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Abstract: We establish two links between two-dimensional invasion percolation
and Kesten’s incipient infinite cluster (IIC). We first prove that the k-th moment
of the number of invaded sites within the box [—n,n] x [~n, n] is of order (n?m, ),
for ¥ > 1, where m, is the probability that the origin in critical percolation
is connected to the boundary of a box of radius n. This improves a result of
Y. Zhang. We show that the size of the invaded region, when scaled by n27,, is
tight.

Secondly, we prove that the invasion cluster looks asymptotically like the IIC,
when viewed from an invaded site v, in the limit |v| — co. We also establish this
when an invaded site v is chosen at random from a box of radius n, and n — co.

Key words. invasion percolation, incipient infinite cluster, self-organized crit-
icality

1. Introduction

Invasion percolation [11,20,5,28] is a stochastic growth model that is closely re-
lated to critical Bernoulli percolation. Critical percolation clusters have a fractal
geometry that has been widely studied. The invasion dynamics reproduces the
critical percolation picture, without a parameter being tuned to criticality. Both
heuristics and existing work on invasion [28,9,29] indicate a close relationship
between the invasion cluster and the “incipient cluster” of critical percolation.
In this paper we formulate and prove results that relate these two objects.

To explain our motivation in more detail, we review a few results about
invasion percolation in Section 1.2 below. We only consider the simplest setting,
invasion without trapping, which is defined in Section 1.1.

* Present address: CWI, PNA 3, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands,
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1.1. The model. Consider the hypercubic lattice Z¢ with its set of nearest neigh-
bor bonds E¢. For a subgraph G of (Z%, E?) we write E(G) for the set of bonds
of G, and v € G means that v is a vertex of G. We write e = (v, w) for a bond
e with endpoints v and w. We define invasion without trapping as follows.

Let {w(e)}ecpe be ii.d. uniform random variables on [0, 1], indexed by the
bonds. Given the random configuration w, we construct an increasing sequence
Go,G1,Ga, . .. of connected subgraphs of the lattice. The graph G only contains
the origin. If G; has been defined, we consider its outer boundary AG;, where
for any graph G

AG = {e= (v,w) €E?: e ¢ E(G), but v € G or w € G}.

We select the bond e;; which minimizes w on AG;, and we define G;;1 by
setting E(G;y1) = E(G;) U{e;11}. The graph G; is called the invasion cluster
at time i, and § = US2,G; is called the invasion cluster at time infinity or
the invaded region. (If in the definition of the outer boundary we only include
those edges that are not separated by G; from infinity, we obtain invasion with
trapping.)

The dynamically defined set S is closely related to the static Bernoulli per-
colation model. Let 0 < p < 1. For each bond e, if w(e) < p, we let wy(e) =1,
and e is called p-open. Otherwise we let w,(€e) = 0, and e is called p-closed. The
set of p-open bonds is then Bernoulli percolation at bond density p.

1.2. Previous results. Numerical work by Wilkinson and Willemsen [28] in di-
mensions d = 2,3 has indicated that the empirical distribution of the values
{w(e;)}i_, accepted into the invasion cluster up to time ¢ is asymptotically uni-
form on [0, p.], as t — oo, where p, is the percolation threshold. Their work has
also shown the fractal nature of the invaded region. Namely, with S,, denoting
the intersection of & with the box of radius n centered at the origin, their results
indicated that |S,| obeys a power law as n — oo. Here |A| denotes the number
of elements of the set A.

To the best of our knowledge, the mathematical study of invasion percolation
started with two papers of Chayes, Chayes and Newman [9,10] who rigorously
established, among other things, the uniformity of the empirical distribution on
[0,pc]- (In spatial dimensions d > 3 they proved this modulo major conjectures
that later have been established [21,22,1,13].) They also obtained results re-
garding the fractal nature of the invaded region. They showed that it has zero
volume fraction, provided there is no percolation at p., and that its surface to
volume ratio is (1 — p.)/p., the same as the asymptotic ratio for large critical
clusters.

An object that turns out to be related to invasion arose in Kesten’s analysis of
the “incipient infinite cluster” [17]. Condition the cluster of the origin, in critical
Bernoulli percolation, to intersect the boundary of the box of radius n. Letting
n — 00, an infinite cluster is obtained, which we will call the IIC. Kesten showed
that the limit exists, at least when d = 2. (The precise statement of his result
is recalled in Section 1.5.) With =, denoting the probability that the origin is
connected to the boundary of [—n,n] X [—n,n] in critical percolation, he also
proved that the k-th moment of the intersection of the IIC with [—n, n] X [-n, n]
is of order (n2m,)*, for k > 1. Around the same time, in [6, p. 1102] the invaded
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region was proposed as another possible definition of the “incipient cluster”. It
is of interest to explore the relationship between invasion and the IIC.

Zhang [29] proved results for the fractal dimension of S in d = 2. He showed
that for any ¢ > 0, with probability tending to 1,

n® e, < |Su| < n?*temy,

confirming observations of [28]. Recent breakthroughs® by Smirnov [26] and
Lawler, Schramm and Werner [19] show that 7, = n~5/48+t°(1) as n — oo,
on the triangular site lattice. This shows that, at least on this lattice, the di-
mensions of the invaded region and the IIC are both 91/48. By the conjectured
universality of this exponent, this presumably holds on all common 2D lattices.

In this paper, we establish further close links between invasion and the IIC
in two dimensions. First we show that the k-th moment of |S,| is of order
(n?m,)¥, improving the moment bound of Zhang by a factor of n°. We find
the improvement interesting for two reasons. We can show that the distribution
of |S,|/(n?m,) is tight, which establishes the correct scaling, and the scaling is
the same as for the IIC. On the other hand, we hope that our refinement of the
method of Zhang may be helpful in the rigorous study of invasion percolation.

Since the fractal dimension is only a crude measure of the geometry, it is of
interest to compare the structures of the invaded region and the IIC in more
detail. Regarding this, we prove the following. Let 0 < k < oo be fixed, and let
v be an invaded site far away from the origin. We look at the invaded region in
a window of size k centered at v. We show that, as |v| — oo, the distribution of
invaded sites inside the window approaches the distribution of sites connected to
0 in the IIC. We can also show a somewhat harder result. The same asymptotic
distribution is obtained, if v is chosen uniformly at random from S,,, as n — oc.
The latter is analogous to results in [15].

We carry out our analysis for bond percolation on the square lattice. This is
only a matter of convenience. The proofs do not use the lattice structure in an
essential way, and work whenever the Russo-Seymour-Welsh technology and the
method and results of [18, Theorem 2] are applicable.

In the following section we introduce some more notation. Two simple obser-
vations, that are well known, but crucial for our analysis are given in Section 1.4.
The precise formulation of our main theorems are given in Section 1.5.

1.8. Notation. Restricting from now on to the case d = 2, we denote the under-
lying probability measure (resp. expectation) of our model by P (resp. F). The

space of configurations is denoted by ([0, 1]¥°,G), where G is the natural o-field
on [0,1)%.

We fix some notation regarding Bernoulli percolation; for more background
see [12]. The event that some site in the set A is connected by p-open bonds to

some site in the set B is denoted by A <2~ B. The event that there is an infinite

p-open path starting at the vertex v is denoted by v <5 0o. The percolation
probability is defined by

0(p) = P(O PN oo),

1 The first version of our paper was submitted before these results were announced.
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and the critical probability is p. = inf{p : 8(p) > 0}. The special feature that
pe = 1/2 for the square lattice will not be used. For v = (v, vs) € Z? we let

|v| = max{|vy], [ve[}-
We define the box
B(n,v) = {w € Z* : jw — v| < n},
and write B(n) for B(n,0). The boundary of the box is defined by
0B(n) = {w € 7* : |w| = n}.
An important quantity for us is the point-to-box connectivity
m(p,n) = P(0 +2 0B(n)).
We abbreviate 7(p.,n) to m,, and write

s(n) = n’n,.

1.4. Two observations. The following two facts form the basis of the understand-
ing of why invasion percolation is critical [9,29].

(A) Let p > p.. Then there exists, with probability 1, an infinite p-open
cluster. Suppose that for some i the graph G; in the definition of the invasion
process contains a vertex of this cluster. Then all edges invaded after time ¢ have
w-value less than p. In other words, once the invasion process reaches the infinite
p-open cluster, it cannot leave it.

(B) Fix some time ¢, and consider the set of bonds:

H; = {e = (v,w) € E? : w(e) < p, and v (Ley G,-}.

In words, H; is the set of edges that have a p.-open connection to G; (and are
themselves p.-open). For common two-dimensional lattices, including the square
lattice, it has been established that 6(p.) = 0 [12, Section 11.3], which implies
that |H;| < oo almost surely. This means that (almost surely) all edges in H;
will be invaded before an w-value > p. is selected. In other words, the entire
pe-open cluster of any invaded site is also invaded.

1.5. Main results. All constants that appear below are strictly positive and fi-
nite. Constants denoted by C; in different theorems may be different.

Recall that S,, = S N B(n) denotes the set of invaded sites in the box B(n).
In [29, Theorem 1] the following bounds on the moments of |S,| are shown. For
any t > 1 there is C4(t), such that

E|Sq|' > Ci(t) (nmn)", (1.1)
and for any ¢t > 1 and & > 0 there is C5(¢,¢), such that
E|S,|' < Cy(tye) (n¥omy)" . (1.2)

Our first theorem improves the upper bound.
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Theorem 1. For t > 1 there is a constant C(t) such that
E|S,|' < O(t) (n?m)" . (1.3)

Once Theorem 1 is proved, it is not hard to obtain the following tightness
result.

Theorem 2. We have

lim inf P (5 < |‘2S"| < 1) =1 (1.4)
el0 n Nnmny 3

The analogues of (1.1), (1.3) and (1.4) are known to hold for the intersection
of the IIC with B(n) by the results of [17, Theorem 8].

In order to compare the local geometry of the invaded region with the IIC,
we recall Kesten’s construction. For this, let F = o(wp, (€); e € E?). The o-field
F is generated by the collection Fy of events that only depend on finitely many
of the values wp, (). It is shown in [17] that for any E € F, the limit

v(E) = lim P(E | 0<% 0B(n)) (1.5)

exists. It follows that v has a unique extension to a probability measure on F,
and under the measure v, the cluster

C(0)={veZ?: v 0}

is almost surely infinite. The distribution of the cluster C(0) under v is called
the TIC.

By (A) and (B) in Section 1.4, it is plausible that if a site v with |v| large is in
the invaded region, then the invasion neighborhood of v typically coincides with
a large critical percolation cluster, and therefore with the IIC. To formulate
this statement, we need some more notation. For v € Z? let 7, denote the
translation of the lattice by v. For a configuration w and an edge (z,y) we let
Tow({(z,9)) = w({z — v,y — v)), and for an event A we let 7,4 = {r,w : w € A}.
Let K be a finite set of edges. Define the event

E}C:{KCS},

and for v € Z? let
T, Fx = {TUIC C S}

The latter is the event that the edges in the translated set 7, K are invaded. (We
use the notation T, since this event is not the same as 7,Ex.) To make the
connection with the IIC define

E.={K CC(0)} e F.

As K varies over all finite sets of edges the events Ej. provide all information
about the set C(0).
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Theorem 3. For any E € Fy we have
lim P(r,E|veS)=v(E).

|v]— o0
Also, for any finite K C E? we have
lim P(T,Ex|veS)=v(Eg).

|v] =00

The content of the first statement is that asymptotically, the only information
the condition v € S gives about the neighborhood of v is that v lies in a large p,-
open cluster. The second statement says that the distribution of invaded bonds
near v is given by the IIC measure. Instead of a deterministic site v, we can
prove such a result for a site chosen uniformly at random from §,,.

Theorem 4. Let I, denote a vertex of S, = S N B(n) chosen uniformly at
random, given S,. For any E € Fy we have

nhﬂngo P(r; E) =v(E),

and for any finite K C E? we have
lim P(TIHE}C) = I/(E},C)

n—oo

The proof of Theorem 4 is similar to that of Theorem 3. We do not think
that Theorem 4 could be deduced directly from Theorem 3. The choice of I,
contains information about |S,|, and a priori one does not know the influence of
this on the configuration near I,,. We shall return to this issue when we discuss
the proof of Theorem 4.

The next section contains the proofs of Theorems 1 and 2. Some preliminary
results are summarized in Section 2.2. Theorems 3 and 4 are proved in Section 3.

2. Upper bound on the number of invaded sites

2.1. Heuristic argument. We describe the main idea of the proof of Theorem 1
in the case t = 1, given some scaling assumptions. The actual proof is the
translation of the argument below into rigorous statements valid on a number
of 2D lattices. Our two main assumptions are that 8(p) scales like 7(pc, (p)) for
p > pe, where £ is the correlation length, and that m(p., m) obeys a power law.
For simplicity, we even assume that the latter scales like m~%/48. This is in fact
known for the triangular site lattice by the work of Smirnov [26] and Lawler,
Schramm and Werner [19] which has led to enormous progress [27]. However, in
the rest of the paper we will use an argument independent of the lattice.

Assume that n = 2%, and let X; be the number of invaded sites in the
annulus Ay = B(2F) \ B(2%¥~1). We show that EX} < Cn%m, = C s(n), which
is essentially what we need. In using (A) of Section 1.4 for an upper bound, we
have to find py > p. so that with high probability the invasion is already in the
infinite pg-open cluster by the time it reaches Ax. An event which ensures that
this cluster is reached is

H, = {there is a pg-open circuit D in Ax_1, and D <% oo} (2.1)
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We want to choose py, as close to p. as possible to get a good upper bound on X},
in terms of the infinte cluster, but we also need P(Hf) to be small. The proof
of (1.2) was essentially based on the optimal choice of pg. Choose pi to satisfy

n 2k
g(pk) - Cl logn - Cik?
where C is a large constant. As it will be clear from computations in the next
paragraph, this leads to a bound of the form EXjy < Cs(n)(logn)® with ¢ > 0.
Such a bound is implicit in [29].
One can improve this using several p’s. For example, take px(0) > px(1) > p.
satisfying
0 =g () = g
§(p( Cilogn Ciloglogn’
Define the events Hy(0) and Hg(1) by replacing py in (2.1) by pr(0) and pg(1).
To bound the probabilities of Hy(j) first note that for p > p. the crossing prob-
ability of a squares of linear scale m > £(p) is 1 — O(exp(—am/&(p))), for some
constant a > 0. Since the shortest scale on which connections are required for the

event Hy,(0) (resp. Hy(1)) is of order (logn)¢(pk(0)) (resp. (loglogn)é(pr(1))),
this leads to the bounds

P(H(0)°) < Cexp(—clogn) P(Hg(1)°) < Cexp(—cloglogn).  (2.2)

Here ¢ can be made large by choosing C; large in the definition of pg(0) and
pr(1). We write

X = B(Xe; Hu(0)°) + B(Xi Ha0) N Hu(1)%) + E(Xes (1), (2.3)
Using (2.2), the first term is bounded above by
| Ax| P(H(0)°) = O(n’n~°).

Recalling that s(n) = n’m, ~ n’n , we see that the right hand side is

o(s(n)), if ¢ is large enough. For the second term of (2.3), on the event Hy(0) we
can bound X, from above by the intersection of A with the pg(0)-open infinite
cluster. Let Z;(0) denote the size of this intersection. Then the second term is
bounded above by

E(Z(0); He(1)°) < E(Zx(0)) P(Hk(1)?) < |Ak| 0(px(0)) C (logn)™¢,  (2.4)

where we used the FKG inequality in the first step, and (2.2) in the second. By
our scaling assumptions and the definition of pi(0), we have

—5/48

—5/48
000 % nlpes €O = (o) /o)
It follows that the right hand side of (2.4) and therefore the second term of (2.3)
are bounded above by Cn2n~%/48(logn)%/48(logn)~°. This quantity is again
o(s(n)), if ¢ is large enough. Finally, the third term of (2.3) is bounded above
by

E(Z1(1)) = |Ak| 6(pr(1)) ~ | Ak| 7(pc, £(pk(1))) = O(n*n~5/**(loglog n)>/**).

We have shown that EX}, < Cs(n)(loglogn)/8. By similar arguments we can
prove an upper bound with any number of logarithms. Furthermore, a careful
look at the argument will show that the bound Cs(n) in fact holds.

logn
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2.2. Preliminaries. Our main tool for the rigorous argument will be the finite-
size scaling correlation length introduced in [8, Section 3] and further studied
in [18]. (See also [4] for a recent account.) Let

o(n,m,p) = P(there is a p-open horizontal crossing of [0,n] x [0, m]),

where it is assumed that the open crossing does not use bonds lying on the top
and bottom sides of the rectangle. Given £ > 0, we define

L(p,e) =min{n : o(n,n,p) >1—¢}, forp> p.. (2.5)

It is known [18, (1.24)] that there exists an €9 > 0 such that for ¢ < g¢ the
scaling of L(p,¢) is independent of ¢, in the sense that

L(p,e1) < L(p,e2), for fixed 0 < €1,e2 < &g. (2.6)

The symbol < means that the ratio of the two sides is bounded away from 0
and oo as p | p.. It is also known that L(p,eq) scales like the usual correlation
length [18, Corollary 2], but we will not use this fact explicitly. We are going
to take € = €g, and let L(p) = L(p,eo) for the entire proof. We summarize the
properties of L(p) that we need.

1. From the definition it is clear that

L(p) is decreasing, right continuous and L(p) — oo as p | pe. (2.7)
2. If ¢¢ is small enough, there are constants C; and Cs such that
a(2mL(p),mL(p),p) > 1 — C1 exp(—Cam), for m > 1. (2.8)

This can be shown using ideas of [2,8, 6] by the rescaling argument of [6, Lemma
2.7]. Indeed, in [6] the rescaling bound

o(2n,n,p) > 1— 11—6)\ implies o(4n,2n,p) > 1 — %)\2 (2.9)
is shown. One can iterate this starting with n = L(p), and use the the Russo-
Seymour-Welsh Lemma (RSW Lemma) [12, Section 11.7] to get an initial bound
when n = L(p).

3. It will be important for us that the jumps of L(p) are bounded on a
logarithmic scale; there is a constant D such that

lim 7L (p—9)
510 L(p)
For the subcritical version of the finite-size scaling length this was observed in [4].

In two dimensions their proof is easily adapted to the supercritical case. Indeed,
the rescaling bound (2.9) implies that (2.10) holds for the quantity

<D forp> p.. (2.10)

L(p,e) = min{n : ¢(2n,n,p) > 1 —¢}, p> pe,
with D = 2, when ¢ < 1/16. It is simple to deduce from this that (2.10) also
holds for L(p). The simple inequality o(n,n,p) > o(2n,n, p) shows that L(p, &) <

L(p,e). On the other hand, using the RSW Lemma one can show that for some
function f(¢) we have L(p, f(¢)) < L(p,€), where f(e) — 0 as € — 0. Together
with (2.6) this establishes (2.10).

4. Finally, the following theorem makes it precise that 6(p), m(p, L(p)) and
7(pe, L(p)) obey the same scaling when p > p.
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Theorem. [18, Theorem 2] There are constants C1 and Cy such that for p > p,

7(pe, L(p)) < m(p, L(p)) < C16(p) < Cim(p, L(p))
< Com(pe, L(p))-

As for the behavior of 7(p, n), it will be enough for us to have a power law
lower bound. Using the idea of [3, Corollary 3.15] one can show that there exists
a constant D1, such that

m(pe, m) >DM/ m>n>1. (2.12)
71'(pca

2.8. Proof of Theorem 1. We first prove the case t = 1; the extension to higher
moments will not pose extra difficulties.

We still write s(n) = n2m, for short. By monotonicity of 7, we may assume
that n is a power of 2. Indeed, if 2K < n < 2K+l then s(2K*!) < 4s(n).
Assuming n = 2K we divide B(n) into disjoint annuli; B(n) = UX_, Ay, where

(2.11)

A, =B\ B@EF ) ={vez?: 2k < || <2*}, fork>2,
and A; = B(2). Letting X = |S N Ag| we can write
|Sn| = X1+ -+ Xk. (2.13)

We are going to bound E Xj.
Following the idea in Section 2.1 we start by defining a suitable sequence

pr(0) > pi(1) > ... > p.. We introduce the following notation. Let log'® k = k,
and let

log? k = log(log(j - k), for j > 1, if the right hand side is well-defined.
Here log denotes natural logarithm. For k£ > 10 we define
log* k = min{j > 0 : log"¥ k is well-defined and log"’) k < 10}.

Our choice of the constant 10 is quite arbitrary. It is immediate that log(j k> 2,
for 5 =0,1,...,log" k and k > 10. Let

N 2k . X
pi(j) = inf {p > pe: L(p) < C?,Tg(”k} , j=0,1,...,log" k, (2.14)

where the constant C3 will be chosen later to be large. Since L(p) — oo, as
D pe, pi(j) is well-defined, at least for k > some ko = ko(C3). We assume ko >

10. From the right continuity of L(p) it follows that 2¥/L(p(j)) > Cslog? k.
Together with (2.10) this implies that

k

Cslog? k < < DC3log" k. (2.15)

~ L(pk(5))

We define the events

Hy(j) = {there is a py(j)-open circuit D in Ay_1, and D 2@ oo}, (2.16)
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Fig. 1. A sketch of the event Ji N Jo" NJO" NI n g

where k > kg, 0 < j < log* k. Here, and later, we always understand that
the circuit surrounds B(2*~!). On the event Hy(j) the invasion is already in
the pg(j)-open infinite cluster by the time it reaches Aj. We can find an upper
bound for P(Hj(j)¢) using standard 2D constructions [6, Figure 6], [7]. We have
(see Figure 1)

oo

Hy,(5) > Je(G) 0 [ J&(G)s (2.17)

m=0

where (dropping the index j, for convenience)

Ji. = {there is a pi(j)-open circuit in Ax_1},
=gt n g,

g _ { there is a pg(j)-open horizontal crossing } >0
k of [2k72+m, 2k+m] % [_2k72+m’ 2k72+m] ? -
v there is a pg(j)-open vertical crossing

Jk = { of [2k—1+m’2k+m] X [_2k—1+m’ 2k—1+m] } y m Z 0

We bound the probabilities of Ji(5)¢, J;*(j)¢ and Hy(j)® using (2.8). By
RSW arguments

P(Jr(5)°) < 4(1 = o(2%,27%,pi(7))) < 16(1 — o(2°71, 2572, pi(5))).  (2.18)
Therefore, by (2.8) and (2.15) we have

P(J(5)°) < 16 C1 exp(~C22""2/ L(pr(5)))

. 2.19
<16 Cq exp{ - ngC’g, log(J) k} ( )
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Similarly, we find that
P(J(5)°) < 2(1 = o (254, 25771 pi(5)))
< 20y exp{~C22"*™ 1 /L(px(5))} (2.20)
1 )
< 2C;exp { — 502032’" log(]) k}

Summing over m and using (2.19) we get
P(H(j)°) < P(Ju(5)°)+ Z P(JP(j)°) < (16 C1+Cy) eXp{——C’203 log@ k.
m=0

Since log(j k> 2, the constant Cy does not depend on Cj as long as Cj is larger
than some fixed positive number. Writing ¢ = C2C3/4 for short, we have

P(H(§)°) < Cs exp(—clog? k), (2:21)

where the constant ¢ depends on C3, and can be made large by choosing Cj
large.
On the event Hy(j) we have

XeI[Hy(5)] < Z6(G) < |{v € Ap : v 2H 0},
Since log® k > ... > log(°®" ®) k. we have py(0) > (log k), and hence

Z Dk
H(0) D ... D Hi(log" k). Using the notation Hk(log +1) =0, for k > ko we
have

log k+1
EXy = E(Xi; He(0)°) + Y E(Xi; H(j — 1) N He(5)°)
]bgl* ) (2.22)
< |Ax|P(Hr(0)°) + { Z E(Z(j - 1)§Hk(j)c)} + EZ(log" k).

By (2.21), the first term on the right hand side is less than |Ax|Cse°*. For
the second term of (2.22), observe that Zx(j — 1) is a decreasing variable as a
function of the edge-values {w(e)}ecrz, and H(5)¢ is increasing. By the FKG
inequality [12] and (2.21) we get

E(Zp(j —1); Hi(j)°) < EZi(j — 1) - P(Hi(4)°)
< | Akl 0(pi(j — 1)) C5 exp{—clog"? k}.

As for the last term in (2.22) we have EZy(log* k) < |Ax| 6(pr(log™ k)).
We compare 8(px(j)) to m(pe, 2¥). An application of (2.11), (2.12) and (2.15)
yields

(2.23)

7(pe, L(pr(5)))
7(pe, 2F)

Cs 5 2k \"? gy 5 ) 1a1/2
< =7(pe, 2 _— < =7(pe, 2°)(DC3log"’ k)*/=.
<D, )(L(pk(j))) D, " (Pe:27) (DCs log )

8(p(j)) < Com(pe, L(pi(4))) = Com(pe, 2°) ™
(2.24)
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Here Cj is the constant Cy/Cy from (2.11). For j = log* k we have log"¥) k < 10,
which shows that (pi(log* k)) = O(7(pe, 2F)).

The bounds (2.24) and (2.23) imply that the right hand side of (2.22) is less
than

log™ k
—ck . .
07|Ak|w(pc,2k)l%+{ 3 (log¥ b k)1/> }+1], (2.25)

7(pe =

where the constant C; depends on C3. We show that the expression in the square
brackets is less than a constant, if ¢ is large enough (and therefore if Cj is large
enough). First, by (2.12) we have 7 (p,, 2¥) > Cs2~*/2. If we choose ¢ > (log 2)/2,
then e~ ¢ /7(p., 2¥) < 1/Csg. In order to bound the sum over j, we require that
¢ > 3/2. Then it is enough to show that

log™ k

sup Z {log(J b k} < Cy < o0. (2.26)

k>10 5=

Recalling that log(j 'k > 2, and applying this inequality with j = log™ k, we
see that the last term of the sum in (2.26) is at most (e?)~'. Similarly, the
penultimate term is at most (exp{e?})~!. By induction, this leads to the upper
bound 1 1 1

— + - _|_...:C'9
ee

on the left hand side of (2.26). It follows that the expression in (2.25) is bounded
above by
CrlAglm(pe, 2°)[C5™ + Co + 1],

if ¢ > 3/2 = max{(log2)/2,3/2}. Fix C3 so that this holds.

Recalling that |Ag|m(pe,2F) = O(s(2%)), we see that EX) < Cios(2F) for
k > kg. Increasing C' g, if necessary, we may assume this holds for all k. Summing
over k and recalling that n = 2% (2.13) and (2.12) yield

K
22k C’2k
FIS.] < Cao 3" o2 < Cuoa() 3. 2.
k=1 il m(pe, 2%) (2.27)

< —s n 222(’“ K)9—3(k—K) < C118(n).

This finishes the proof of the case ¢t = 1 of Theorem 1.

For the extension to higher moments note that by Jensen’s inequality we may
restrict to integer t. We first prove a bound on EXf. We have X.I[H(j)] <
Zk(j)!. By the method of either [23] or [17] we obtain the bound

EZi(j)" < Cra())[| Akl (pr (), 2°))".
Using that 2% > L(px(j)) and recalling (2.11), (2.12) and (2.15), we have

m(pk(5),2%) < 7(pk(4), L(pr(4))) < Ciam(pe, L(pi(4)))
< Cyam(pe, 2F)(DCsy log™) k)2,
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This gives the following bound analogous to (2.25):

exp{—ck} e -1 \27°
BX} < Cis(t, C3)[s(2")] lW + { > (loVk) } " 1]'

=1

If ¢ > max{tlog2/2,(t + 2)/2} the expression inside the square brackets is
bounded by a constant, hence by choosing C3 large enough we get

EXj, < Cie(t)[s(2))". (2.28)

To turn this into a bound on E|S,|" we write

Sl = @x) =Y [

1<k, ke <K i=1
By Holder’s inequality and (2.28) we have

t

t t
B[ X < [ (BXL)Y" < Cis(t) ] 5(2%).
i=1 i=1

i=1

Summing over ki, ..., kt, by the calculation in (2.27) we obtain
K t
E|S,|" < Cis(t) (Z 8(2'“)) < Cir(®)[s(n)]",
k=1

which completes the proof of Theorem 1. O

2.4. Tightness. Proof of Theorem 2. From Markov’s inequality and Theorem 1
it follows that

S, 1
supP(|2"| >—) <Cie—=0, ase—0.
n nemy e

We can show the required lower bound on |S,| based on the idea of the lower
bound of [29, Theorem 1] and the method of [17, Theorem 8|. Again, we may
assume n = 2K . For k < K let

Vi = |[{ve B@- 2k=2)\ B(2F71) : v &% 9B(2F) inside A}l
Define the event

1
G = {there is a p.-open circuit D in B(2F)\ B(3-2*7%) and Y}, > iEYk} .

By (B) of Section 1.4, on the event Gy we have |S,| > Y} > %EYk. As in [17,

Theorem 8] one can show that for k < K we have EY}, > Cys(2F) > C14%~K5(n),
and P(Gy) > C3 > 0. Then for a fixed integer £ > 0 and € < %0244 we have

Sy X c 1
(8] or{ ) oo

k=K—Z¢

since the G are independent. This proves the second part of the claim. O



14 Antal A. Jarai

3. The invasion cluster looks like the IIC

In Section 3.1 we describe the idea of the proof of Theorem 3. The proof of
Theorem 4, the random site case, requires additional arguments and is given in
Section 3.2. We do not give the proof of Theorem 3 in detail, since it is essentially
a simplification of the argument for the random site case. The necessary changes
are indicated in Section 3.3.

8.1. Idea for the fized site case. Let E € Fy, and consider the first statement
of Theorem 3. To analyze P(r,E,v € §), let B(N,v) be a box centered at v
such that 1 < N < |v|. Suppose we know that by the time the invasion reaches
B(N,v), it is in a p-open infinite cluster with p — p, very small. Then with large
probability all bonds in B(N, v) satisfy w(e) & [pe, p]- In this case the event v € S

implies v &5 0B (N, v). The latter is the conditioning in Kesten’s theorem, so
we hope to apply (1.5) for the configuration inside B(N,v), with v replacing the
origin, to get

P(yE,v <% OB(N,v)) ~ v(E) P(v <= 8B(N,v)).

To make this work we need to decouple the box from the configuration outside.
For this we put an annulus B(M,v) \ B(N,v) with N < M < |v| around the
box. With large probability, the annulus will contain a p.-open circuit, that will
be used to prevent information from outside from influencing the configuration
in B(N,v). It is a well-known consequence of the RSW technology that there
are constants p and C' such that for all M > N > 1 we have

N H
P(there is no p.-open circuit in B(M) \ B(N)) < C (M) . (3.1)

Therefore our main goal will be to show that p — p. can be made small enough
so that the invasion process inside the circuit mimics critical percolation.

8.2. Random site case. We clarify the extra argument necessary when v is ran-
dom. We can write

I[T,E, v eS|
P(r,BE)= > E(—%1—). (3.2)
vEB(n) ( |Sn| )

If |S,| was concentrated around its mean, we could easily apply the result of
Theorem 3, and obtain Theorem 4 by averaging over v. However, one expects
the fluctuations of |S,| to be of the same order as E|S,|. In fact, we can expect
that |S,|/E|S,| has a non-trivial limit distribution as n — oo. Nevertheless,
considering the box B(N,v) as before, it is natural to believe that for each
fixed v the denominator inside the expectation in (3.2) decouples from the event

T E,v &5 8B (N, v). Thus we hope to apply the same argument as in the fixed
site case. However, to make it work, we need to ensure that there is a p.-open
circuit in the annulus B(M,v) \ B(NV, v) even when v is random. For this we will
need to use the tightness of |Sy|.
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Proof. (Theorem 4) We start by proving the first statement of the theorem,
that is, when E € Fy. The second statement will only require a little bit of extra
argument. We use the notation of the proof of Theorem 1.

We start with the argument that the annulus centered at I,, contains a p.-open
circuit with large probability. Recall that s(n) = n2m,. Let 2K <n < 2K+1 TLet
€ > 0 be given, which will be used to control errors. By Theorem 2 there is an
z = z(e) > 0, such that

P(|S,| < zs(n)) < e, ifn is large enough. (3.3)
Let An(a,b) = B(a) \ B(b), and define

F = Fy, n = {there is a p.-open circuit in An(M, N)}
F (D) = {D is the outermost p.-open circuit in An(M, N)}.

‘We are going to choose M, N in the course of the proofsothat 1 <K N <« M < n.
In any case, we assume that B(N) contains all edges on which E depends.
From (3.3) we obtain

P(I, € B(|v/n])

< P(|8,| < zs(n)) + E < E”GB(LT;i)lj[U <4l ;S| > xs(n))

) (3.4)
<ot BN B(LVa))
<e+ %S("—n) < 2,

provided n is large enough, since s(n) > Cn?n~1/2 by (2.12). Recall the definition
of the event Hy(0) in (2.16). By (2.21) we have for some ¢ > 0

P( G Hk(0)0> < Cszexp{—c(|K/2| +1)} <&, (3.5)

k=|K/2|+1

if K, and therefore if n is large enough. The choice of ¢ will not play a role this
time. We will drop the argument 0, and write Hj, instead of Hg(0), and p, instead
of pr(0) in the rest of the proof. We also introduce the notation k, = | K/2].
We want to bound the probability of 77, F'¢, the event that the required p.-open
circuit surrounding I,, does not exist. We have

Iv eSS, r,F°
P(r,F*) = E (EUEBW I‘[S | ]>

< P(I, € B(lv/n])) + P(ISn| < zs(n)) + P ( U Hzﬁ) (3.6)

+%(n) >y E(I[ves,r,,FC]; ﬁ Hk>.

v€An(n,|vn])
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By (3.3), (3.4) and (3.5) the sum of the first three terms on the right hand side
is less than 4e. By the observation 2%» < |\/n]|, the sum over v on the right
hand side of (3.6) is less than

K+1 K+1
Z Z (I[ve S, 7 F°; Hg) < Z Z Iv 2% ool I[r, F€)).
k=kn+1vEAy k=kn+1vEAy

To explain the last inequality, consider the first time ¢ that an edge of the pg-
open infinite cluster is invaded. On the event H} this cannot happen later than
first time the invasion reaches the circuit D in the definition of Hy. In particular,
at time t; the invasion will not have reached Aj. Hence the vertex v is invaded
after time ti, and therefore it is in the pg-open infinite cluster. Altogether this
implies that

K+1

Z Z (v &% 00,7, F°) (3.7

k kn+lveAy

P(TInFC ~

Applying the FKG inequality and (2.24) we get
P(v &5 00,7, F¢) < 0(pk) P(F°) < C4P(F°)m(pe, 2%)Vk. (3.8)

Summing (3.8) over v € Ay it follows that the right hand side of (3.7) is less
than

4 + %ﬁgc) i s(2F)VE < 4e + CSPT(FC)\/log n. (3.9)
k=1

From (3.1) it follows that for some Cg = Cg(e, z) if M = Cs¢N(logn)'/?#) | then
the second term on the right hand side of (3.9) is less than . With this choice
of M, we have

P(r1,F°) < be, (3.10)

for any fixed N, provided n is large enough.
The bound (3.10) shows that up to a small additive error we can write (3.2)
in the form

P(ri,E) ~ P(r, B, i, F) = 3 E( B, T;'S’ T”F]>. (3.11)
vEB(n) n

The next step is to use the disjoint decomposition F = UpF (D) to write the
expectation in (3.11) as a sum over D. There is an additional technicality. Later
we need that v is typically sufficiently far away from the origin, so we use (3.4)
again, to restrict the sum in (3.11) to v € An(n, |\/n]). Equations (3.10), (3.4)
and (2.21) yield

P(r1,E) <8+ P(r1, E, 71, F, {I, ¢ B(|vn|)}, Hk, 1)

Ir,E,veS, 7, (D)]
=8+ Y ZE( 5. sHy,-1 ) (3.12)
v€An(n,|v/n]) D "
S 8¢ + P(TInE)
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Here the second sum is over all circuits D in An(M, N).
For decoupling we want to replace |S,| by the quantity

Wy (mD) = |ext(1,D) N Sypl,

where ext(7,D) denotes the graph exterior to 7,D (the edges and vertices of
7D belong to ext(r,D)). We denote by int(7,D) the interior of 7,D. We have
lint(7,D)| < (2M + 1)2. From the choice of N at the end of the proof it will be
clear that M? = o(n), which implies that for large n we have the (deterministic)
inequalities:

Wi (D) < |Sn| < (1 + &)Wy (7,D).

Hence, denoting the value of the expectation in (3.12) by E(v,D,n), we have

I[ryE,v e S, 7,F(D)]
W, (1,D)

E(v,D,n)<E ( ;Hknl) <(1+4¢)E(v,D,n). (3.13)

We continue by showing that on the event 7, F (D), invasion inside 7,D can be
decoupled from invasion outside, and it can be approximated by critical perco-
lation. Let us write the configuration w(-) € [0, 1] as w = 7@ ¢, where £ is the
configuration in int(7,D) and 7 is the configuration in ext(7,D). (In particular,
the states of the edges of 7, D are represented by 7.) We want to rewrite the
expectation in the middle of (3.13) by first conditioning on 7. We claim that

(i) the event 7, F(D) N Hg, 1 only depends on 7, given that n is large enough
and v € An(n, |v/n]);

(ii) the random variable I[r,F(D)](W,(7,D))~! only depends on 7, given that
n is large enough and v € An(n, |\/n]).

To prove (i) first note that the event 7, F(D) only depends on 5. Moreover, we
show that if 7, F(D) occurs, then (at least for n large) the occurrence of Hy, 1
is equivalent to the occurrence of

~ there is a pg,, _1-open circuit £ in Ay _
= Pho—17oPen AHEAT fn =2 (3.14)
and £ <= oo outside int(7,D)

Assume that 7, F (D) occurs. Then the occurrence of H implies the occurrence of
Hj. _,. For the converse we need to show that if Hy__; occurs, then the infinite
path in its definition can be chosen to lie outside 7,D. For this fix a pg,__1-open
circuit £ in Ay __o whose existence is implied by Hy,_ 1. For n large, the interior
of 7,D is disjoint from B(2*»~2), and hence & lies in ext(7,D). Now let p be
a pi, —1-open path connecting £ to infinity; this path starts in ext(7,D). Since
Dk,—1 > Dc, the edges of 7,D are pg_ _i-open. Therefore, if some pieces of p
happen to be inside int(7, D), we can replace them by arcs of 7, D, and still have
a pg, —1-open path. This shows that H occurs, and thus (i) is established.

To establish (ii) we first note that since v € B(|+/n])¢, for large n we have
0 ¢ int(7, D). Statement (ii) now follows from Lemma 1 below. Since the validity
of the lemma is intuitively clear, we defer its proof to the end of this section.
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Lemma 1. Let eq, ea, ... be the history of the invasion process, i.e., the sequence
of edges invaded. Let £ be a circuit for which 0 € intE. Let w = n © &, where n
is the configuration in ext £, and £ is the configuration in int £. Given that & is
pe-open, the set

H={e;i:i>1}NextE (3.15)
only depends on 7.

Conditioning on 1 and using statements (i) and (ii) we can rewrite the middle
expression in (3.13) as
g (1ImEev € ST PO Hi ] ||
W (mD)

(3.16)

. I[7,F(D), Hg, 1]
_E( Wo (D) P(r,E,veS|n) ).
We claim that
Ive 8] =1I[ve SI[r,DCS] as. onr,F(D). (3.17)

To see this note that 0 ¢ int(7,D) implies that if v € S then the invasion has to
cross 7,D. By (B) of Section 1.4 we have

I[r,D is reached] = I[r,D C 8] almost surely on 7,F (D). (3.18)

This proves (3.17).

From (3.18) it is apparent that the event {7,D C §} N7, F (D) only depends
on 7. This fact and (3.17) allow us to write the right hand side of (3.16) in the
form

B I[r,F(D), Hy, -1, 7vD C S]
Wy (mD)
The rest of the proof is concerned with analyzing P(r,E, v € S|n). The
idea is that given the event 7,D C &, the condition v € S can be replaced by
v <% 7,D. Recall that ¢ denotes the configuration in int(7,D), and let

P(r,E,veS]| 17)> . (3.19)

Q = Q(1,D,n) = {there is no edge e € int(7,D) for which £(e) € [p¢, P, —1]}-

In order to bound the probability of Q¢, we estimate the number of edges e in
the interior of 7, D for which £(e) € [p¢, Pk, —1]- It is known that 6(p) grows at
least linearly for p > p. near p. [12, Theorem 5.8]. Therefore (2.11) and (2.15)
imply

Pk,—1 — Pe < Cr(0(pr,—1) — 0(pc)) = Cr0(pk,,—1) < Csm(pe, L(Pk,—1))

<o 2kn—1 (3.20)
> LT (pca m) )

where Cg denotes the constant C3 from (2.15). Here 2%»~1/(k,,—1) < /n/(logn).
It is known [16, Lemma 8.5], that there are constants C19 and ¢ > 0, such that

(pe, m) < Ciom™¢, form>1. (3.21)
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From (3.21) and (3.20) it follows that

log n)¢
Pkn—1 — Pe < 011(71%7/2)- (3.22)

Recall that the circuit 7,D lies in the annulus B(M,v) \ B(N,v). The relation
between M and N is M = CgN(logn)*/2#), for some constant p, and Cg only
depending on ¢, not on n. The number of edges in int(7,D) is at most O(M?) =
O(N?(logn)*/*). Hence

P(Q°|n) < E({e € int(r,D) : {(€) € [pes Pr,-1]})
< C1aM*(pk,—1 — pe)
logn)¢tHt/k (3.23)
< 012011062]\72%
< Clg(N) . n_C/4.

For arbitrary fixed N this bound is uniform in D.
Recall that our aim is to analyze P(r,E,v € S§|n) inside the expression
in (3.19). Fix an 7 such that

7w F (D), Hg, -1 and {r,D C S8} occur. (3.24)

Then on the event Q exactly those edges of int(7,D) will be invaded that are
pe-open, and have a p.-open connection to 7, D. This means that

IQU[r,E, v € S| = I[Q|I [ E, v <% 7,D], (3.25)

for any 7 satisfying (3.24).
From (3.25) we have

P(tyE,v € S|n) — P(Q°|n) < P(r,E, v & 1,D | n)
=P(E, 0<% D | 7_y7) (3.26)
= P(E, 0<% D)
< P(r,E,veS8|n)+ P(Q°|n),

where at the second equality we have used that the event F, 0 &5 Dis indepen-
dent of 7_,n. Now we are in a position to apply (1.5) with a small modification.
We claim that
lim P(E |0+ D) = v(E). (3.27)
N—oo
D surrounds B(N)

In order to prove this, note that by the remark after Theorem 3 in [17], the
conclusion of (1.5) holds even in the case when B(n) is replaced by an arbitrary
increasing sequence of sets whose union is Z?. Given any sequence of circuits for
which the limit in (3.27) is different from v(F), we get a contradiction. Hence
for N large enough we have

(1-¢)P(E, 0+ D) <v(E)P(0> D) < (1+¢)P(E, 0= D). (3.28)
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We note that (3.28) also holds when v(FE) = 0. In fact, by RSW considerations
P(E, 0 £ dB(N)) = 0 for all large enough N when v(FE) = 0. We fix N such
that (3.28) is satisfied.
The last step is to show that P(Q¢|n) is an error term in (3.26). Recalling
that D lies inside B(M) and that M = CgN (logn)*/(#) by (2.12) we have
Dy
v/CsN (logn)1/(4n) "

Hence recalling (3.23) we conclude that for n large enough we have

P(0 <% D) > mar >

P(Q°|n) < ev(E)P(0 <% D). (3.29)

This bound fails when v(E) = 0. However, it is simple to adapt what follows to
this situation. By (3.26), (3.28) and (3.29) we have

1

< pc
-2 28P(TUE, v e S|n) <v(E)P(0+= D)

(3.30)
< —P(ry,E .
S =5 PmEB,ves|n)
We can replace E by the sure event in the arguments above. Then (3.30) and
its version for the sure event imply that for n large enough we have
1-—2¢ 1+ 2¢
E)P < P(ru,FE <
Similarly, the inequalities (3.12) and (3.13) hold with F replaced by the sure
event. We plug the estimate of (3.31) back into the expression in (3.19). Recall
that (3.19) also equals the middle expression in (3.13). Then it is a simple matter
to deduce from (3.12), (3.13), their versions for the sure event and (3.31) that
for all large n we have

v(E)P(veS|n). (3.31)

(14+2e)(1+¢)
o V(E)

1-—2¢
G079 P

P(r, E) <8+
(3.32)
P(T]nE) > —8¢ +

Since € was arbitrary, this implies the first statement of Theorem 4.

To conclude we describe the modifications necessary for the second statement.
Recall that T,FEx is the event that the edges in the set 7,K are invaded, and
TyEj is the event that these edges belong to the p.-open cluster of v. It is not
hard to check that the manipulations leading to (3.12), (3.13), (3.16) and (3.19)
are still valid when 77, E is replaced by 17, Ex, and 7, FE is replaced by T, Ex.
The first difference arises when we approximate invasion by critical percolation
on the event Q. This time (3.25) is replaced by

I[Q[T,Ex, v € 8] = I[QI[r,Ef, v <& 7,D], (3.33)

for any n satisfying (3.24). This holds for the same reason as (3.25), namely
that on @ exactly those edges of int(7,D) will be invaded that have a p.-open
connection to D. In the case when K is connected and contains 0, the event Ej
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is a cylinder event. In this case, Kesten’s theorem applies, and (3.28) holds with
E replaced by E}. It is not hard to see that in this case the rest of the argument
applies without change to show that lim P(Ty, Ex) = v(E}.). We have to work
a little bit more for a general K by approximating E}- by cylinder events.
Denote the event {0 Loy ’D} by Ap. Then it is enough to show that we still
have
A}im P(Ey | Ap) = v(Ey). (3.34)
D surrmz(ci): B(N)

Fix ¢ with the property K C B(£). For m > £ let
Cm/(0) = the p.-open cluster of 0 inside B(m).

We approximate Ey by the event Ej. ,, = {K C C;,(0)} C Ej. On the event

(Ex \ Ex ,) N Ap the event Ap and the event O,, = {B(¢) &5 9B(m)} occur
disjointly. By the BK inequality [3] we have

P(Ex y, Ap) < P(E), Ap) < P(Ex ., Ap) + P(Opm)P(Ap). (3.35)

We claim that the right hand side is (1 + o(1)) P(Ex ,,, Ap) as m — oo. This
follows from three facts: P(O,,) — 0 as m — oo,

P(Ek,m, Ap) > P(Ek )P (Ap)

(by the FKG inequality), and P(Ej ,,,) > P(Ej,) > 0. Since Ej. , is a cylinder
event, the conclusion of (3.34) holds for Ej ,,. Putting this together with (3.35)
and the fact that limy, oo V(Ef ,,) = V(Ej) we get (3.34). O

Proof. (Lemma 1) Recall that G; (¢ > 0) denotes the invasion cluster at
time 4.

We separate three phases in the invasion process. The first phase starts at
time 0. Let R; be the hitting time of the circuit &, i.e., the first time that an
edge with an end-vertex on £ is invaded. It may happen that the invasion never
reaches &; in this case we let Ry = oo, and there are no other phases. Otherwise
the second phase starts at time R; + 1. Let Ry be the time when all edges with
a pc-open connection to Gg,, that are themselves p.-open, have been invaded.
We have Ry < oo almost surely on the event {R; < oo}. Since G, contains a
vertex of £, the following holds:

almost surely on {€ is p.-open} N {R; < oo} all edges (3.36)
of the circuit £ are invaded during the second phase. '

The third phase is the rest of the process.

The set of edges H; that are invaded during the first phase only depends on
n, since we do not look at any w-values inside €. In the case R; = oo we are
done, since H = H;.

During the second phase all invaded edges have w-value less than p., and the
set of edges invaded is

def

Ho = {e € E(GRr,)®: w(e) < pe, € £ G, }.
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We show that the set Ho def HoNext € only depends on 7. Since £ is p.-open, any
e € Ho in fact has a p.-open connection to Gg, outside int £. (See the discussion
following (3.14).) Therefore,

Hy = {e € E(GR,)*Next& : w(e) < pe, € &2y Gg, outside int£}.

Since G, only depends on 7, this shows that H, only depends on 7, as well.
To discuss the third phase, we need to introduce some more notation. Let X
be the set of times when an edge in int £ is invaded during the third phase. For

any graph G let AG = AG N E(ext ). Also, define the graph G; by E(éz) =
E(G;) N E(ext&). As a result of the previous paragraph, we have:
the graph Gg, only depends on 7. (3.37)

Consider the step at some time ¢ > Ry, and first assume that i ¢ Y. Then,
by the definition of the invasion process, e; minimizes w on AG;_1, furthermore,

since e; € ext £, e; minimizes w on A~G,-_1. We noted before, that by the end of
the second phase all edges of £ are invaded, hence the edges of £ do not belong
to AG;_1. This implies that AG;_; = AG;_1. Thus

for i > Ry and i ¢ ¥ we have E(G;) = E(G;_1) U{f},
where f minimizes w on the set Zéi,l.
On the other hand
for i > Ry and i € ¥ we have G; = G;_1. (3.39)

(3.38)

From (3.38) and (3.39) we see that whenever the set G; changes, it changes in a
fashion determined only by 1. Using (3.37), (3.38) and (3.39) we get by induction
that the sequence

{Gi:i>R,y, i ¢ X}

only depends on 7. In particular, the set

Hys ¥ {e;:i> Ry, i ¢ X}
= {edges outside int £ that are invaded in the third phase}

only depends on 7. Since H=HUHaU ﬁ;;, this shows that 7 only depends
on 7, and the proof of the lemma is complete. 0O

8.3. Single site case. In this section we indicate the necessary changes for the
proof of Theorem 3.

Proof. (Theorem 3) Let n = |v| and 2% < n < 2K+1. Other notation will
have the same meaning as in the proof of Theorem 4. Let ¢ > 0 be given. By
the FKG inequality and (2.24) we have

P(r,F¢, v € S) < P(HY) + P(1,F°, v &5 0)
< P(Hg) + P(F°)0(pk) (3.40)
< P(H§) + Cimo VK P(F©).
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By choosing the constant C3 in the definition of pg large, we can achieve

P(HY,
% —0, asn— oo. (3.41)

As in the argument preceding (3.10), we can find constants p > 0 and C5 =
C3(¢), such that if M = C3N (logn)*/(#), then for large n we have

RHS of (3.40) < emp,. (3.42)

On the other hand, by (B) of Section 1.4, the FKG inequality, the RSW Lemma,
and (2.12), we have

PveSs)
> P(there is a p.-open circuit in Ag 2 and v PLLIN BB(2K+2)) (3.43)
> CyP (v <=5 0B(2572)) > Csmyp.

This implies that

P(r,F°|veS) < —. (3.44)
Cs
By (3.41) and (3.43) we also obtain
P(Hg |veS)—0, as n — oo. (3.45)
From (3.44) and (3.45) it follows that
2
P(r,E|veS) - = <Y P(rE, Hk, 7,F(D)|v € S)
Cs ~ 5 (3.46)

< P(r,E|lveS)

By conditioning on the configuration 7 in ext(r, D), and using Lemma 1, we can
rewrite the summand in (3.46) as

ﬁE{I[nF(D), Hg, 7D C S)P(r,E,ve S|n)}.

The quantity P(7,E, v € §|n) can be analyzed by the method of Theorem 4.
The rest of the proof is analogous to the random site case.
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