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Abstract

In this paper, we investigate the structure of the core of a sparse random graph above the
critical point. We determine the asymptotic distributions of the total number of isolated cycles
there as well as the joint distributions of the isolated cycles of fixed lengths. Furthermore, focusing
on its giant component, we determine the asymptotic joint distributions of the cycles of fixed
lengths contained in it and the distributions of its cyclic 2-edge-connected and 2-vertex-connected
components. This makes more precise the picture of the giant component as it was given by B.
Pittel in [11].

1 Introduction

In this paper, we present some features of the core of sparse G,, ,,, random graphs. Recall that a G,, »,
random graph is a uniformly random element of the set of simple graphs on V;, = {1,...,n} with
m = m(n) edges, where 0 < m < (}). (We use the term G, for both the model and the random
outcome.) We say that a G, »,, random graph has a property Q,, (that is lies in the subset Q, of the
set of graphs on V,, having m edges) asymptotically almost surely (a.a.s.) if limy, oo P[Gp,m € Qn] = 1.
We will be working on sparse G,, ,, random graphs, i.e. m = [0n/2], where § = 8(n) = O(1). For a
graph G = (V, E) and a natural number k > 2, the k-core of G is the maximal subgraph of minimum
degree at least k (and it is empty if there is no such graph). We are interested in the 2-core of a G,
random graph, which we simply call core and denote by cr(G,, m). Note that, by the definition of the
core, any graph is the union of its core and a collection of trees either disjoint from the core or rooted
at a vertex of it (but having no other vertex in common with it).

It is well-known that a sparse G, ,, random graph, having § > 1 fixed, typically consists of a
unique “giant” (of linear order) complex component and a few “small” (of logarithmic order at most)
unicyclic components, as well as some “small” tree-components (see [1] or [5], where these facts are
presented in full). The typical picture of cr(G,,n) is similar and was described in [11]. Namely, it
consists of a giant component, which is a subgraph of the giant component of the random graph and
whose order is a certain proportion of the order of the latter, along with a few isolated cycles which
are the cycles of the unicyclic components of G, ,,,. Very precise results concerning the distribution
of them as well as the distributions of the cycles that are not isolated in cr(G,, ) when § = 8(n) is
near the critical point were obtained very recently by S. Janson in [3]. The first theorem we prove
achieves this (partially), but for any fixed # > 1. For such a 6, let A2(f) be the unique root of the
equation A\/(1 —e~*) = 6. Also, for any real number z > 0 and a natural number k > 2, we define
pr(z) =P[X > k], where X = Po(z) is a Poisson random variable of mean z. We have:

Theorem 1.1 For any fixred 8 > 1 and m = [6n/2] the following hold:

1. The random graph cr(G, m) consists a.a.s. of a unique greatest component of order nps(A2(6)) +

2
op(n) and size n)‘?z(;) + op(n), that has more than one cycle, with the remaining components

being cycles with total order Op(1).




2. The number of isolated cycles of cr(Gn,m) converges in distribution as n — oo to a Poisson
random variable of mean

—% In(1 — fexp(—X2(6))) — %Gexp(—)\g(ﬁ)) (Oexp(—)\g(@)))2 .
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3. For any integer k > 3, the number of cycles having length k that are isolated in cr(Gp, m) converges

in distribution as n — oo to a Poisson random variable of mean (66_>‘2(9))k /2k. The number
of cycles having length k that are not isolated there converges in distribution as n — oo to a
Poisson random wvariable of mean 6*(1 — e‘k>‘2(9))/2k. Moreover, any finite collection of the
above random variables are asymptotically independent.

The first part of the preceding theorem was also proved using other methods by B. Pittel in [11]. In
that paper, the order of the core of a G, ,, random graph beyond the critical point was given by a
different formula. Numerical evidence suggests that this formula and the formula we give coincide.
Though we believe that there is some identity that transforms one onto the other, we have not been
able to prove this rigorously.

The second part of the present work focuses on the giant component of c¢r(Gy ). Though there
is a very precise and clear picture of the birth of the giant component of a G, ,, random graph as
well as of its structure close to the critical point (see for example [4], [6], [7] - alternatively [1] or [5]
for a complete description), the first attempt to give a picture of it for any fixed § > 1 was made by
B.Pittel in [11]. Firstly, recall that a 2-edge-connected component of a graph is a maximal connected
subgraph having at least 3 vertices with no cutedges and a 2-vertex-connected component of a graph is
a maximal connected subgraph which has at least 3 vertices and has no cutvertices. B. Pittel proved
(see Theorem 4.1 below) that for any fixed § > 1 the giant component of a G,, ,,, random graph typically
consists of a 2-vertex-connected component of linear order, a collection of unicyclic components each
sprouting from a different vertex of the 2-vertex-connected component with total order that is bounded
in probability, as well as a collection of small trees each rooted at a vertex of the 2-vertex-connected
component whose total order is linear. Thus, the giant component of cr(Gy, ) consists of a huge 2-
vertex-connected component, whereas the remaining 2-vertex-connected components are small cycles
and their total order is bounded in probability. Moreover, each 2-edge-connected component is joined
to the giant 2-vertex-connected component by a unique path, whose internal vertices are all of degree
2 and its length is bounded in probability as well.

Our goal is to make these results more precise. For a graph G on V,,, we define L;(G) to be the i-th
largest component (if there is more than one component of the same order, then we assume increasing
lexicographic ordering) and let |L;(G)| denote its order. Furthermore, we define the essential core of
G to be the largest 2-vertex-connected component of L;(cr(G)) (if there is more than one of them,
then again we assume increasing lexicographic ordering). We denote it by ess — cr(G). The second
theorem we prove is as follows:

Theorem 1.2 For any fixred 8 > 1, and m = [6n/2], we have:

1. The number of 2-edge-connected components which are cycles and belong to Ly (cr(Gn,m)) con-
verges in distribution as n — oc to a Poisson random variable of mean

e 220y () (3 (e=2)% — 2 (ge=22(0)) 2 (ge—22(9))?
2 (1 — fe—22(0))2 C1—fe 0 |-

(1 — Oe*)‘Q(e))

The total number of 2-vertex-connected components which are cycles and belong to the same
2-edge-connected component as ess — cr(Gy, ) converges in distribution as n — oo to a Poisson
random variable of mean

(Be=22(9)?

91 _ 0 ~Xa(0)
5(1_6 2 _)\2(9)6 2 )m

Furthermore, these random variables are asymptotically independent.



2. For any integers k1 > 3 and kz > 0, the number of 2-edge-connected components of L1 (cr(Gn,m)),
which are cycles of length k1 and are joined to ess — cr(Gp,m) by a path having ks internal vertices
converges in distribution as n — oo to a Poisson random variable of mean

—A2 9 — A2 9 1 20—
fe—:! ))\2(9)2(1—96 () (9642@))’“ thamt

The number of 2-vertex-connected components which are cycles of length k > 3 and belong to
the same 2-edge-connected component as ess — cr(Gp,m) converges in distribution as n — 0o to
a Poisson random variable of mean

Moreover, any finite collection of the above random wvariables are asymptotically independent.

Both of these theorems are deduced from the main theorem in [2] (see Theorem 2.1 in the next
section) and follow from the observation that if we condition on the degree sequence of the core
of G, m, then this is uniformly distributed over the set of graphs having this degree sequence. In
particular, we define a probability space which is the product of the probability spaces of the degree
sequences of cr(G, m): each element of this space is a sequence of degree sequences on n vertices, for
each n € ZT. Using Theorem 2.1, we determine a subspace of this space of measure 1 (see Section 2
for a precise definition), and for an arbitrary “asymptotic” degree sequence in this subspace we apply
the method of moments on the space of uniform random graphs having this degree sequence in order
to determine the asymptotic distributions of the graph functionals mentioned in Theorems 1.1 and 1.2
there. Finally, we use Proposition 2.5 to show that in fact these are the asymptotic distributions in
the G, m model. Some technical but standard results of the theory of sparse random graphs are also
used in the course of our proofs - see Appendix A.

For a graph G, the kernel ker(G) is the multigraph (possibly with loops) obtained from those
components of the 2-core of G that have more than one cycles by replacing each path whose internal
vertices are all of degree two by a single edge. T. Luczak in [7] (see also [5]) obtained results concerning
the structure of ker(G,,,m ), when @ is close to the critical point. In Section 5, we obtain from Theorems
1.1 and 1.2 some structural properties of ker(G, ), for any constant # > 1. Namely, we give precise
estimates for the degree sequence of the kernel, its order and its size as well as its number of loops.

2 Some preliminary results and definitions

We begin this section presenting a key-result concerning the degree sequence of the k-core of a G,
random graph, with m = [n/2]. For k > 2, let k—cr(G,, m) denote the k-core of a G, ,, random graph
and, therefore, cr(Gy m) = 2-cr(Gnm).

For a graph G on V' C V,,, the sequence (vo(G),...,v,—1(G)), where for j =0,...,n — 1 v;(G) is
the number of vertices of G of degree j, is said to be the degree sequence of G. For any k > 2, let

A
= inf DA
Y = in {Wk()\) >0},

where 7 (z), for each real z > 0, is the probability of a Poisson random variable of mean z being at
least k — 1. It is easy to see that 7o = 1 (this is the parameter which will be used in the present
work). Now, for any & > 2 and 6 > 7 let Ai(f) be the larger root of the equation § = \/m(A), if
k > 3, or the unique root, if k¥ = 2 (as we have already defined it). Also, let p;(z) = P[X = j], where
X = Po(z). The main theorem in [2] is the following:

Theorem 2.1 For k >3 (k = 2, respectively), let 0 > v +n~%, where § € (0,1/2) (5 € (0,1/4)). For
every fized | > k, there exist constants v,7 € (0,1), such that vj(k—cr(Gn.m)) = npi(Ar(0)) + Oc(n?),
with probability at least 1 — O(n~7). Thus, v(k—cr(Gn,m)) = npi(Ae(0))(1 + 0p(1)), as n — .
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Moreover, with the same bound on the probability the number of edges in the k-core is n)‘g(f) +O0¢c(nY).




We now describe briefly the deletion process which was introduced in [12]. Given a graph on V,
and an integer k > 2, at each step, we choose a vertex uniformly at random amongst the non-isolated
vertices of degree less than k and delete all the edges incident to it, thus making it isolated. This step
is repeated so long as there are edges to be deleted and the current set of vertices of degree at least k,
say H, is non-empty. At the end, either H # () and so H is the vertex set of the k-core of the initial
graph, or H = {) and so the k-core there is empty. We denote by DP(G) the graph on V,, which is
the output of the deletion process with parameter k taking as input a graph G on V,,. Here, we apply
the deletion process to a Gy, random graph. Note that for any integer k£ > 2, the deletion process
finds the k-core of the input graph if and only if this is non-empty. We consider S,, to be the state
space consisting of n-tuples of positive integers, where the deletion process induces a Markov chain
on it - see [12]. Namely, it encodes the degree sequence of the underlying graph in the course of the
deletion process. Let w = (vg,...,vn—1) € S,. If H(w) denotes the set of graphs on V,, whose degree
sequence is w and h(w) is its cardinality, then for G € H(w) Proposition 2.1 (b) in [12] yields

1

PDPt(Gnm) = G | w(T) = w] = w)’

where T is the stopping time of the deletion process, that is w(T") is the degree sequence of DP, (G, ).
Now, let d = (di,...,d,) be a sequence of non-negative integers, such that ) .., d; is even and

for every 1 < ¢ < m we have d; < d;11. Let ’}:l(d) be the set of those graphs on V,,, where the
vertex i (i € V,,) has degree equal to d; and let h(d) be the cardinality of this set. It is immediate
that for each sequence w = (vg,...,vp—1) such that 2?2_11 tv; is even, we can construct such a
sequence d = d(w), and vice versa. More specifically, for a graph G on V,, if w = (vg,...,0p—1) =
(vo(G@), ..., vp—1(@)), then we call the corresponding d(w) the labelled degree sequence of G and we
denote it by d(G). For a vector d,, = (dy,ds,...,d,) (or (di,ds,...,d,,0,...) - we will be using
both notations indistinguishably) such that its entries are in non-decreasing order and they have even
sum, we let G(d,,) be a random graph on V;, uniformly distributed over #(d,). Note that for each
graph in ﬁ(d(w)), there are precisely n!/ H?;Ol v;! isomorphic graphs in H(w). Thus, the probability
of a property closed under automorphisms is the same in the uniform probability spaces H(w) and
H(d(w)). In what follows, we assume that 6 > 1 is fixed and m = [6n/2].

For each n € ZT, let D,, be the space of all infinite integer vectors of the form (dy,...,d,,0,...)
for which there exists a graph G on V,, having m edges so that (di,...,d,) = d(DP3(G)), endowed
with the natural probability measure inherited from the G, ,, space, which we denote by p,. Also, let
D= Hf;’:l D, be the product of these spaces and p be the product probability measure on the product
o-algebra. If an event E that belongs to this algebra is such that u(E) = 1, then we say that E occurs
almost surely (a.s.). An element of the space D is denoted by (d,,) and note that this is a sequence of
infinite vectors indexed by the set of positive integers. For a given (d,,), if d,, = (dy,...,d,,0,...) for
n € Zt, weset D; = D;(n) =|{j €V, : dj =i}|, for i € Nand A = A(n) = maxi<;<p{di} = dp.
Also, welet M = M(n) =1 ", d;. For any n € Z*, we denote by 7, the projection of @ = [~ €
onto 2,,. We state and prove the following propositions which will be used in the sequel:

Proposition 2.2 Let {(Qn, Fpn,Pn)}rez+ be a family of probability spaces and let Q = [, cz+ O
be the product space endowed with the product measure, say p. Let {€, € Fnlnez+ be a family of
measurable sets such that lim, o Pp[Ep] =1 andlet G = {w e Q : AN € Ns.&. Vn > N m,(w) € &}
Then pu(G) = 1.

Proof. Note that
G°={w € Q : I(ny)ien increasing s.t. Vi € N m,, (w) € €. }.
For an increasing sequence of positive integers S = (n;);en we let
As={w e : myw) €& iff n € S}.

Then, G¢ = WgAg, where S ranges over all increasing sequences of positive integers. We will prove
that for every such S, we have u(Ag) = 0.



Let us fix such an S = (n;);en. Suppose that u(As) = 7 > 0. Since P,(ES) = o(1), there exists
a natural number I such that for every i > I we have Py, (£;,) < 7. Therefore, for every i > I, we
obtain

T=pds) < p({we: m(w) eEn}) =Pn(E) <,
0.

which is a contradiction. Thus, u(Ag) = 0 and, consequently, u(G¢) |

Proposition 2.3 Under the assumptions of Proposition 2.2, for each n € Z%+, let X, : Qp, — R be a
random variable and suppose that X,, = z+o0,(1), for somex € R. Let L = {w : limy_ 00 Xp(mp(w)) =
x}. Then pu(L) = 1.

Proof. For each n € Z* and for every € > 0, we set £,(¢) = {wn € O : | Xpn(wn) — 2| < €} and
let L(e) = {w € @ : 3N € Nsit. Vn > N m,(w) € &,(e)}. By the previous proposition, we have
u(L(e)) = 1, for every ¢ > 0. It is immediate that {L(1/t)};cz+ is a decreasing family of sets and
L = Nyez+L(1/t). Therefore p(L) = limy— oo u(L(1/t)) = 1. |

Let w(n) = (Inn/4)In(e*d). For a graph G on V,,, we define S(G) to be the number of induced
subgraphs of G with order at most w(n) having more edges than vertices. If for any n € Z* we
let B, = {d, € D,, : E[S(G(d,))] <In""n}, we set 7 C D to be the set of those (d,) for which
there exists N € N such that for every n > N we have d,, € B,. Lemma A.3 in Appendix A and
Proposition 2.2 imply that pu(F) = 1.

Also, let D be the set of (d,,) € D with the property that for every 0 < € < 1, there exist ko, N € N

such that
A

i\ D;
Kna(dn) = 3 (2) <
l:ko
for any n > N.
Claim 2.4 u(D) = 1.
Proof. For every real ¢ > 0 and k € N, we let
L(e,k) ={(d,) € D : AN € Ns.t. ¥n > N d,, € (e, k)}

where &,(¢,k) = {d, € D,, : X, < ¢e}. Lemma A.1 in Appendix A implies that for every ¢ > 0
there exists k& € N such that lim,_,c pn(En(e, k)) = 1 and, therefore, by Proposition 2.2 we deduce
that p(L(e, k)) = 1. Thus, if we let L(e) = UpenL(e, k), we have pu(L(e)) = 1 as well. Now notice that
D =No<e<1L(e) =N, L(1/t) and that {L(1/t)};cz+ forms a decreasing family of sets as ¢ increases.
Therefore, u(D) = limy—, oo p(L(1/t)) = 1. |
Note that Theorem 2.1 along with Proposition 2.3 imply that for every i > 2, we have lim,,_,o, D;/n =
pi(A2(0)) and lim,_ oo M/n = limp 00 EiA:Q iD;/n = A\3(0)/26 a.s. . Let G (“good”) be the set of
those (d,) € DN F for which the preceding statement is true and A = O(lnn/Inlnn), as well. The
aforementioned observation, a standard result on the maximum degree of a G,, ,,, random graph, with
m = [6n/2] and 6 > 0 (see Exercise 3.5 in [1]) along with the above propositions, imply that u(G) = 1.
Now, it is easy to see the following:

Proposition 2.5 For a fived k € ZT, let X,, be a function on the set of graphs on V,, taking values in
R*, which is invariant under any automorphism of the core, and let x € R*. If there exists p € RT such
that for every (d,) € G, we have lim,_, o P[X,,(G(dy,)) < z] = p, then limy,_ o0 P[X,(Gn,m) < 2] = p.

Proof. The proof is almost straightforward:

d,€D,

/ P[Xo(G(dn)) < 2] p(d(0n))
d,eD, /{@n) : T ((¥n))=dn}

_ / PIX(G (7 (20)))) < 2] p(d(@0)),



Since the integrand is bounded below by 0, applying Fatou’s Lemma, we obtain:

linrgng[X"(g"’m) <z] = hnn_1>1nf PIXn(G (7 ((00)))) < 2] p(d(0n))
> /limianP’[Xn(G(ﬂn((On)))) < z] p(d(v,))
_ /G lim inf P[X,(G(ma ((2n)))) < 2] p(d(n))

/ (d(0,)) = p.
G

Now, applying the Reverse Fatou’s Lemma (since the integrand is bounded above by 1), we have

limsup P[X,,(Gn,m) < 7] = 1imSUP/P[Xn(G(7Fn ((02)))) < 2] p(d(dn))

n— oo n—oo

< lim sup P[X,, (G (7 ((00)))) < ] pu(d(0n))

n—oo

= lim sup P[ X, (G (7, ((9)))) < 2] p(d(d,))

G n—0oo

. /C p(d@n) = p

which concludes the proof of the proposition. [ |

We state without proof the following lemma, which follows from the main theorem in [10]:

Lemma 2.6 If (d,) € G, then

. B In®n a2 (2M)!
A(d,) = (1+o< . )>e T

where X = Y"1 (%) /(2M).

Now, we are ready to proceed with the proofs of Theorems 1.1 and 1.2.

3 The distribution of cycles in the core of a G, ,, random graph

In this section, we mainly investigate the asymptotic distribution of the total number of isolated cycles
as well as of the number of cycles of fixed length which are either isolated or not in cr(G,, ), thus
proving Theorem 1.1.

Firstly, we prove parts (i) and (ii) of Theorem 1.1. We state without proof a part of a theorem
which was proved by T. Luczak in [9] (Theorem 12.2(ii) there), slightly adapted to our context:

Theorem 3.1 Let (d, = (di,...,dn))nez+ be such that for i = 1,...,Dy we have d; = 0 and
2 < min;sp,{d;} as well as max;{d;} < n%% where Dy = Do(n) is the number of zeros in d,, with
n— Do — 00 as n — 0o. Also let Dy = Ds(n) be the number of twos in d,,, 2M = 2M (n) = > | d;,
L;(G(d,,)) denote the i-th largest component of the random graph G(dy), and w = w(n) be a function
that tends to infinity with n. If lim, oo Do/M = b < 1, then lim,_, o P[|L1(G(dy))| > N —w] =1,
where N = n— Dy, all of the smaller (i > 2) non-trivial components are cycles with probability tending
to 1 asmn — oo, and fort=0,1,...,

t

lim P[G(d,,) consists of t + 1 non-trivial components| = e_“u—,
n—00 t!

where 1 = —%1n(1 —b) — 1b — 102



Suppose that (d,,) € G. Firstly, note that the second part of Lemma B.1 in Appendix B implies that
lim,, oo ZlA_ D; /n = p2(A2(#)). Now, by the definition of G we obtain lim, . D2/n = p2(A2(8)),

limy, 00 M/n = ) and, therefore, lim,, o, Do/M = fe=*2(?) < 1. Moreover, we have A < n®°! for

n sufficiently large. Also notice that é( L > p2(A2(0)), which along with the above observations and
Theorem 3.1 imply that | L1 (G(d,))|/n = p2(A2(0)) + 0p(1) and L;(G(d,)) has more than one cycle
with probability tending to 1 as n — oo. On the other hand, the number of vertices that belong to
smaller non-trivial components of G(d,) is O,(1), with the latter being cycles with probability tending
to 1 as n — oo and finally the distribution of their total number is given by the above theorem, with
b = e *2(?) Therefore, applying Proposition 2.5, we deduce Theorem 1.1(i) and (ii).

We proceed with the proof of the final part of Theorem 1.1. For any natural number k£ > 3 and a
graph G on V,,, we let Z,,;(G), Z},,(G) be the number of isolated cycles of length k£ and the number of
cycles of the same length that are not isolated in G, respectively. We first prove the following lemma:

ks+t Z 3 andll,...,

Lemma 3.2 For integers t,s > 0, let kq,..., ls+¢+ > 1 be sequences of natural

numbers. Let (dy,) € G and for any integer k > 3, we set Zny, = Zn,(G(dy,)) and Z), = Z!,(G(d,)).
Then
hm E[( nkl) o (Z’:Lk}i)lt(ant+l)lt+l e (ant+s)lt+s] =
Gk (1 — e P2(0)k1)\ 1 Gre (1 — e 22 Ok)\ " [/ (e 2O jkesr \ 11 (Ge22(0)Ykers \ e
() () () (M)

Proof. The number on the left hand side of the above equation expresses the total number of families
of collections of cycles indexed by the set {1,...,¢+ s}, where for any i = 1,...,t, we have ordered
li-tuples of cycles of length k; which are not isolated, and for any i =t +1,...,¢ + s we have ordered
l;-tuples of isolated cycles of length k;. Moreover, every such family induces a subgraph of order at
most ZEH l;k;. So, the expected number of those families with at least two overlapping non-isolated
cycles tends to 0 as n — oo, since they induce subgraphs of bounded order which have more edges
than vertices and (d,,) € G. Therefore, the above expectation is asymptotically equal to the expected
number of those families consisting of pairwise disjoint cycles. Let X, be the total number of the
latter.
Given positive integers k and ¢, we use the following notation

Q) k
k pi=l1 ordered tuples

i < a,

such that if p; = 1, then igl] #2

2 < z( )
p; — partitions of k

(40,042

l;
>><

,,,,,

Therefore, by Lemma 2.6, we have
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where D;z) denotes the number of those vertices amongst the D; vertices of degree j in the labelled
degree sequence (dy,...,d,) that are left if we remove the edges of the first i — 1 cycles of a given
pair and d], = (d},...,d}) is the labelled degree sequence that remains from (dy,...,d,) after the
removal of all the edges of these cycles. The following observations will clarify the intermediate steps
of the above calculation. Firstly, note that D;’) = D;(14+ O(1/n)). On the other hand, if vertex ¢
participates in a cycle, then d], has one more vertex of degree d; — 2 and one less vertex of degree d;.
Let C' C V, be the set those vertices that belong to the cycles of a given pair. Notice that for any
integer d > 0, we have

() rarm - () (e

(The second identity will be used in the next section.) Therefore,
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since the order of the union of the cycles (i.e. |C]) is bounded and (d,) € G. Similarly,
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D-()(0) =) (5=)
- (e (S(3)  se-a (£ (4)
2 (5) (ra-s) ) -2 o (52)

since |C| is bounded and (d,) € G. Now, using by the two previous relations, we obtain

exp (=X + A — (\)2 +A2) = exp (o (l“:;"» =140 <1“3”’> . (1)

n

The first part of Lemma B.1 concludes the proof. [ |

We are ready to proceed with the proof of the final part of Theorem 1.1. We still assume that (d,,) € G.
If we set t = 0 and s = 1 in the above lemma, then for any integers k > 3 and [ > 1, we have

REWONAN

and this implies that Z,; < Po ((Be2(D)k /2k) as n — oo (see Corollary 6.8 in [5]). Similarly, setting
t =1 and s = 0 in the above lemma, for any integers k£ > 3 and I > 1, we have

l
) ok (1 — e—k)\2(0)
lim (Z’;zk)l = < ( 2% ) )

n—oo

which implies that Z], 4 Po ((6%(1 — e=*2=(9)) /2k)), as n — oo. Now, the above lemma along with
Theorem 6.10 in [5] imply that the joint distribution of any finite collection of pairwise distinct random
variables (Znk, ;- - - Znk, s Z:lktﬂ R Z;lkHS) converges to the distribution of (Zg, , . .. Z,, Z,’Ct+1 R lec¢+s)’

where, for i = 1,...,¢, we have Z;, = Po ((96”‘2(9))’“"/2&), and for i = t+1,...,t +5 Z;, =



Po (0’“ (1 — e~ Fir2(0)) / Zki) are independent. Finally, Proposition 2.5 concludes the proof of Theorem
1.1(iii).

Remark. Note that what we have just shown yields that for any integer £ > 3 the total number
of k-cycles in the core of a G,, ,,, random graph (i.e. the total number of k-cycles in a G, ,,, random
graph) is asymptotically Poisson distributed having mean equal to 8% /2k (see [5] or [1]).

4 The asymptotic distribution of the cyclic 2-vertex(-edge)
-connected components of cr(G, )

We begin with a general result concerning the structure of Ly (G m). We state without proof the
following theorem from [11] (Theorem 3(a) there):

Theorem 4.1 For any fized > 1, L1(Gp,m) consists a.a.s. of a giant 2-vertez-connected subgraph
of order ©p(n), a collection of trees and a collection of unicyclic components, each of them sprouting
from a different vertex of the 2-vertex-connected component, whose total number and order is O,(1).

The above theorem implies that Lq(cr(Gp,m)) consists of an essential core of linear order while each
of the remaining non-trivial blocks contains precisely one cutvertex of L;(cr(Gn,m)) and is a cycle.
Moreover, the total number and order of the blocks of L;(cr(G,,m)) apart from the essential core is
0,(1).

Let n € Z*. For a graph G on V,, with no vertices of degree 1 and integers k, k; > 3 and k» > 0, let
X} (G) be the number of the 2-vertex-connected components of G which are k-cycles, contain exactly
one cutvertex of G and are not 2-edge-connected components and let X7 . (G) be the number of the
2-edge-connected components of G which are kj-cycles and there is a unique path with ko internal
vertices of degree 2 in G having exactly one endvertex in the cycle and the other endvertex has
degree at least 3 in G (uniqueness is meant with respect to the existence of a different path which has
possibly different length). We call these paths the attaching paths of the 2-edge-connected components.
Moreover, let X{(G) be the number of the 2-edge-connected components of G' which are k-cycles and
contain precisely one cutvertex of G.

For a function w : N — N, which will be specified later, such that w(n) — oo as n — oo, and

(d,) € D we let X°(G(dy)) = 39 X£(G(dy)) and X¥(G(d,)) = Y9 X7(G(dy)). Similarly, we
define X(Gn.m) = Yily X (er(Gum)) and X7 (Gom) = T2 Xi(er(Gam)):
Remark. Note that the above theorem along with Theorem 1.1(i) immediately imply that these
random variables are within o,(1) of the random variables that count the numbers of the 2-edge-
connected components of Li(cr(Gp,m)) as well as the 2-vertex-connected components that belong to
the same 2-edge-connected component as ess — cr(Gp,m) in Ly (cr(Gn.m)), respectively.

In this section, we investigate the asymptotic distributions of the above random variables, aiming
towards the proof of Theorem 1.2. Firstly, we present the following calculations which will be used in
the present section. Let G be a graph on V,, with no vertices of degree 1 and d = (dy,...,d,) be its
labelled degree sequence. For some r € Z*, let C be a collection of subgraphs of G consisting of r vertex
disjoint cyclic 2-vertex-connected components of G which are not 2-edge-connected components and
cyclic 2-edge-connected components of G including their attaching paths, with each cycle containing
precisely one cutvertex of G. Let t, s be the total number of vertices of degree 2 and 3 respectively of G
that totally participate in these subgraphs. Also, let S; be the multiset of degrees of those cutvertices in
G that belong to the 2-vertex-connected components of C' which are not 2-edge-connected components
and Sy be the multiset of the degrees in G of those endvertices of the attaching paths of the 2-edge-
connected components in C' that do not belong to their cycles. Let d’ be the labelled degree sequence
of G with the edges that belong to the elements of C' removed. With )\ as it was defined in Lemma
2.6 and )\’ being the corresponding quantity for d’, we have

1 " /d " /d;

N+ — | = Jj j

At < 2M ; <2> c (2)
j=1 =1

J
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On the other hand,
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We begin with the calculation of

E[(X(G(dn))i, (X" (G(dn)))is],

for some positive integers l1, 1 and some (d,,) € G, where we set w(n) = |lnn/Inlnn] in the definitions
of X¢(G(d,,)) and X?(G(d,,)). Note that the above random variable counts the number of pairs of
ordered [;-tuples of “small” 2-edge-connected cyclic components and ordered l>-tuples of “small” 2
vertex-connected cyclic components that are not 2-edge-connected components in G(d,,), each of the
above containing exactly one cutvertex of G(d,). Since (d,) € G, it is sufficient to consider in the
calculation of the above expectation only those pairs that consist of graphs that are vertex disjoint.
For two functions f,g: N — N, we write f(n) ~ g(n) if and only if |f(n) — g(n)| = o(1). We have:

E[(X(G(dn)))n (X*(G(dn)))i] &
E D kgl) —1)! (D2 — (kf) 2 1 1)
X () o ( )l S =60

1

M =3kP=0 j1=3
w(n) D, — Y l(k(l + kP — 1)\ (K - 1)!
> o — 2
kl(I):'g’kl(f):O ll
Do =S Y kP 1) = R DN\ o g SN
( i i k(g) 1 )kl(1)!D§1) Z (‘D;zi) _63'11,3)
I i, =3
“ p, — i 1(’“@(1) + kz@) 1) k1 - 1)! Z D(l1+1 .
ki —1
k1:3 7,1_4
_ A
37 (P2~ S + K -1 - T - D) (s = DS e
ky, — 1 2 iy
ki,=3 2 i1, =4

@M -2, (M + kP + 1)+ 02
1 2 ) (z) EPyRyp—
(M—(Zi (K ()+k(2 +1)+El ki))12M— (i (K +kl +1)+2;,=1 k,)l-[j:1 d;.!

% exp (=N + A — (\)? +A2)> ) (”O (1“2"))
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- Z 1 2 32 J1
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where D ) denotes the number of those vertices amongst the D; vertices of degree j in the labelled
degree sequence (di,...,d,) that are left after the first i — 1 subgraphs have been chosen and their
edges removed and d], = (d},...,d],) be the labelled degree sequence after the removal of all the
edges of the subgraphs. The indices j;,; indicate the degree of that endvertex of the attaching path
of the [-th cyclic 2-edge-connected component which does not belong to its cycle and the degree of
the cutvertex of the I-th cyclic 2-vertex-connected component, for I = 1,...,ly and I = 1,...,ls
respectively. The following observations will clarify the intermediate steps of the above calculation.
Firstly, note that D;’) = D;(1+ O(w(n)/n)), since (d,) € G and each subgraph of a given pair is
of order w(n) at most. Secondly, if vertex i totally participates in one of the cycles or in one of the
attaching paths, then d, has one more vertex of degree 0 and one less vertex of degree d;. Otherwise,
in the case of 2-edge-connected cyclic components, if the vertex i is the endvertex of the attaching
path of such a component which does not belong to its cycle, then d], has one more vertex of degree
d; — 1 and one less vertex of degree d;. In the case of 2-vertex-connected cyclic components which are
not 2-edge-connected components, if vertex ¢ is the unique vertex that joins the cycle with the rest
of the graph, then d/, has one more vertex of degree d; — 2 and one less vertex of degree d;. Finally,
using (2) and (3), we obtain the final error term of the above relation.
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Note that

w(n) k=1 A . .
. 1 D. i\ D; 0 _ . . k—1
nlgnéo 3 Z <ﬁz) Z <2> U - 5(1 —e 200 _ x,(0)e (") Z (96 /\2(9))
k=3 i=4 k=3
2
_ b —X2(6) “Xa2(0) (Be=>)
= 5(1_6 2 —)\2(6)6 )m,

and

(n)
. M-—Ds 3 D\""'Ds
m T g ke 2 (%) -

(1—9(&(0)) e )AQ Z (9eﬂz(e>) -
I 06—*2<9>A2<0>< (62:(0))* ~ 2 (0 (6))’ _2(0&(0))2)’

2 (1 — 02 (6))2 1—0)(0)

by the first and the third part of Lemma B.1. From Corollary 6.8, Theorem 6.10 in [5] and Proposition
2.5, we deduce that X?(Gp.m) 3 X¥, X¢(Gnm) = X¢ and (X?(Gnm), X¢(Gn.m)) > (X¥, X¢), where

2
_ 6 —x2(0) W) (fe=2=(9)
= Po <§(1—€ 2 —Az(e)e )71—967>‘2(9)

and

e _ “As e 2D X5(0) | (3(6X2(0))” —2(6X2(6))”  2(812(6))°
X7 ="Po ((1_96 ) 2 ) ( T—0n@))2 1—9,\2(9)>

are independent. This yields that

XY(Grm) + X(Gnom)

(9642(9))2

4 “x2(0) “ A2 (0)
P°<5(1‘€ @ =

) 0e7200(0) [3(0X(0))° —2(0X:(80))°  2(012(9))°
+ (1 —be (9)) 2 ( 2(1—9/\2(0))22 a 1—62/\2(0) ‘

These conclude the proof of Theorem 1.2 (a).
Now, focusing on such components according to the size of the cycles, we present and prove the
analogue of Lemma 3.2:

Lemma 4.2 Assume that (d,) € G. Let s,t € N and k?), .. .,kgl),ksﬂ, coos ks >3, kﬁz) .. .,kf) >
0, li,...,lsy¢ > 1 be also natural numbers. For any k,k1 > 3 and ko > 0, we set X’?lkzn =

X¢ 1, (G(dy)) and XP, = XP(G(dy)). Then

lim E[(X,:gl)kgmn)ll "'(X,igl)kg)n)ls (X;c)sﬂn)ls“ "'(Xlgsﬂn)ls“] =

n—oo

e DN (0)(1 = =) (96—/\2(0))kgl)+k52)_1
2
l

<6_A2(9))‘2(9)(1 — e ) (06-A2(9)>k§”+k§2)—1) x
2

5

14



(5 (=) (1o - e—wm(@))yﬂ

(g (ee—xg(a))km—l (1 e hal0) _ e—AQ(e))\Q(G))>zs+t

Proof. Note that the number on the left hand side of the above equation expresses the total number
of collections of ordered tuples of cyclic 2-edge-connected components including their attaching paths
and 2-vertex-connected components which are not 2-edge-connected components indexed by the set
{1,...,s + t}, where for any i = 1,...,s, we have [;-tuples of 2-edge-connected which are cycles of
length kz(l) and have a unique attaching path with kz(z) internal vertices and for i = s+ 1,...,s5 + ¢,
we have [;-tuples of 2-vertex-connected components which are cycles of order k; and are not 2-edge-
connected components, each containing exactly one cutvertex of G(d,,). Moreover, every such family
induces a subgraph of order at most >_;_, Lk + 6 +1) + S ki So, the expected number of
those families with at least two overlapping such cycles (whose overlap of course is a vertex of degree
greater than 2) tends to 0, since they induce subgraphs of bounded order which have more edges
than vertices and (d,,) € G. Therefore, the above expectation is asymptotically equal to the expected
number of those families consisting of pairwise disjoint cycles. Let X, be the total number of the
latter. Lemma 2.6 implies:
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where, as in the proof of Lemma 3.2, Dg.’) denotes the number of those vertices amongst the D; vertices
of degree j that are left in the labelled degree sequence (dy, ..., d,) after the first 1 — 1 subgraphs have
been chosen and their edges removed and d), = (dj,...,d],) be the labelled degree sequence after the
removal of the edges of the subgraphs. The indices j;,4; indicate the degree of that endvertex of the
attaching path of the I-th cyclic 2-edge-connected component which does not belong to its cycle and
the degree of the cutvertex of the I-th cyclic 2-vertex-connected component, for I =1,...,0; +---+ 1,
and l =1,...,l541 + -+ + ls4 respectively. The following observations will clarify the intermediate
steps of the above calculation. Firstly, note that Dg-z) = D;(1+ O(1/n)), as (d,) € G and all the
subgraphs contained in a given pair have bounded size. Secondly, if vertex ¢ totally participates in one
of the subgraphs, then d], has an extra vertex of degree 0 and one less vertex of degree d;. Otherwise,
in the case of 2-edge-connected cyclic components, if the vertex i is the endvertex of the attaching
path of a 2-edge-connected cyclic component of a given pair that does not belong to its cycle, then
d!, has an extra vertex of degree d; — 1, whereas it has one less vertex of degree d;. In the case of
2-vertex-connected cyclic components that are not 2-edge-connected components, for each vertex i
which is the unique vertex that joins such a component with the rest of the graph, d/, has an extra
vertex of degree d; — 2, whereas it has one less vertex of degree d;. Finally, using (2) and (3), we
obtain the error term of the above relation. The first part of Lemma B.1 in Appendix B implies the
lemma. |

If we set s =1 and ¢ = 0 in the above lemma, then for any integers k; > 3, k2 > 0 and [ > 1, we have
fe= 22D ), () (1 — e 2(9) kitka—1\ !
lim E [(Xf, 5,0 (G(dn))),] = < e 2( )2( e ) (ee_xz(g)) 1+ >

n—oo

)

and this implies that X ,  (cr(Gn,m)) 4 po (0e—kz(e)Az(eg(l—ee—m(s)) (967A2(0))k1+k2—1)’ N

using Corollary 6.8 in [5] and Proposition 2.5. If we set s = 0 and ¢t = 1 in the above lemma, then for
any integers k > 3 and [ > 1, we have

Jim E[(X,(G(dn))))] (g (ee*h("))k_l (1 — e (0 _ AQ(o)e—mo)))l,

and, as above, we deduce that X} (cr(Gpn,m)) 4 Po (% (Ge*h("))k_l (1—e 20 — /\2(9)64\2(9)))7

as n — oo. Finally, Lemma 4.2 along with Theorem 6.10 in [5] and Proposition 2.5 imply that the
joint distribution of any finite collection of random variables

(X,:gl)kgz)n(cr(gn,m)): e :X,jgl)kgz)n(cr(gn,m))a X, n(er(Gnim))s -5 XE L n(€2(Gnm))

converges to the joint distribution of (X;(l)k(z) e ,X;(l)k(z) Xy ,X,g$+t), where, fori =1,...,s,
1 1 s s

ge—22(8) \, (0)(1—fe— 2(8) _ B 43 1 .
we have X;Ql)k(Q) :Po( c 2 )2( & ) (fe=22(9)) ,and fori=s+4+1,...,s+1

Xy, =Po <g (06_’\2(0))ki_1 (1 —e (0 _ )\2(9)6_>‘2(9)>> ,

are independent. The remark at the beginning of this section concludes the proof of Theorem 1.2.

5 On the structure of the kernel of a sparse random graph

In this final section, we investigate the implications of Theorems 1.1,1.2 and 2.1 to the asymptotic
structure of the kernel of a G, ,, random graph. As we have defined it in the introduction, for a
graph G the graph ker(G) is the multigraph (possibly with loops) obtained from the components of
the core of G which have more than one cycles, by replacing each path whose internal vertices are
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all of degree two by a single edge. We now give some properties of ker(G, ), which follow from
Theorems 1.1,1.2 and 2.1. The fact that the number of vertices in cr(G, ) that do not belong
to its giant component is Op(1) and all of them are of degree 2 a.a.s. implies that the order of
ker(Gy,m) is equal to n(p2(A2(0)) — p2(A2(6))) + 0p(n) = npsz(A2(0)) + 0p(n), by Theorems 1.1(a) and
2.1. Furthermore, since the difference between the number of edges and the number of vertices in
the kernel is equal to this difference in the core, we deduce that the number of edges in ker(Gp m)

is equal to n(’\Q( — p2(A2(0))) + 0p(n). The degree sequence of ker(G, ) is the degree sequence of
cr(Gn,m), restricted to degrees greater than 2. Finally, the number of loops is asymptotically a Poisson
random variable of mean equal to the sum of the two means of the two Poisson random variables that
correspond to the number of cyclic 2-edge and 2-vertex-connected components of Li(cr(G,. ) and
are given in the first part of Theorem 1.2.

6 Discussion

This paper continues the study of the structure of the core of a G, ,, random graph, that started
n [11], giving the asymptotic distributions of the 2-vertex and 2-edge-connected components of it as
well as the distributions of small cycles which are either isolated or not there. Thus, it is natural to
turn our attention to the essential core, since this is the dominant 2-vertex-connected component of
the giant component. It seems that there is a series of natural questions concerning the essential core
of a G, random graph above the critical point that remain to be answered. For example, is it a.a.s.
Hamiltonian? What is the exact connectivity of its kernel? Does it have a perfect matching a.a.s.?
Also, there are questions concerning the k-core, for any k > 3, after its appearance. It is known that
it is a.a.s. k-vertex-connected [8], but for example is it a.a.s. Hamiltonian? How does it look like in
general? All these questions are open for further research.
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A Some results from the theory of random graphs

We show the following lemma which is used mainly in Section 2.

Lemma A.1 For k € N, let X, p = Xpn k(Gnm) = ZiA:(,?) (;)M, where A(n) = 2|'1r?}nnn .
Then, for every € > 0, there exists kg € N such that

PXpnk >€]=0 <lrjﬁn) .

Proof. Let us fix € > 0. Note that

A(n)

STED> (5) e, 0

always. Let X ;(Gn,m) be the quantity on the right hand side of the above inequality. We shall focus
on X;L7k(gn7m) rather than X, ;. We will work on the G, , model (see [1] or [5] for the definition)
with p = m/(3). It is straightforward to see that p = m/(%) = 6/n(1 + O(1/n)). Thus, for &1 > 0,
which will be specified later, there exist kg, N € N such that

A(n) ,. '
ke = B4 Gnp)] = Y (;)W
i—ko
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i=ko <2> n —
B0 o) (o)
- Qoo

= (exp(—e) ,Af) = 7 . %) (1 o <%)>

i=ko
_ (92 exg(—e) go (fi;ﬂ) (1 +0 <%>) <er,

for every n > N. Applying Chebyschef’s inequality, we are going to show that for any natural number
k the random variable X, ; (Gn,p) is concentrated around pn . We proceed by calculating the second
moment of X, (G p):

E[(X) 4(Gns))’] = Ai:; (1) (3) BtSoa sG]

Fori € {k,...,A(n)} and l € V,,, let I} = 1 iff the degree of vertex [ is equal to i (otherwise it is equal
to 0). Thus, for i # j where i,j € {k,...,A(n)}, we have

n

E[vi(Gn,p)v;(Gnp)] = Z E[Illﬂ ]

l1,la=1,l1#l>

(e
)
- 1227;1#2 <(n—2 - 2); <%)z+] (1_ L (%))Q(H i <1+0 (lzj»
== (%)HH (iee(@) (o))
- 11’12%1#2 <TZ—:7;—? (%)iﬂ exp(—26) (1 +0 <( J)? >>
. "))
= lhhg;ll#b <%%exp(—20) (1+0< itj) )) ( ))

n'- ni=t g\t
o (2 1
G (n) exp( (+O<
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- o (Gemn(i0(55)) 0 (2))

The preceding calculation shows that for ¢ = j we have

n n

E[v} (Gnp)] = > EUL L]+ ) E[L]

I1,l2=1,l1#l2 =1

- oo (5 (o () o ()

o’ In?
+Tl€_e_—' (1+O < I n)) .
7! n
Therefore,

(X)) = 3 (1) () HellealstEns)

ij=k

2
A(n) . i 2 2 2
Z v 1 1 1
= 2 1! n n ’ n

Now, by Chebyschev’s inequality, for any ¢ > 0, we have

Var(Xrlz,k(gn,p)) -0 In’*n
t2ﬂi,k a .

P[| X, 1 (Gnp) = pink| = tpn k] <

Therefore,

n

[ nko(gn,p) (t-l- 1)51] < ]P’[Xn ko(gn,p) > ( + l)un,ko] -0 <1n n> .

Choosing €1 = ¢/(t + 1) and applying Pittel’s inequality (see [5] page 17) and (4), we obtain

2
PlXnto 2 & < PLX) 0, Grm) 2 €] < 3V BN, 4, Gny) 2 61 = 0 (2.

which concludes the proof of the lemma. [ |

As in Section 2, we let w(n) = (Inn/4)In(e?d) and for a graph G on V,,, let S(G) be the number
of subgraphs of order at most w(n) with their size exceeding their order. Then the following holds:

Lemma A.2 We have: |
PIS(Gnm) > 1] < E[S(Gnm)] = O (,%) -

Proof. Once more, we will work temporarily on the G, , model with p =m/(3) = 6/n(1+ O(1/n)).
We have

E[S(Gn,)] < tugin (:) (k(g)l)pkﬂ

k=4

A

< (o) RO ()
(o) R (B ()
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Therefore, using Pittel’s inequality
n'/21nn Inn
EIS(Go.n)] < 3V ES(G,,)] = 0 (™) =0 (17

and this along with Markov’s inequality conclude the proof of the lemma.
Now, we focus on degree sequences rather than graphs. Recall that

Inn

B, = {dn €D, : E[S(G(dy))] < i}

Then
Lemma A.3

P [d(DP2(Gn,m)) € B;) = O <1nnl—/z> .

Proof. By the preceding lemma, we obtain:

E[SGum)] = D E[S(Gnm) | dDPs(Gnm)) = dn] PlA(DP2(Gm)) = dun]

d,eD,

= Y E[S(G(dn))] P[A(DP2(Gnm)) = dn]
d, €D,

> Y E[S(G(dn))] PA(DP2(Gn,m)) = dy]
d,eBg

> In"'n Z P[A(DP2(Gn,m)) = dn],

d.€Bg

and this along with the above lemma imply that
. In’n
PA(DPa(Gn) € 5] =0 (27 ).

which was to be proved.

B Limiting properties of the degree sequences in G

Finally, we prove the following technical statement which was used in the course of our proof:
Lemma B.1 For any (d,,) € G the following hold:
1. For any integer k > 2, we have

A . k—3
Tim 2(2)% - 0(1—exp<—A2<o))§Aa(e)>.

i=k

If k = 2, then we assume that the sum on the right hand side is equal to 0.
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2. We have
A D; o)
lim ; —= ;pi(&w)) = p2(A2(0)).

3. For every function w(n) that tends to infinity as n — oo, we have

w(n) k 00 —2(0))2
. D2 _ —X2(0) k - (96 2 )
nh~>ngo Z <M> - Z (06 ) o 1-— 9€_>‘2(9)’
k=2 k=2
and -
w(n o0
) D, (@)
nlL%OZ(k—Q)(M) Z(k—2)(06 2 ) .
k=3 k=3
Proof. We prove the first part. For every integer kg > k, we have
ko . A,
1\ D; 1\ D;
> (2) 7 <2 ()%
i=k i=k
Thus,
ko . A,
. i\ D; L. 1\ D;
dim 3 (5) 57 <tmin S (3) 57
where i i -
% (i\ D; %8 (i 20e 22O )\i (6) = Ao 9)
li L 27 2V ge—2a(0)
nﬂﬂo; (2) M ; (2) iN2(6) 1;2
Since this is true for any integer ko > 2, we deduce that
k-3 0 )‘ D
_ _ — fe—N2(0) A2(0)" i)
6 (1 exp( A2(9))ZA (0)) fe= =) N . <1ﬂgf2< >M.
i=0 i=k—2
On the other hand, since (d,,) € G, for every € > 0 there exist ko, N € N such that for every n > N,
we have A .
i\ D; % (i\ D;
< - .
Z(Z)M —Z(z)zw“
i=k i=k
Therefore,
s Z P i i\Di, % i\ 2007200 0) |
1m R — = _—
nﬁo‘ip = B 2 \2) M 2 \2 iN2(6)

>0 /i 2022 \i (g =
= ; <2> Wn() te=90 (1 — exp(—A2(6)) Z;AQ(@)) te

Since ¢ is arbitrary, we deduce that

k-3

A
0 (1 exp(ha(0) w)) < lminfy (2) D
i=0 i=k
A
< hﬂsolip z; <;> % (1 —exp(— Z AL (9))

22



which concludes the proof of the first part of the lemma.
The proof of the second part of the lemma is nearly identical to the above one. For every integer
ko > 2, we have

k A
° D; < Z D;
n — &~ n’
i=2 =2
Thus,
ko A
D; D;
lim — < limi —
Jim 3 Slminf) 5,
i—2 i=2
where

ko D, ko
Jim, 2, = 2 pilalt
Since this is true for any integer kg > 2, we deduce that
f: (A2(0)) < lim sz:D"
Pi(A2 < limin —_—
=2 e ik

Now, since (d,,) € G, for every £ > 0 there exist ko, N € N such that for every n > N, we have

A p. dop, 5 siND, & p,
27527+Z<;>7527“

i=2 i=2 ko+1

Hence,

3
g
hgls
2|5
IN

§

n—00 "*OOZ__FE_Z'O@ )\2

=2 =2

A
>
>~
M)
€
+
\f‘f)

for every € > 0. Therefore,

which along with the previous analysis yields

A o]
Zpl)\g <11nn_1)101<1>f2—<hmsupz% Z (A2(8)),

n—o0
— i=2

and this concludes the proof of the second part of the Lemma.
We now proceed with the third part of the lemma. We shall prove the first statement, as the proof
of the second one is identical. For every integer ko > 2, we have

ko k w(n) k
) 22) < > 2
M M
k=2 k=2

Thus,

k

A k k k - ko
o Dy . x~ (D 20~ \2 (6 NI
liminf ) (%) 2 fim D (%) :,;2 () kz( =)



Since this is true for any integer kg > 2, we deduce that

0 w(n) D,
—A2<0>)

kz_; (06 < 11nn_1> 1OI<1>f Z < )

On the other hand, there exists a real 0 < A < 1 and N € N, such that for every n > N, we have
Dy /M < A. Therefore, for any ¢ > 0, there exists an integer ko > 2 such that

) EE) B f @) £ E)

k=2 k=2 k=ko+1 k=ko+1

for every n > N. Therefore,

w(n) D, ko D, k ko 00
< : -2 < —X2(0) *)\2 )
113;8;1)[)2( ) < HILI&Z:<M> +€_kz:;(ﬁe ) Z::( ) +e
Since € is arbitrary, we deduce that
w(n)
D, Y
lim su < ge= 2%
maw 3 (5) <5 00)"
which concludes the proof of the first formula of the third part of the lemma. |
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