The de Rham-Witt complex and p-adic vanishing cycles!
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Introduction

We determine the structure of the de Rham-Witt complex of [10, 9] of a smooth
scheme over a discrete valuation ring of mixed characteristic with log-poles along
the special fiber and show that the sub-sheaf fixed by the Frobenius is isomorphic
to the sheaf of p-adic vanishing cycles. We use this result together with the main
results of op. cit. to evaluate the algebraic K-theory with coefficients of the quotient
field K of the henselian local ring at a generic point of the special fiber. The result
affirms the Lichtenbaum-Quillen conjecture for the field K.

In more detail, let V be a henselian discrete valuation ring with quotient field
K of characteristic 0 and perfect residue field kg of odd characteristic p. Let X be
a smooth Vj-scheme of relative dimension r, and let ¢ and j denote the inclusion of
the special and generic fiber, respectively, as in the cartesian diagram

ye——Xx+«——1U

L]

Spec kg & Spec Vy +—— Spec Kj.

The henselian local ring of X at a generic point of Y is a henselian discrete valuation
ring V' whose residue field k is the (non-perfect) function field of Y. A uniformizer
of Vg is also a uniformizer of V, and hence, Vy and V have the same absolute
ramification index e.

We consider the ring Ox with the log-structure a: Mx — Ox determined by
the special fiber. The de Rham-Witt complex of [10, 9]

W. Q?X,MX) = W. Q?OX7MX)
is defined as the universal Witt complex over (Ox, Mx). The reduced sheaves

Z*Wn Q((IX,MX) = Z*(Wn Q(X,MX)/an QI(IX,MX))

1A previous version of this paper was entitled On the K-theory of a henselian discrete
valuation field with non-perfect residue field.

2 The authors were supported in part by grants from the National Science Foundation. The
first author received additional support from the Japan Society for the Promotion of Science and
the Alfred P. Sloan Foundation.
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are quasi-coherent sheaves of i*W,,(Ox)-modules on the small étale site of Y. We
show that, Zariski locally on Y, the canonical projection i*W, (Ox) — Oy admits
a section. Hence, we can view the sheaves in question, Zariski locally, as sheaves of
quasi-coherent Oy-modules. We show in paragraph 1 that these are free of rank

r+1) =2
tkoy i Wn Qx ) = < q ) v
s=0
and give an explicit basis. This allows us, in paragraph 2, to calculate the kernel
and cokernel of 1 — F. The result expresses the sheaf of p-adic vanishing cycles in
terms of the de Rham-Witt sheaves.

THEOREM A. Suppose p,e C Ko. Then there is a natural ezact sequence
. L® . 1-F .
0= i"Rjup, — i"W. QE]X7MX)/p“ — i*W. Q?XMX)/p” -0
of sheaves of pro-abelian groups on the small étale site of Y.

We expect that theorem A is valid also if Ky does not contain the pYth roots
of unity. More precisely, we expect that the terms in the sequence satisfy Galois
descent for the extension Ko(pp»)/Ko; compare [13, théoreme 1(1)].

The algebraic K-theory of the field Ky was determined in [10]. In paragraph 3,
we combine theorem A and the main results of [10, 9] to extend this result to
the field K. Indeed, we prove the following formula, predicted by the Beilinson-
Lichtenbaum conjectures [2, 16].

THEOREM B. Suppose that p,» C Ko. Then the canonical map
Kf/[(K) ® SZ/p”(lup“) - K*(K,Z/pv)

is an isomorphism.

The second tensor factor on the left is the symmetric algebra on the Z/p®-
module p,v, which is free of rank one, and the map of the statement takes a
generator ( € pp» to the associated Bott element by € K»(K,Z/p?). The Milnor
groups KM (K)/pK ) (K), which were evaluated by Kato in [14, theorem 2(1)], are
concentrated in degrees 0 < ¢ < r + 2. Hence, theorem B shows that the groups
K.(K,Z/p®) are two-periodic above this range of degrees.

The results of this paper were reported in expository form in [8].

In this paper, a pro-object of a category C will be taken to mean a functor from
the set of positive integers, viewed as a category with one arrow from n+ 1 to n, to
C, and a strict map between pro-objects a natural transformation. A general map
between pro-objects X and Y of C is an element of

Homypro —¢(X,Y) = lim colim Home (X, Y5 );

compare [1, appendix]. Occasionally, we view objects of C as constant pro-objects
of C. We abbreviate ¢’ =¢/(p —1) and ¢ = pe/(p —1).

While this paper was written the authors visited the University of Tokyo. The
second author also visited the Isaac Newton Institute of Mathematical Sciences
and Stanford University. We would like to express our gratitude for the financial
support and the hospitality that we received.
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1. The de Rham-Witt complex

1.1.  We consider the de Rham-Witt complex of log-Z,)-algebras introduced
in [10, §3]; see also [9]. It generalizes the de Rham-Witt complex of log-F,-algebras
of Hyodo-Kato, [11]. Throughout, we assume that the prime p is odd.

A log-ring (A, M 4) in the sense of [15] is a ring A (in a topos) with a pre-log-
structure, defined as a map of monoids a: M4 — (A,-) from a monoid M4 to the
underlying multiplicative monoid of A. A log-differential graded ring (D, Mp) is
a differential graded ring D, a pre-log-structure a: Mp — (D°,-), and a map of
monoids dlog: Mp — (D', +) which satisfies that d o dlog = 0 and that for all
x € Mp, da(z) = a(z)dlogz. Maps of log-rings and log-differential graded rings
are defined in the obvious way.

Let W,,(A) be the ring of Witt vectors of length n in A. If a: My — Ais a
pre-log-structure, then so is the composite

M4 i} A— Wn(A),

where the right hand map is the multiplicative section a — [a], = (a,0,...,0). We
denote this log-ring by (W, (A), M4). By a Witt complex over (A4, M4) we mean
the following structure:

(i) a pro-log-differential graded ring (E*, Mg) and a strict map of pro-log-rings
A: (W.(A), My) — (E°, Mg);
(ii) a strict map of pro-log-graded rings
F: (E*,Mg) — (EX_,,Mg)
such that F'A = AF and such that
Fdlog, Ma) = dlog,,_; A(a), for all a € My,
Fd\([a],) = M[a]n—1)P"d\([a]n—1), for all a € A;

(iil) a strict map of pro-graded modules over the pro-graded ring E¥,
V:F.E* | — E*,
such that AV =V A, FV =p and FdV =d.

A map of Witt complexes over (A, M) is a strict map of pro-log differential
graded rings which commutes with the maps A, F' and V. We write R for the
structure map in the pro-system E* and call it the restriction map. The definining
relations imply that dF' = pFd and Vd = pdV, but in general there is no formula
for VF; see [9, lemma 1.2.1]. The de Rham-Witt complex

W4 a4

by definition, is the universal Witt complex over (A, M 4). The proof that it exists,
which is given in [9, theorem A], also shows that the canonical map

. q q
A Q) ™ W Uy

is surjective. Hence, every element on the right can be written non-uniquely as a
differential g-form on (W), (A4), M 4). The descending filtration of the de Rham-Witt
complex by the differential graded ideals
Flls Wn QTA,MA) == Vsans QE(A7MA) + stans QE(A7MA)
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is called the standard filtration. It satisfies
F(Fil* W,, Q¢ ) C Fil* ' W, Q¢

(A,Ma4) (A,Ma4)’
V(FIl' W, Q) CFIT W Q7

but, in general, is not multiplicative. The restriction induces an isomorphism

W, Q((]A7MA)/ Fil* W, QgA,MA) = Wy Q((]A,MA)‘

1.2. Let X be as in the introduction. The canonical log-structure on X, we
recall, is given by the cartesian square of sheaves of monoids

Mx L) Ox
]*O[*] E— .]* OU7

so with a choice of uniformizer 7 of V5 we have an isomorphism
O} X NO 1) Mx,

which takes (u,i) to m'u. In this case, the de Rham-Witt complex

W. Q?X,MX) - W. Q?OX7MX)
has an additional filtration by the differential graded ideals
U™Wa X x ay)

generated by Wn(méox), if m = 2j is even, and by Wn(méOX) - dlog, Mx and
W, (m)t Ox), if m = 2j + 1 is odd. We call this the U-filtration.

LEMMA 1.2.1. The U-filtration is multiplicative and preserved by the restric-
tion, Frobenius, and Verschiebung. Moreover, if X; = X Xgpecv, Spec(Vo/m)),
if ij: X; — X s the closed immersion, and if a: Mx, — Ox; is the induced
pre-log-structure, then the canonical projection induces an isomorphism

5 (Wa Qfx gy JUYW,, s arey) = Wa QthMXj).

ProOF. A functor, which has a right adjoint, preserves initial objects. Hence
x 2 _ 2
5 (W Uy /U W U i) = W Uiz o) /U W Uis o is -

Let (B, M) be alog-ring, let J C B be an ideal, and let (B, M) be the ring B = B/J
with the induced pre-log-structure given by the composition

a:M=M%B2 B/
One can show from the definitions that the map induced from the projection
W g vy = Wa Q?B,M)

is surjective and that the kernel is equal to the differential graded ideal generated
by the ideal Wy, (J) C W, (B); see [6, lemma 2.2.1] for the proof. The lemma is a
special case of this statement. O



LEMMA 1.2.2. Let e be the ramification index of Vo and let e = e/(p—1). Then

pUMW, Q) cUPmnbterity, ot ) for j >0,
pUYW, Q((JX,MX) — U2(j+e)Wn Q((JX,MX)v forj>eé".

PRrROOF. By the definition of the U-filtration, it suffices to show that

PWa(mOx) € Wi (mg ™ TP 0x) - for j >0,
Wn(méJreOX) Can(méOX), for j > €.

Let 7 be a uniformizer of Vy with minimal polynomial 2¢+pf(z) and recall from the
proof of [10, proposition 3.1.5] that [7]¢+6([#])V (1) is contained in pW,,(Ox). The
second inclusion follows by iterated use of this conguence. Finally, we recall from
the proof of [10, lemma 3.1.1], p is congruent to [p] + V(1) modulo pVW,(Ox).
The first inclusion follows by induction, since p has valuation e. a

The map dlog,,: Mx — W, Q% X, Myx) gives rise to a map of graded rings
Az(MSP) = W, Qx My )
and there is a descending filtration of the left hand side by graded ideals
U™ Az(MZ),

which corresponds to the U-filtration on the right hand side. To define it, we first
choose a uniformizer 7 of V4 such that we have the isomorphism

O% xZ = MS,
which takes (u,i) to miu. We define U™ Az(MS’) to be Az(MS?), if m =0, and to
be the graded ideal generated by (1+m)Ox) x {0} c MSP,if m =2j and j > 0, by
(1+moOx) xZ C M5, if m =1, and by (1+myOx) x {0} A{1} x Z C MP AMS’
and (14+m)™Ox) x {0} € M, if m =2j+1and j > 1.

LeEMMA 1.2.3. If x is a local section of mg(’)x, then, modulo U~ W, Q%X’MX),

dlog,(1+z)= Y dV*([z]n—s).

0<s<n

PROOF. We first show that if R is a ring and = € R, then

1+z], — (1] = Z Ve ([@]n-s)
0<s<n
modulo the ideal W,,((z?)) C W, (R). By naturality, we may assume that R = Z[z].
If we write [1 + ], — [1], = (ao, a1,...,a,—1), then the statement we wish to show
is that a; = modulo (22), for all 0 < s < n. The statement for s = 0 is clear. We
consider the ghost coordinate

s s s—1
(1+2)” —1=af +pai +--+p""laf_; +pas.
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The left hand side is equivalent to p°z modulo (z?), and the right hand side,
inductively, is equivalent to p*as modulo (z?). It follows that a is equivalent to z
modulo (z?) as desired. If = is a local section of m)Ox, we may conclude that

1+ 2], n= Y Vi([2]n-s)
0<s<n
modulo W, (m2? O ). Differentiating this congruence we find that
d[L+2],) = Y dVi([a]a-s)
0<s<n

modulo UYW, Q(y 5r,y- It remains to show that the left hand side is congruent
to dlog, (1 + z) modulo UYW, Q(y 5.y By definition, we have

[1+ z]pdlog, (1 + ) = d([1 + z],),
and [1+ ], is a unit in W, (Ox /m Ox). Therefore, it will suffice to show that the

product ([1+z],—[1];)d([1+2],) is congruent to zero modulo UYMW, Q(y y/. - But
the two factors lie in U?/ W, x ary) and the U-filtration is multiplicative. O

The lemma determines dlog,,, modulo higher filtration, on U™Az(M§?), for
m > 2. Moreover, there is a commutative square

dlog,, .,
(M JU* (M) L%n (W, Q(lx,MX)/U2W" Q(1X7MX))

| |

dlog
gp n 1
MY Wn Q(Y,My)’

and the right hand vertical map is an isomorphism by an argument similar to the
proof of lemma 1.2.1.

1.3. We recall from [9, lemma 7.1.2] that the sheaf
1 q — q q
Wi x a1y = Wn Qi are) [PWn X aa)
is a quasi-coherent sheaf of W,,(Ox)-modules on the small étale site of X. The
sheaf is supported on Y, so we may as well consider the quasi-coherent i*W, (Ox)-

module i*T,, Q( X, M) We first show that, Zariski locally on Y, we may view this
as a quas1—coherent sheaf of Oy-modules. Let ¢ be the absolute Frobenius on Y.

LEMMA 1.3.1. Let x1,...,x, be local coordinates of an open neighborhood in X
of a point of Y, and let T, . .., T, be the corresponding local coordinates on'Y. Then
there is, in the corresponding open neighborhood of Y, a map of pro-rings

0: Oy — ’L*W(Ox)
such that 6(Z;) = [x;], 1 <i <r, and such that F'§ = dp.

Proor. The ring homomorphism
f: W(ko)[xla L) mr] - W(k’o)[l’l, L) m7‘]7
given by the Frobenius on W (ko) and with f(z;) = ¥, 1 <14 <r, is a lifting of the
Frobenius on ko[Z1,...,Z,]. It determines a ring homomorphism

sp: W(ko)[za,...,zp] = Wo(W(ko)[z1, ..., 2.]),
6



characterized by w;sy = f/, 0 < j < n, and, after reduction modulo p, a ring
homomorphism

Sf: ko[ﬂ?l, . ,.’L‘r] — Wn(W(ko)[.’L‘l, S ,.’I,‘r]).
We compose this map with the ring homomorphisms
W (W (ko)[z1, ..., 2:]) = Wn(V]zy,...,2.]) = W,(Ox)

induced from the canonical ring homomorphism W (ky) — V and the chosen ring
homomorphism g: V{zy,...,z,] = Ox to get the top horizontal map in the follow-
ing diagram.

t

ko[i’l, - ,i’r] —g) WH(OX)
1
lg - lpn
OY /: OY'

The right hand vertical map is the composition of the restriction of Witt vec-
tors with kernel VWn((’)X) and the canonical projection Ox — Oy with kernel
moOx /pOx. Since both ideals are nilpotent, and since the left hand vertical map
is étale, there exists a unique ring homomorphism

(5n: OY — Wn(OX)

making the above diagram commute. Moreover, one immediately verifies that
RS, = 0p—1 and that 6,(Z;) = [zi]n, 1 < 4 < r, as stated. It remains to show
that Fd, = 6,—1¢, or equivalently, that the right hand square in the following
diagram commutes.

g 671

ko[i‘l,...,zﬁr] Oy Wn(OX)
_ e
kolZ1, ..., &) —— Oy —— Wn_1(Ox).

The outer square commutes, and the left hand square is cocartesian. It follows
that there exists a map d/,_;: Oy — W, _1(Ox) making the right hand square
commute. In order to show that d],_; = d,_1, it will suffice to show that
R Pn—1
Oy e Wn—l(OX) — Oy
is the identity map. This, in turn, follows from the calculation
pnle(sng = Sopn(sng = ¥g,

since the left hand square of the diagram above is cocartesian. |

PROPOSITION 1.3.2. The sheaf i*W, Q‘(IX M) has, Zariski locally on Y, the
structure of a free Oy -module of rank

=% T, r + 1 = 78
rkoy i W"Q?X,Mx) = ( ‘ )e. prE.
s=0
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Proor. We give i*W, Q‘(IX’ M) the Oy-module structure defined Zariski lo-
cally by lemma 1.3.1. The statement of the proposition is unchanged by étale
extensions, so we may assume that X = Ay, . We proceed by induction on r; the
basic case r = 0 follows from [10, proposition 3.4.1]. In the induction step we use [9,
theorem B]. It shows that as an OAZ -module, *W,, Q‘(IAT My ) is the base-change

0 vo - Mag,

along Azo_l — A} of the O s -module

P*W,, Q (Arerl 69@ @ F3(i*W— SQ(A”erl))

le<]<p
KT g—1 s q—1
eazWQ(AHMH @@ P FiWa- SQ(A”MH))
s=1 0<j<p* Vo

where the index j is an integer prime to p. By induction and by lemma 1.3.1, this
module has rank

n—1 n—1 nel—s
<2)6 . (Zp(r—l)t + Z(ps _ ps—l)p(r—l)s Z p(?"—l)t)
s=1 t=0
n—1-—s

n (q_1> (Zp(r 1)t+Z p* —pt! p(r—l)s _z: p(r—l)t)7

t=0
and since
(o) ()= ()
e+ e= e,
q—1 q q
it remains to show that
n—1—s
Zp(r 1)t + Z p _ p p(r 1)s Z p(r nHt _ Zprs
t=0
To see this, we rewrite the ﬁrst summand on the left as
n—2
+ pr—l Zp(r—l)t’
t=0
and rewrite the sth summand on the left as
nf(erl)fl n—s—1
prs _,’_pr(s—i-l)—l Z p(r—l)t _prs—l Z p(r—l)t.
t=0 t=0
The statement follows. O

In the statements and proofs of theorem 1.3.3 and theorem 1.3.4 below, we will
write [z] for [z], and dlogx for dlog, x. Let m be a uniformizer of V5.

THEOREM 1.3.3. Let 0 < j < €', let v be the unique integer such that

pv—1 ] p=(tl) _q
e(Cr—7) <i< e(ﬁ),
and let x1,...,x, be local coordinates of a neighborhood in X of a point of Y. In

the corresponding open neighborhood of Y, the sheaf EL = i*W,, Q'(IX M) has the
following structure.
(i) If n < v, then gryl B4 = griit! EY = 0.
8



(ii)) If 0 < v < n, then gr?f i*Ed is a free Oy -module with a basis as follows: if
p does not divide j, let 0 < s <n—w, and let 0 < i1,...,%, < p°; let m be mazimal
with i, prime to p, if such an m exists; then the local sections

VE([za]™ .. [z 7 dlog T, - .. dlog Tp,,),
st([acl]i1 .. [xr]i* [w]jdlog Ty ... dlog Ty, ),

where 1 <my < -~ <mg <r (resp. 1 <my < -+ <mg_1 <7), and where all
m; # m, are basis elements; in addition, the local sections

[} dlog @, ...dlog T,

where 1 <my < --- <my <7, are basis elements; if p divides j, let 0 < s <n —wv,
and let 0 < 1y,...,%4, < p° not all divisible by p; let m be mazimal with i, prime to
p; then the local sections

VE([za]™ .. [z 7 dlog T, - .. dlog Tp,,),
dVe([z)™ .. [2,)" [7) d1og Tom, . ..dlog Ty, ),

where 1 <my < -~ <mg <r (resp. 1 <my < -+ <mg_1 <7), and where all
m; # m, are basis elements; in addition, the local sections

[} dlog @, ...dlog T,
where 1 <my < --- <my <, are basis elements.

(iii) If 0 < v < m, then gr%f“ E? is a free Oy -module with a basis as follows: let
0<s<n—uw, andlet 0 <iy,...,i < p° not all divisible by p; let m be mazimal
with i, not divisible by p; then the local sections

VE([zh)™ .. [z] 7 [n) dlog T, - . . d1log T, dlog ),
dVe([z1]™ ... [2,)" 7 dlog Tpm, . ..dlog Tm,_,dlogT),

where 1 <my < -+ <mg_1 <71 (resp. 1 <my < --- <my_g < 1), and where all
m; # m, are basis elements; in addition, the local sections

[7)/dlogzpm, ...dlog T, ,dlogm,
where 1 <my < --- <my_1 <, are basis elements.
(iv) The sheaf U E2 is equal to zero.
PRrOOF. We recall from proposition 1.3.2 that, Zariski locally, EZ is a free
Oy-module. It is generated by local sections
(7} dlog Ty, . ..dlog Tpm,,
[7)/dlog xpm, . ..dlog T, ,dlogm,
where 0 < j < e’ and 1 <my,...,my <r, and by the local sections
Ve([za]™ .. [ze] " [7) dlog ... dlog Tm,),
dVeE([z]™ .. [2,)" [7) dlog T, . ..dlOg T, ),
VE([za]™ .. [ze]" [7) dlog 2, ... dlog Ty, ,dlog),
AV ([z]™ .. [2,)" [7) dlog Ty, . .. d1Og Ty, _,dlogm),

where 0 < s <m,0<j<e,0<d,....,5 <p°’,and 1 <my,...,my <r, and
where not all of i1,...,4, and j are divisible by p. Suppose, for instance, that
9



0<s<n,0<j<e,and 0<iy,...,0 < p® and that all of i1,...,4, and j were
divisible by p. Then

VE([a1]™ ... [z]" [7f dlog 2, . .. dlog Tpm,)
= stl([xl]p_lil . .[xr]p_li" [7r]1”_1jdlognvm1 ...dlogz,, V (1)),
which, since V(1) = —6([x])7'[x]¢, can be rewritten in terms of the generators

listed. (Note that p~'j 4+ e > j if and only if ¢’ > j.) There are some obvious
relations between the second set of the generators. Indeed, if s > 0, we have

Ved([z1]" .. [z,])" [7) dlog T, . . . dlog Ty,,) = 0,
which gives the relation

Z imy VE([21]™ .. [z] " [7) dlog Tpm, - . . dlog Ty, )

+jVE([z1]™ ... [z, )" [r) dlog mdlog T, . . . dlog Ty, ,) =0,

and analogously, we find that
Z imy dVE([21]™ .. [z])" 7 dlog @, . .. dlog T, _,)
m1
+jdVe([z1]™ ... [z,]" [7) dlog ndlog Tpm, - . . d1og Tpm,_,) =0,

Ziles([xl]“ oz ) [w) dlog @, - ..dlog xy,_,dlogm) =0,
mi1

Zimlst([xl]il Lz [7Y dlog , . .. dlog Ty, ,dlogT) = 0.
mi1

We proceed to show that the local sections listed in the statement of the theorem
will suffice as generators.

Let 0 < j < €’ and suppose that p does not divide j. We consider the generators
[w]jdlogxml...dlogxmq, 1<m; <---<my<r
and
Vo([za]™ ... [z]" [7) dlog 2, ... dlog Tpm,), 1<my <---<my <,
dVe([zi)™ .. [z, [} dlog Tpm, ... d1Og T, 1), 1<my < <mg_1 <1,
where 0 < s < n and 0 < iy,...,4, < p°. Suppose that not all of i1,...,4, are

divisible by p, and let 1 < m < r be the largest integer such that ,, is prime to p.
Then the above relations show that the generators

VE([za]™ ... [z [7) dlog 2, ... dlog Tpm,), 1<my <---<my <,
dVe([z]™ .. [z, [7) dlog Tpm, ... d1Og T, ,), 1<my < <mg_1 <,
where some m; = m, can be rewritten in terms of generators, where all m; # m.

Therefore, the former generators may be omitted. Let v be the integer defined in
the statement of the theorem.

The minimal polynomial is of 7 is of the form x¢ + pf(x), where 8(z) is a poly-
nomial over W (ko) of degree < e such that 6(0) is a unit. We recall from the proof
of [10, proposition 3.1.5] that in W,,(Ox),

[7]5 + 6([7]n)V (1) = 0.
10



By iterated use of this relation, we find that

[n = £V (] G g () S,
and hence, the generators with s > n — v are zero in EZ. By this kind of reasoning,
we see that the local sections listed in the statement of the theorem generate 4 as
an Oy-module. To see that they form a basis, we must show that the number of
generators is equal to the rank of E¢, which is known from proposition 1.3.2. We
postpone the argument to the proof of theorem 1.3.4 below.

It remains to show that the filtration of the basis elements is as stated. Let
A"™4 C EY be the sub-Oy-module generated by those basis elements that are
listed in the statement of the theorem as having filtration greater than or equal to
m. Then A™9 C U™ = ¢*U™EY, and we must show that also U™ C A™?. We
recall that if m = 2j (resp. if m = 25+ 1), then U™ * is the differential graded ideal
generated by i*W,(m)Ox) C i*W,(Ox) (resp. by i*W,(m}Ox) - dlog Mx C
Wi Qx gy and PFWa(mdt'Ox) ¢ #*W,(0x)). So it suffices to show that
P*Wo(m)Ox) C A% that the product maps A™1 @ A™4 to Am+tm'atd  and
that the differential takes A™49 to A™ 471, The first is a statement about ideals of
the ring of Witt vectors and is straightforward to verify. The second is verified by
explicitly calculating the products of basis elements of A™? and Am'd's compare 9,
§4]. The last statement is immediate. |

The basis of i*W,, Q‘(IX’ M) given by theorem 1.3.3 has the property that the
basis elements are not equivalent to elements of higher U-filtration. We proceed to
give a basis with the property that the basis elements are not equivalent to elements
of higher filtration with respect to the standard filtration.

THEOREM 1.3.4. Let x1,...,x, be local coordinates of an open neighborhood of
X around a point of Y. Then in the corresponding open neighborhood of Y, the
sheaf EY = i*W, QZIX7MX) has the following structure. For all 0 < s < n, gr® EY is
a free Oy -module with a basis as follows. Let 0 < iy,...,15, < p°.

(i) If (i1,...,ir) # (0,...,0), let v = min{vp(i1),...,vp(ir),vp(J —€)}; if v <
Up(im), for all 1 <m < r, then the local sections
VE([za]™ ... [z [7) dlog T, - .. dlog Tp,,),
dVe([zi])™ ... [z, 7] dlog 2y, .. .dlogxm, ),
where 1 < my < -+ < mg <7 (resp. 1 < my < -+ < my_1 < 1), are basis

elements; if v = vp(iy,), for some 1 <m < r, let m be mazimal with this property;
then the local sections

Ve([za]™ .. [ze] " [7) dlog ... dlog Tm,),
VE([za]™ .. [ze]" [7) dlog 2, ... dlog Ty, ,dlog),
dVeE([z]™ .. [2,)" [7) dlog T, . ..dlOg T, ),
AV ([z]™ .. [2,)" [7) dlog Ty, . .. d1Og Ty, _,dlogm),
where 1 <my < - <mg <71 (resp. 1<my <---<mg_g <71, resp. 1 <my <

<o <mg_g < 1), and where all m; # m are basis elements.
11



(ii) If (41,...,4r) = (0,...,0), the local sections
Ve([rfdlogzm, ...dlogxm,),
where 1 <my < --- <mg <7, and if s > v,(j — €'), the local sections
dVE([r)dlogzpm, ...dlog T, ,),
where 1 <my < -+~ <mg_1 <1, and if s <wv,(j —€'), the local sections
Ve([rY dlogzpm, . ..dlog xm,_,dlogn),
where 1 <my < --- <my—1 <, are basis elements.

ProoOF. For every element of the basis given by theorem 1.3.3, we find an
equivalent element of Fil®i*W,, Q‘(IX M) with 0 < s < n as large as possible. We

first explain the way in which the indices change. Let 0 < j < €’ be given, and let
v be the unique integer such that

e

let further 0 <'s <n—vand 0 <iy,..., i, < p° be given. We define s’ = s +v and
i, =pYix, 1 <k <r, and let

p—v -1 p—(v+1) -1

<jq :
p,l_l)_.7<e( P

—v (
V(g p -1 Vs p_l
Ji'=p"0 e(p,l_l))—pj pe(p_l)-

Then v < s' < n and 0 <4},...,i" < p*, and j' is an integer with 0 < j' < e. In
addition, v, (j' —€') = vp(j) + v and v, (i},) = vp(ix) + v.

Conversely, if 0 < j' < e, 0 < s <n,and 0 < i},...,i < p® are given, let v
be the minimum of v,(i}),...,v,(i)), vp(j' —€'), and s'. We define s = s’ — v and
ir =p Vi), 1 <k <r, and let

—r—1 v —1
s U p U V4
J=p""j +e(p,1 —) =0 tre )-
Then 0 < s < n—vand 0 <iy,...,i, < p°. Moreover, since j € Z[%] and v, (j) > 0,
j is an integer and satisfies

p -1
p -1

p_(v""l) — 1

e

<5<
) <j<e( e

By iterated use of the relation [7]¢ = —8([7])V (1), we find that
. . . ' ) ./ o= pv+1 -1
Vo] - fo] " [7)) = £V ([ea] - [oe] ™ [0 O([7]) 77T,
The left hand side, modulo elements of higher U-filtration, is equal to a local section
of O% times the local section V¥ ([z1]% ... [z,])"[z]"). It follows that if we replace
the local sections

VE([z]™ .. [z [7) dlog Ty, . .. dlog Ty, ),

VE([z]™ .. [z) " [7) dlog T, ... dlog T, ,dlogT),
dve([z)™ .. [x,)" [7) dlog Tpm, . ..dlog Tm, ),
dve([zi)™ .. [z, [7) dlog Ty, . .. dlog Ty, _,dlogT),

12



which constitute the basis of theorem 1.3.3, by the local sections

./

([z1]"
([z1]"
AV ([z1]" ... [z,]" [7) dlog zm, . ..dlog Tm,_,),

ave ([z’l]"/1 e [xr]i; [ﬂ]j,dlog Ty ... dlog Ty, _,dlogm),

Ve (2] . e 1) dlog @, - .. dlog@m,),
Ve Lz 7 dlog @, . . . dlog T, dlogT),

then we still have a basis. We leave it to the reader to check that the latter elements
constitute the basis of the statement. It is clear that, for every 0 < j < e and 0 <
i1, .., 0 < p°, there are (2) + ( qfl) elements in this basis. These elements form a set
of generators, and proposition 1.3.2 shows that they are linearly independent. O

ADDENDUM 1.3.5. There is a natural exact sequence

0= "W, Q% 25 W, Ol ) S W Q47 = 0.

PROOF. The map j, is induced by the canonical map from X with the trivial
log-structure to X with the canonical log-structure. To construct the map 0 we
show that the map

1 ~
Wo Q4 & W, QU S W, 0l

which to (w,w') assigns w + w'dlog,, 7, is an isomorphism. The statement is étale
local, so it suffices to consider the case Y = Ay . We proceed by induction on r > 0.
The case r = 0 follows from definitions, and the induction step from the fact that
the domain and target for Y = A} ' is given by the same formula [9, theorem B] in
terms of the domain and target for Y = AZO_I. We define 9 as the composite

W Uy vy = WaQy ) & Wa Q) @ W, Q1 - W, 007,

where the left hand map is the projection onto the quotient by U?i*W, ng My)?
and where the right hand map is the projection onto the second summand.

Let x1,...,x, belocal coordinates of an open neighborhood on X around a point
of Y, and let Zy, ..., %, be the corresponding local coordinates on Y. Lemma 1.3.1
allows us to view the sequence of the statement as a sequence of Oy -modules, and
theorem 1.3.3 gives a basis of the middle term. The map 0 takes

OVE([z1]™ ... [z, dlog Tpm, - .. dlog T, ,dlogT))
=Ve([z]"...[2,]"dlog Zpm, . ..dlog Tp,_, ),
oV ([z1])™ ... [x,]r dlog Zm, ...dlogmmq_2 dlog))
=dVi([z1]" ... [Z,])" dlog Tm, - ..dlog Tm, ),
and annihilates all remaining basis elements. It follows that the composite 0 o j,
is equal to zero. One shows, in a manner similar to the proof of proposition 1.3.2

that, Zariski locally on Y, the sheaves i*W,, Q% and W, Q%" with the Oy-module
structure given by lemma 1.3.1 are free and that their ranks satisfy the equation

rkoy i*Wn Q% + ko, Wn Q4" = rkoy "Wy Qlx /-

This completes the proof. O
13



1.4. We end this paragraph with the following result on the structure of the
higher torsion in the de Rham-Witt complex. The proof we give here uses the
cyclotomic trace; see [8]. It would be desirable to have a purely algebraic proof.

PrROPOSITION 1.4.1. If ppv C Ko, then for all 0 < m < v and all ¢ > 0,
multiplication by p™ induces an isomorphism of sheaves of pro-abelian groups

W. Ul ary) = gry W. Qx ary) = 8 W Qx aryy-

PrROOF. We must show that for all 0 < m < v and all ¢ > 0, the following
sequence of sheaves of pro-abelian groups on the small étale site of X is exact.

0= W Qg 1y y/p 7= W.Ql 0 0T 25 WQ /0™ = 0,

This, in turn, is equivalent to the statement that for all 0 < m < v and all ¢, s > 0,
the following sequence is exact.

0= WO @up® = WO @udi, - W% | @ gt — 0.

Clearly only the injectivity of the left hand map is at issue. We recall that for all
0<m <wvandall g >0,[9, theorem E] gives an isomorphism

P W%, @ upt = TR (X | Xk p, Z/p™).
§>0

We conclude that for all 0 < m < v and ¢ > 0, the map induced from the reduction
TR, (X|Xk;p,Z/p™ ") — TR, (X|Xk;p, Z/p™)

is a surjection. It follows that the long-exact coeflicient sequence breaks up into
short-exact sequences of the form

0 — TR, (X|Xk;p, Z/p) = TR, (X|Xk;p, Z/p™+) = TR, (X |Xk;p, Z/p™) = 0.

The proposition follows. d

2. p-adic vanishing cycles

2.1. Let (i*W. Q¢ V=1 and (i*W. Q7 )r=1 denote the kernel and

(X,Mx) (X,Mx)
cokernel, respectively, of the map
L= F: W Qly oy = W Q)

of sheaves of pro-abelian groups on the small étale site of Y. (We consider these
sheaves both in the Nisnevich and étale topology.) The U-filtration is preserved by
1 — F, and hence, induces filtrations of kernel and cokernel sheaves. We begin with
the following observation.

LEMMA 2.1.1. Suppose that m > 2. Then the map

R—-F: UmWnQ‘(IX,MX) —» UmW"*lﬂl(IX,MX)

is surjective, for all integers n and q.
Proor. We consider the case m = 2j; the case m = 25 + 1 is similar. It

suffices to show that if ao,...,a, and ay,...,al_; are local sections of Ox such
14
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that ordy (a;),ordy (a},) > j, for some 0 < ¢ < g and 0 < ¢’ < g — 1, then the
following elements are in the image of R — F'.

Vo [ao]n,ldvsl [al]n,1 .. .dV3a [aq]n,l,
Vo [ao]n,ldvsl [al]n,1 .. dVBa1 [aq,l]n,ldlognfl .

Indeed, every element of U™W,,_, ng Mx) is a sum of such elements. We now use
that since j > 1, the following series converges.

> FH VP [aglndV arlnge - - AV [ag]ne),
>0

Z Ft(Vso [ao]n+tdvsl [al]nH e stq—l [aq_l]n+tdlogn+t 7T).
t>0

The images by R— F' of the sums of these series are equal to the given elements. O

We evaluate the filtration quotients of the kernel of 1 — F. Let Q.. C Q5 be
the subsheaf generated locally for the étale topology on Y by the local sections of
the form dloga, ...dloga,. If y is a local section of Oy, we denote by § any lifting
of y to a local section of *Ox.

THEOREM 2.1.2. The sheaf M = (i*W. Q(X My ))F:1 of pro-abelian groups has
the following structure:
(i) There is an isomorphism
OF 10 =g MY (resp. QYlog = gry MY),
which to dlogy ...dlogy, (resp. dlogy; ...dlogygs—1) assigns dlogd ...dlogg,
(resp. dlogiy ...dlog§,—1dlogm).

(ii) If 0 < j < €', and if p does not divide j (resp. if p divides j), there is an
isomorphism

QU BOUT Sy grdl MT (resp. Q4125 D grdl MY,
which to adlogy; ...dlogy,—1 assigns dlog(l + wia)dlogd . ..dlog §s—1.
(i) If 0 < j < €, there is an isomorphism
03 2/ZQq 2 grQH'1 Ma,
which takes adlogy ...dlogy,—o to dlog(1 + w/a)dlogd . ..dlog §,—adlog.
(iv) If €' < j, then UY M is equal to zero.

ProOOF. We first evaluate the kernt_el of 1 — F in terms of the basis of theo-
rem 1.3.3. A local section w of El = i*W, Q‘(IX My €an be written uniquely

Z a xl] [xr]“[ﬂ']jdlogxml...dlogwmq_l)
8,7,8,m

+ 3 c;’s,)n’i V([ .. ) (7] dlog @m, - . dlog T, )
8,J,i,m

+ 30 b dve(a)t .. [z, 7 dlog T, .. . dlog Ty, _,dlogT)
7],l?’n

S) 8 il ir ]

+ > d) Ve [z] [7Y dlog T, - .. dlog Tm,_, dlog ),

7],l?’n
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where the coefficients agszm i bgszm i cgszm ;» and d](sn)l ; are local sections of Oy, where
0 < s < n, and where the indices j, ¢, and m vary as in the statement of theo-
rem 1.3.3. The restriction map (the structure map in the inverse system) annihilates
the summands with s = n—1 and leaves the remaining summands unchanged. The
Frobenius annihilates the summands with s > 0 in the second and fourth lines

above,
F(c;?r)n[ﬂ]jdlog Ty - .. dlogzm,) = (c;?r)n)p[ﬂ]pjdlog Ty - d1Og Tpm,,

and similarly for the summand s = 0 in the fourth line. We evaluate the Frobenius
on the summands in the first line; the summands in the third line are treated
completely analogously. Since FdV = d,

F(a') ave(m]™ ... [z,)" [x} dlog zm, . ..dlogzm, ,))

]mz

= (@) JPAVET ()" . 2] (7P dlog 2, ... dlog T, ),

] m,i
which we must express as a linear combination of the basis elements. To this end
we write 4., = ky,p® ! 44, with 0 <4,... il < p*~L. Then
AV [z ... [z, [7] dlog Zp, . . .dlog Ty )
=0 ave (e e 1) dlog Ty - . dlOg T, )
+ Z Koo 0. ..j:’ﬁer_l([ml]ill . [wr]i; (7} dlog T, - . . d10g Tim,_,)
1<m<r

is a linear combination of basis elements (except that mg,mq,...,m,; may not be
written in increasing order). We now give the equations that the coefficients must
satisfy in order for w to lie in the kernel of 1 — F': EZ — E! . Most importantly,
we have that for all 0 < s <n —1,

+1 _k k.,
WS @ ek gk
0<ki,....kr<p
(2.1.3) <
(s)  _ (s+1) _k k.
b]:gmfl - Z (bjfm7kps+i)px11 e T

0<k1,....kr<p

(s) (s)
In addition, there are equations that express the coeflicients ¢ iom,iand d; o where

either 1 < s <n—1ors =0 and p does not divide j, as functions of the coefficients
(s+1) and bV Similarly, the coefficients ¢\®) and d'%)  are functions of the

I ](n;l. (0) 1) (0) e m ()

S
coeflicients a; ., and Citlm and b; o, and d] m» tespectively. Hence, the ¢; 7, ; and
d ](srzl ;» where 0 < s <n — 1, are uniquely determined by the ags'Hi) and dgsntll), and

therefore, we can dlsregard the former when solving for w in the kernel of 1 — F'.
Finally, the coeflicients cgnm 1) and d ](1:,1 ll ) do not appear in any equations and hence
are unrestricted variables.

We now solve these equations and determine the kernel of 1 — F'. It follows from
lemma 2.1.1 that the sequence

0— M2/U*M? — E1/U?E* 225 E1/U2E®
is exact, or equivalently, that the canonical projection induces an isomorphism

(W. Uy a1,
16
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The structure of the pro-sheaf on the right is well-understood; see [21, proposition
2.4.1]. The statement for gr, M1 and gr{, M. follows.

We proceed to show that grf? M7 for m = 2j and 1 < j < €' is as stated. The
argument for m = 25+ 1 and 1 < j < €' is entirely similar. We have a map of
sheaves of pro-abelian groups

QU = grt MY,
which takes adlogy; .. .dlogy,—1 to dlog(1+an’)dlog . ..dlog §,—1, and we wish

to show that this induces the isomorphism of the statement. By lemma 1.2.3, the
image of aj ndlogZm, ...dlogZy,,_, in gr%} MY is equal to the class of the sum

Z AV ([ajm)[z1]™ ... [z)" [7) dlog @, . .. dlog Ty, _,).
0<s<n
In order to rewrite this sum in terms of the basis of theorem 1.3.3, we write a;
for 0 < s < n uniquely as
am= Y. (d gEr .k

0<id1,...,ipn <p*

The coefficients aggm satisfy (2.1.3), and conversely, if ag,)nl, 0 < s < n, sat-
isfy (2.1.3), then a; ,, defined by the equations above is independent of 0 < s < n.

We can now rewrite the class of 7 as
Z a]mlst [21]" ... [z]" [7) dlog p, - .. dlog Tp,,_,)
,],l m

+ 3 v e ] [ dlog 2, - dlog @,

8,J,8,m

for certain uniquely determined coefficients cg ,)n .+ 0 < s <n—1. The theorem

follows from the observation that a basis of Q% 1/ BQL (vesp. QL1204 as
an O} -module is given by the local sections

... ZirdlogZy, ... dlog Ty,

with 0 < i1,...,4. < p® (resp. 0 < i1,...,4. < p° not all divisible by p), and
1 <m; < -+ < my_q1 < r such that if m is largest with 4,, prime to p, then
m; Zm, forall 1 <i<gqg-—1. ]

ADDENDUM 2.1.4. The canonical projection induces an isomorphism of sheaves
of pro-abelian groups on the small étale site of Y in the Nisnevich or étale topology,

Z*(W Q?X,MX))le 1) (W Q?Y,MY))le’

and in the étale topology, the common sheaf is zero.

PROOF. We recall from lemma 2.1.1 that the map

8 Uiw o

Ui w. Qf {x M)

(X,Mx)

is surjective. The isomorphism of the statement follows in view of the isomor-
phism of lemma 1.2.1. Finally, by the proof of addendum 1.3.5, there is split-exact
sequence
0= W.Qy = W.Q
17
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and by [12, proposition 1.3.26], the map 1 — F' induces surjections of the left and
right hand terms in the étale topology. |

THEOREM 2.1.5. There is a natural exact sequence

0= *RIG puSt — i*W. Q! 2E . o

(X,Mx) (X,Mx) —0

of sheaves of pro-abelian groups on the small étale site of Y.

PRrROOF. In order to construct the left hand map of the statement, we consider
the symbol maps

RYjupg® = (M) = (W Q)

)F:l
The right hand map takes a local section a; A --- A ay to dloga ...dloga,, and
the left hand map takes the same local section to the symbol {a1,...,a,}; we recall

the definition of the latter. By Hilbert’s theorem 90, the Kummer sequence
0= pp— 05505 -0
gives rise to an exact sequence
0= i"jupty = "§.0 B "0 5 "R jupy = 0
of sheaves of abelian groups on the small étale site of Y. The symbol {a} is defined
as the image of the local section a by the composite

M 5,08 5 iRy,
and {aq,...,as} as the product of {a1},...,{as}.
Let V' be the strictly henselian local ring of X at the generic point of Y, and let
K’ be the quotient field of V'. Let 7: Speck — Y be the inclusion of the generic
point and consider the maps induced by the symbol maps

T*i*qu*,uf?q — T (MP)M p — T (WL Q‘(IX,MX)

)F:l

The left and right hand terms are canonically isomorphic to the skyscraper sheafs
given by the (pro-abelian) groups KM (K') and (W. QE’V, MV,))F =1 respectively. It
follows that the left hand map is a surjection whose kernel is equal to the subsheaf
generated by the sections a; A --- A ag with some a; + a; = 1. These sections are

annihilated by the right hand symbol map, and hence, we have an induced map
(2.1.6) TRy — T (WL Q‘(IXMX))F:P
This map preserves U-filtrations, and [15, theorem 2(1)] and theorem 2.1.2 show

that the induced map of filtration quotients is an isomorphism. It follows that the
map is an isomorphism.

We consider the following commutative diagram.
i*qu*,uf?q e i (MPYN ——— (i*W. Q((IX’MX))F:1

(2.1.6)

~

TWT 1 RO i T (i*W. Q‘(7X7MX))F:1.

It is proved in [3, proposition 6.1(i)] that the left hand vertical map is injective and

in loc. cit., corollary 6.1.1, that the upper left hand horizontal map is surjective.

Moreover, the right hand vertical map is injective, since, locally on Y, the sheaf
18



i*W. Q‘(IX M) is a quasi-coherent Oy-module. It follows that the upper horizontal
maps have the same kernel, and hence, the symbol maps gives rise to a map

PRI ju T — (W

F=1
(XvMX))

Again this map preserves U-filtration, and [3, theorem 1.4] (see also [21, proposition
2.4.1]) and theorem 2.1.2 show that it is an isomorphism. O

REMARK 2.1.7. It is possible from the proof of theorem 2.1.2 to derive the
following more precise statement about the injectivity of the map

PRIt — W, Oy

As in the statement of theorem 1.3.3, let v = v(j) be the unique integer such that
pf(v“rl) — ]_

p -1
ol et

pt-1

) < <e(
Then the map is injective as soon as n > v + 2, for all 0 < j < €'.

PROOF OF THEOREM A. The surjectivity of 1—F is an immediate consequence
of addendum 2.1.4. We show by induction on v > 1 that the symbol maps
cx . ® ok ok F=
R i (ME) p¥ — (i*W. x ) /P") !
are surjective and have the same kernel. The case v = 1 is theorem 2.1.5. In the
induction step we consider the following diagram, where E! = i*W. Q?X M)

0 —— i RIjup T ———— i* RO j ! ——— "Rl ——— 0

T T T

F(MPYM [ p —— (M) p? —— i* (M) Jp*~t —— 0

| | l

0 —— (B! /p)"=! —— (B! /p")"=" —— (B! /p" ) ——0

The upper horizontal sequence is exact in the middle, and the middle and lower
horizontal sequences are both exact. The statement for the latter follows from
proposition 1.4.1 and addendum 2.1.4. By induction, the right hand vertical maps
are surjective and have the same kernel. The same is true for the left hand vertical
maps. It follows that the middle vertical maps are surjective. This, in turn, implies
that the upper right hand horizontal map is surjective. We claim that the upper left
horizontal map is injective. Indeed, this is equivalent, by the long-exact cohomology
sequence, to the statement that in the sequence

*RY 2 plg) = i*RITV L p(q) = i* RV Z/pY T (g) — 0

the right hand map is surjective. But cup product by a primitive pth root of
unity induces an isomorphism of the sheaves Z /p(¢ — 1) and Z /p*(q), and we have
already proved that the following sequence is exact.

*RjZ[p(g—1) = "RV Z p"(q — 1) = "RV Z/p" " (g — 1) — 0.
19



It remains to show that the middle vertical maps in the diagram above have the
same kernel. To this end, let, as in the proof of theorem 2.1.5, 7: Speck — Y be
the inclusion of the generic point and consider the symbol maps

T*i*qu*u?iq — T (MPYN pt = T (WL Q?X7MX)/p”)F:1.

The kernel of the left hand map is generated by the symbols {a1,...,a,} with some
a; + a; = 1, and these sections are contained in the kernel of the right hand map.
Hence, we have an induced map

TR Gyt = W QL /)

It is an isomorphism by induction and by the exactness of the upper and lower
horizontal rows in the diagram above. We consider the following diagram with
exact rows.

0 —— " R1jup1 3 " RO p S0 i RO p S, ———— 0

0 —— 7T i* R1jup$? —— 7,7%0* R1j, pd —— 7T "Rl

By induction and by [3, proposition 6.1(i)], the right and left hand vertical maps
are injective. Hence, also the middle vertical map is injective. A similar argument
shows that the right hand vertical map in the following diagram is injective.

l*RqJ*,lLf,%q @ i*(M§(p)/\q/pv _— ('L*W. Ql(IX’MX)/p’U)F=1

|

T*T*i*qu*uflq = T T (i*W. Q‘(IX’MX)/p”)le.

It follows that the symbol maps induce an isomorphism of the upper left and right
hand terms as desired. O

3. Henselian discrete valuation rings

3.1. In this paragraph we prove theorem B of the introduction. The proof
uses the following commutative diagram of pro-abelian groups in which the right
hand vertical map is the cyclotomic trace of [4]. We refer the reader to [8] for an
introduction and a comprehensive list of references to this construction.

(3.1.1) KM(K) ® Sz /o (ppe) ———— K. (K, Z[p")

| |

W. Q% vy ® Szype (pr) —— TR, (V|K; p, Z/p").

The isomorphism of theorem B is derived from the fact, proved in [10, theorem C]
and [9, theorem E], that the lower horizontal map is an isomorphism.

Suppose that the residue field k is separably closed. It follows from theorem A
that the left hand vertical map is injective and induces an isomorphism onto the
Frobenius fixed set of the target. Similarly, the right hand vertical map is injective
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and induces an isomorphism onto the Frobenius fixed set of the target; the argument
will be given below. Hence, theorem B follows in this case.

In general, the vertical maps in (3.1.1) are not injective. But they induce sur-
jections onto the Frobenius fixed sets of the respective targets, and the two kernels
can be expressed in terms of de Rham-Witt groups. To prove theorem B, one
must show that the map of kernels induced from the upper horizontal map is an
isomorphism. The proof of this occupies most of the paragraph.

3.2. Let the field K be as in the statement of theorem B. We first consider
the left hand vertical map in (3.1.1).

PropPOSITION 3.2.1. Suppose that 1, C Ko. Then there is a natural ezact se-
quence of pro-abelian groups

0— (W. Qg;jwv) ® pip) =1 — KM (K) — (W. Q‘(IV,MV))le -0,

where the left hand map takes the class of [aldlogz, ...dlogxs—1 ® ( to the class
of the symbol {1+ a(1 — ()P, x1,...,2q-1}.

Proor. It follows from [14, theorem 2(1)] and from theorem 2.1.2 above that
the map, which to {ai,...,a,} associates dloga; ...dloga,, induces an isomor-
phism of pro-abelian groups

Ky (K) /U Ky(K) = (W.Qy )

Indeed, the right hand side is the stalk at the generic point of Y of the sheaf of
pro-abelian groups (i*W. Q‘(IX MX))F =1 on the small étale site of ¥ in the Nisnevich

topology. Similarly, [14, theorem 2(1)] and addendum 2.1.4 shows that the left
hand map of the statement induces an isomorphism of pro-abelian groups

(W. Q1) @ i) =1 = U K (K).

)F:1.

This completes the proof. a

REMARK 3.2.2. Suppose that p,» C Ky. One can deduce from proposition 3.2.1
that there exists a natural exact sequence of pro-abelian groups

0= (W. Q) @ ppedp=1 = K () /" = (W0 /)7 0.

However, at this time, we do not have a purely algebraic proof of this deduction.
We also do not have an explicit description of the left hand map.

We now turn our attention to the right hand vertical map in (3.1.1). To this
end, we consider the cyclotomic trace

tr: K (K,Z/p) - TC,(V|K;p,Z/p)

from K-theory to topological cyclic homology; see [10, §1]. The right hand side is
related to TR, (V|K;p,Z/p) by a natural exact sequence of pro-abelian groups

0— TR, (V|K;p,Z/p)r=1 2 TC,(V|K;p,Z[p) — TR,}(V|K;p7Z/p)F:1_> 0.
We consider the composition of the left hand map by the canonical map
(W2 ) ) r=1 = TR (VIS p,Z/p) .
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PROPOSITION 3.2.3. For all integers q, the cyclotomic trace and the map & give
rise to a natural isomorphism of pro-abelian groups

K, (K, Z/p)& (W. Q) r=1 = TC,(V|K;p,Z/p).

PROOF. We consider the following diagram of pro-abelian groups, where the
horizontal maps are given by the cyclotomic trace on the first summand and the
boundary map on the second summand, and where the vertical maps are induced
by the canonical projection.

K (V,Z/p)& (W. Q) poy —— TC, (Vs p, Z/p)

| J

Kq(k,Z/p) & (W. Q) poy —— TCy(k; p, Z/p).

The lower horizontal map is an isomorphism by [7, theorem 4.2.2], and we claim
that also the top horizontal map is an isomorphism. Indeed, by addendum 2.1.4,
the left hand vertical map induces an isomorphism of the second summand of the
domain onto the second summand of the target, so the claim follows from the fact
that the cyclotomic induces an isomorphism of the relative groups

K,(V,m,Z/p) = TC,(V,m;p, Z/p);
this follows from [17], [20, 19], and [5, theorem 2.1.1].

We recall that [10, addendum 1.5.7] gives a map of localization sequences

e S K,(V,L)p) — T K (K, T )p) —2 s Ky (kL) p) ——— -

| | |

- —— TCy(V3p, Zfp) — TC,(V|K;p, Z/p) == TC,_, (ki p, Z/p) —— - -
Moreover, addendum 1.3.5 gives rise to a map of exact sequences

0—— (W. Q“I/H)F:l - (W. Ql(l‘—;;/lv))F:I SN (W. Qi)F:l —0

| | |

o ——TC,(V;p, Z/p) —L TC,(V|K;p, Z/p) —2— TC,_, (k; p, Z [p) — - --

The injectivity of the upper horizontal map j. follows from theorem 2.1.2(i). The
left hand square commutes by the universal property of the de Rham-Witt complex.
Finally, it follows from the description of the upper horizontal map 0 in terms of
local coordinates that, in order to show that the right hand square commutes, it
will suffice to show that the lower horizontal map 0 takes dlogm to 1. But this is
follows from the definition of dlog 7w and from the commutativity of the right hand
square in the previous diagram. This completes the proof. O

PROOF OF THEOREM B. We first note that if the statement is proved in the
basic case v = 1, then the general case v > 1 follows inductively by using that the
coefficient sequence breaks into short-exact sequences

0= Ky(K,Z/p) = K(K,Z[p") = K,(K,Z/p""") = 0.
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Hence, it suffices to consider the case v = 1. It follows from propositions 3.2.1
and 3.2.3 that the left and right hand vertical maps in (3.1.1) are surjections onto
the domain and target, respectively, of the canonical map

(W. Q. any ® Sz/p(ip) 7= 5 TR(V|K; p, Z/p) =,

The two propositions further identify the kernel of both of the vertical maps
in (3.1.1) with the direct sum

B . 05 0 5.

s>1
It remains to show that the map between the two kernels induced by the upper
horizontal map in (3.1.1) is an isomorphism. This, in turn, is equivalent to show-
ing that the following diagram (3.2.4) of pro-abelian groups commutes. The three
unmarked maps are as follows: The upper horizontal map is induced by the lower
horizontal map in (3.1.1); the lower horizontal map is the composition of the canon-
ical map from Milnor K-theory to algebraic K-theory followed by the cyclotomic
trace; and the left hand vertical map is the left hand map in proposition 3.2.1.

(324)  (W.Qf ) © pp)rm1t ———— TR, (VK p, Z/p) =1

| |

KM (K) ———— TC,(V|K;p, Z/p) [§(W.Q ), ) r=1

It follows from addendum 2.1.4 that every element of the upper left hand term can
be written in the form [a]dlogz; ...dlogz,—1 ® (. And since all maps in (3.2.4)
are KM (K)-linear, we can further assume that ¢ = 1. Hence, it suffices to prove
the following proposition 3.2.5. |

PROPOSITION 3.2.5. The image of [a] ® ¢ by the composite map
. 5 .
W.(V) & pp = TR(V|K;p, Z /p) = TC{(V|K;p, Z/p)
is congruent, modulo 5(W. Q(‘ZV,MV))FZD to dlog(l + a(l — ¢{)P).
PRrOOF. We can assume that V is m-adically complete. Indeed, the completion
map V — V induces an isomorphism of all three terms in the statement. The

line of proof is similar to that of [10, addendum 3.3.9]. We apply loc. cit., lemma
3.3.10, to the 3 x 3-diagram of cofibration sequences

By fi1 B fiz2 o) fi3 SEy,

g11 g12 913 Yg11
o fa1 s Ey faz s Bys fas + S Ey

g21 922 923 3g21
Eay fa1 Fa faz2 Fas fa3 D)o

931 932 933 (—1) —Xg11

e 3 b)) -3 .

SEL 2 B, 2 sE, e,
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obtained as the smash product of the coefficient sequence
S0 80— M, P 8
and the fundamental cofibration sequence
TC™(V|K;p) — TR (V|K;p) 25 TR (V|K;p) & £ TC™(V|K; p).

We recall from loc. cit., lemma 3.3.10, that if e;; € m.(E;;) are classes such that

gs33(es3) = fiz(e12) and fs3(e33) = ga1(ea1), then the sum fa1(e21) + gi2(e12) is in
the image of m.(E11) — m.(Ea2). In the case at hand, we consider the class

ess = [all_; - b € m2(Bs3) = ma(My A TR H(V|K;p)).
We wish to show that the image eg; of e33 by the map
f33e = (id AG)w: ma (M, A TR (V|K;p)) — 711 (M, ATC*(V|K;p))
is congruent, modulo the image of m5(Fa3) — m1(F31), to the class
es, = dlog, (1 +a(l —Q)P).
We shall use, repeatedly, that the canonical map

W Qy ) = TRy (VK p) = 7 (S° A TR™ (VK p))

is an isomorphism, if ¢ < 2. This was proved in [10, theorem 3.3.8] for V = V}.
The general case follows from this by [9, theorems B and C].

By the definition of the Bott element, the image of e33 by the map
933« = (BAid)y: (M, ANTR" H(V|K;p)) = 71 (S° A TR (V|K; p))
is equal to the class
e13 = [a]b_,dlog,_, C.

Since we assume that V' is m-adically complete, the proof of lemma 2.1.1 shows
that this class is in the image of

f12* = R - F: Wn Q%V,MV) — anl Q%V,Mv)'

Indeed, the class e;3, lies in UQQHWn,lQ(lM My)> and e > 1. This also shows that
the class e3;, which we wish to determine, is contained in the image of the map
921 T (Ea1) = 1 (Fsp).

We write ( =1+ u7re”, where u € V* is a unit, and consider the class

n—1 s

erz=— 3 > dVe([alh_,[u],_ 75 ,)-

s=0 t=0

SUBLEMMA 3.2.6. fi2.(€12) € €13 + U46”Wn,1Q(1V7MV).
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Proor. We assume that u = 1 (the general case is only notationally more
complicated) and calculate

n—2 s

(R~ Flerz=— >3 av*(lal_,_,[xl5 1 _,)
s=0 t=0

n—1 s

F YAV ) + Fd(falal;)
s=1 t=0

= Y dve(altly il ) + Fd(lalafly)

s=0

_ Zd (fal -y V* (71 2)) + Pl

n—2

= D lah_dve((nll,)

s=0
+Zp[a d[a Ve ([ﬂ—]n 1— s)

+ [a]n_l[ﬂ]nfl d([a] -1 [7]5_)-

The summands in the last two lines lie in pUQe” = U2(6+e”), and by lemma 1.2.3, the
sum in the third last line is congruent to [a]®_,dlog, ,(14+7¢") modulo U*". O

It follows from lemma 2.1.1 that for m > 2,
(3.2.7) (R—F)" Y (U™W,_, Q‘(IKMV)) =U"W, Q?V,Mv) +ker(R — F),
and hence, sublemma 3.2.6 implies that

ffgi(em n U46”Wn*19%V,MV)) =ey + U46’/Wn Q%V,MV) +im(f114)-
We next consider the image of this subset by the map
12 =P W Qyaryy = Wa Qv iy )

SUBLEMMA 3.2.8. The subset gio.(fi5k (€13 + U W,y Q%%Mv))) is equal to the

subset dlog, (1 +a(l — {)P) + U2+ )y, Q%V,MV) +im(grox f11x4)-

PROOF. We again assume v = 1 and recall from lemma 1.2.2 that
pUY Wo Qfy oy = UMW, Q)
Hence, in view of the equation (3.2.7), it will suffice to prove that
giz«(e12) € dlog,, (1+a(l — O)P) + U TIW, fy, .
To this end, we use that in W,,(V),

) ZV” 7r]
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modulo W,,(m2¢"). If we rewrite

n—s—1

e = AV ([ s(= 3 V()
s=0 v=0

1

this implies that gy2.(e12) is congruent, modulo U%' W, Uvany

> dv*([au-s[rli_,)-

) to the sum

Finally, lemma 1.2.3 shows that this sum is congruent, modulo U ey, Q%V, My O
the class eas = dlog,, (a(l — {)P).
Recall that the map
fore: ™1 (Ea1)/im(fage) < 1 (Eaz)
induced by f214 is identified with the canonical inclusion
(Wa Q)= = Wa Qv
We can now conclude that f5;L(g12«(fi55(€13))) is contained in
dlog, (14 a(l = Q)7) + U (W, Oy pr, )=+ im(n)-
The image of this set by the map
Go1x: M1 (Fa1)/im(faze) — m1(Es1)/ im(go1« fazs)
is equal to the class of dlog,, (1 + a(1 — {)?), provided that
U2(e/+e/’)(Wn Q%V,MV))FZI C p(Wn Q%V,MV))FZI.

We shall prove in corollary 3.2.10 below that this is almost true. More precisely,
we will show that given n > 1, there exists m > n such that the left hand side is
contained in the image of the composite

= RM7’"'
PWon Qv ar))" =" 2 Wi Qvagyy = W Qv

We may then conclude that given n > 1, there exists m > n such that the map of
the statement takes [a],, ® ¢ to dlog,, (1 + a(1 — {)?). The proposition follows. O

LEMMA 3.2.9. The map, which to x ® ( assigns xdlog(, gives an isomorphism
of pro-abelian groups

Wo(m) ® pp = U2 WAL,

Proor. It follows from [9, theorem E] that the map
W.(V) @ pp = yW. Qv ary s

which to z ® ( associates zdlog(, is an isomorphism of pro-abelian groups. This
map factors as the composite

W.(V)® pp = U Wy ary = W Qs
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and since the right hand map is injective, the two maps are necessarily isomor-
phisms. We wish to conclude that the map of the statement is an isomorphism. To
this end, we consider the following diagram with exact collumns.

0 0

ALY E— R T

W.(V)®pu = PUX WL

W.(k) @ p—— p (U Wy g, JURTIW Qi)

0

The top left hand vertical map is injective since for every regular F,-algebra A and
for all n > 1, the map induced by the restriction , W, (4) = ,W,_1(A4) is equal to
zero. It will suffice to show that the lower horizontal map is injective. To prove
this, we compose with the inclusion

p (U Wy ar JUe +1)W.Q%V,Mv)) < W. Qy ) JUE W, Q. 11)
and use that by lemma 1.2.1,

W. Qy a1y /U TOW. Q) = W QY

Ve//+1,MGH+1)’
The composite map
Wi (k) @ pp — W. Q%

Ve//+1,MGH+1)

takes a ® ¢ to adlog, ¢, where @ € W,,(Very1) is any lifting of a € W, (k). The
ring V41 is isomorphic to the truncated polynomial ring k[t]/(t¢ 1), and we can
choose the isomorphism such that the induced map of residue fields is the identity
map. The image of ¢ by this isomorphism has the form 1 + ut®", where u € k* is
a unit. (Since ¢ € Vp, we can even assume that u € kj.) Hence, it follows from
lemma 1.2.3 that the composition

5w,

1
Wi (k) @ pp — Wy Q (k[#)/(#"'+1),No)

V€11+1,M€//+1)
is equal to the W, (k)-linear map that takes 1 ® ¢ to the sum

n—1

legn 5 = Z dvs([u]nfs[t]sz”fs)'

s=0

The domain of this map is given by

W (k) /[pWn (k) @ pp = Wi (k) [V EW (k) @ pp = Wi (k) /VWn(E?) @ pp,
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and the target is given by proposition A.1.1 below. We must show that if n is
sufficiently large, then for all a € W, (k), the product

n—1 n—1
© = adlog, { = (Y V" ([arla—r)) - (O dV* ([uln—s[tl5—,))

is equal to zero if and only if a9 = 0 and a, € kP, for all 1 < r < n. We write
e = p¥i with ¢ prime to p and proceed to rewrite the summands of @ = > 0, , in
the form of proposition A.1.1. We first note that by the Leibniz rule,

e

O = d(V"([ar]n—r) - Vs([“]n—smﬁv—is)) —dV'([ar]n—r) -V ([uln—s[t]n-s),

forall 0 <r,s < n.
Suppose first that » > 0. If 0 < s <wv and s > r, we get

Ors = P dV* (a0, [u)n—s) - [t~
+p TV (0,0, [ulns) - [H2 dlog, t

°q

~V*(larl, dlog,,_ ar - [ula—s) - [11h .
The first summand on the right is zero, since
p'dV? ([0, )0 [u]n—s) € Fil'*" W, O}
and p"T%-p*~¥i > " + 1, and the second term is zero for similar reasons. The third
term is zero if and only if
Ve([a, o, dlog,_, a, - [ul,—s) € Fil*T W, Qf,
and this happens if and only if a, € kP. Indeed, the filtration of the groups W, Q]
is known completely by [12, proposition 1.2.12]. If 0 < s < v and s < r, we have
Ors = P AV (V" ([ar)u—r)[tu]ns) - [115
= p iV (V" ((arln—r)[uln—s) - [t} 'dlog,, t
— VoV (ar)nr)[udns) - [115 7,
and all three terms are zero, since p” -p*=%i > e”" +1. f0<wv < s and s > r,
O = p"dV" " (V' ([, ] [uln—s) - [l ss)
— VeV (@ dlogy g ar - [ulas) - [hmars)-
The first term is zero, since p**t"i > e’ + 1, and the second term is equal to zero,
if and only if a, € kP. Finally, if 0 < v < s and s < r, we have
Ors = p"dV* (VI(V" ([ar]n—r)[uln—s) - [ty
— Ve (VVT T ([ar)n) [Wlns) - i sro)s
and both terms are zero, since p"~5t?; > e/ + 1.
We next evaluate the remaining summands ©¢ . If 0 < s < v, we have
0.5 = dV* ([0l [ul—s) - [t
+p' 0V ([ao)[uln—s) - [t "dlog,, t

- Vs([ao]?r];—sdlogn—s ap - [U’]n—s) : [t]ﬁv_sz‘
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The first term is zero if and only if s = 0 and a¢ € kP, the second term is zero if
and only if s < v, and the last term is zero if and only if ag € kP. Finally, if s > v,

Q0.5 = AV~ (V¥ (a0l s[uln—s) - [tfi—sr)
- Vs_v(vv([ao]z—sdk)gn—s '[U]n_s) ' [ﬂiz—s—l—v)'
The first term is zero if and only if ag is zero, and the second term is zero if and
only if ag € kP.
We can now show that for n > v, the product

© = adlog, € € Wa Qo1 1)

is equal to zero if and only if ¢y = 0 and a, € kP, for all 1 < r < n, as desired.
To this end we use the direct sum decomposition of the de Rham-Witt group on
the left exhibited by proposition A.1.1 below. Suppose first that 1 < r < n. Then
©,s = 0if and only if » > s or r < s and a, € k. Suppose that r < s. Then
the element ©, 5 belongs to the direct summand V*(W,_,Q%) - [t]2" %, if s < v,
and to the direct summand V=Y (W,_s1,Qf - [t],_,.,), if s > v. In particular,
two non-zero elements 0, ; and 0, » belong to the same summand if and only if

s = s'. It follows that the sum

n—1n—1 n—1n—1
D2 Ons=32 O
r=1 s=0 r=1 s=r

is equal to zero if and only if a, € kP, for all 1 <7 < n. A similar argument shows
that no cancellation can occur between the elements 0, ;, 1 <r < s < n, and the
elements Og s, 0 < s’ < n. Finally, ©¢ s is non-zero, if ag is non-zero and s > v.
This completes the proof. O

COROLLARY 3.2.10. The map induced from multiplication by p,

p: Uz(e”H)(W. Q%%Mv))F:l o~y U2(6,+1)(W. Q(1V7MV))F:17

is an isomorphism of pro-abelian groups.

PRrOOF. We abbreviate E! = W. Q?V ) and consider the following diagram.

0 —— U2+ (EL)F=1 — 5 e+ gt 2 e gt

I I I
0— U2(e'+1)(E.1)F:1 N U2(e'+1)E.1 I;F) U2(6/+1)E,1 — 0

It follows from lemma 1.2.2 that the middle and right hand vertical maps, which
are induced by multiplication by p, are well-defined and surjective. The left hand
vertical map is the induced map of kernels of the maps 1 — F. This is the map of
the statement. The horizontal maps 1 — F' induce a map between the kernels of the
middle and right hand vertical maps,
1—F: U HDEL & g2+ gl
and lemma 3.2.9 shows that this map is an isomorphism of pro-abelian groups.
Indeed, the map 1 — F': W.(m) — W.(m) is an isomorphism, since the geometric
series 1+ F + F? + ... converges. The corollary follows. O
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Appendix A. Truncated polynomial algebras

A.1. In this appendix, we give an explicit formula for the de Rham-Witt
complex of a truncated polynomial algebra in terms of the de Rham-Witt complex
of the coefficient ring. The formula is derived from the corresponding formula,
proved in [9, theorem B], for the de Rham-Witt complex of a polynomial algebra,
and it generalizes the formula of the thesis of Kare Nielsen [18], where the case
with coefficient ring I, was considered.

Let A be a Z,)-algebra with p # 2, and let A[t] be the polynomial algebra in
one variable with the pre-log structure a: Ny — A, a(i) = t*. One can show as
in [9, theorem B] that every element w(™ € W, Q‘(’ Al can be written uniquely

W™ =S (al?1t) + 05 ) dlog,, )

1€Np

+Z§I (@1t + ave V)

s=11i€el,

t]vNO)

where ag’g) € W, Q% and bg’g) € W,,Q% ", and where I, denotes the set of positive
integers prime to p. The formulas for the product, differential, and Frobenius and
Verschiebung operators may be found in op. cit., §4.2. We now fix an integer N > 1
and consider the subgroup

I8 C W Q)

of those elements w™ such that ag'z) € Fil' W,,,Q% and bg?) € FilY Wmﬂi{fl, for
some 0 < v < m with p¥i > N. We consider the ring A[t]/(t") with the induced

pre-log structure. The following result expresses W, Q‘(I Alt]/(tV)Ng) 35 @ direct sum
of groups Wy,_, Q% and W,,_, Qf’[l.

PROPOSITION A.1.1. The canonical projection induces an isomorphism

Wi Qi w0/ 10 = W, QA (%),3o) -

PROOF. We see as in the proof of lemma 1.2.1 above that it suffices to show
that I* is a differential graded ideal with W, ((¢t")) C I and that if J* is another
differential graded ideal with W, ((tV)) C J, then I} C J;. We leave the former
statement to the reader and prove the latter. We first show that elements of the

form V?(ay (" []i_,), where a € Fil' W,_,Q%, for some 0 < v < n — s with
p'i > N, are contained in JZ. By definition of the standard filtration,

"7 = V¥ (w) + AV ()

for some w € W,_, ,Q% and o' € W,_, ,0Q% ", and hence Vs(aifl[s) [t]E ) is
equal to the sum

VRl ) + pPdVer W Ve W, dlogt).

n—s— ’U)
We consider the left hand term. By [9, theorem A], the canonical map

Q%V"( Ay = Wh Q4%
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is surjective. This shows that w can be written as a sum of elements of the form
xodzy ...dz,, where zg,...,2, € W,_s_y(A). But

VU (woday . .. dzg [0, ) = VU (@[t )dV T (@) . .. AV TV (),

n—s—v n—s—v

which is contained in J¢, and hence V¢ (w[t]pzv »)s 100, is contained in J¢. One

n—s—

shows in a similar manner that VST (w'[t]P 1. ) and VSTV (W'[t]h 1, _, dlogt) are

contained in J¢. Hence Vs(aifl[s) [t]i,_,) is contained in J¢. The remaining cases
are treated in a completely analogous manner. d
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