. ¤

5 Geometric distance and probabilistic dis-
tance.

For any point u, let Pu be the distribution obtained on taking one ball step
from u. Here we show that if two points are close in a geometric sense, then the
distributions obtained after making one step of the random walk from them are
also close in total variation distance.

Lemma 5.1 Let u, v ∈ Rn such that

d(u, v) <
r

8
√
n
.

Then for the ball walk,

dtv(Pu, Pv) < 1− 1
16
δ(u).

Proof. Let Bu, Bv be the balls of radius r around u and v respectively. Let
C = Bu∩Bv and C ′ be the subset of C where f(x) ≤ f̄ = min f(u), f(v). Then
for any point x ∈ C ′, the probability density of going from u to x or v to x is
at least

1
vol(B(r))

f(x)
f̄

Thus,

dtv(Pu, Pv) < 1− 1
vol(B(r))

∫

x∈C′
f(x)
f̄)

dx.

Since d(u, v) ≤ r/8√n,

vol(C ′) ≥ 1
4

vol(C) ≥ 1
8

vol(B(r)) ≥ c0vol(B(r)).

By Lemma 4.1,
∫

x∈C′
f(x)dx ≥ 1

2
f̂(u)vol(C ′) ≥ 1

16
f̂ (u)vol(B(r)).

Hence,

dtv(Pu, Pv) < 1− 1
16
f̂(u)
f̄

= 1− 1
16
f̂(u)
f(u)

= 1− 1
16
δ(u).

¤
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L(f(u))
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v

Figure 1: The proof of Lemma 5.1.

6 Proof of the mixing bound.

Let K = S1 ∪ S2 be a partition into measurable sets with πf (S1), πf (S2) > ε.
We will prove that

∫

S1

Pu(S2) dπf ≥ r

210n
(πf (S1)− ε)(πf (S2)− ε) (14)

We can read the left hand side as follows: we select a random point X from
distribution π and make one step to get Y . What is the probability that X ∈ S1

and Y ∈ S2? It is well known that this quantity remains the same if S1 and S2

are interchanged.
For i ∈ {1, 2}, let

S′i = {x ∈ Si : Px(S3−i) <
1
32
δ(x),

S′3 = K \ S′1 \ S′2.
First, suppose that πf̂ (S′1) ≤ πf̂ (S1)/2. Then the left hand side of (14) is at

least
1
32

∫

u∈S1\S′1

f̂(u)
f(u)

f(u) du =
1
32
πf̂ (S1 \ S′1) ≥ 1

64
πf̂ (S1).
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Figure 2: The mixing proof.

Lemma 4.3 implies that
πf̂ (S1) ≥ πf (S1)− ε.

Hence, ∫

S1

Pu(S2) dπf ≥ 1
64

(πf (S1)− ε)

which implies (14).
So we can assume that πf (S′1) ≥ πf (S1)/2, and similarly πf (S′2) ≥ πf (S2)/2.

By Lemma 5.1, for any two points u1 ∈ S′1, u2 ∈ S′2,

d(u, v) ≥ r

8
√
n

(15)

Applying Theorem 2.3 to f̂ , we get

πf̂ (S′3) ≥ r

16n
πf̂ (S′1)πf̂ (S′2) ≥ r

16n
(πf (S1)− ε)(πf (S2)− ε).

Therefore,

∫

S1

Pu(S2) dπf ≥ 1
2

∫

S′3

f̂(u)
32f(u)

f(u)du
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≥ 1
64
πf̂ (S′3)

≥ r

210n
(πf (S1)− ε)(πf (S2)− ε)

and (14) is proved.
By Corollary 1.5 in [14] it follows that for all m ≥ 0, and every measurable

set S,

|σm(S)− πf (S)| ≤ 2ε+ exp
(
− mr2

242n2

)
,

which proves Theorem 2.2.

Acknowledgement. We are indebted to Keith Ball for his kind advice on the
geometric aspects of logconcave functions.
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