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Abstract

The hit-and-run algorithm is one of the fastest known methods to
generate a random point in a high dimensional convex set. In this paper we
study a natural extension of the hit-and-run algorithm to sampling from a
logconcave distribution in n dimensions. After appropriate preprocessing,
hit-and-run produces a point from approximately the right distribution in
amortized time O∗(n3).

1 Introduction

In recent years, the problem of sampling a convex body has received much
attention, and many efficient solutions have been proposed [4, 7, 12, 10, 9], all
based on random walks. Of these, the hit-and-run random walk, first proposed
by Smith [19], has the same worst-case time complexity as the more thoroughly
analyzed ball walk, but seems to be fastest in practice.

The random walk approach for sampling can be extended to the class of
logconcave distributions. For our purposes, it suffices to define these as proba-
bility distributions on the Borel sets of Rn which have a density function f and
the logarithm of f is concave. Such density functions play an important role
in stochastic optimization [17] and other applications [8]. We assume that the
function is given by an oracle, i.e., by a subroutine that returns the value of the
function at any point x. We measure the complexity of the algorithm by the
number of oracle calls.

For the lattice walk and the ball walk, the extension to logconcave functions
was introduced and analyzed in [1, 6] under additional smoothness assumptions
about the density function. In [15], it was shown that the ball walk can be
used without such assumptions, with running time bounds that are essentially
the same as for sampling from convex bodies. In this paper we analyze the
behavior of the hit-and-run walk for logconcave distributions. Our main result
is that after appropriate preprocessing (bringing the distribution to isotropic
position), we can generate a sample using O∗(n4) steps (oracle calls) and in
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O∗(n3) steps from a warm start. (This means that we start the walk from a
random point whose density function is at most a constant factor larger than
the target density f ; cf. [15].) As in [15], we make no assumptions on the
smoothness of the density function. The analysis uses the smoothing technique
introduced in [15], and in main lines of follows the analysis of the hit-and-run
walk in [13], with substantial additional difficulties.

2 Results

2.1 Preliminaries.

A function f : Rn → R+ is logconcave if it satisfies

f(αx+ (1− α)y) ≥ f(x)αf(y)1−α

for every x, y ∈ Rn and 0 ≤ α ≤ 1. This is equivalent to saying that the support
K of f is convex and log f is concave on K.

An integrable function f : Rn → R+ is a density function, if
∫
Rn f(x) dx = 1.

Every non-negative integrable function f gives rise to a probability measure on
the measurable subsets of Rn defined by

πf (S) =
∫

S

f(x) dx
/∫

Rn
f(x) dx .

The centroid of a density function f : Rn → R+ is the point

zf =
∫

Rn
f(x)x dx;

the covariance matrix of the function f is the matrix

Vf =
∫

Rn
f(x)xxT dx

(we assume that these integrals exist).
For any logconcave function f : R → Rn, we denote by Mf its maximum

value. We denote by
Lf (t) = {x ∈ Rn : f(x) ≥ t}

its level sets, and by

ft(x) =
{
f(x), if f(x) ≥ t,
0, if f(x) < t,

its restriction to the level set. It is easy to see that ft is logconcave. In Mf and
Lf we omit the subscript if f is understood.

A density function f : Rn → R+ is isotropic, if its centroid is 0, and its
covariance matrix is the identity matrix. This latter condition can be expressed
in terms of the coordinate functions as

∫

Rn
xixjf(x) dx = δij
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for all 1 ≤ i, j ≤ n. This condition is equivalent to saying that for every vector
v ∈ Rn, ∫

Rn
(v · x)2f(x) dx = |v|2.

In terms of the associated random variable X, this means that

E(X) = 0 and E(XXT ) = I.

We say that f is near-isotropic up to a factor of C, if (1/C) ≤ ∫ (uTx)2 dπf (x) ≤
C for every unit vector u. As in [15], the notions of “isotropic” and “non-
isotropic” extend to non-negative integrable functions f , in which case we mean
that the density function f/

∫
Rn f is isotropic or near-isotropic.

Given any density function f with finite second moment
∫
Rn ‖x‖2f(x) dx,

there is an affine transformation of the space bringing it to isotropic position,
and this transformation is unique up to an orthogonal transformation of the
space.

For two points u, v ∈ Rn, we denote by d(u, v) their euclidean distance. For
two probability distributions σ, τ on the same underlying σ-algebra, let

dtv(σ, τ) = sup
A

(σ(A)− τ(A))

be their total variation distance.

2.2 The random walk.

Let f be a logconcave distribution in Rn. For any line ` in Rn, let µ`,f be the
measure induced by f on `, i.e.

µ`,f (S) =
∫

p+tu∈S
f(p+ tu)dt,

where p is any point on ` and u is a unit vector parallel to `. We abbreviate
µ`,f by µ` if f is understood, and also µ`(`) by µ`. The probability measure
π`(S) = µ`(S)/µ` is the restriction of f to `.

We study the following generalization of the hit-and-run random walk.

• Pick a uniformly distributed random line ` through the current point.

• Move to a random point y along the line ` chosen from the distribution
π`.

Let us remark that the first step is easy to implement. For example, we can
generate n independent random numbers U1, . . . , Un from the standard normal
distribution, and use the vector (U1, . . . , Un) to determine the direction of the
line.

In connection with the second step, we have to discuss how the function is
given: we assume that it is given by an oracle. This means that for any x ∈ Rn,
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the oracle returns the value f(x). (We ignore here the issue that if the value
of the function is irrational, the oracle only returns an approximation of f .) It
would be enough to have an oracle which returns the value C · f(x) for some
unknown constant C > 0 (this situation occurs in many sampling problems e.g.
in statistical mechanics and simulated annealing).

For technical reasons, we also need a “guarantee” from the oracle that the
centroid zf of f satisfies ‖zf‖ ≤ Z and that all the eigenvalues of the covariance
matrix are between r and R, where Z, r and R are given positive numbers.

One way to carry out the second step is to use a binary search to find the
point p on ` where the function is maximal, and the points a and b on both sides
of p on ` where the value of the function is εf(p). We allow a relative error of
ε, so the number of oracle calls is only O(log(1/ε)).

Then select a uniformly distributed random point y on the segment [a, b],
and independently a uniformly distributed random real number in the interval
[0, 1]. Accept y if f(y) > rf(p); else, reject y and repeat.

The distribution of the point generated this way is closer to the desired dis-
tribution than ε, and the expected number of oracle calls needed is O(log(1/ε)).

Our main theorem concerns functions that are near-isotropic (up to some
fixed constant factor c).

Theorem 2.1 Let f be a logconcave density function in Rn that is near-
isotropic up to a factor of c. Let σ be a starting distribution and let σm be
the distribution of the current point after m steps of the hit-and-run walk. As-
sume that there is a D > 0 such that σ(S) ≤ Dπf (S) for every set S. Then
for

m > 1010c2D2n
3

ε2
log

1
ε
,

the total variation distance of σm and πf is less than ε.

2.3 Distance and Isoperimetry.

To analyze the hit-and-run walk, we need a notion of distance according to
a density function. Let f be a logconcave density function. For two points
u, v ∈ Rn, let `(u, v) denote the line through them. Let [u, v] denote the segment
connecting u and v, and let `+(u, v) denote the semiline in ` starting at u and
not containing v. Furthermore, let

f+(u, v) = µ`,f (`+(u, v)),
f−(u, v) = µ`,f (`+(v, u)),
f(u, v) = µ`,f ([u, v]).

We introduce the following “distance”:

df (u, v) =
f(u, v)f(`(u, v))
f−(u, v)f+(u, v)

.
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The function df (u, v) does not satisfy the triangle inequality in general, but
we could take ln(1 − df (u, v)) instead, and this quantity would be a metric;
however, it will be more convenient to work with df .

Suppose f is the uniform distribution over a convex set K. Let u, v be two
points in K and p, q be the endpoints of `(u, v) ∩K, so that the points appear
in the order p, u, v, q along `(u, v). Then,

df (u, v) = dK(u, v) =
|u− v||p− q|
|p− u||v − q| .

2.4 An isoperimetric inequality

The next theorem is an extension of Theorem 6 from [13] to logconcave functions.

Theorem 2.2 Let f be a logconcave density function on Rn with support K.
For any partition of K into three measurable sets S1, S2, S3,

πf (S3) ≥ dK(S1, S2)πf (S1)πf (S2).

3 Preliminaries

3.1 Spheres and balls

Lemma 3.1 Let H be a halfspace in Rn and B, a ball whose center is at a
distance t > 0 from H. Then

(a) if t ≤ 1/
√
n, then

vol(H ∩B) >
(

1
2
− t
√
n

2

)
vol(B);

(b) if t > 1/
√
n then

1
10t
√
n

(1− t2)(n+1)/2vol(B) < vol(H ∩B) <
1
t
√
n

(1− t2)(n+1)/2vol(B).

Let C be a cap on the unit sphere S in Rn, with radius r and voln−1(C) =
cvoln−1(S), c < 1/2. We can write its radius as r = π/2 − t(c). The function
t(c) is difficult to express exactly, but for our purposes, the following known
bounds will be enough:

Lemma 3.2 If 0 < c < 2−n, then

1
2
c1/n < t(c) < 2c1/n;

if 2−n < c < 1/4, then

1
2

√
ln(1/c)
n

< t(c) < 2

√
ln(1/c)
n

;
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if 1/4 < c < 1/2, then

1
2

(
1
2
− c
)

1√
n
< t(c) < 2

(
1
2
− c
)

1√
n
.

Using this function t(c), we can formulate a fact that can be called ”strong
expansion” on the sphere:

Lemma 3.3 Let T1 and T2 be two sets on the unit sphere S in Rn, so that
voln−1(Ti) = civoln−1(S). Then the angular distance between T1 and T2 is at
most t(c1) + t(c2).

T1

t(c1)

t(c2)

T2

Figure 1: Caps at maximal angular distance.

Proof. Let d denote the angular distance between T1 and T2. The measure
of Ti corresponds to the measure of a spherical cap with radius π/2− t(c1). By
spherical isoperimetry, the measure of the d-neighborhood of T1 is at least as
large as the measure of the d-neighborhood of the corresponding cap, which is
a cap with radius π/2 − t(c1) + d. The complementary cap has radius π/2 +
t(c1)− d and volume at least c2, and so it has radius at least π/2− t(c2). Thus
π/2 + t(c1)− d ≥ π/2− t(c2), which proves the lemma. ¤

Lemma 3.4 Let K be a convex body in Rn containing the unit ball B, and let
r > 1. If φ(r) denotes the fraction of the sphere rS that is contained in K, then

t(1− φ(r)) + t(φ(2r)) ≥ 3
8r
.
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Proof. Let T1 = (rS) ∩ K and T2 = (1/2)((2rS) \ K). We claim that the
angular distance of T1 and T2 is at least 3/(8r). Consider any y1 ∈ T1 and
y2 ∈ T2, we want to prove that the angle α between them is at least 3/(8r). We
may assume that this angle is less than π/4 (else, we have nothing to prove).
Let y0 be the nearest point to 0 on the line through 2y2 and y1. Then y0 /∈ K
by convexity, and so s = |y0| > 1. Let αi denote the angle between yi and y0.
Then

sinα = sin(α2 − α1) = sinα2 cosα1 − sinα1 cosα2.

Here cosα1 = s/r and cosα1 = s/(2r); expressing the sines and substituting,
we get

sinα =
s

r

√
1− s2

4r2
− s

2r

√
1− s2

r2
.

To estimate this by standard tricks from below:

sinα =

s2

r2

(
1− s2

4r2

)
− s2

4r2

(
1− s2

r2

)

s

r

√
1− s2

4r2
+

s

2r

√
1− s2

r2

>

s2

r2

(
1− s2

4r2

)
− s2

4r2

(
1− s2

r2

)

s

r
+

s

2r

=
s

2r
>

1
2r

Since α > sinα, this proves the lemma. ¤
The way this lemma is used is exemplified by the following:

Corollary 3.5 Let K be a convex body in Rn containing the unit ball B, and
let 1 < r <

√
n/10. If K misses 1% of the sphere rS, then it misses at least

99% of the sphere 2rS.

3.2 Logconcave functions: a recap

In this section we recall some folklore geometric properties of logconcave func-
tions as well as some that were proved in [15].

We need some definitions. The marginals of a function f : Rn → R+ are
defined by

G(x1, . . . , xk) =
∫

Rn−k
f(x1, . . . , xn) dxk+1 . . . dxn.

The first marginal

g(t) =
∫

x2,...,xn

f(t, x2, . . . , xn) dx2 . . . dxn

will be used most often. It is easy to check that if f is in isotropic position,
then so are its marginals. The distribution function of f is defined by

F (t1, . . . , tn) =
∫

x1≤t1,...,xn≤tn
f(x1, . . . , xn) dx1 . . . dxn.
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K

2r
r

Figure 2: An illustration of Corollary 3.5.

Clearly, the product and the minimum of logconcave functions is logconcave.
The sum of logconcave functions is not logconcave in general; but the follow-
ing fundamental properties of logconcave functions, proved by Dinghas [3] and
Prékopa [16], can make up for this in many cases.

Theorem 3.6 All marginals as well as the distribution function of a logcon-
cave function are logconcave. The convolution of two logconcave functions is
logconcave.

Let g : R+ → R+ be an integrable function such that g(x) tends to 0 faster
than any polynomial as x→∞. Define its moments, as usual, by

Mg(n) =
∫ ∞

0

tng(t) dt.

Lemma 3.7 (a) The sequence (Mg(n) : n = 0, 1, . . .) is logconvex.
(b) If g is monotone decreasing, then the sequence defined by

M ′g(n) =
{
nMg(n− 1)), if n > 0,
g(0), if n = 0

is also logconvex.
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(c) If g is logconcave, then the sequence Mg(n)/n! is logconcave.
(d) If g is logconcave, then

g(0)Mg(1) ≤Mg(0)2.

(i.e., we could append g(0) at the beginning of the sequence in (c) and maintain
logconcavity).

Lemma 3.8 Let X be a random point drawn from a one-dimensional logconcave
distribution. Then

P(X ≥ EX) ≥ 1
e
.

Lemma 3.9 Let g : R→ R+ be an isotropic logconcave density function.
(a) For all x, g(x) ≤ 1.
(b) g(0) ≥ 1

8 .

Lemma 3.10 Let X be a random point drawn from a logconcave density func-
tion g : R→ R+.

(a) For every c ≥ 0,
P(g(X) ≤ c) ≤ c

Mg
.

(b) For every 0 ≤ c ≤ g(0),

P(min g(2X), g(−2X) ≤ c) ≥ c

4g(0)
.

The next set of Lemmas were proven in [15] for higher dimensional logconcave
functions.

Theorem 3.11 Let f : Rn → R+ be an isotropic logconcave density function.
(a) For every v ∈ Rn with 0 ≤ |v| ≤ 1/9, we have 2−9n|v|f(0) ≤ f(v) ≤

29n|v|f(0).
(b) f(x) ≤ 24nf(0) for every x.
(c) There is an x ∈ Rn such that f(x) > 1/

√
2eπ

n
.

(d) 2−7n ≤ f(0) ≤ 10nnn/2.
(e) f(x) ≤ 28nnn/2 for every x.

Lemma 3.12 Let X be a random point drawn from a distribution with a log-
concave density function f : Rn → R+. If β ≥ 2, then

P(f(X) ≤ e−β(n−1)) ≤ (e1−ββ)n−1.

Lemma 3.13 Let X ∈ Rn be a random point from an isotropic logconcave
distribution. Then for any R > 1, P(|X| > R) < e−R.
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4 Comparing distances

For the next lemmas, it will be convenient to introduce the following notation:
for a function g : R→ R+ and a < b, let

g(a, b) =
∫ b

a

g(t) dt.

Furthermore, for a < b < c < d, we consider the cross-ratio

(a : c : b : d) =
(d− a)(c− b)
(b− a)(d− c) ,

and its generalized version

(a : c : b : d)g =
g(a, d)g(b, c)
g(a, b)g(c, d)

.

(The strange order of the parameters was chosen to conform with classical no-
tation.) Clearly, (a : c : b : d)g = (a : c : b : d) if g is a constant function.

We start with a simple bound:

Lemma 4.1 Let g : R → R+ be a logconcave function and let a < b < c < d.
Then

(a : c : b : d)g ≥ g(b)
g(c)

− 1.

Proof. We may assume that g(b) > g(c) (else, there is nothing to prove).
Let h(t) be an exponential function such that h(b) = g(b) and h(c) = g(c). By
logconcavity, g(x) ≤ h(x) for x ≤ a and g(x) ≥ h(x) for b ≤ x ≤ c. Hence

(a : c : b : d)g =
g(a, d)g(b, c)
g(a, b)g(c, d)

≥ g(b, c)
g(a, b)

≥ h(b, c)
h(a, b)

=
h(c)− h(b)
h(b)− h(a)

≥ h(c)− h(b)
h(b)

=
g(b)
g(c)

− 1.

¤

Lemma 4.2 Let g : R → R+ be a logconcave function and let a < b < c < d.
Then

(a : c : b : d)g ≥ (a : c : b : d).

Proof. By Lemma 2.6 from [10], it suffices to prove this in the case when
g(t) = et. Furthermore, we may assume that a = 0. Then the assertion is just
Lemma 7 in [13]. ¤
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Lemma 4.3 Let g : R→ R+ be a logconcave function and let a < b < c. Then

g(a, b)
b− a ≤

(
1 +

∣∣∣∣ln
g(b)
g(c)

∣∣∣∣
+

)
g(a, c)
c− a .

Proof. Let h(t) = βeγt be an exponential function such that

∫ b

a

h(t) dt = g(a, b) and
∫ c

b

h(t) dt = g(b, c).

It is easy to see that such β and γ exist, and that β > 0. The graph of h intersects
the graph of g somewhere in the interval [a, b], and similarly, somewhere in the
interval [b, c]. By logconcavity, this implies that h(b) ≤ g(b) and h(c) ≥ g(c).

If γ > 0 then h(t) is monotone increasing, and so

g(a, b)
b− a =

h(a, b)
b− a ≤

h(a, c)
c− a =

g(a, c)
c− a ,

and so the assertion is trivial. So suppose that γ < 0. For notational conve-
nience, we can rescale the function and the variable so that β = 1 and γ = −1.
Also write u = b− a and v = c− b. Then we have

g(a, b) = 1− e−u and g(a, c) = 1− e−u−v.

Hence
g(a, b)
g(a, c)

=
1− e−u

1− e−u−v ≤
u(v + 1)
u+ v

= (v + 1)
b− a
c− a.

(The last step can be justified like this: (1 − e−u)/(1 − e−u−v) is monotone
increasing in u if we fix v, so replacing e−u by 1−u < e−u both in the numerator
and denominator increases its value; similarly replacing e−v by 1/(v+ 1) in the
denominator decreases its value). To conclude, it suffices to note that

ln
g(b)
g(c)

≥ ln
h(b)
h(c)

= ln
e−u

e−u+v
= v.

¤
The following lemma is a certain converse to Lemma 4.2:

Lemma 4.4 Let g : R → R+ be a logconcave function and let a < b < c < d.
Let C = 1 + max{ln(g(b)/g(a)), ln(g(c)/g(d))}. If

(a : c : b : d) ≤ 1
2C

,

then
(a : c : b : d)g ≤ 6C(a : c : b : d).
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Proof. By the definition of (a : c : b : d) and Lemma 4.3,

(a : c : b : d) =
(d− a)(c− b)
(b− a)(d− c) >

c− b
b− a >

c− b
c− a ≥

1
C

g(b, c)
g(a, c)

.

Hence by the assumption on (a : c : b : d),

g(b, c)
g(a, c)

=
g(b, c)

g(a, b) + g(b, c)
≤ 1

2
,

which implies that g(a, b) ≥ g(b, c). Similarly, g(c, d) ≥ g(b, c). We may assume
by symmetry that g(a, b) ≤ g(c, d). Then g(a, d) = g(a, b) + g(b, c) + g(c, d) ≤
3g(c, d), and so we have

(a : c : b : d)g =
g(a, d)g(b, c)
g(a, b)g(c, d)

≤ 3g(b, c)
g(a, b)

≤ 6g(b, c)
g(a, c)

.

Using Lemma 4.3 again, we get

(a : c : b : d)g ≤ 6C
c− b
c− a ≤ 6C

c− b
b− a ≤ 6C

(c− b)(d− a)
(b− a)(d− c) = 6C(a : b : c : d).

¤

5 Taming the function

5.1 A smoother version

In [15], we defined ”smoothed-out” version of the given density function f as

f̂(x) = min
C

1
vol(C)

∫

C

f(x+ u) du,

where C ranges over all convex subsets of the ball x+ rB with vol(C) = V0/16.
The quotient

δ(x) =
f̂(x)
f(x)

is a certain measure of the smoothness of the function f at x. The value

ρ(x) =
r

16t(δ(x))
≈ r

16
√

ln(1/δ(x))

will also play an important role; the function is well behaved in a ball with
radius ρ(x) about x.

As shown in [15], the somewhat complicated definition of the function f̂
serves to assure its logconcavity (Lemma 5.2). Further, it is not much smaller
than f on the average (Lemma 5.3). We recall that we could (at the cost of a
factor of 2) replace equality in the condition on C by inequality. The next 3
lemmas are from [15].
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Lemma 5.1 For every convex subset D ⊆ rB with vol(D) ≥ vol(B)/16, we
have

1
vol(D)

∫

D

f(x+ u) du ≥ 1
2
f̂(x).

Lemma 5.2 The function f̂ is logconcave.

Lemma 5.3 We have
∫

Rn
f̂(x) dx ≥ 1− 64r1/2n1/4.

The value of δ(x) governs the local smoothness of the function f in more
natural ways than its definition, as we’ll show below.

Lemma 5.4 For every x, y ∈ Rn with |x− y| ≤ r
2
√
n

, we have

f̂(x)
2
≤ f(y) ≤ 2

f(x)2

f̂(x)
.

Proof. Let a be the closest point to x with f(a) ≤ f̂(x)/2. Consider the
supporting hyperplane of the convex set {y ∈ Rn : f(y) ≥ f̂(x)/2}, and the
open halfspace H bounded by this hyperplane that does not contain x. Clearly
f(y) < f̂(x) for y ∈ H. By the definition of f̂ , it follows that the volume of the
convex set H ∩ rB must be less than V0/16. On the other hand, by Proposition
3.1 the volume of this set is at least

(
1
2
− |a|

√
n

2r

)
V0.

Comparing these two bounds, it follows that

|a| > 7
8
r√
n
>

r

2
√
n
.

This proves the first inequality. The second follows easily, since for the point
y′ = 2x− y we have |y′− x| = |y− x| < r/(2

√
n), and so by the first inequality,

f(y′) ≥ f̂(x)
2

.

Then logconcavity implies that

f(y) ≤ f(x)2

f(y′)
≤ 2

f(x)2

f̂(x)
,

as claimed. ¤
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Lemma 5.5 (a) Let 0 < q < δ(x)1/nr. Then the fraction of points y on the
sphere x+ qS with f(y) < f̂(x)/2 is less than 1− δ(x)/4.

(b) Let 0 < q ≤ ρ(x). Then the fraction of points y on the sphere x + qS

with f(y) < f̂(x)/2 is less than δ(x)/4.

Proof. (a) We may assume, for notational convenience, that x = 0. Let
δ = δ(x) and L = L(f̂(0)/2). To prove (a), suppose that this fraction is larger
than 1−δ/4. Let C = rB∩H, where H is a halfspace with vol(H∩(rB) = V0/16
which avoids the points y with f(y) > f(0). We can write

∫

C

f(y) dy =
∫

C\L
+
∫

C∩L
.

Since f(y) ≤ f(0) for all y ∈ C and f(y) ≤ f̂(0)/2 on the first set,
∫

C

f(y) dy ≤ f̂(0)
2

vol(C \ L)) + f(0)vol(C ∩ L).

The first term can be estimated simply by (f̂(0)/2)vol(C). The second term we
split further:

vol(C ∩ L) ≤ vol((C ∩ L) \ (qB)) + vol(C ∩ (qB)).

Since the fraction of every sphere tS, t ≥ q, inside L is at most δ, it follows that
the first term is at most δvol(C). We claim that also the second term is less
than δvol(C). Indeed,

vol(C ∩ L ∩ (qB)) ≤ 1
16

vol(qB) =
1
16

(q
r

)n
vol(rB) ≤ δvol(C).

Thus ∫

C

f(y) dy <
f̂(0)

2
vol(C) + 2f(x)δvol(C) ≤ f̂(0)vol(C),

which contradicts the definition of f̂ . This proves (a).
To prove (b), suppose that a fraction of more than δ of the sphere qS is not

in L. On the other hand, a fraction of at least δ of the sphere 2qB is in L. This
follows from part (a) if q < δ1/nr. If this is not the case, then we have

q ≤ ρ(x) <
r

16
√

ln(1/δ(x))
<

r

16n
√

ln(r/q))
,

from where it is easy to conclude that q < r/(2
√
n). From Lemma 5.4 we get

that all of the sphere qS is in L.
Now Lemma 3.4 implies that

2t(δ) ≥ 3r
16q

,

which contradicts the assumption on q. ¤
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5.2 Cutting off small parts

We shall assume that the function f is isotropic; the arguments are similar
if we only assume that the function is near-isotropic. Let ε0 = e−3(n−1) and
K = {x ∈ Rn : |X| < R, f(x) > ε0}.
Lemma 5.6

πf (K) > 1− 2e−R.

Proof. Let U = {x ∈ Rn : f(x) ≤ ε0} and V = Rn \ RB. Then by Lemma
3.12,

πf (U) ≤ (3e−2)n−1 < e−R,

and by Lemma 3.13,
πf (V ) ≤ e−R,

and so
πf (K) ≥ 1− πf (U)− πf (V ) ≥ 1− 2e−R.

¤
This lemma shows that we can replace the distribution f by its restriction

to the convex set K: the restricted distribution is logconcave, very close to
isotropic, and the probability that we ever step outside K is negligible. So from
now on, we assume that f(x) = 0 for x /∈ K. This assumption implies some
important relations between three distance functions we have to consider: the
euclidean distance d(u, v) = |u− v|, the f -distance

df (u, v) =
µ∗f (u, v)µf (u, v)

µ−f (u, v)µ+
f (u, v)

.

and the K-distance as defined in [12]:

dK(u, v) =
|u− v| · |u′ − v′|
|u− u′| · |v − v′| ,

where u′ and v′ are the intersection points of the line through u and v with the
boundary of K, labeled so that u lies between v and u′. Equivalently, this is
the f -distance if f is the density function of the uniform distribution on K.

Lemma 5.7 For any two points u, v ∈ K,
(a) dK(u, v) ≤ df (u, v);
(b) dK(u, v) ≥ 1

2Rd(u, v);
(c) dK(u, v) ≥ 1

8n logn min(1, df (u, v)).

Proof. (a) follows from Lemma 4.2; (b) is immediate from the definition of
K. For (c), we may suppose that dK(u, v) ≤ 1/(8n logn) (else, the assertion
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is obvious). By Theorem 3.11(e) and the definition of K, we have for any two
points x, y ∈ K

f(x)
f(y)

≤ 28nnn/2

e−3(n−1)
< e2n lnn.

So we can apply Lemma 4.4, and get that

dK(u, v) ≥ 1
3 + 6n lnn

df (u, v) >
1

8n log n
df (u, v),

proving (c). ¤

6 One step of hit-and-run

6.1 Steps are long

For any point u, let Pu be the distribution obtained on taking one hit-and-run
step from u. It is not hard to see that

Pu(A) =
2
nπn

∫

A

f(x) dx
µf (u, x)|x− u|n−1

. (1)

Let ` be any line, x a point on `. We say that (x, `) is ordinary, if both
points u ∈ ` with |u− x| = ρ(x) satisfy f(u) ≥ f̂(x)/2.

Lemma 6.1 Suppose that (x, `) is ordinary. Let p, q be intersection points of `
with the boundary of L(F/8) where F is the maximum value of f along `, and
let s = max{ρ(x)/4, |x− p|/32, |x− q|/32}. Choose a random point y on ` from
the distribution π`. Then

P(|x− y| > s) >

√
δ(x)
8

.

Proof. We may assume that x = 0. Suppose first that the maximum in
the definition of s is attained by ρ(0)/4. Let y be a random step along `, and

apply lemma 3.10(b) with c =
√
f(0)f̂(0)/2. We get that the probability that

f(2y) ≤ c or f(−2y) ≤ c is at least

c

4f(0)
=

√
δ(0)
8

.

Suppose f(2y) ≤ c. Then logconcavity implies that f(4y) ≤ c2/f(0) = f̂(0)/4.
Since ` is ordinary, this means that in such a case |4y| > ρ(x), and so |x− y| =
|y| > ρ(x)/4.

So suppose that the maximum in the definition of s is attained by (say)
|p|/32. We have the trivial estimates

∫

|y|<s
f(y) dy ≤ 2sF,
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but ∫

`

f(y) dy ≥ |p− q|F
8
,

and so
P(|y| ≤ s) ≤ 16s

|p− q| .

Hence if |p− q| > 24s, then the conclusion of the lemma is valid.
So we may assume that |p − q| < 24s. Then q is between 0 and p, and so

for every point y in the interval [p, q], we have |y| ≥ 8s. Since the probability
of y ∈ [p, q] is at least 7/8 the lemma follows again. ¤

Lemma 6.2 Let x ∈ Rn and let ` be a random line through x. Then with
probability at least 1− δ(x)/2, (x, `) is ordinary.

Proof. If (x, `) is not ordinary, then one of the points u on ` at distance ρ(x)
has f(u) < f(x)/2. By Lemma 5.5, the fraction of such points on the sphere
x+ρ(x)S is at most δ(x)/4. So the probability that ` is not ordinary is at most
δ(x)/2. ¤

For a point x ∈ K, define α(x) as the smallest s ≥ 3 for which

P(f(y) ≥ sf(x)) ≤ 1
16
,

where y is a hit-and-run step from x.

Lemma 6.3 Let u be a random point from the stationary distribution πf . For
every t > 0,

P(α(u) ≥ t) ≤ 16
t
.

Proof. If t ≤ 3, then the assertion is trivial, so let t ≥ 3. Then for every x
with a(x) ≥ t, we have

P(f(y) ≥ α(x)f(x)) =
1
16
,

and hence α(x) ≥ t if and only if

P(f(y) ≥ tf(x)) ≥ 1
16
.

Let µ(x) denote the probability on the left hand side. By Lemma 3.10(a),
for any line `, a random step along ` will go to a point x such that f(x) ≤
(1/t) maxy∈` f(y) with probability at most 1/t. Hence for every point u, the
probability that a random step from u goes to a point x with f(x) ≤ (1/t)f(u)
is again at most 1/t. By time-reversibility, for the random point u we have

E(µ(u)) ≤ 1
t
.
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On the other hand,

E(µ(u)) ≥ 1
16

P

(
µ(u) ≥ 1

16

)
=

1
16

P(α(u) ≤ t),

which proves the lemma. ¤

6.2 Geometric distance and probabilistic distance.

Here we show that if two points are close in a geometric sense, then the distri-
butions obtained after making one step of the random walk from them are also
close in total variation distance.

Lemma 6.4 (Main Lemma) Let u, v be two points in Rn such that

df (u, v) <
1

128 ln(3 + α(u))
and d(u, v) <

r

64
√
n
.

Then
dtv(Pu, Pv) < 1− 1

500
δ(u).

Proof. Let δ = δ(u) and α = α(u). We will show that there exists a set
A ⊆ K such that Pu(A) ≥

√
δ/32 and for every subset A′ ⊂ A,

Pv(A′) ≥
√
δ

16
Pu(A′).

To this end, we define certain ”bad” lines through u. Let σ be the uniform
probability measure on lines through u.

Let B0 be the set of non-ordinary lines through u. By Lemma 6.2, σ(B0) ≤
2δ.

Let B1 be the set of lines that are not almost orthogonal to u − v, in the
sense that for any point x 6= u on the line,

|(x− u)T (u− v)| > 2√
n
|x− u||u− v|.

The measure of this subset can be bounded as σ(B1) ≤ 1/8.
Next, let B2 be the set of all lines through u which contain a point y with

f(y) > 2αf(u). By Lemma 3.10, if we select a line from B2, then with prob-
ability at least 1/2, a random step along this line takes us to a point x with
f(x) ≥ αf(u). From the definition of α, this can happen with probability at
most 1/16, which implies that σ(B2) ≤ 1/8.

Let A be the set of points in K which are not on any of the lines in B0 ∪
B1 ∩B2, and which are far from u in the sense of Lemma 6.1:

|x− u| ≥ 1
4

max
{
ρ(u),

1
32
|u− p|, 1

32
|u− q|

}
.
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Applying Lemma 6.1 to each such line, we get

Pu(A) ≥ (1− 1
8
− 1

8
− δ

2
)

√
δ

8
≥
√
δ

32
.

We are going to prove that if we do a hit-and-run step from v, the density of
stepping into x is not too small whenever x ∈ A. By the formula (1), we have
to treat |x− v| and µf (v, x).

We start with noticing that f(u) and f(v) are almost equal. Indeed, Lemma
4.1 implies that

64
65
≤ f(v)
f(u)

≤ 65
64
.

Claim 1. For every x ∈ A,

|x− v|n ≤
√

1
δ
|x− u|n.

Indeed, since x ∈ A, we have

|x− u| ≥ 1
4
ρ(u) ≥ r

4
√

ln(1/δ)
≥ 8

√
n√

ln(1/δ)
|u− v|.

On the other hand,

|x− v|2 = |x− u|2 + |u− v|2 + 2(x− u)T (u− v)

≤ |x− u|2 + |u− v|2 +
4√
n
|x− u||u− v|

≤ |x− u|2 +
ln(1/δ)

64n
|x− u|2 +

√
ln(1/δ)
2n

|x− u|2

≤ (1 +
ln(1/δ)
n

)|x− u|2

Hence the claim follows:

|x− v|n ≤
(

1 +
ln(1/δ)
n

)n
2

|x− u|n <
√

1
δ
|x− u|n.

The main part of the proof of Lemma 6.4 is the following Claim:
Claim 2. For every x ∈ A,

µf (v, x) < 32
|x− v|
|x− u|µf (u, x).

To prove this, let y, z be the points where `(u, v) intersects the boundary
of L(f(u)/2), so that these points are in the order y, u, v, z. Let y′, z′ be the
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points where `(u, v) intersects the boundary of K. By f(y) = f(u)/2, we have
f(y′, u) ≤ 2f(y, u), and so

df (u, v) =
f(u, v)f(y′, z′)
f(y′, u)f(v, z′)

≥ f(u, v)
f(y′, u)

≥ f(u, v)
2f(y, u)

≥ |u− v|
4|y − u| .

It follows that

|y − u| ≥ |u− v|
4df (u, v)

≥ 32 ln(3 + α) · |u− v| > 32|u− v|. (2)

A similar argument shows that

|z − v| ≥ 32 ln(3 + α) · |u− v| > 32|u− v|. (3)

Next, we compare the function values along the lines `(u, x) and `(v, x). Let
F denote the maximum value of f along `(u, x), and let p, q be the intersection
points of `(u, x) with the boundary of L(F/8), so that q is in the same direction
from p as x is from u. Since x ∈ A, we know that

|u− p|, |u− q| ≤ 32|x− u|. (4)

For each point a ∈ `(u, x) we define two points a′, a′′ ∈ `(v, x) as follows. If
a is on the semiline of `(u, x) starting from x containing u, then we obtain a′

by projecting a from y to `(v, x), and we obtain a′′ by projecting a from z. If a
is on the complementary semiline, then the other way around, we obtain a′ by
projecting from z and a′′ by projecting from y.

Simple geometry shows that if

|a− u| < |y − u||u− v| |x− u|,
|z − u|
|u− v| |x− u|,

then a′, a′′ exist and a′′ is between v and a′. Furthermore, a 7→ a′ and a 7→ a′′

are monotone mappings in this range.
A key observation is that if |a− u| ≤ 32|x− u|, then

f(a′) < 2f(a). (5)

To prove this, let b = φ(a). We have to distinguish three cases.
(a) a ∈ [u, x]. Then, using (2),

|a− b|
|y − b| ≤

|u− v|
|y − v| ≤

|u− v|
|y − u| ≤

1
128 ln(3 + α)

.

Further, by the logconcavity of f ,

f(a) ≥ f(b)
|y−a|
|y−b| f(y)

|a−b|
|y−b| .
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Figure 3: Comparing steps from nearby points.

Thus,

f(b) ≤ f(a)
|y−b|
|y−a|

f(y)
|a−b|
|y−a|

= f(a)
(
f(a)
f(y)

) |a−b|
|y−a|

.

Here
f(a) ≤ 2αf(u) ≤ 4αf(y),

since x ∈ A2. Thus

f(b) ≤ f(a)(4α)
1

128 ln(3+α) < 2f(a).

(b) a ∈ `+(x, u). By Menelaus’ theorem,

|a− b|
|b− z| =

|x− a|
|x− u| ·

|u− v|
|v − z| .

By (4), |x− a|/|x− u| ≤ 16, and so by (3),

|a− b|
|b− z| ≤ 16df (u, v) ≤ 1

4 ln(3 + α)
.
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By logconcavity,
f(a) ≥ f(b)|a−z|/|b−z|f(z)|a−b|/|b−z|

Rewriting, we get

f(b) ≤ f(a)|b−z|/|a−z|

f(z)|a−b|/|a−z|
= f(a)

(
f(a)
f(z)

)|a−b|/|a−z|

≤ f(a)(4α)
1

4 ln(3+α)−1 ≤ 2f(a).

(c) a ∈ `+(u, x). By Menelaus’ theorem again,

|a− b|
|b− y| =

|x− a|
|x− u| ·

|u− v|
|v − y| .

Again by (4), |x− a|/|x− u| ≤ 16. Hence, using (2) again,

|a− b|
|b− z| ≤ 16df (u, v) ≤ 1

4 ln(3 + α)
.

By logconcavity,
f(a) ≥ f(b)|a−y|/|b−y|f(z)|a−b|/|b−y|

Rewriting, we get

f(b) ≤ f(a)|b−y|/|a−y|

f(y)|a−b|/|a−y|
= f(a)

(
f(a)
f(y)

)|a−b|/|a−y|

≤ f(a)(4α)
1

4 ln(3+α)−1 ≤ 2f(a).

This proves inequality (5).
Similar argument shows that if |a− u| ≤ 32|x− u|, then

f(a′′) >
1
2
f(a). (6)

Let a ∈ `(u, x) be a point with f(a) = F . Then a ∈ [p, q], and hence
|a− u| < max{|p− u|, |q − u|} ≤ 32|x− u| (since x ∈ A).

These considerations describe the behavior of f along `(v, x) quite well. Let
r = p′ and s = q′. (5) implies that f(r), f(r) ≤ F/4. On the other hand,
f(a′′) > F/2 by (6).

Next we argue that a′′ ∈ [r, s]. To this end, consider also the point b ∈
`(u, x) defined by b′ = a′′. It is easy to see that such a b exists and that b
is between u and a. This implies that |b − u| < 32|x − u|, and so by (5),
f(b) > f(b′)/2 = f(a′′)/2. Thus f(b) > F/4, which implies that b ∈ [p, q], and
so b′ ∈ [p′, q′] = [r, s].

Thus f assumes a value at least F/2 in the interval [r, s] and drops to at
most F/4 at the ends. Let c be the point where f attains its maximum along
the line `(v, x). It follows that c ∈ [r, s] and so c = d′ for some d ∈ [p, q]. Hence
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by (5), f(c) ≤ 2f(b) ≤ 2F . Thus we know that the maximum value F ′ of f
along `(v, x) satisfies

1
2
F ≤ F ′ ≤ 2F. (7)

Having dealt with the function values, we also need an estimate of the length
of [r, s]:

|r − s| ≤ 2
|x− v|
|x− u| |p− q|. (8)

To prove this, assume e.g. that the order of the points along `(u, x) is
p, u, x, q (the other cases are similar). By Menelaus’ theorem,

|x− r|
|v − r| =

|u− y|
|v − y| ·

|x− p|
|u− p| =

(
1− |v − u||v − y|

) |x− p|
|u− p| .

Using (2), it follows that

|x− r|
|v − r| ≥

31
32
|x− p|
|u− p| .

Thus,

|x− v|
|v − r| =

|x− r|
|v − r| − 1 ≥ 31

32
|x− p|
|u− p| − 1

=
|x− u|
|u− p| −

1
32
|x− p|
|u− p|

=
|x− u|
|u− p|

(
1− 1

32
|x− p|
|x− u|

)

>
|x− u|
|u− p|

(
1− 1

32
· 16
)

=
1
2
|x− u|
|u− p| .

In the last line above, we have used (4). Hence,

|v − r| < 2
|x− v|
|x− u| |u− p|. (9)

Similarly,

|v − s| < 2
|x− v|
|x− u| |u− q|.

Adding these two inequalities proves (8).
Now Claim 2 follows easily. We have

µ(`(u, x)) ≥ F

8
|p− q|,

while we know by Lemma 3.10(a) that

µ(`(v, x)) ≤ 2f [r, s].
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By (7) and (8),

f(r, s) ≤ 2F |r − s| ≤ 4F |p− q| |x− v||x− u| ,
and hence

µ(`(v, x)) < 32
|x− v|
|x− u|µ(`(u, x)),

proving Claim 2.
Using Claims 1 and 2, we get for any A′ ⊂ A,

Pv(A′) =
2
nπn

∫

A′

f(x) dx
µf (v, x)|x− v|n−1

≥ 2
32nπn

∫

A′

|x− u|f(x) dx
µf (u, x)|x− v|n

≥
√
δ

32nπn

∫

A′

f(x) dx
µf (u, x)|x− u|n−1

≥
√
δ

32
Pu(A′).

This concludes the proof of Lemma 6.4. ¤

7 Proof of the isoperimetric inequality.

Let hi be the characteristic function of Si for i = 1, 2, 3, and let h4 be the
constant function 1 on K. We want to prove that

dK(S1, S2)
(∫

fh2

)(∫
fh2

)
≤
(∫

fh3

)(∫
fh4

)
.

Let a, b ∈ K and g be a nonnegative linear function on [0, 1]. Set v(t) =
(1− t)a+ tb, and

Ji =
∫ 1

0

hi(v(t))f(v(t))gn−1(v(t)) dt.

By Theorem 2.7 of [11], it is enough to prove that

dK(S1, S2)J1 · J2 ≤ J3 · J4. (10)

A standard argument [10, 13] shows that it suffices to prove the inequality for
the case when J1, J2, J3 are integrals over the intervals [0, u1], [u2, 1] and (u1, u2)
respectively (0 < u1 < u2 < 1).

Consider the points ci = (1−ui)a+uib. Since ci ∈ Si, we have dK(c1, c2) ≥ ε.
It is easy to see that

dK(c1, c2) ≤ (a : u2 : u1 : b)

while
J3 · J4

J1 · J2
= (a : u2 : u1 : b)f .

Thus (10) follows from Lemma 4.2.
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8 Proof of the mixing bound.

Let K = S1 ∪ S2 be a partition into measurable sets with πf (S1), πf (S2) > ε.
We will prove that

∫

S1

Pu(S2) dπf ≥ r

218
√
nR

(πf (S1)− ε)(πf (S2)− ε) (11)

We can read the left hand side as follows: we select a random point X from
distribution π and make one step to get Y . What is the probability that X ∈ S1

and Y ∈ S2? It is well known that this quantity remains the same if S1 and S2

are interchanged.
For i ∈ {1, 2}, let

S′i = {x ∈ Si : Px(S3−i) <
1

1000
δ(x),

S′3 = K \ S′1 \ S′2.

f

’’
1S 2S

f̂

Figure 4: The mixing proof.

First, suppose that πf̂ (S′1) ≤ πf̂ (S1)/2. Then the left hand side of (11) is at
least

1
1000

∫

u∈S1\S′1

f̂(u)
f(u)

f(u) du =
1

1000
πf̂ (S1 \ S′1) ≥ 1

2000
πf̂ (S1).
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Lemma 5.3 implies that

πf̂ (S1) ≥ πf (S1)− ε/4.

Hence, ∫

S1

Pu(S2) dπf ≥ 1
2000

(πf (S1)− ε

4
)

which implies (11).
So we can assume that πf (S′1) ≥ πf (S1)/2, and similarly πf (S′2) ≥ πf (S2)/2.

Let W be the subset of Rn with α(u) > 218nR/rε. Then by lemma 6.3,

πf (W ) ≤ εr

220nR
.

By Lemma 6.4, for any two points u1 ∈ S′1 \W , u2 ∈ S′2 \W , one of the
following holds:

df (u, v) ≥ 1
64 ln(3 + α(u))

≥ 1
28 log n

(12)

d(u, v) ≥ r

26
√
n

(13)

In either case, we get a lower bound on dK(u, v):

dK(u, v) ≥ r

27
√
nR

. (14)

Indeed, in the first case, Lemma 5.7(c) implies that

dK(u, v) ≥ 1
8n logn

· 1
28 log n

>
r

27
√
nR

;

in the second, Lemma 5.7(b) implies that

dK(u, v) ≥ 1
2R
· r

26
√
n

=
r

27
√
nR

.

Applying Theorem 2.2 to f̂ , we get

πf̂ (S′3) ≥ r

27
√
nR

πf̂ (S′1 \W )πf̂ (S′2 \W ) ≥ r

27
√
nR

(πf (S1)− ε

2
)(πf (S2)− ε

2
).

Therefore,
∫

S1

Pu(S2) dπf ≥ 1
2

∫

S′3

f̂(u)
1000f(u)

f(u)du− πf (W )

≥ 1
2000

πf̂ (S′3)− πf (W )

≥ r

218
√
nR

(πf (S1)− ε)(πf (S2)− ε)
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and (11) is proved.
By Corollary 1.5 in [14] it follows that for all m ≥ 0, and every measurable

set S,

|σm(S)− πf (S)| ≤ 2ε+ exp
(
− mr2

242nR2

)
,

which proves Theorem 2.1.
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