THE SYNTOMIC REGULATOR FOR K-THEORY OF FIELDS

AMNON BESSER AND ROB DE JEU

ABSTRACT. We define complexes analogous to Goncharov’s complexes for the
K—theory of discrete valuation rings of characteristic zero. Under suitable
assumptions in K-theory, there is a map from the cohomology of those com-
plexes to the K—theory of the ring. In case the ring is the localization of the
ring of integers in a number field, there are no assumptions necessary. We com-
pute the composition of our map to the K—theory with the syntomic regulator.
The result can be described in terms of a p—adic polylogarithm. Finally, we
apply our theory in order to compute the regulator to syntomic cohomology
on Beilinson’s cyclotomic elements. The result is again given by the p-adic
polylogarithm. This last result is related to one by Somekawa and generalizes
work by Gros.

1. INTRODUCTION

Let K be a complete discrete valuation field of characteristic zero, R its valuation
ring, and k its residue field. Assume k has positive characteristic p and is algebraic
over F,. If X/R is smooth, separated and of finite type, there is a regulator map
from K-theory to syntomic cohomology

KEP(X) —» HY(X,5)

n syn

see [Bes00a]. In many interesting cases the target group of the regulator is isomor-
phic to the rigid cohomology group, in the sense of Berthelot, Hi{g_"_l(Xﬁ /K),
where X, is the special fiber of X. We will be most interested in the situation
where X = Spec(R), and the K—group is KQ(Z)_l(R) for n > 2. The target group
for the regulator in this case is Hg,(Spec(x)/K) = K (see Definition 4.6 for the
precise identification). Because & is algebraic over F,, K, () is torsion for alln > 1,
so from the long exact localization sequence

o KV (R) » K9 (R) —» K9 () » KY70 (k) — -

we get an isomorphism KQ(Z)_l(R) = Kéz)_l(K ) for n > 2. Hence we get a regulator
map (for n > 2)

reg: K" (K) = K (R) - K .

n—1
In this paper we try to explicitly compute this regulator map. We note that if F'
is a number field with an embedding F' — K, we can combine the natural map
K™ (F) —» K{" (K) with this regulator map to obtain a regulator map on
Kéle(F) Also, for a number field F, all K, (F) are torsion if n is even and
positive. For the odd ones, all Ko,_1(F) ®z Q are K;le(F), so the computation

for Kéle(K ) is the most interesting from the point of view of number fields.
1
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Our principal tool of study will be the complexes //\/lv('n) (K), which were con-
structed in [dJ95] for arbitrary fields of characterstic zero. Write K¢ for K* @z Q.

The complex ./W(‘n) (K) for n > 2 is of the form

n—2 n

2
Mo o My @ K My a0 NKG o W \ K- \K

where M, = My (K) is a Q-vector space generated by symbols [z];, with z in K,
x # 0 or 1, and the differential is given by

d([z]k @ y1 A v Ayn—k) = [Zlk—1 @TAYL A AYns
if k> 3, and

d([z2 @1 Ao cAyp—2) =1 —2)AZAYL Ao . AYp—2 .
We give this complex a cohomological grading in degrees 1 through n. Under
suitable assumptions about weights in K-theory (as formulated in the Beilinson—
Soulé conjecture, see Definition 3.2), there is a map
(1.1) H™ (M}, (K)) = K,

2n—r(K) .
We note in passing that the symbol [1],, also exists for n > 2, and satisfies [1],, =
27 1([1], + [~1]n) (see [dJ95, Lemma 3.19]).

In Section 3, we construct analogous complexes M('n)(R) for the ring R, whose
cohomology (again under suitable assumptions) maps directly to the K—theory of
R, and in Section 7 we compute the regulator map on its image. In the cases we are
interested in M('n)(R) can be identified with the subcomplex of the complex for K
spanned in degree k+1 (k=0,...,n—2) by all [u],—x ®@vi A---Avg with vy, ..., v
in R*, v in R* such that 1 —w is also in R*, and in degree n by all v1 A...Av, with
all v; in R*. But redoing the construction has the advantage that we can work over
R all the time, which is required for the computation of the regulator.

The case that the field is a number field deserves special mentioning. First of all,
no assumptions about weights are necessary in this case. Furthermore, it is known
that if F' is a number field, the map Hl(ﬂzn) (F)) = KQ(Z)_l(F) is an isomorphism
for n = 2 and n = 3, as well as when F' is a cyclotomic field for all n > 2. (There is
also substantial numerical evidence that it should be an isomorphism for all n for
number fields, which is part of a conjecture by Zagier, as well as a corresponding
conjecture for infinite fields by Goncharov.) Therefore one would have a complete
description of the syntomic regulator for our discrete valuation ring R if we knew

that the image of H'( N('n)(R)) in Kz(z)—1(R) would be everything. This may not
be the case, as perhaps R does not have enough units v such that 1 — u is also a
unit. One can try to overcome this difficulty by rewriting elements in the image
of H'(M(,,(F)) as being part of the image of H' (ﬂ('n)(R’)) where F'/F is a
finite field extension, R’ the corresponding ring in F’. We do this in the case of
cyclotomic fields, so that we obtain a full description of the syntomic regulator in
this case. We also state a Conjecture that the formulas found for the regulator on
the complex for R generalize to be the regulator on the complex for F.

In order to present our results, we shall need the following functions. Let log :
C, — G, be a branch of the p-adic logarithm. This means we define log on the
elements z with |1 — z| < 1 by the usual power series, and we extend this to
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C, by choosing m in C, with |r| < 1, declaring log(m) = 0, and extending to a
homomorphism from C; to C, (see Definition 2.1). Note that the values on the
elements in C; with [z = 1 is independent of the choice of 7, but log and the
functions Li,(z) about to be described depend on this choice. For the relation, see
Proposition 2.6.

Let Lij (z) = —log(1—z) for z # 0 or 1. We follow Coleman to recursively define,
using his integration theory, functions Li, () for n > 2. The defining relations are
dLi,(z) = Li,,—1(2) dlog z and lim,_,q Li,(2) = 0, and they have a unique solution
in the class of functions defined by Coleman. It is shown in [Col82] that those
functions are locally analytic in the naive topology on C,, and that Li, (2) is given
by a convergent power series > o- 2% /E™ on the open unit disc in C,. The function
Li, () extends to a locally analytic function on C, \ {1} with Li,(2) = 0 for n > 1.
These functions satisfy the functional equation

1
(1.2) Li,(2) + (-1)"Li,(1/2) = —mlog”(z) ,
see Proposition 6.4 of [Col82]. We also introduce the function L,,, defined as
n—1 (—l)m
(1.3) L,(z) = - Lip—m(2)log™(2) .

In order to state the Theorems below easily, we shall need linear combinations
of these functions. Namely, we want a suitable combination that satisfies a clean
functional equation for z and 1/z. It follows from (1.2) that Ly (2)+(=1)*L(1/2) =

(;kl!ﬁ log"(2). Therefore the function

Linoan(z) = Z am Ly (2)log" ™™ (2)
m=1

with a,, = 1 satisfies
(1.4) Linod,n(2) + (=1)" Limod,n(1/2) =0

if anzl am(_—nlﬂm = 0. Below, L q4,, Will mean any of those choices. For n = 2,
there is a unique such function, namely

Lo(2) + %log(z)Ll(z) ~ Lis(2) - %log(z)Lil(z) ,

which is studied in Section VI and beyond in [Col82], where it is called D(z).

It is easily deduced from Coleman’s theory (see Remark 2.3) that Li, is Galois
equivariant. In particular, if K C C, is a complete subfield, then Li,,, and as a result
also Ly, and Lmod,n, send K to K provided log was defined such that log(w) = 0
with 7 € K.

Remark 1.5. By considering the coefficients of the terms Li,, () log"™™(z) in the
functions above, one sees that the functions L,,(2)log" " (z) for m = 1,...,n and
Lioda,m(z)log" ™ (z) as above for m = 1,...,n span the same C,—vector space
(or even Q-vector space in case all a;’s are in Q), namely the space spanned by
Liy, (2)log" ™ (2) for m = 1,...,n. Therefore one can consider any function of the
form Z?:_()l b;Li,_;(2)log’ () with all b; in C, as a candidate for Lyod n, provided
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bp = 1 and Z; o 'j), 0. Let B; for i = 0,1,... be the Bernoulli numbers,
defined by the identity of formal powerseries

— B; t
> B
— il et —1

Then the functions Lped,n(z) defined by E" ! J]BJ Li,_;(2) log’ () satisfy the above
requirements as By = 1, and the other 1dent1ty holds by definition of the B; if
n > 2. Note that this formula is different from the classical case, where one
uses the real or imaginary part of the functions Zn QECEE i(2)log? |2], see
[Zag91] and [dJ95, Remark 5.2]. Another possible natural candldate for the func-
tion Lmod,m(2) 18 Lmod,m(2) = Lm(2) + Lim—1(2)log(z)/m. This function is dis-
tinguished by the following fact proved in [Bes02b, Theorem 1.1]: it is the unique
combination of type Lmod,m with coefficients independent of p such that the func-
tion —mp' ™z (1—2)dLmoa,m(2)/dz has a reduction modulo p, for sufficiently large

p, which is the so called m — 1-polylogarithm function introduced in the m = 2 case
by Kontsevich [Kon02] and by Elbaz-Vincent and Gangl [EVG02] in general.

If R is a ring with 1, let R” be the set of elements u in R such that both u and
1 — u are units. We shall refer to those elements as special units.
We are now ready to state our main results.

Theorem 1.6. Let F' be a field of characteristic zero. Let O C F be a discrete
valuation ring, and let F be the residue field. Assume that the Beilinson—Soulé

conjecture holds for fields of characteristic 0 and for F. For n > 2 let Mvzn)(O) be

the subcomplex of the complex .//\/Vl('n) (F') constructed in [dJ95] (see also Section 3)
generated by symbols of the form [x]r @ y1 A ... A\ Yn—r, where all y; are elements
in O%, and z is in O°. Then

(1) There is a map H"( (n)((’))) - K (O) such that the diagram

2n—r

H™(M?,,(0)) —= K" (0)

2n—r

| |

HY (M, (F)) —= K" (F)

2n—r

commutes, where the lower horizontal map is the map in (1.1).
(2) If in addition o : F — K (with K complete, etc., as before) is an embedding
with o(O) C R, then for r =1, the regulator map

H' (M3, (0) = K31 (0) 5 Kfj) i (R) » K
is given by mapping [x], to £(n — 1)! Liyean(o(z)).

Moreover, if n = 2, those results hold without any assumptions on the Beilinson-
Soulé conjecture.

Remark 1.7. The maps H"( N('n) (F)
in Theorem 1.6 are natural only up to a choice of sign (depending only on n and r).
This is expressed in the indeterminacy of the sign in the formula for the regulator,

which will show up in various places below as well.

(0)) = K (0) and H'( Nzn)(p)) N

2n—r 2n—r
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Remark 1.8. Our computations in later Sections will show that there is a map
M, (R) — K given by mapping [z], to (n—1)! Limed.n(z), and that this map is com-
patible with the regulator map Kz(z)—1(R) — K if the assumptions in Theorem 1.6

are fulfilled.
Remark 1.9. With F;, O and F as in Theorem 1.6, in the exact localization

sequence

RPN K(”*l)([@) K (0) = Jreld

2n—r 2n—r 2n—r

(F) = K@= (F) = -

we have that K{"~2(F) and K{"~") | (F) are both zero if r = 1 and n > 2 because
we are assuming that the Beilinson—Soulé conjecture holds for F. Hence for r =1
the map K2Z)71((9) — Kéle(F) in Theorem 1.6 above is an isomorphism. Note
that if an embedding ¢ : F' — K exists as in the Theorem, this implies that F is

algebraic over [, so all K| (n )((IF‘)) are torsion for n > 1. In particular, in that case

we have an isomorphism K" (0) = K{™ (F) for all n > 2 and all r.

2n—r 2n—r

If F'is a number field, the Beilinson-Soulé conjecture is known for F'; and one

can get the map HT(M('n)(F)) — Kéz)_r(F) without making assumptions. In fact,

for n =2 and n = 3, as well as in the case F is a cyclotomic field, for all n > 2, one
gets an isomorphism H*( N(’n)(F)) = ng)_l(F) this way, see [dJ95, Theorem 5.3].
We formulate our results for number fields separately, as there are no assumptions
involved about weights in this case.

Note that because F will be a finite field in this case, as before we get an iso-

morphism K. n) (0) = KM (F) for all n > 2 and all r.

2n—r 2n—r

Theorem 1.10. Let F' be a number field. Let O be a localization of the ring of
integers of F' at a nonzero prime ideal. Then

(1) There is a map H"( Mo (0)) — K

(n) 3n—r(O) such that the diagram

H"(M,,(0)) —= K (0)

2n—r

l ;

H' (Mg, (F)) —= K" (F)

2n—r

commutes, where the lower horizontal map is the map in (1.1).
(2) If in addition o : F — K is an embedding with o(O) C R, then forr =1,
the requlator map

reg, : H'(M,)(0)) = K53L1(0) 5 KLy (R) = K
is given by mapping [x], to £(n — 1)! Lmean(o(x)).
Remark 1.11. For any fixed element in H 1(//\71&) (F)), all elements involved are

special units for almost all p, so that this Theorem applies to any given element in
H! (M, (F)) for almost all p.

If we try to apply Theorem 1.10 to cyclotomic elements, i.e., to the elements [(],,
corresponding to an m-th root of unity ¢ we notice that it applies directly only if
m is not a power of p since otherwise ( is not be special. However, using relations
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between symbols (the distribution relation, see Proposition 2.11) we are able to
prove the following Theorem.

Theorem 1.12. Under the assumptions of Theorem 1.10, the regulator map
veg, « H' (M3, (F)) = Ky, (F) = K53, (0) 5 Ky (R) = K
maps [(]n to £(n — 1)! Lmoa,n(0(C)) if ¢ is any root of unity in F*.

Remark 1.13. Because it is known that the elements [(],, for n > 2, where ¢ runs
through the primitive m-th roots of unity, generate Kéz)_l((@(,um)), this gives a
complete description of the syntomic regulator for cyclotomic fields. This particular
result extends the results of [Gro94], where the corresponding result was proved
only for roots of unity of order m with (m,p) = 1 (see Théoreme 2.22), and is
equivalent to the results of [Som99]. That paper has a different formulation, with
another version of a syntomic regulator and also using a specialized version of the
polylogarithm at roots of unity. The relation with Coleman’s polylogarithm was
proved by Barsky (unpublished). The result of Gros is that, for ¢ : FF — K as
before, the element [(],, is mapped under the syntomic regulator to LilP (¢(¢)),
where Li?) is defined by

LiP) () = Lip(2) — iLin(,zﬂf’) )
pn

Note that the expansion of Li”) at 0 is 2 (kp)=1 2% /k", and that Liyea,n(0(C)) =
Li, (o(¢)) for any root of unity ¢ because log(¢) = 0, so the formula in Theorem 1.12
above reads £(n — 1)!Li, (0({)). The difference between the results is caused by
the different normalizations of the regulators. One has the relation

Frob
re€ares = | 1 — o reg ,

where Frob is the Frobenius automorphism. (The Gros regulator is only defined for
unramified fields.) From Galois equivariance it follows that

Frob(Lin(¢)) = Lin(Frob(¢)) = Lin(¢?) .

The relation between the two results is therefore clear.

We now state the following Conjecture.

Conjecture 1.14. Let K C C, be a complete discrete valuation subfield (i.e., the
valuation is induced from the one on C, ). Let R be the valuation ring of K. Assume
the Beilinson—Soulé conjecture holds in characteristic zero if n > 3. Then, for all
n > 2, the requlator map

H (M3 () = K3y (K) = K33y (R) » K
is given by the same formula as before, [z],, being mapped to £(n — 1)! Lioa,n ().
Remark 1.15. Of course, Conjecture 1.14 would imply that the map
Mn(K) > K

given by mapping [z], t0 Lmod,n(x) is well defined, as any relation among the [z],,
would give rise to the zero element in Hl(/\/lzn)(K)), and that this map induces
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the regulator map on H'! (//\/lv('n)K ). As the regulator does not depend on the choice
of the branch of the logarithm, it implies that

HY (M}, (K)) = K

given by mapping [x], t0 Lmod,n(x) is independent of that choice. We shall verify

this last statement under the assumption that the map M;(K) — K given by
mapping [z t0 Lmoda,k(z) is well defined for all k& < n in Proposition 2.8 below,
after determining the dependence of Li,(z) on the choice of the logarithm.

Remark 1.16. As will be described in Section 3, M ('n)(K ) and M ('n)(R) are quo-
tient complexes of corresponding complexes Mg, , (K) and M (R), obtained by
imposing the relations [z]y, + (—1)¥[1/2]; for all k > 2. The general assumptions
about the Beilinson—Soulé conjecture are necessary in order to prove this quotient
map to be a quasi-isomorphism. There is a map H"( tn) (R)) — Kéz)_r(R) as-
suming only the Beilinson—Soulé conjecture for K and k. Therefore, assuming only
the Beilinson—Soulé conjecture for K and k, we get a commutative diagram

H' (M}, (R) —= H' (M, (R))
l l[z]n’—)i(n—l)!Lmod,n(z)

' (R) ———K.

K,

As each of the steps in the proofs of Theorems 1.6 and 1.10 is fairly technical,
we give a brief outline of the main steps and where in the paper they occur.

Using multi relative K—theory and localization (both discussed in Section 3), we
get a diagram

K2(Z)71(O) i> Kr(zn) (Xg—l’ Dn—l) - s Kr(ln) (Xg;;m Dn—l) ..

| | |

K2(Z)_1(R) = Ky(ln)(XZ_l;D"_l) — K,(l")(X}’%H(}C;D”—l) - ...

The rows (except the first term) will be used to construct the complexes /’\/vlzn)((?)
and Mvzn) (R) in Section 3. If the Beilinson—Soulé conjecture holds generally enough,
there is a map HI(MV(’R)(O)) — K,g")(Xg_l;DN_l) ~ K{™ (0). On the other
hand, there is a syntomic regulator Kéle(R) — K. Using the embedding O —+ R
as in Theorem 1.6 gives us the map
H' (M{,(0) = K534 (0) = K5 (R) = K.

Similar results will be proved if F' is a number field, but without assumptions on
weights in algebraic K—theory. We will also compare the complexes Mzn)((’)) and

M, (R) with the complexes Mg, (F) M¢, (K) constructed in [dJ95, Section 3].
After reviewing syntomic regulators in Section 4, we analyse this in Sections 5

through 7 by extending the regulator map over the maps
Kyl y(R) = KD (X500 = K (X 0.
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The computation involves Coleman integration, and we start the paper by reviewing
it, and tying up some loose ends, in Section 2.

Finally, we would like to thank the support of the European community through
the RTN network Arithmetic Algebraic Geometry, and the referee, for making some
valuable comments.

Notation: Throughout the paper, if A is an Abelian group, we shall write Ag
for A ®z Q. If S is a subset of an Abelian group, we write <S> for the subgroup
generated by S. Therefore, if S is a subset of a Q-vector space, <S>g is the Q-sub
space generated by S.

If T is any ring with nonzero identity we let 7" denote the special units, i.e., the
units u of T" such that 1 — u is also a unit of 7.

R will be a complete discrete valution ring of characteristic zero, with field of
fractions K, and residue field k of characteristic p > 0 and algebraic over F,.
(Please note that in Appendix A K will have a different meaning, whereas R will
not.)

2. SOME PRELIMINARY MATERIAL

We begin with recalling Coleman’s integration theory in the form and to the
extent that it will be needed for this work. References for the theory are [Col82]
and [CdS88]. There is also a short summary in [Bes00b].

Our basic data is a “basic wide open” in the sense of Coleman. The data defining
such an object consist of a complete curve C'/C,, which is defined over some com-
plete discretely valued subfield and which has good reduction C' (the reader may
take P! for C since this is the only case that will be used in this paper), together
with a finite nonempty set of points S C C(FF,) where F,, is the algebraic closure of
F,. To every point y € U(Fp) corresponds a “residue disc” Uy, a subspace of the
rigid analytic space associated with C', consisting of all points in C' whose reduction
is y. The basic wide open U = U, associated with the data above is a rigid analytic
space obtained from C by “removing discs of radius A < 1 from the insides of the
residue discs U, for y € S”. Technically this means that if the point y is locally
defined by the equation z = 0, with z = 2, some local parameter near y, then one
removes the points in U, where |z| < A. This procedure depends on the choice of
z but becomes independent of this choice as A approaches 1. We will not fix A but
think of it as approaching 1 and will take it as large as needed. From now on we
will use U, to denote the residue disc of y in U, which is the intersection of the
residue disc with U. This is the same as before unless y € S in which case U, is an
annulus given by the equation A < |z,| < 1. Our final basic datum is a Frobenius
endomorphism. This is a rigid analytic map ¢ : Uy, — U,,, for some A; and s,
whose reduction ¢ is some power of the Frobenius endomorphism of some model of
C over a finite field, extended F,, linearly. A good example of such a morphism is
#(z) = 2% on P! for some power q of p.

The goal of Coleman’s theory is to integrate certain differential forms on U. This
is first done locally, on each residue disc Uy. If y ¢ S this residue disc is isomorphic
to the open disc {|z| < 1}. A rigid differential form on such a disc has a convergent
power series expansion ) -, a,2"dz and integration is done term by term. When
y € S the form dz,/z, is also analytic on U, and so there is no choice but to
introduce a logarithm.
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Definition 2.1. Let 7 € C; be such that || < 1. The branch of the p-adic
logarithm determined by 7 is the unique function log = log, : C; — C, which

is multiplicative, defined by the usual power series when |z — 1| < 1 and satisfies
log(m) = 0.

We fix once and for all a branch of the logarithm. Then the integral of dz,/z,
can be taken to be log(z,) and that allows integration of an arbitrary rigid analytic
form on any U,.

Let A(U) (respectively Q! (U)) be the ring of rigid analytic functions (respectively
one forms) on U and let Ajoc(U) (resp. Q},.(U)) be the ring of C,-valued functions
(resp. module of one forms) on U which are in A(U,) (resp. Q'(U,)) for each
y ¢ S and are in the polynomial ring A(U,)[log z,] (resp. in A(U,)[log 2,]dz,) when
y € S. It is implicit in this definition that it is independent of the choice of the local
parameter z,, a fact which follows because for any two choices of z, the difference
between the log(z,) is in A(Uy).

Each w € Q. (U) can be integrated in Ajo.(U) in many ways, because we can
choose a different constant of integration for each U,. Coleman’s theory finds
a subclass of forms for which one can assign canonically an integral in Aj,.(U)
defined up to a global constant. This is done recursively as follows. First one finds
integrals to all forms w € Q' (U). At each stage one integrates all forms that can be
written as Y fiw; where f; are integrals which have been found in previous stages
and w; € Q'(U). The rules for finding the integrals are:

(1) The integral is additive.

(2) When g € A(U), [dg = g+ C, for some constant C.

(3) We have ¢* [w= [¢*w+ C.
The fact that these rules suffice to carry out the integration process uniquely
and that it is independent of the choice of ¢ is the main result of Coleman (see
[Col82] and [CdS88]). One other result about Coleman integration that will be used
is the following.

Proposition 2.2. Let f € A(U)*. Then the Coleman integral of the form df/f is
log(f).

Proof. See [CdS88, Lemma 2.5.1]. O

The original reason that Coleman integrals were introduced is probably to give
a p-adic analogue of complex iterated integrals. Let wi, wa, ..., w, be forms in
Q'(U) and let x € U. Then we can define an iterated integral

fr(z):/ Wi oWy 00wy
T

by defining fi(z) = [w; normalized so that fi(z) = 0 and then by induction
fr(2) = | fr—1wx again normalized so that fi(z) = 0.

The definition of the p—adic polylogarithms Li,(z) is a slight modification of the
above. Here we take w; = — dlog(1—2) and w; = dlog z for i > 1. Notice that dlog z
has a simple pole at 0. However, if we normalize Li,(z) at each step to vanish at 0
this zero will cancel with the pole and we will obtain a form which is also integrable
at the residue disc of 0. This gives the definition of the introduction.

Remark 2.3. Let U be a wide open defined over a complete subfield L of C,,
containing at least one L-rational point x, and suppose we have chosen the branch
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log, with w in L. If one has forms wy,...,w, which are all defined over L, then an
iterated Coleman integral f = fzz wy 0+ -ow,, where the constants are fixed so that
all the intermediate integrals f w1y o ---owy take an L-rational value at z, is Galois
equivariant in the sense that for every automorphism o of C, over L we have that
f(z%) = (f(#))° for every z in U. In particular, if z is defined over L then f(z) is
in L. For Li,, since the forms are either dlog z or dlog(1 — z), which are all defined
over @, this means that if we take a branch log_, with 7 in @), then Li, is Galois
equivariant over (.

We now want to collect some facts about the functions Li, and other things here
that we need in the rest of the paper.

We begin with recalling some results from [Col82]. The following is contained
in Proposition 6.1 and Corollary 7.1a of loc. cit. (Note that Proposition 6.1 of loc.
cit. contains an obvious misprint.)

The functions Li, (%) are defined on C, \ {1}. If L is a complete finitely ramified
extension of @, then the limit lim._, Li,(2) exists for n > 2, and is independent

z€L
of L. Using this limit as the value for Li,, at 1, Li,, extends to a function on C,,
which is continuous on finitely ramified extensions of @Q,.
If m and n are integers at least equal to 2, then on C,

(2.4) Lin(2™) =m"™" Y Lin(¢2) .

¢m=1

Clearly the same formula holds for n = 1 provided 1 — 2™ # 0.

Let log, and log; be two different branches of the logarithm. Denote the corre-
sponding different branches of Li,, by Li, , and Li, ;. Let § = log, p — log, p, and
let v be the valuation such that v(p) = 1. Note that

(2.5) log, (=) — log, (2) = v(2)8 .

Proposition 2.6. We have

(2.7) Lipq(2) — Lipp(z) =

1 _ _ _ _
—av(l—z)ﬂ(log;’ Y2 +1og 2 zlogy z + - - - + log, zlogy % 2 + log} 1z) .

Proof. We first remark that by the construction of Coleman integrals the polylog-
arithm depends on the branch of the log chosen only on residue discs where one
of the forms involved in the definition, i.e., dz/z and dz/(z — 1), has a pole. This
means that Li, , and Li, ; can differ at most on the residue discs of 0, 1 and oo, and
in fact only on the latter two discs because Li,(z) is analytic on |z| < 1. We note
that apriori it would seem that because the constant of integration is determined
by the value at 0 the function could depend on the branch of the log everywhere,
but this is not the case exactly because logs do not appear in Li, at the residue
disc of 0. Because v(1 — z) # 0 only on the residue discs of 1 and oo the formula is
proved except in the cases |z| > 1 and |z — 1| < 1. Suppose |z| > 1. Using (1.2) we
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obtain
Lip,o(2) — Linp(2)

= (=1)"(Lipp(1/2) — Lipq(1/2)) — %(log;’ z — logy 2)

1 n n
—j(logq 2 —logy’2)

1 .
—m(loga z —log, 2)(log” ' 2 +log? % zlogy z + - - - + logy ' (2))

1 _ _ _
= —av(l —2)B(log"™" z 4+ log" % zlogy z + - - + log) ' (2))
because v(z) = v(1 — z) for such z. It remains to consider the case |z —1| < 1. Note
that here log(z) is independent of the branch so the formula to be proved reads

1
(1= 2)Blog" 'z .

Lina(2) — Ligs(2) = NCE

We prove this by induction on n. For n = 1 this follows immediately from (2.5). As-
sume n > 1. According to [Col82, Proposition 7.1], Li, (2) — =5 Lin—1,4(2) log(2)
extends to an analytic function on |1—z| < 1. (Note that B(0, 1) should be replaced
with B(1,1) everywhere in the formulation and the proof of loc. cit.). The result
will follow from the induction hypothesis if we show that

T (2) := (Lip,q(2) — log(z)Lin—1,4) — (Linp(2) — log(z)Lip—15) =0.

n—1 n—1

When we differentiate v, (z) we find

1

d(Lina(2) = —

log(z)Lin—1,4) — d(Linp(2) —

p—] log(z)Lin—1)

((1 - - L 1) Lin-10(2) ~ - L : 1og(z)Lin_2,a(z)) dlog(2)

_ ((1 - - ! 1) Lin14(2) - = ! : 1og(z)mn2,b(z)> dlog(2)

n—2
= 2 1(2) dlog(2) = 0

n —

by induction. So the 7, (z) is a constant on |z — 1| < 1, call it C, and we must show
that C = 0. But v,(z) satisfies the distribution relation corresponding to (2.4).
For |z — 1] < 1 and m = p this relation now reads C = m"~! - m - C, which shows
C = 0 as required. ]

Proposition 2.8. Let log, and log, denote two branches of the logarithm, and
denote the corresponding functions involving Li’s by a subscript a or b. If the maps

My(K) - C,

gwen by mapping [k t0 Lmod,k,qo(x) are well defined for 2 < k < n, then the map
on My (K) mapping [x]n t0 Lmod,n,b(%) is well defined, and the map it induces on

H'(M},)(K)) = G,

is the same as the one induced by mapping [x]n t0 Lmod,n,a(T).
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Remark 2.9. M, (K) will be constructed below in Section 3, but for a heuristic
approach to working with it we refer to the beginning of the Introduction. Our
computation of the regulator map in Sections to come will show that, for a fixed
choice of log, the map .
Mn(R) = Gy

given by mapping [z], t0 Lmoa,n(x) is well defined, but we have to assume this
for Mn(K ). Note also that for the special units, the function Lyeq,n(z) does not
depend on the branch of the logarithm by Proposition 2.8.

Proof of Proposition 2.8. First of all observe that the functions L,_,(z)log™(z)
(m =0,...,n — 1) and Li,—p(2)1log™(z) (m = 0,...,n — 1) span the same Q-
vector space, and therefore Lpoq,,(2) is any Z"m_:lo A Lip—m(2) log™(2) for which
ap =1 and Lmod,n(2) + (—1)"Limoed,n(1/2) = 0 (see (1.4)). The functions f,(z) =
Lin(z) — £ 10g(2)Lin—1(2) and g,(2) = Lin(2) + & log" ! (2)log(1 — z) satisfy this
so they can be used as Lioa,n(2). In fact, any Lyea,,(z) = 2. @mLin—mlog™(z) can
be expressed as linear combination of either f,,_,(2)log™(z) (m =0,...,n—2) or
gn-m(z)log™(z) (m =0,...,n —2), with coefficients in the field generated over Q
by the a;. Using this, one sees that, no matter what the choice of the Luoq,x(2),
provided that L is a subfield of C, containing all a;’s for all Lmed,x(2)’s, the L—
vector spaces spanned by Lmoa,m(2)log™(z) (m =0,...,n —2), fo—m(2)log™(2)
(m=0,...,n—2) and gn—m(2)log™(z) (m =0,...,n— 2) are the same. Iterating
the d on M (K), we get maps
2
My (K) = M,y (K) @ K§ = My_2(K) @ (K§)®* = -+ — [\ K @ (K§)®"

mapping [z], to ((1—z)Az)®(z®---®z). Because a function Limed k.o (2) log" ¥ (2)
defines a map on ]\NIk(K ) ® (K6)®”’k by assumption, the intermediate steps tell
us that all such Liod,k,q(2) loggfk(z) for k = 2,...,n are well defined functions on
MH(K), and that this is equivalent to the same statement for the fi o(z)log" ¥ (z)
(k= 2,...,n) or the gr.o(2)log"*(2) (k = 2,...,n). (This also shows that our
assumptions do not depend on our particular choice of Liea,x(2)’s.) Applying this

to n — 1 rather than n, we see that the function g,_1,4(2) is a well defined on
My—1(K), and therefore the function g,—1,(2)v(z) is a well defined function on
M, (K). By (2.7), if we let

1 . o .
Fi(2) = 7 (1-2)8 <log’;71 z+1logt2 zlogy 2z + - - - + log, zlog’bﬁ2 z+ log’b”*1 z)
then f.0(2) — fup(2) equals

Fo(2) = - (Lin (%) = Lin-1,(2)) 108 (2) + + Li1,0(2) l0g, (=) 08y (2))
=Faz) = - Fa-1 () 10gy(2) — 20(2)BLin-1.0(2)
=— %v(l - z)ﬂlogg_l(z) - %v(z)ﬂLin,l,a(z)

= L ()Bgn1,0(2) + i Blo(z) g (1~ 2) — u(1 — 2) log, ()] logs (=) .

This allows [z],, — fn.b(2) to be expressed in terms of functions that are well defined
on M,(K). Finally, note that this also tells us that [z], = fno(®) — fnp(z) can
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be factorized through the map Mn(K) — Mn,l(K) ® Kg, so that fn o, and fnp
induce the same map on H' (ﬂ('n)(K)) For the same reason, Lmod,n,a and fr.q
(resp. Lmod,n,p and fy,p) induce the same map on Hl(MVZn)(K)), so that Lmod,n,a

and Lpod,n,p induce the same map on H( Nzn)(K)) O

Remark 2.10. The M,(K)’s will be constructed in Section 3 as quotients of
M, (K)’s. These are Q-vector spaces generated by symbols [z],, for z in K, x # 0,1,
subject to (unknown) relations. For n > 3, thereisamap d : M, (K) - M,_1(K)®
K¢ mapping [z], to [z],-1 ® 7, and for n = 2 there is a map My (K) — K¢ ® K¢
mapping [z]s to (1 — ) ® z. ]\A/.fn(K ) is constructed as the quotient Q-vector space
by imposing the relations [z], + (—1)"[1/z], for n > 2. One can check along the
lines of the proof of Proposition 2.8 that if the map M, (K) — C, given by map-
ping [z],, to Liy q(x) is well defined for some n > 2, then the map M, (K) — C,
given by mapping [z], to Li,s(x) is also well defined, and induces the same map
on H* (/\/l('n) (K)). Similarly, if the map given by mapping [z] to Ly () is well
defined for all 2 < k < n, then the map [z], — Ly (z) is well defined, and the
induced map on Hl(/\/lzn) (K)) is the same as when we use Ly, instead of Ly, 4.

Finally, we shall also need the distribution relation for elements in M, (F), as
given in [dJ95, Proposition 6.1].

Proposition 2.11. If F' is a field of characteristic zero that contains the m-th
roots of unity, then in M,(F) (and hence M, (F)) we have

(2.12) [z =m" ™ > [aal,.

am=1
3. SOME K—THEORY

In this Section we construct the complexes N(’n)(O) as quotient complexes of
complexes M7, )(O) for n > 2. The main idea is the same as in [dJ95], but the
fact that we will be working with a discrete valuation ring rather than a field gives
rise to complications. For a fairly gentle introduction to this method, for a field
rather than for O, we refer the reader to [dJ96, pages 526—529], where there is an
exposition for n = 2 and n = 3. A brisk overview of the construction for fields for
all n is given in [dJOO, pages 144—148]. The notation below will follow the notation
in those two papers closer than the one in [dJ95].

In order to highlight the idea we start with a rather gentle exposition. For the
proofs of the statements that are used in the construction, we refer the reader to
loc. cit., especially Sections 2.1 through 2.3, and 3. In loc. cit. most of the work was
done over Q, but in fact the proofs hold over our base O , a discrete valuation ring
of characteristic zero, without any change. There is also a very brief introduction
to multi relative K—theory in Appendix A.

The idea of the whole construction is the following. If B is a regular Noetherian
scheme, then the pullback K,(B) — K.(AL) is an isomorphism. We shall be using
an Adams decomposition with respect to weights, K, (X)o = @iK,(,ZL)(X ). The
weight behaves naturally with respect to pullback, and under suitable hypotheses
for a closed embedding, there is a pushforward Gysin map with a shift in weights
corresponding to the codimension (see, e.g., [dJ95, Proposition 2.3]).
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Let Xp = PL \ {t = 1} with ¢ the standard affine coordinate on P'. Write O}
for the closed subset {t = 0,00} in PL. Then the relative exact sequence for the
couple (Xp; %) gives us

v = K1 (XB) = K1 (OR) = K (Xp;Of) = Kn(Xp) = K,(Oh) — -+

for n > 0. Because the map pullback K,41(B) = Kp4+1(Xp) is an isomorphism,
combining it with the pullback K,y1(Xg) — Kni1(Og) = K,11(B)? shows
that the map K,11(Xg) — Kny1(Oy) corresponds to the diagonal embedding
K, 11(B) = K, 11(B)?. As this holds for all n > 0, we get that we have an isomor-
phism K, (Xp;0%) = K,,+1(B) for n > 0. Note that we have a choice of sign here
in the isomorphism of the cokernel of K, (B) — K, (B)? with K,(B).

We can iterate this procedure using multi relative K—theory. (The construction
of this is recalled in Appendix A.) For the sake of exposition we give the argument
here for the next level of relativity. If we let 0% = {t; = 0,00}; {t> = 0,00}, then
we can get a long exact sequence

v = K1 (X35 {t1 = 0,00}) = Kpi1 ({t2 = 0,00}; {t1 = 0,00}) —
— K, (X3;0%) = K, (X3; {t1 =0,00}) = K,({ts = 0,00}; {t; =0,00}) = ---.
Using induction on the degree of relativity one sees that the composition
Kp1(Xp; {t1 = 0,00}) = Kpy1 (X3; {t1 = 0,00}) —
= Kni1({t2 = 0,00}; {t1 = 0,00}) = K41 (Xp; {t1 = 0,00})°
(with the first map the pullback along the projection (t1,t2) + t2) is the diagonal

embedding, hence we obtain an isomorphism K, (X%;0%) = K, 1(Xp;0%) for
n > 0. Therefore we get K, (X3;0%) = K, 11(Xp;0p) = K,42(B) for n > 0. By

induction one proves that
for n > 0 and m > 1, with OF shorthand for {t; = 0,00};...;{t;m = 0,00} (m—

th order relativity). One can also do this with weights, and as the weight are
compatible with pullbacks, we get isomorphisms Ky (Xp:0p) = K,(f_,)_m (B) for
n > 0 and m > 1. In those isomorphisms we will always pick the one that, at the

stage of identifying the cokernel of the diagonal embedding
Ko j(Xp 08 77) = Ky j({tm—jp1 = 0,00} 05 7)) = K,y (X577 05 )2

with Ky (Xg‘_j ; Dg_j ), subtracts the contribution at ¢,,—j;1 = oo from the one
at ty—j41 = 0.

In order to get elements in groups like K, 4., (X5;0%), we use localization
sequences. We shall explain the idea for m = 1. (For m > 2 the localization
sequences get replaced by a spectral sequence, see below.) If u is an element in our
discrete valuation ring O such that both u and 1 —w are units, then we get an exact
localization sequence

o= K (0) = Kn(Xo0;0p) = Kin(X0,10e;00) = Kim—1(0) = -+
where Xo 10c = Xo \ {t = u} and we identified {t = u} C Xo with O (or rather
Spec(0)). We used here that u and 1 — u are units in O so that {t = u} does
not meet [y, or {t = 1}, and that O is regular in order to identify K,,(O) with

K] (0). (If we want to leave out {t = u} and {t = v} simultaneously for two
distinct elements u and v in O such that all of u, v, 1 —u and 1 — v are units, which
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we shall do below, this already becomes far more complicated and one is forced to
use a spectral sequence.) The image of K»(O0) — K»(Xe;0g) can be controlled
by looking at the weights, which for the bit that we are interested in gives us

oo KS(0) o KPP (X0:0b) = KPP (Xopee;0b) » KM (0) > -+

Because of weights in K—theory, one knows that Kél)((’)) = 0, so we can analyze
K§2)(X@;D%9) as subgroup of Kéz) (X010e;0p). In [dJ95, Section 3.2] universal
elements [S],, were constructed, of which we want to use [S]s here. It gives rise to
an element [u]» in KéQ)(XOJOC;D%Q) with boundary (1 —u)~! in Kl(l)(O). If we
use this for various u (suitably modifiying the localization sequence above into a
spectral sequence) and consider elements coming from the cup product

Kl(l)(XO,loc; D%’)) X Kl(l)(o) - KQ(Q) (XO,IOC; D%Q)

we can get part of KéQ) (Xo;0p) = KS(Q)(O) by intersecting the kernel of the map
corresponding to K§2)(X@,10C;Dé)) — K{l)(O) with the space generated by the
symbols [u], and the image K](_l)(XOJOC; Op) U K{l)(O) of the cup product.

Unfortunately, this gets fairly technical, but after this gentle introduction we are
now ready to begin. The reader is encouraged to compare this construction with
the simpler construction for fields, which is carried out in [dJ95, Section 3].

To ease the notation somewhat, we will drop the subscript (indicating the base
scheme) from O".

Definition 3.2. A scheme B has no low weight K-theory if the Beilinson-Soulé
conjecture holds for B, i.e., K,(?{)(B) =0if 2§ <m and m > 0. A ring A is said to
have no low weight K-theory if Spec(A4) does not have low weight K—theory.

We shall use the following notation. Let ¢ be the standard affine coordinate
on PL. We let X = P} \ {t = 1}. If B is any scheme, we let X = X xz B,
and X2 = Xp xp---xg Xp. If U is a subset of I'(B, 0*) such that if b is in
U, then 1 — b is also in I'(B,0%), we let Xpjoc = Xp \ {t = b,b € U}, and
Xg;’loC = XBloc XB -+ XB XB,oc- The set U will normally be clear from the
context. We shall also abuse notation by writing X7 .. even after we took direct
limits over finite sets U. In the multi-relative K—theory below, we shall write (0"
for {t; = 0,00};...;{tn = 0,00}. We will also write (Y;0") for (Y;Y N O").
Notation 3.3. For the remainder of the section, O will be a discrete valuation ring

with field of fractions F' and residue field F. (Later on, we want to make another
assumption as well, see Assumption 3.9.)

Lemma 3.4. Assume F and F have no low weight K —theory. Then for2j <q+m
andm > q, all ofK,(,{)(X%JOC; a, K,(,{)(X(%JOC; 0?) and K,(,{)(XH%IOC; 09 are zero.

Proof. Lemma 3.4 of [dJ95] shows the statement to be true for F' or F. The result
for O follows immediately from the exact localization sequence

B K’frjb'_l)(X]lg,loc;Dq) - K’frjz')(X(qD,loc;Dq) - K(j)(Xg‘,loc;Dq) —

m

a

Remark 3.5. F has no low weight K—theory if IF is algebraic over F,, because all
K,,(F) are torsion for n > 1. It also holds if F is of transcendence degree 1 over
F, by a result of Harder, see [Har77, Korollar 2.3.2]. Because K, (F') is torsion
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for n > 1 for a finite field F', using localization it is enough to show that K, (O)
is torsion for a Dedeking ring in a function field of transcendence degree 1 over a
finite field, which is the result quoted.

Remark 3.6. F has no low weights K-theory if F' is a number field, or more
generally a subfield of the algebraic closure of Q. As the residue field is an algebraic
extension of I, in this case, the conditions of Lemma 3.4 are certainly satisfied, and
all constructions in this Section go through without assumptions about the weights
on the K—groups involved.

Consider the divisors on X% defined by putting ¢; = u; for some u; in O°. Put
WO = X%, and let W! be the union of divisors {¢; = u;} for all u; in some finite set
U C ©°. Considering the singular locus of W, it is easy to see that one can extend
this to a stratification W% > W' > ... D W2 = § on X, with all W*\ W**! for
s =0,...,n+ 1 consisting of a finite union of Xg](fc, Xﬁ;osc and Xﬁl_osc“’s, which
are regular. Using the localization sequences

o K (X ) = K (X807 -

K e XB\ WSO = KT 0 (X307 = -

n—1,Wst1

where Kflj;;,i)“( &;0") etc. is K-theory with support. we get an exact cou-

ple, which gives rise to a spectral sequence converging to KT(Lj )(X &;0"). We have
isomorphisms

KU\ e (XB\ WSSO & KD (W \ W+, 07)

and we can identify the terms in the spectral sequence with terms of this type.
Note that the components of (W?® \ W**t';00") are of the form (Xg5;0"™%),
(X P O"%) and (X2t 07+, Taking j = n+1 we get a spectral sequence
with B equal to

KU (xpectore Y [ (e han ) [T R (s o)

and converging to K™ (X210 1), If we write KY0™ for K B loe; ™)

for typographical reasons, and similarly for F' and F, this looks as
(3.7

(n),n—1 (n—1),n—2 (n—1),n—2 (n—2),n—3 (n—2),n—3 (n—2),n—2
K —-1,0 Kn72,o Hanz,F Kn73,(’) HKn73,F HK

n n—3,F
n)mn—1 n—1),n—2 n—1),n—2 n—2),n—3 n—2),n—3 n—2),mn—2
L T stanein | B el iy i | s irw Ao | B sty
(n),n—1 (n—1),n—2 (n—1),n—2 (n—2),n—3 (n—2),n—3 (n—2),n—2
K. io K, o HKn,F K, 1o HKn—l,F HKn—l,TF

Observe that, due to the choice of the stratification, K{"~* (Xg 10e; 0" 7%) occurs
only when s > 2. Also, by Lemma 3.4, if both F' and F have no low weights K-
theory, then in the spectral sequence (3.7) converging to K. ) (XL 0" there

Xo,loc?
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are no nonzero terms in the row below the one beginning with K, (m) (X gjic; anh
(i.e., the middle row of (3.7), where K\ (XG0 0™ 1) is denoted by K, ")’n .

Lemma 3.8. If F has no low weight K -theory, then the map
-1 -1 —1 -1
Ka(zn)(Xg,loc; g ) - K'r(tn)(X?,loc; g )
s injective.
Proof. Immediate from the localization sequence
- -1 -1 -1 -1 -1 -1

= K7(1n 1)(‘X]{‘},loc; ar ) - Kr(ln)(Xg,loc; o" ) - Kr(zn)(X?,loc; o" ) -
as the first term here is zero by Lemma 3.4. O

We now notice that all our localizations are compatible with localizing in a
larger set U, and that we can take direct limits of our localizations over finite
sets U if we want. In order not to overburden the notation we shall suppress U
from the notation. Notice that this means also that all components in the spectral
sequence (3.7) of codimension at least one with O as base become the corresponding

components with F' as base, but that the corresponding coproducts are taken over
t; in O rather than F* = F'\ {0,1}.

Assumption 3.9. We assume for the remainder of the section that the discrete
valuation ring O has characteristic zero.

We now define symbols in K-theory. Let G = Spec(Z[S,S71, (1 — S)71]).
In [dJ95, Section 3.2] universal symbols

(3.10) [S]n € KM (XZ a0
were constructed. Here we only remove all t; = S from ngl in order to obtain
X oe- The boundary of [S],, is

n—1

S (1) [Shnapims

i=1
in 7, K " 1 (Xg 72;0"7?) under the boundary in the spectral sequence corre-
sponding to (3.7) for G. (Although the proofs in loc. cit. were formulated over Q,
the constructions hold for a much larger class of base schemes without any change.)
Recall that we denote by O* the units in O, and by ©” the set of elements u in O*
such that 1 — u is also in O*.

Definition 3.11. For u in O” we define the symbol

[uln € KV (X5 508"
as the pullback of the universal symbol [S],, under the map Spec(Q) — G induced
by mapping S to u.

It was also shown in loc. cit. that the symbol [1],, exists for n > 2, but we shall
tacitly ignore this symbol here, as it can also be defined by the distribution relation
Proposition 2.11 if there are other roots of unity in F'.

We define inductively the symbolic part of the K—theory. Let

n;
(3.12) (1+D)" = K{V(X},060 1>={H<tf_uf) S“ChthatHu”J— 1},
J
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where the u; are in O* and the n; arein Z, and let Symb, (O) C K,(Ck) (X(kgjl(l)c; k!
be defined by setting Symb, (O) = 0f, and

Symbyy1(0) = <[ulg+1,u € O*>g + (1 4+ I)*U Symb, (O)
for k > 1. The notation U means the following. There are k projections of X, (’“9’100
to X572, giving rise to k cup products

* k — o — k L
1+ D)7 x KM (X500 —» KA (XS 05,

(1 + I)*U Symb, (O) is the Q-subspace spanned by the image of all those k cup
products.

Because d[z], = Z?;ll(—l)i[x]n,1|ti:z where d is the differential in the spectral
sequence, we get a complex Symbzn)(O) mapping to the row of (3.7) which starts

with K'5" " = KV (X5 10", given by

Symb,, (0) =[] Symb,,_,(0) — [ Symb,,_5(0) = --- = ][ Symb,(0) =[] 0~

If F has no low weight K—theory, then by Lemma 3.8 we can view those groups as
subgroups of the corresponding spaces for F'. As the components corresponding to
F in (3.7) will never play a role in the boundary for elements in Symb(,(0), we
can view the above complex as a subcomplex of the complex

KM (X007 = TR (G007 - TR (G0 =
where all coproducts for codimension r are taken over r—tuples (u1, ..., u,) in (O°)".

Lemma 3.13. Assume F' has no low weight K -theory. Then the map corresponding
to further localization from K,(L") (X;ifolc; O™ 1 for one set of localizing elements to

KM (leijolc; O™ 1) for a larger one is injective.

Proof. For n = 1 there is nothing to prove. For n > 2, we use the exact sequence
(which we obtain from (3.7) as F' has no low weight K-theory so we can consider
the lowest nonvanishing row)

0— K{M(Xp 50" - KW (X0 = [ eSSV (X2 0m2)

for two different set of localizing elements. As clearly the right most term injects
under localizing more (i.e., make the coproduct larger as well), we are done by
induction. |

By Lemmas 3.8 and 3.13, if both F and F' have no low weight K—theory, then we
also have an inclusion Symb,,(O) C Symb,, (F), so that Symb{,,)(O) is a subcomplex
of Symb{,,)(F). We can also forget about exactly which finite subset U of O° or
F*\ {1} we use, and work in the direct limit for such U from now on.

If both F' and F have no low weight K-theory, then all this takes place in the
lowest non-zero row of the spectral sequence (3.7) above, and if we give Symb(,
a cohomological grading in degrees 1 through n, we get a commutative diagram of
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maps

HE Syt (0) —= K1, (X575 07—~ KE2L,(0)

n—r+1 2n—r

| | |

H" (Symb},,) (F) — K™ (xp-10m 1) — KV

n—r+1 2n—r

(F)

because the differentials in Symb(,,)(O) and Symb(,,(F) are induced from the spec-
tral sequence (3.7).

Remark 3.14. Note that if both F and F' have no low weight K—theory, then the
horizontal maps here are injections by construction for r = 1.

The complex Symb('n)(O) can be changed into a tensor complex, using the fol-
lowing subcomplex. Define J; = J;(0) as (1 4+ I)*U Symb,(O) for k > 2. Let
T (O) be the subcomplex of Symb,) (O) given by

Jn = ddn+ [T = dC )+ [[ T2 = - =2 dl )+ [[ R = d( ).
Proposition 3.15. The subcomplex j('n)((’)) is acyclic.

Proof. The same as the proof of Lemma 3.7 of [dJ95], see also Remark 3.10 in loc.
cit. O

Note that the symmetric group S,—1 acts on Symbf,,) and j('n)((’)) because [S],

is in K\ (Xg‘,_l(}d 0" 1) by Lemma 2.12 and the beginning of Section 3.2 of [dJ95)].

Denote the parts of those complexes on which S,,_; acts alternatingly by the super-
alt alt
script alt.Let the complex MZn) be the quotient complex (Symb('n)) / (j('n) ((’)))

It has the form

2 n—2 n—1
My = My ®05 = Myy @ NOG =5 Maw \ O = 050 \ 0

with My, (O) = Symb, (0)*'*/J&, which is generated by the classes of the elements
[u], with u in O°. Denote the class of [u]), simply by [u]z. Then the differential is
given by

d([zle @ y1 Ao A Yn—k) = [2]s—1 QT AYLA .. AYn—k
if £ > 3, and

d([zla @y Ao AYn—2) =1 —2) QT Ay A... Ayp—a.
Remark 3.16. Note that we now have maps

(3.17) HP(M?,,(0)) = K5 (0)

2n—p
if either F' and F have no low weight K—theory, or if F' is a number field.
Proposition 3.18. IfF and F have no low weight K —theory, then the localization
map M,(O) — M,(F) is injective. In particular, we can view ME (O) as a
subcomplex of M(‘n)(F)
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Proof. From the localization sequence
e KT () = Ky (0) = KL (F) =

we get that the map K" (0) — K{") | (F) is injective. Consider the commutative
diagram

0 — H' (M8}, (0)) — M) (0) — M,-1)(0) ® Of

| | |

()—)Hl( (.k)(F))—)M(k)(F)—>M(k_1)(F)®F@.
Because the maps to K2Z)71((9) (resp. K2Z)71(F)) from the H'’s are injective by
Remark 3.14, we find that the map H'(MP,(0)) — H' (M, (F)) is injective. It
follows by induction on k that the maps M (O) — My (F) are injective, as this is
clear for k = 2, where the vertical map on the right is the inclusion O ® O —
Fy ® Fg.
Let Ny = Ni(O) = <[u]y, + (=1)*[u~']x>q where the u runs through ©°. This

is the analogue of Ny (F) defined in [dJ95, Proposition 3.20]. We consider the
subcomplex ./\f('n)((’)) of M¢,(O) given by

n—2 n—2
Nn—>Nn_1®Oa—>~-~—>N2®/\O¢5—>d<N2® /\OZ@).

Lemma 3.19. If F has more than two elements, or equivalently, if ©° # 0, then
dN>(0) = Sym?O%, and similarly for F.

Proof. Because d[u]s + du™']s = u® u in SmeOa, ANy = <u ® u,u € 0°>q.
SmeO{‘@ is spanned by elements of the form v ® v where v runs through O*. If v
is a special unit, then it is clear from the formula above that v ® v is in dN,. If
not, v reduces to 1 in F. Let w be a special unit in O*. Then w, wv and wv~! are
special units, and they give the elements w ® w, (wv) ® (wv) and (wv=!) ® (wv=1)

in Symz(Oa), and a linear combination of them gives v ® v. a

Proposition 3.20. If the Beilinson—-Soulé conjecture holds for F and for fields of
characteristic zero, then the complex ./\f('n) (O) is acyclic.

Proof. If there are no special units, there is nothing to prove as the complex ./\/(’n) (0)

is zero. If ©” is nonempty, we show that ./\/('n) (O) is quasi-isomorphic to the complex

2
Sym"™(0%) — Sym™ ™ (0}) ®g O — Sym"(0%) ®g \ O — -+

n—2 n—2
-- = Sym*(0p) ®g \ 05 —d (Sme(O(*Q) 20 N\ 0@) :

It is well known that this last complex is acyclic, with an explicit homotopy
operator given in Corollary 3.22 of [dJ95]. It was proved in Proposition 3.20 of
[dJ95] that the map [u]x + (=1)*[1/u]y — u ® ... ® u induces an isomorphism
between Ny (F) and the subspace of Sym* (F3) generated by the elements u®...®@u
with w in F*. Considering Proposition 3.18, our complex is a subcomplex of the
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corresponding complex for F'. So it will suffice to check that the image of N;(O)
is Symk(O(‘@) for k =2,...,n. This is done as in the proof of Lemma 3.19 |

Remark 3.21. In case F' is a number field, we can prove the statement of Proposi-

tion 3.20 without assuming the Beilinson—-Soulé conjecture. F satisfies the Beilinson—
Soulé conjecture, because by [BG02, Theorem 10.9] and [Bor77], for m > 2 the

Beilinson regulator gives an injection of Ky (F) into Hj{{mfl (Spec(F®oC); R(j—

1)). This can only be nonzero if m = 25 — 1, i.e., the only nontorsion K,,(F')’s with

m > 2 are K/ | ((F))’s with j > 2. It was shown in [dJ95, Proposition 5.1] that the

map [u]i + (=1)*[1/u]x = u® ... ® u gives an injection from N (F') into SymkF@

Because F is finite, K, (F) is torsion for m > 1, we have inclusions Ny (O) C Ny (F')

by Proposition 3.18. The proof that ./\f('k)((’)) is acyclic then proceeds as in the

general case.

Let Mvzn)(O) be the quotient complex Mg, \(O0)/N,)(O). It has the form

2 n—2 n
M, (0) = M, _1(0)005 = Myu_2(05)® \ O = -+ = Ma(O) \ 05 — )\ O

with M, (0) = Mg (O)/N(O), and is clearly still generated by the classes of the
elements [u]y,, where u € O0”. We have similarly the complex ME,) (F) defined
in [dJ95, Corollary 3.22]. In both cases, the differential is now given by

d([z]k @ Y1 Ao Ayn—k) = [Zle—1 @TAYL A AYns,
if k > 3, and
d([zl2 @y Ao Ayp—2) =1 —=2)AZAYL A ... AYp_2.

Remark 3.22. If the Beilinson—Soulé conjecture holds for fields of characteristic
zero and for F, or F' is a number field, then one proves in the same way as in
Proposition 3.18 that the map MH(O) — MH(F) is injective for n > 2, so we can
identify Mvzn)(O) with a subcomplex of MV(‘n)(F)

We have now proved the assertions (1) in Theorem 1.6 and Theorem 1.10.
Namely, either assume the Beilinson—Soulé conjecture is true for fields of char-
acteristic zero as well as for F, or that F' is a number field. We then have a map

H' (M(,)(0)) = K53 ,(0),

2n—r

which is obtained as the composition of the maps

(323)  H"(M},)(0) & H'(ME,)(0)) & H"(Symb},)(0)) — K

2n—r(0) .
From left to right, those maps are justified by Proposition 3.20 or Remark 3.21,
Proposition 3.15, and Lemma 3.4, as that Lemma implies that we are working in the
lowest nonvanishing row of the spectral sequence (3.7). Note that the Beilinson—
Soulé conjecture for fields of characteristic zero in general is only needed for the
leftmost map to be isomorphism.

If the Beilinson—Soulé conjecture holds for F', one has similar maps when re-
placing O with F' everywhere, with the leftmost map being an isomorphism if the
Beilinson—Soulé conjecture holds for fields in characteristic zero, or if F' is a number
field.
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If the Beilinson—Soulé conjecture holds for F' and F, then the inclusion of O into
F induces an injection of complexes M?, ,(O) into M7, (F) by Proposition 3.18.

Similarly, by Remark 3.22, the map from M{n)((?) to M:n) (F) is an injection if
in addition the Beilinson—-Soulé conjecture holds for fields of characteristic zero.
Those maps are compatible with the maps in (3.23) and the corresponding ones for
F, ie., the diagram

(3.24) H"(M¢,)(0)) <=— H"(M?,)(0)) — K" (0)

(n 2n—r

| | |

H" (M, (F)) <—— H" (M, (F) — K" (F)

(n 2n—r
commutes.

Remark 3.25. If F'/F is an arbitrary field extension, and O' C F’ is a discrete val-
uation ring with O C O’ F, then there are obvious maps M('n)(O) — M(‘n)(O' )
and similarly for F' and F’, as well as for the complexes ./\/l('n). The corresponding
map from M\ (F) to M, (F') is injective provided either F is a number field,
or the Beilinson-Soulé conjecture is true for F' (and hence for F'), cf. [dJ95, Re-
mark 3.17]. Again, if in addition the Beilinson—Soulé conjecture holds for fields of
characteristic zero, or F' is algebraic over Q, the map from /T/lJZn)(F) to M('n) (F")
is injective. This is proved as in the proof of Proposition 3.18 or Remark 3.22, as

the assumptions mean that the necessary maps to K" | (F) and K" (F') exist

and are injective, and because the map K\ (F) — K\ (F") is always injective.
Similarly, if the Beilinson—Soulé conjecture holds for F' and F' (and hence for F'

and F), the map KQZ)_l (0) - ng)_l (') is injective as those inject into KQ(Z)_l(F)
and Kéz)_l(F’ ) respectively. It then follows in the same way that the map from
Mzn)((’)) to M¢,) (O") is injective. If in addition the Beilinson—Soulé conjecture
holds for fields of characteristic zero, or F' is algebraic over QQ, then the map from
MZn)(O) to M('n)((’)’) is injective.

In particular, all those maps are injective if the Beilinson—Soulé conjecture is true
for fields of characteristic zero and for I, or F' is algebraic over Q. If this is the
case, we shall always view all complexes as being subcomplexes of the corresponding
complexes of F', and view all K—groups (tensored with @Q) as being contained in
the corresponding K-groups of F".

Remark 3.26. We make a few remarks about the above constructions without
assuming the Beilinson—Soulé conjecture. There are various places where it plays a
role, and we will briefly run through them.

It is well known that K,(ll)((’)) = 0for n > 2, K,(lo)(]F) =0forn > 1, and
K,gl)(]F) = 0 for n > 2. This means that in (3.7), the last two columns (which
would correspond to degrees n and n + 1 for our complexes) are always zero below
our main row. Lemma 3.8 and its proof still apply for n =1 and n = 2. For n =1,
the localisation sequence used in the proof is simply

o KO () = K{Y(0) 5 KV (F) >
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and for n = 2 we conclude from
oo KM (00N o K (X 00 = [TEO® - -

and Kél)(XH}-; mE = Kél) (F) = 0 that Kél)(X]%JOC; O') = 0, allowing the proof to
go through. Lemma 3.13 still applies with n = 2. Together this gives us that we
have inclusions

Symb, (0) —————— Symb, (F)

l |

2 2
KQ( )(X(l’),loc;ljl) 2( )(X}:‘,IOC;DI) ’
as well as maps H"(Symbf,,(0)) — Ky (O) and H"(Symb, (F)) = K (F)
(which are compatible with the localization from O to F') for r =n — 1 and r = n.
Again those maps are injections by construction if n = 2 and r = 1. Proposi-
tion 3.15 always applies, and we get corresponding statements for Mzn)((’)) and

{n)(F). Because the map K3(2)((’)) - K§2) (F) is always an injection, we see as in

Proposition 3.18 that M>(O) injects into M5 (F'), and that we may identify it with
the subspace of the latter generated by all [u], with u in O”.
Moving on to the M (---)’s, it follows from the proof of [dJ95, Proposi-

tion 3.20] that the map No(F) — Symz(Fé) given by mapping [z]s to z ® z is

an injection as Kél)(L) and Kél)(L) are zero for any field L. Therefore the com-

plex /\f(‘n) (F) is acyclic in degrees n — 1 and n. Because we already know that

M>(0O) injects into M (F), the proof of Proposition 3.20 still shows that ./\/(:1)((9)

is acyclic in degrees n — 1 and n. This gives us a commutative diagram
H™(M?,)(0)) <=— H"(M(,)(0) —= K} (0)

2n—r

| | |

H' (M, (F) <=— H (M, (1) —= K (F)

2n—r
for r =n — 1 and r = n without any assumptions.

Finally, one checks as in Remark 3.22 that M,(O) injects into M, (F).

4. SYNTOMIC REGULATORS

In this Section we briefly recall some parts of the theory of rigid syntomic reg-
ulators, originally due in the affine case to Gros [Gro94], as described in detail
in [Bes00a]. Our goal is to describe the theory in the minimal details required to
understand constructions to follow and to develop certain computational tools that
are needed in later Sections.

Recall that R is a complete discrete valuation ring with quotient field K of char-
acteristic 0 and residue field k of characteristic p. We will assume that & is algebraic
over the prime field since this is required for some of the versions of syntomic coho-
mology we will be using. All schemes will be separated and of finite type over their
respective bases. We describe as little as we need of the general theory, referring
the interested reader to [Bes00a]. All versions of syntomic cohomology are defined
as cohomologies of certain huge complexes. These are needed for the definition of
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the regulators but are useless when it comes to calculations. The cohomology can,
however, be realized, using some auxiliary data, as the cohomology of very explicit
complexes, and maps on cohomology can similarly be realized explicitly. The the-
ory developed in loc. cit. guarantees that these explicit maps are indeed the correct
maps and we avoid explicit mentioning of that in the sequel.

For the purpose of this work, the version best suited for computations is the
Gros style modified syntomic cohomology denoted by Hy,s in [Bes00a]. This is the
weakest version of syntomic cohomology and all other versions, in particular Hgyp,
has natural maps to it [Bes00a, Proposition 9.5], which, by definition, are compat-
ible with Chern classes in algebraic K-theory. Fortunately, according to [Bes00a,
Proposition 8.6.3], when X/R is proper and smooth, and 2n # i,i — 1,i — 2, the
canonical map H( (X,n) — H (X, n) is an isomorphism. Therefore, for the pur-
pose of computing the syntomic regulators for the K—groups we are interested in,
working with H, is just as good as working with Hgyn. To further simplify mat-
ters, we only give the description of Hy,s given certain additional data that may
not exist in general but do exist in our situation.

Suppose first that X is a scheme over a field x of characteristic p. Following
Berthelot we define the rigid complex of X over K as follows: we choose an open

immersion X % X into a proper k-scheme and a closed immersion X — P into a
p-adic formal R-scheme which is smooth in a neighborhood of X. We remark that
in general there may be some difficulty doing this but in the cases we will consider
it will be totally obvious how to do so.
In the above situation we can, following Berthelot, define the complex
RTyig (X/K)p = RF(]Y[P:]'TQ].}[) .

Here, the notation | X[p stands for the tube of X in P, which roughly means the
space of points in the rigid analytic space associated to P that reduce to a point in
X. The functor jt of “sections of overconvergent support” goes from the category

of abelian sheaves on | X[p to itself and is defined by

JN(F) = lig (ju)« (Flv)
U

where the direct limit is over all U which are strict neighborhoods of | X[p in | X[p
in the sense of Berthelot and jy is the inclusion of U in |X[p. We recall that U is a
strict neighborhood if {U,]X[p —]X[p} is an admissible cover of ]X|[p in the sense
of rigid analysis. We have indexed the complex for simplicity by P but we should
remember the entire setup leading up to the definition. In any case, Berthelot
shows that in the derived category of K-vector spaces this complex is independent
of all choices, so its cohomology, H}i,(X/K), is entirely well defined. To simplify
notation we will drop the P subscript from the notation. In the applications it will
be clear which additional data is being used.

We will often need to let a (k-linear) Frobenius act on our complexes. To do that
we will consider a morphism ¢ : X — X which is a s-linear base change from a
model of X defined over a finite field with ¢ = p” elements of the r-th power of the
absolute Frobenius. We insist that ¢ preserves X. Such a ¢ is called a Frobenius
endomorphism of X. We then assume that there is a lift ¢ of ¢ to P. We call ¢
the degree of ¢ and ¢. It is then clear that ¢ acts on the rigid complex.
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Next we describe the construction of the syntomic complexes. Here we assume
that X is a smooth R-scheme and that we have an open immersion X — X into
a proper R-scheme and a closed immersion X — P into a R-scheme, smooth in a
neighborhood of X, and that there is a R-morphism ¢ : P — P inducing on the
special fiber a Frobenius endomorphism. In this situation we can clearly embed
X, into X, and this last scheme into the p-adic completion P of P to get to the
situation we had when we defined the rigid complex, and ¢ will induce a lift of a
Frobenius endomorphism.

The given data induces a filtration on the complex RI'yiz (X, /K) defines as fol-

lows: let J be the sheaf of ideals defining the generic fiber Xk inside ]X,[5 and

consider the filtration of Q].Y s given by the complexes
noe . nNO0 n—101
FJ ]Yn[ﬁ._JQ _>J Q _)"',

where it is understood that J" = O for non positive r. This filtration induces a
filtration on the rigid complex by

PRI (X /K)o BT, P3O

Berthelot shows that these complexes are again independent of the additional data
up to quasi-isomorphism. We can now define the Gros style modified syntomic
complex to be the complex

RT s (X, 1) := Cone(F" Ry (X /K) ~—2L0% RDy (X, /EK))[-1] .
The map in the cone is a shorthand for the composition of the indicated map
1 — ¢*/q" with the natural map of F"RI'yg(X,/K) into Rl (X,/K). To fix
notation for Cones we use the following sign convention here. If f : A* — B*®, then
Cone(A® — B*)[—1] is given in degree i by

(4.1) A'@ B'~!  with differential d(a,b) = (da, f(a) — db) .

One can show that ﬁf‘ms (X, n) is independent of the additional data except for
the choice of the Frobenius endomorphism ¢. Here, in the general case one takes
a direct limit over all possible Frobenius endomorphisms as described in [Bes00a,
Definition 8.4]. For a proper X, in particular when X = R, and under the same
conditions where the map from syntomic to modified syntomic are isomorphisms
as described before, all the connecting homomorphisms of the limit are quasi-—
isomorphisms so we may in fact fix a single ¢.

In [Bes00a] syntomic regulators from the K-theory of X into the various ver-
sions of syntomic cohomology were constructed. For the cohomology theory we are
considering these take the form of Chern classes,

cij Kj(X) = HZTI(X,0)

In this work we will need to consider similar maps in the relative and multi-relative
situations. These were not constructed in loc. cit. but are constructed in Appen-
dix A.

We recall the computation of the regulator on a part of the K-theory of affine
R-schemes. Suppose X = Spec(A) is such a scheme. We will give an explicit de-
scription of the rigid and syntomic cohomology of X. We can choose an embedding
of X as an open subset in the projective P = X. Suppose X, is defined in X, by
the nonvanishing of the reductions of functions ;. Then for A < 1 we define a rigid
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space Uy by the conditions |h;| > A. The Uy are strict neighborhoods of | X[5 in
1X.[p. It follows that there exists a map

lim I'(Uy, 2°) — Rlig (X /K) .

A<1

Proposition 4.2. This map is a quasi-isomorphism. In_addition, this quasi-
isomorphism is functorial with respect of maps of pairs (X, X).

Proof. The first statement follows from the proof of Proposition 1.10 in [Ber97].
The second statement is a consequence of the construction of the rigid complexes
in [Bes00a]. O

To obtain the modified syntomic complex, suppose we have a map ¢ : X — X
whose reduction is a Frobenius endomorphism fixing X,. The ideal J considered
above is the 0 ideal in this case. We thus get a quasi-isomorphism

Cone (hg LU, 92") 2% g T(Uy, Q‘)) [<1] & RTms(X, ) -
A A

We formally write U for the system of spaces {Uy} and define

(4.3) QU = lig T(Uj, QY .
A
It follows that
(4.4) . .
Hrins(Xa ’Il) = {(w7€) P we Fan(U)7 €€ Qz_l(U)v dw = 07 de = (1 — ¢*/qn)w}

{(dw, (1 = ¢*/¢")w — de), w € F*Q-1(U), e € 2(U)} 7

with F*QJ(U) =0 if n < j and QJ(U) otherwise.

As mentioned in the introduction, in many cases syntomic cohomology becomes
isomorphic to rigid cohomology. The normalization of this isomorphism is perhaps
not the obvious one and since the computation of the regulator depends on the
particular normalization, we describe this here at least in a special case (see [Bes00a]
for a fuller discussion). Suppose that X has relative dimension i—1 over R. Suppose
in the description above that (w,e) € Hi (X,n). We see that w = 0 so de = 0.
Thus € defines a class in Hﬁi;(X «/K) which is easily seen to be well defined up to
an element of (1 — cp*/q”)F"Hfigl(Xm/K). When n > ¢ > relative dimension of X,
as will be the case for us, the map
(45) (1=¢"/q") : Hy (Xo/ K) [F " Hp (X [ K)

= Hi (Xe/K)/(1= 9" [¢") FPH (X, /K)
is an isomorphism by [Bes00a, Proposition 8.6.3].

Definition 4.6. When n > i > relative dimension of X, we have a canonical
isomorphism,
i (X,m) = HEN(X)/F, (0,2) o (1— ¢ /g")~ (class of &) .

The justification for this normalization requires a longer tour into the general
theory of syntomic cohomology than we would like to present. The reader may
refer to [Bes00a, Proposition 10.1.3] for example. In any case, note that this choice
is functorial. We will make this definition in relative situations as well.
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We now describe the regulator in this special case. First of all, consider f € A*.
If f is the reduction of f one finds that ¢*f = f? and therefore that fy := f7/¢* f
is congruent to 1 mod the maximal ideal of R. One can deduce from this that the
function log(fy) is analytic on some U,.

Lemma 4.7. ([Bes00a, Proposition 10.3]) The syntomic Chern character chl sends
the class of f in K1(X) to the cohomology class of (dlog f,log(fo)/q) in the repre-
sentation (4.4) of HL (X, 1).

The value of the regulator on a cup product f; U---U f, in K,,(X) is the cup
product of the regulators of the f;’s, so it is enough to describe the cup product
on syntomic cohomology. This is given, in the notation of (4.4), by any of the
formulas, depending on the parameter 7,

(w1,€1) U (wa,€2) :(w1 A wa,

(4.8) &1 A <’y +(1 - 7)%) W

il (CERIERt PV ESD

We need to describe the pullback map in syntomic cohomology in certain special
situations. Suppose that X is an affine scheme and f : Y — X is a closed embedding
on an affine subscheme, and choose the same auxiliary data for X as before. We
may compactify ¥ by embedding it into its closure Y in X. The difficulty in
describing the pullback map from X to Y is that the lift of a Frobenius morphism
¢ will not preserve Y in general. Note however that we may and do assume that
¢ preserves Y,,. The way to overcome this difficulty is to use the embedding of ¥
into/X to compute the syntomic complex of Y. This gives us the following model
for RT 1s(Y, n),

o e
BT (V) = Cone (BOQY g 4 P30y, ) 2=/ BT 5 0, ) Y10,

(X is the p-adic completion of X) and the pullback map is now simply obtained by
restriction to the tube ]Y [5- Here J is the ideal of Yrin Xk.

Suppose now that Y is of relative dimension ¢ — 1 over R and that we are
given an element of HY (X, n) represented by the pair of forms (w,e) as in (4.4).
We would like to study the pullback of this element to Y, identified with an ele-
ment of Hfi_gl(YH /K)/F™ as in Definition 4.6. Note that this pullback does not
factor through H]fi;l(X,i J/K)/F™ because X is of higher dimension than Y in
general. Recalling the sets U, we see that for each A the set Uy N ]75[§ is a
strict neighborhood of ]Yy[+ in ]7,.;[% It follows that we may factor the map
R vig (X /K) = Ry (Ye/K), respectively F"RLyig (X/K) = F"RLyig (Ye/K),
as

lim T'(Uy, 2%) = lim T(Ux N[V [5, 2%) = ROV 2,508 ),
A A X
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respectively with Q° replaced by F7Q2*. We may therefore factor the map of syn-
tomic complexes RI' (X, n) = R (Y, n) via

(4.9)  Cone (hg (U NV uls, FPO%) 275 lig T(U, 0175[;{,9‘)> [-1].
A A

Lemma 4.10. In the situation described above, let 6 € lin | L(UAN]Y [= FrQi-t)
be such that df = w|]7K[2. Then the image of f*(w,e) in
X

Hi N (VoK) /(1= " [ FPHI (Vi / K)

is the same as the image of ey _ — (1 —¢"/q")0 € lim U\ N ]?H[§,Qi_1) in

the same group.

(4.9). O

Proof. Subtract the boundary d(6,0) = (d6,(1 — ¢*/¢™)d) from (w,n)hyd in

Finally we specialize even further and show how to compute the difference of
the pullbacks at two nearby points. We assume that ¢ = n. Consider a situation
where we are given an affine X together with a smooth affine map = : X — B to
another affine scheme B smooth over R. Suppose that 7 extends to 7 : X — B.
Let 2’ € B(k) and let D be the rigid analytic space of all points of B reducing to z’
(this is the residue disc of 2z’ in the terminology of Coleman). For any z € D(K) let
f be the embedding of Y, := 771(2) in X. The Y, for z € D(K) have a common
reduction which we denote by Y, and the 77! (z) have a common reduction Y,
which is a compactification of V. Finally, the tube ]¥ s[5 is simply 7~'(D).

Proposition 4.11. In the situation described above let (w,e) represent a class
in Hi((X,9). Let z1, 20 € D(K), let J; be the ideal defining Y., and let 0; in
li_ng}\I“(U)\ N7 (D), F} Q") be such that d8; = w|z-1(p). Then, the images
in Hrzigl(Y,i/K) of the pullbacks f (w,e) minus the image in the same group of
[, (w,€) is the image of 02 — 0, € lim | [(Uyxna=Y(D), Q).

Proof. Asseen in Lemma 4.10, the image in H.i ' (Vi /K) /(1—¢* /q") F'H]. ' (Vi / K)
is the image of (1 — ¢*/q")(62 — 01) and the result thus follows from Definition 4.6
of the image in Hfi_gl(Y,i/K). O

In the situation as above the following immediate Corollary will also be useful.
For any point x € D(K) the fiber 7~!(z) is a lift of Y, and therefore the rigid
cohomology of Y, can be computed as the cohomology of li_ng)‘ C(U\N71(x),0°).

Corollary 4.12. In Hfigl(YK/K) the image of the difference fI (w,e) — f1,(w,¢)

is the image of (02 — 61)|v,nz—1(2) € lim | T(Ux N7t (2), QD).

All of our considerations are also valid for the cohomology of diagrams of schemes,
and in particular for the relative and multi-relative cohomologies that will be con-
sidered in Sections to come.
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5. THE INTEGRATION DOWN PROCESS

A key ingredient in the computation of the regulator will be a functional on rigid
cohomology obtained by repeated integration, which we now go on to describe.

Let x be a field of characteristic p. Set X™ = (PL \ {¢ = 1})". Let B be an
affine k-variety. Let Y be an open affine subset of X™ x B. Let 0" be the subset
of Y where at least one of the coordinates is either 0 or co. We write cohomology
relative to (0" to mean the multi relative cohomology taken in exactly the same way
as was done in Section 3 for K-theory. We would like to write an explicit complex
computing the multi relative rigid cohomology of Y.

We first choose the rigid data X™ < (Py)" < (P )" and B = B < Pp
where B and Pg are projective spaces of some degree over k and Spf (R) respectively.
We thus obtain a rigid datum for Y as well. As in Section 4 we obtain for A < 1
a certain inverse system of rigid spaces U = {U}'}. We know that there exists a
canonical quasi-isomorphism Q®(UY) := lim, Q.Uf — Rl (Y/K). Similarly,
the complexes of rigid forms on the subspace of U, cut out by equations of the
form ¢; = 0 or ¢t; = oo are quasi-isomorphic to the rigid complexes of the various
components in 7.

As discussed (at length) in Appendix A, we can now write a complex quasi-
isomorphic to the multi relative RTi, (X™; 0"/ K) by taking iterated cones on the
complexes above with respect to the restriction maps to t; € {0,00}. We want to
do the “battle of signs” correctly to write this iterated cone as a simple complex.
This can be done as follows: for 0 < j < n consider all strictly increasing functions
f:1,...,3] = [1,...,n]. To such a function f we associate the subspace

Yyi={(z1,...,2n) €Y : 2; € {0,00},i ¢ im f}.

We can similarly define rigid spaces U};\ forming an inverse system U }/ , and like
in (4.3) we can formally define complexes of differential forms Q°*(U }/ ). Let us call
n — j the degree of f (this includes the empty function () with degree n), which
is the same as the codimension of Y;. The complex computing our multi relative
cohomology can then be written as @©;1deg f:kﬂi(U }/ ) in degree k . Let us write
an element in the f component of this complex as (w, f). Then the differential is
given by

(5.1) d(w, f) = (dw, f) = (=)%Y " x(f, 9) wlvy , 9)

where
(=) if im f =img U {f(r)}
0 otherwise,

x(f,9) = {

with U denoting disjoint union.

Definition 5.2. The complex above is denoted Q*(UY ;0"). We let FIQ*(UY ;")
be the subcomplex having ®itdeg f=k,i>; Ql(U}/) in degree k.

Remark 5.3. Let us write this explicitely for n = 1 and n = 2. For n = 1 we
have X! = PL — {t =1} and Y C X' is an open subset, which is the complement
of {t =a;,j =1,...,1}, with @; the reduction of some «; in R’. In this case the
space UY is defined by the inequalities |2 — a;| > A and |2 — 1| > X and UY is the
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inverse limit of these. We have two possible functions () and 1 — 1 of degrees 1 and
0 respectively. We have Uj" = {0,00} and U},; = UY. This gives
OUY) = Q' UY) & (K)o ® (K)w) ,
in degrees 0 and 1, where the index on K correspond to being the functions on t = 0
and t = oo respectively. The term of degree 0 and the first summand in degree 1
correspond to 1 — 1. Working out the signs the differential is
d(h) = (dh, =(h(0), h(c0))) .
In the case n = 2, Y C X? will typically be defined as the complement of the
hyperplanes t; =@, t2 =aj, ¢t =1 and ¢, =1 and Uf is similarly defined by the
conditions |z; — ;| > A and |z; — 1| > A. The complex now becomes
oWwY) = ' (UY) e P OUY n{t; € {0,00}})
i=1,2
= QU)o P QYUY N {t; € {0,00}})
i=1,2

@ ((K)O,O D (K)O,oo D (K)oo,O @ (K)oo,OO)

and the differentials are given by
d(h) = (dh, —hlt, ef0,00}» —Plre{0,00})

in degree 0 and

d(w7070) = (dw7w|t1€{0,oo}7w|t2€{0,oo})
d(Oa hl; hZ) = (07 dh17 dh27 (hl - hl)((oa 0)7 (07 OO): (007 0)7 (007 OO)))

in degree 1.
The following Lemma is mostly an excercise in sign fixing.

Lemma 5.4. The complezes FIQ*(UY;0") and FIRTy, (Y;0"/K) are quasi-
isomorphic.

Proof. We prove this without the filtrations. The result for the filtered part is then
clear. First we note that by Proposition 4.2 this complex is quasi-isomorphic to the
corresponding complex with Q(U}’) replaced by the degree i part of Rlyig (Yy/K)
which we now denote by I'? for simplicity. Consider now the double complex in-
troduced in Appendix A (compare (A.18) and (A.15)). For 8 : [1,k] — [1,n] an
increasing function, define Y3 = {(z1,...,2,) in Y : xg(; € {0,00}}. Then the
complex in degree q is ©y| 5|:qu(Y5). We can again write elements there as pairs
(w, 8) and the differential is defined by

d(w, #) = (dw, B) + (=1 (=113 ¥ (8, 8) (v, )
B/
where
—1)" if impB' =imB U {8 (r
x'(ﬁ,m:{( ) ' {8'(r)}
0 otherwise.

Now we want to switch to a dual point of view. The relation is as follows: for f a
strictly increasing function as before, we define S(f) to be the increasing function
enumerating [1,...,n] \ im f. Then we have |3(f)| = deg f and Y; = Yy(y). The
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key thing to check is the following: if g is obtained from f by deleting f(r), then
B = B(f) is obtained from ' = §(g) by deleting 5'(f(r) —r + 1). This easily gives
the result. g

Consider now the case where B = Spec(k) and Y = X™. Then the relative rigid
cohomology Hy}, (X™;0"/K) is well known to be isomorphic to K, cf. (3.1). We
can explicitly describe this isomorphism. The basic idea (compare[Gro94]) is of
iterated integration between 0 and co. We can take U to be UL where Uy denotes
the space P \ {|t — 1| < A} and U} is the nth power of Uy. Let (w, f) be in

QM(U™;0") and suppose that
w=G(tray, - tyy)dtpay Ao Adty

(here the ordering is critical). Define

0 0
W(w,f)=/ / Gltray, - tpg))dtpa) - dig)-

Notice that now the order is not critical and we can integrate in whatever order
we want. Let Hqgr (U™; ") be the homology of Q®(U™;0"). We have the following.

Lemma 5.5. There is a unique isomorphism HJy (U™;0") — K normalized by
the condition that on the class of a closed form (w, f) with deg f = 0 it is given
by w(w, f). This functional is given as follows: consider a form (n,g) where g has
degree m and of the m coordinates on Uy which are fized, i are fized to be co. Set

I((n, g)) = (-1)TZEE+R 1) g).

Then the functional is given by the restriction of the K -linear extension of 11 to
closed forms.

Proof. We can find a form (w, f), with deg(f) = 0, whose cohomology class is non-
trivial. The required isomorphism is determined by its value on such a form and
is therefore unique. To show that II provides the required map, we only need to
show, in view of the fact that II(w, f) = nw(w, f) when deg(f) = 0, that it kills exact
forms. The exact forms are spanned by forms

A(F(tgqy, - tg(j)) - dtgy A ANdtgry A Ay, 9)

e
= (-1 (%F.dtg(l) A “'/\dtg(j)vg)

+ (_1)j+g(k)+k (Fltg(k)e{o,oo} ’dtg(l) A A dtg(k) A A dtg(j),h)

with h obtained from g by removing the k-th value and F' a function on a component
of U} with 4 coordinates forced to co. Notice that

)
Fodtyay Ao Nty
”(atg(k) gy N A g<a>>9>

= 7T(F|’fg(k>=0 sdtgy Ao Ndtgy A A dtg(j)’h)

—7T(F|t 'dtg(l) /\"'/\dtg(k) /\"'/\dtg(j),h)

g(k) =00

because in the computation of 7 we can begin the integration on the g(k) coordinate.
Now call the two terms on the right hand side of the last equation ag and ae
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respectively, and write the sign in the definition of II as Sign(g,i). We therefore
obtain

H(d(F(tgu)a s tg()) - dbgy A Ay Ao A dtg(j)ag))
= (—1)*"' Sign(g,7) (an — o) + (—1)7H9F+E(Sign(h, i) ag + Sign(h,i + 1)ase) .

Thus, clearly, to make this cancel, we need to choose Sign(g,i) = (—1)%89)+ with
sign(g) satisfying the relation

sign(g) + k—1=sign(h) +j+gk) +k+1 (mod 2)

(the last 1 is there to make this alternating) when h is obtained from g by deleting
g(k). After cancelations this becomes

sign(g) = sign(h) + g(k) +j (mod 2) .

It is easily seen that sign(g) = >_(g(k) + k) satisfies this condition, which completes
the proof. 0

Like in K~theory (see the discussion around (3.1)), the isomorphism H}, (X™; 0"/ K) =
K can be obtained by a repeated application of boundary maps. At each stage there
is a choice of signs. Here we have taken the approach of writing down the isomor-
phism II directly and we would now like to know how it can be obtained using
boundary maps.

We have a short exact sequence

0— Hi H(X™ 0O K) —» Hi {00 K) = Hi (X0 K) -0,
and an isomorphism HJ} ' (X™; 0" /K) = HJ} M (X"~ 10" /K) under pullback.
It follows from this that we can get two isomorphisms as the composition of the
maps
Hi (X507 K) = BN (@0 K) = B (X' 00K)

where there are two choices for the first map, corresponding to the two embeddings
of (X»~1;0" 1) in (O™ 0" ') as either t, = 0 or ¢, = co. The two different
isomorphisms differ by a minus sign. Iterating this we get an isomorphism
(5.6) K = H}, (pt/K) = H (X50/K) & - = Hi (X 0"/K) .
Proposition 5.7. The composed map K &8, Hy, (X™ 0"/ K) I K is the iden-
tity provided at each stage we choose the embedding as t; = 0.

Proof. From the proof of Proposition A.16 it is not difficult to get the following
explicit description of the map Q*(0"; 0" ') — Q*+(X™: ") (dual to the map
0O(Ce) — O(Ys)[—1] in the notation of the proof of Proposition A.16): it is simply
given by (w, f) = (w, f) where f :[1,...,5] = [1,...,n — 1] is considered on the
right as a function f : [1,...,5] = [1,...,n]. It follows that the map (5.6) with
the choice of signs as in the Proposition corresponds to the map sending « in K to
(a, ) on the component with ¢; = 0 for all . Applying II to this we get a. O

Now comes a crucial point. In applications we will want to consider the co-
homology not of (X™;0") but rather of an open subset ¥ obtained from X" by
removing subsets of the form {¢; = u} with v in k* (e.g., sets of the form X7  as in
Section 3). That means that it is no longer possible to perform the integrals needed

to construct IT (and of course the isomorphism that II represents does not exist). It
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is sometimes possible, however, to replace the integral by a Coleman integral. We
want to show that when this is possible it corresponds to an operation which can
be made sense out of in general.

Lemma 5.8. There is a short exact sequence

0—-H} (X"O"/K) - H,(YV;YNnO"/K) - E— 0,

rig rig

where Frobenius acts on HZ (X", ") trivially and on E with strictly positive

rig
weights.

Proof. Write H'(x) for Hj;,(+/K). From the diagram of pairs

(X™"\Y;0"\Y) - (X0 « (V; Y nOY)
we get the standard long exact sequence

n n,mn n n n+1 n.rmn
- H*(X™0O") - H*(Y, Y nO )_>H(X"\Y;|:|"\Y)(X ;0% — .

The action of Frobenius on HJ,(X™;"/K) is trivial because the isomorphism

e (X 0O"/K) = H?ig(pt /K) is Frobenius equivariant. To prove the Lemma we
need to show that the first arrow indicated in the diagram is not 0 while the last
term has strictly positive weights. The first assertion follows because it is easy to
see that the same integration process described in Lemma 5.5 also vanishes on exact
relative forms on the pair (Y;Y NO"). It remains to show the statement about the
weights. To do that we “peel off” the relativity step by step: we have a long exact

sequence

n .rn—1
RN H({tne{O,oo}}\Y;Dn_l\Y)({tn € {0,00} };O0"7) —
n+1 n.rm n+1 n.n—1
Aoy X0 = H gy X507 =

and the two terms on the sides fit into similar sequences. The key observation is
that the degree of the cohomology is always one more than the dimension of the
space. The final “building blocks” are of the form H?l\Y(X ). By [Chi98] such a
term has weights between i + 1 and 2i (because X'\ Y is always of codimension
1 by our assumptions) except that the term with ¢ = 0 clearly vanishes. Thus all

terms have positive weights. d

Corollary 5.9. Let M C H},(Y;Y N O"/K) be any Frobenius invariant subspace
containing H?

ne (X O/ K). Then there exists a unique K -linear functional
Oy :M— K

that is fized under Frobenius and coincides with the functional induced by II on
n n. N
Hrig(X 7D /K)

Of course the conclusion is also true with M = H}j,(Y;Y NO"/K) in which case
we will denote I, simply by II. We will need the uniqueness statement, however,
for possibly different subspaces.

The map II gives a splitting of V' = Hj (Y;Y NO"/K) into a direct sum
V = K ® E as a ¢-module, where E has no ¢-fixed vectors. We will need a
certain result about ¢-modules with such a structure.
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Lemma 5.10. Let V; = K ® E; for i = 1,2,3 be three ¢-modules such that ¢ has
no invariant vectors on E; for each i and on By ® Es. Let II; : V; — K be the
natural projection. Suppose there is a ¢-equivariant pairing ( , ) : Vi1 @ Vo — V3
which gives the usual multiplication when restricted to K ® K. Then we have
I3 ({21, 22)) = i (21) - 2 (22).

Proof. The conditions of the Lemma imply that the algebraic multiplicity of 1 as an
eigenvalue of ¢ on V; ® V5 is 1. It follows that the space of ¢—invariant functionals
on V1 ® V5 is 1-dimensional. Therefore the statement of the Lemma has to be true
up to a multiplicative constant. This constant has to be 1 because the statement
is true for x; = 1. 0

By assumption all components of Y are affine. We can therefore compute relative
rigid cohomology using the complex Q°*(UY ;[0") of Definition 5.2.

Definition 5.11. A relative form in Q*(UY ;") is called Coleman integrable if
for each of its component (w, f) the expression defining 7 (w, f) makes sense when
we replace ordinary integration with Coleman integration. If x is such a form we
denote by e (x) the expression derived from the 7(w, f) as in Lemma 5.5.

Lemma 5.12. Coleman integrable relative forms form a subspace of Q"(UY ;")
which is closed under ¢. FExzact forms and forms extending to U™ are Coleman
integrable. The functional Ilce) is ¢—invariant.

Proof. The only thing which possibly requires proof is the fact that if x is a relative
form which is Coleman integrable, then so is ¢*(z) and e (¢*(z)) = Tger(x).
This is an easy explicit computation. We may assume that

T = (G(tf(l), .. .,tf(j)) . dtf(l) VANCRIAN dtf(j), .
Then

() — a a a a

07(@) = (Gltz0)y, -5 () - dltya) Ao Adlty) -

The assumption that = is Coleman integrable means the following: there is a func-

tion Fy(tsa),...,tz;)) which is a Coleman function in the first variable and such
that
a u—
Aty

. t =0 .
Setting G4 (tf(Q), .. .,tf(j)) = F1|ti2;:oo we can find a function FQ(tf(Q), .. .,tf(j))

which is again Coleman in the first variable such that

0
Otg(2)

F2:G1

and we continue like this until we reach G; which is just a number equaling IIco (z).
Now we start with
= -1 -1
G(tyay,---try) = G(t?c(l), .. .,t‘}(j))qt‘}(l) ---qtqf(j) .
The functoriality of the Coleman integral implies that we may take
= -1 -1
Fi(tray,---otp) = Fl(tgc(l), .. .,t‘}(j))qt;@) . "qt‘}(j) .

Then, as 09 = 0 and co? = oo we get

~ —1 -1
G1 (tf(g), . ,tf(j)) = G1 (tl}@), e ,ti(j))qtl}@) e qt;]c(j)

and we can continue this process until we find Heo (¢* (2)) = Moo (). O
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We call a cohomology class in HJ},(Y;Y NO"/K) Coleman integrable if it is

represented by a Coleman integrable form. Let Mg, denote the space of Cole-
man integrable cohomology classes. It is an immediate consequence of the above
that Ilce induces a functional Mc, — K which is Frobenius invariant. By the
construction it is also clear that Ilce is just IT on forms that extend to U". By
Corollary 5.9 this functional must coincide with the restriction to Mco of II. We
therefore obtain

Proposition 5.13. For any Coleman integrable form x representing a cohomology
class [z] we have Tlce(z) = II([z]).

6. REGULATORS FOR SPECIAL ELEMENTS
Recall that we have universal symbols (3.10)
[S]n € KM (X808

where G = Spec(Z[S, 571, (1 — S)71]). Now let B = Spec(R[S,S~1,(1 - S)71)).
Pulling back via the canonical map B — G we obtain elements, for which we retain
the notation,

[S]n € K (X071
In this Section we obtain some information on the regulators
reg([S]a) € Hyto (X 00" 1 n) -

We embed X700 in P = (PR)"~' x P}, (B is mapped to the last coordinate).
Taking the special fiber corresponds to the compactification discussed at the begin-
ning of Section 5. Therefore, we obtain certain rigid subspaces Uy of Px. We denote
the inverse system of these by Up . and we have complexes Q*(Up ;0" ") and

F'Q'(UE;&C;D”*I) as in Definition 5.2. A map ¢ whose reduction is a Frobe-
nius endomorphism and which is compatible with all boundaries is given by raising
to g—th power for a sufficiently large q. One checks easily that the sign conven-
tion for cones (4.1) is such that it commutes with taking the complex computing
multi relative cohomology. From Lemma 5.4 we therefore have a canonical quasi—
isomorphism:

Cone <FjQ'(UgJ§C; oty 22 Qe D”l)) R (X s 0704 -
From degree considerations it is very easy to see that
FrY (U 0O = (Q(URa)s (1, on =1 = [1,...,n = 1]) .

We can identify this space with Q"(UZ ). On the other hand, F*Q"=* (U} 1 ;0" ') =
0. Thus we obtain (compare (4.4)) the following expression, with the identification
made above.

(6.1) Hpp (X5 000" )
{(w,e) : we Q”(Ug;;c), €€ Q"_I(USH;C;D"_I), dw =0, de = (1 — ¢*/¢")w}
{(0,de), e € Q" 2(Ug0; 0" 1)} '

We take this opportunity to consider two other situations that will be needed later.
In these cases we compute the syntomic cohomology of (X[}.;") and so there is
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no B present. The corresponding rigid spaces were already considered in previous
Sections. We denote by U}, the space U~*1oc. We then have

(62) ﬁl?ls(X}%,loc;Dn7n)
{{w,e) : we QU

_ loc

), € € QLU ;O"), dw =0, de = (1 — ¢*/q")w}

loc?

{(0,de), e € Q" 2(Uy; ")} .

loc?

Note that this abuses the notation somewhat since the differential of w is its differ-
ential as a relative form. Also, since there are no n + 1 relative forms on (U2 ;")
we have

{(0,e) : e € QV(U,;O"), de = 0}

loc?

{(0,de), e € Q=1 (Us; ")}

loc?

(6.3) Hi P (X R joe; O™+ 1) =

This is simply the nth rigid cohomology of (X },.;0") but note the twisted identi-

fication that we have by Definition 4.6. Also note that in some of the computations

we will be using an altogether different model of this syntomic cohomology group.
Let

t1 — S th-1—S

A...ANdlog ——— .

-1 Bl —1

Our main result in this Section gives the following partial data about the regulator
of [S]p-

(6.4) wy, = dlog(1 — 5) A dlog

Proposition 6.5. The regulator of [S], in ﬁgs(Xg];C; 0", n) is given, in the

representation (6.1), by (wn,e,), with some &, in Q"_I(Ug,_lolc; amh).

Forgetting the relativity gives a map K& (Xg,jl;c; a1 — K (ngl;c). Let us
denote the image of [S],, by (5),. The corresponding map in syntomic cohomology,
f[,’lﬁs(Xg;;C; a1t n) — fIQlS(Xg,_l(}C,n) simply takes the pair (w,e) of (6.1) to
(w,€') in the representation (4.4), where €’ is the component of € corresponding to
the index function [1,...,n — 1] = [1,...,n — 1]. Thus, our Proposition follows
immediately from the following Proposition.

Proposition 6.6. The regulator of (S), in H, (ng(}c:") is given, in the repre-
sentation (4.4), by (wn,e!), with some €}, in Q"_I(Ugflolc).

Using the formulas for the regulator map for functions, and the cupproduct in
syntomic cohomology given by Lemma 4.7 and (4.8) respectively, this last Proposi-
tion follows easily by pullback to B = Spec(R[S,S™!, (1 —S)~!] from the following
purely K-theoretic result.

Proposition 6.7. Let G = Spec(Z[S,S™, (1 — S)t]). Write (S)n also for the
image in K" (X8 0e) of [Sln in K (X& 0w O™ ') under the map corresponding
to forgetting the relativity. Then

tl_SU---Ut"_l_S.
1 —1 th—1—1

(S)n: (1_S)U

Proof. Forgetting the relativity is compatible with the construction of the spectral
sequence used in (3.7), so in the map

_ —1 _
EMxed) - T KMV (XE)=s

i=1,....,n—1
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the element (S),, will be mapped under the differential in the spectral sequence to
E?:_ll(—l)i(S)n_1|ti:S. (Recall that in this case X27! is obtained from X2~" by
removing all ¢; = S.) From this we can determine (S), very easily by induction
using Lemma 6.8 below, as (S); = (1 — 5).
Lemma 6.8. For m >n > 0, the map
m—1 n—
K’fnm)(Xg,loc) - H K’r(nfl )(XG,l;C)lti:S

i=1,...,n
s injective.
Proof. Induction on n. For n =1, this is clear from the localization sequence

o KU (XG) = K (X p00) > Kt (G) =
as K (X¢) = KU™(G@) = 0if m > 1. For the induction step, consider the
commutative diagram

(m—1) n—2
K’Snm)(nggc X XG) L) H Kmfl (XG,IOC Xa XG)Iti:S

i=1,...,n—2

Y1 lwa

_ ¢2 (m—1) (yn—2 _
K,Slm)(Xg loe XG XGjoc) — > K1 (X 1oe X6 Xa toc) 1=
' Hoc i=1,...,n—1

2

K7(nm—1 )(Xg',loc)
Here the first vertical column is part of an exact localization sequence. 13 is
injective because K;::”(Xg;fc X X¢) is isomorphic to K,S?:”(nglfc) under
pullback from the base, and we can restrict the image in K ,(7:”__11)()( g,_lfc x& Xa loc)
to tp—1 = 0 in order to find the element back. ¢, is injective because again using
pullback from the base this reduces to the case n — 1, where it is true by induction.
In particular, if ¢2(a) = 0 for some «, ¥2(a) = 0, and a = ¥1(8) for some .

Then 13(¢1(8)) = ¢2(a) = 0, which implies 8 = 0 as both ¢; and 3 are injective.
Therefore a = 0. O

By Lemma 6.8, (S), is determined by its image under the boundary. Because
(9)1 = (1 = 8) and (S)2 has boundary —[S]; = —(S); = (1 — S)™!, one checks by
induction that

t1 — S th—1 — S
Sey=(1-85)U Ue-U—.
(S)n=(1-15) 1 P 1
(We use normalizations so that the K—theory acts on the right in localization se-
quences.) O

To end this Section, we give the following Lemma.

Lemma 6.9. Let F(t) be an element of (1+ I)*(R) = K{”(X}moc; O'). Then its
regulator in I:IILS(X}%JOC;Dl, 1) is given, in the representation (6.2), by

(6.10) (dlog F(t),log(Fo(t))/q)
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Proof. Note that for n = 1, (6.2) reduces to
Hy (X0 1) =

(611) ms( R,loc ) ) X . X
{{w,e) : weQ (Ue), € € VX (Uge), dw =0, de = (1 — ¢" /q)w} .

In this way of writing it looks exactly the same as HL (X g 1oc, 1). As remarked after
(6.2) this is slightly misleading since the differentials are different and take relativity
into account. Here this means that the map H.} (Xgoc;0,1) = Hp (XR10c,1)
given simply by (w,e) — (w,&) embeds H.  (XR,oc;0,1) as the subspace of pairs
(w,€) where € vanishes at 0 and co. Thus, our Lemma is an immediate consequence
of Lemma 4.7. d

7. END OF THE PROOF

We denote the composed map

K (X0 =5 He (X pas0m n) & Hi H(X 20" K) Ny

ms rig K,loc?

by R. Here, the isomorphism is normalized according to Definition 4.6 and the
map II is defined immediately following Corollary 5.9.

Proposition 7.1. We have the following commutative diagram (up to sign)

K (Xpl0m ) <— kW (xhon) —= k8 (R)

Rl lreg

K K

Proof. The vertical maps factor through the regulator maps. By the functoriality
of the regulator map the commutativity of the diagram follows if we show the
commutativity of the diagram

HOY(X O K) <—— HY Y (XL 0 K) —=> HY, (Spec(k)/K)

rig K,loc? rig rig
K K

But as explained in Proposition 5.7 the composed map H;}gl (Xp~H0"YK) = K
is simply the map IT and therefore the commutativity follows from Corollary 5.9. O

Proposition 7.2. The composition

Symb,,(R) ¢ K((Xpd;0" ) 5 K
factors through the quotient Symb,,(R)/(1 + I)*U Symb,,_,(R) = M, (R).
Proof. In fact, we can show that R vanishes on (1 + I)*U K,(l':l)(Xg,_lfC; an—2).
This will follow by symmetry for all possible products involved in U if we show that
the composition

Hy (X koo 045 1) x HESH(X 25072, n —1)

G AR (X0 ) S B Y(x L0 K) S K

R,loc? rig K,loc?
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vanishes on pairs where the first coordinate is used for (1 + I)*. Let F(t) be in
(14+1)*. By (6.10), its regulator is given, in the representation (6.2) by (dlog F'(t), ?),
where the first coordinate belongs to Q' (U ) and the precise form of the second
coordinate does not matter as we will see in a second. On the other hand, elements
of I—NII’}lsfl(XngC;D”d,n — 1) are, by (6.3), always of the form (0,d), with § in
Q=2(Up-%;,0"?). Choosing v = 0 in (4.8), we see that (dlog F(t),?) U (0,6), will
be of the form (0,dlog F'(t) A §) where A here means the product in complexes of
relative differential forms as defined in Remark A.19 in Appendix A. By Defini-
tion 4.6 the image of (dlog F'(t),?) U (0,4) in Hgg_l(X:J_OIC; 0" !/K) is the inverse
of the operator 1 — */¢" ! applied to the cohomology class [dlog F'(t) A §]. Since
the operator II is Frobenius equivariant we see that applied to this image it gives
(1 — ¢'~™)II([dlog F(t) A 8]) and so our goal is to show that

I([dlog F'(t) A 8]) = TI([dlog F(1)] U [3])

vanishes, where the cup product on the right is a cup product in multi relative rigid
cohomology. By Lemma 5.10 it equals II([dlog F'(¢)]) - II([6]) and the result follows

since

I([dlog F(1)]) = Tcol (dlog F()) = log(F(c0)) — log(F(0)) = 0.

We continue to denote the induced map by R,
(7.3) R:M,(R)— K.

Recall that in Definition 3.11 we defined for any z in R* a symbol [z], in

) (Xﬁj(}c; 0" 1) by pullback of the universal symbol [S],, in K (ngl(}c; oty
along the map sending S to z, where G' = Spec(Z[S, S~1, (1—S)~!]). We now com-
pute R([z],). We begin this by exploring some auxiliary functions.

Definition 7.4. When z and S belong to the same residue disc we define a sequence
of functions fi(z,S) inductively as follows:

S

S
= fk+1(z,S):/Z Folzt) dlogt .

(73) folz.8) = 1=

Note that there is no Coleman integration here because of the assumption on z
and S. It is immediately noticed that fi(z,S) vanishes to order k at z = S.

Lemma 7.6. We have

|
—

n

fn(zas) = Lin(s) -

| —

;(log S —log 2) L, (2) .

o

=
Il

0

Proof. The proof is by induction on n. For n =1 it is immediately verified that

f1(z,8) =log(l — z) —log(1 — S) = Li; (S) — Li; (2).
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Suppose that the statement is true for n. Then for n + 1 we get
S n—1
. 1 P dt
/Z <L1n(t) - ,;:0 E(logt —log 2) Lln_k(z)> "

) n—1 1 .
(Lln-i-l(t) - kz:(:) (k‘ + 1)' (logt - Ing)kJ’_ Lln—k(z)>

fn+1(Z7‘S’)

S

z

|
-

i 1

G (log S — log z)* 1 Li,,_1(2)

= Lip41(5) — Linta(2) —
k

Il
=)

n

= Lin1(S) = Y

k=0

| —

;(log S —log 2) ¥ Lip1_k(2) .

o

a

Proposition 7.7. Let 21,2, € R® belong to the same residue disc. Then we have
R([z1]n) = R(lz2]n) = (=1)"(n = DI(Ln(21) — Ln(22)) -

Proof. For any z € R’ we may factor the map Spec(R) — G defined by sending
S to z via the map Spec(R) - B = G ®z R defined in the same way. By func-
toriality of the regulator map it follows that reg([z],) equals iireg([S],), where
izt (XR1oes ") = (XB j0e;0") is the embedding in (X 1,.;0") of the fiber at 2.
Thus we are in position to apply Corollary 4.12, but in the relative case, which, as
mentioned after its statement, also applies. To carry out the computation we also
shift the index from n to n + 1 as the computation seems to come out a bit cleaner
this way.

We begin with H7:1 (XB joe; O™, n+1) in the representation (6.1) (with n shifted
to n 4+ 1). In there we have the regulator of [S],+1, given, according to Proposi-
tion 6.5, by the pair (w,€), where

t1 —S t, — S
P— A---Adlog P
is the form defined in (6.4), while € is unknown. Note that w should really be
thought of as the relative form & = (w,[1,...,n] = [1,...,n]) € Q"1 (UR | ;0O").
We have the projection 7 : (X3 ,,.;0") — B, which we can compactify to
7 : (PL)"® — B, where the power is taken over B. By assumption, z; and z» belong
to the same residue disc, which we call D.
The recepy for computing

w = wp41 = dlog(1l — S) A dlog

reg([z1]n+1) — reg([z2lnt1) = 2%, reg([Slnv1) — iZ,reg([S]ns1)

according to Corollary 4.12, calls for computing, for z = z; and z = z5, a form 6,
such that

(7.8) 6. € F7 Q" (UR 1o N7~ H(D);0") and db = &z-1(p) ,
where J is the ideal defining 7#71(2). Such a form is given in the following Lemma.

Lemma 7.9. Let

n

n—k
6. == (- Y (~)ZROF £ (2,8) N dlog

k=0 deg h=k i=1

Th(i) — S

Jh).
Th(i) -1 )
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Then 6, satisfies (7.8). Here, fi, is the function introduced in Definition 7.4 and
the form indicated only for the component in which all the constant coordinates are
0, otherwise the form is 0.

Proof. Recall that the condition for being in F}LH is that the sum of the degree of
the form and its order of vanishing at S = 2z is n + 1, and this is clear for ,. Now
we prove that the differential is correct. We will show that d(—6,) = —&. Consider
first the differential of a single term in —6,.

-S
() ECOTIEL(fr14(2,5) /\ dlog —1 Jh)
i=1 h(i) —
with h of degree k. Using (5.1) the differential is
1)+ (h(8)+1) -5
(-1) E! (fr(z,8) dlog(S /\ dlog o h)
h(i) —

minus (except when n = k) a sum of terms obtained by restricting one of the
coordinates t(;) to be 0 (when we restrict any coordinate to oo we get 0 and there
is no need to keep track of that). In the wedge product at j we get dlog(S) and
moving it to the front gives a sign of (—1)/~!. This form is then associated with
a function g for which x(h,g) = (—1)"9)+J. In addition there is an overall sign of
(—=1)"* on the entire sum. Thus, the sign on the component with the function g
obtained from h by deleting h(j) has a sign of (—1) to the power

n—k+k+> (h(i)+i) +h(j) —

n—k
=n+1+Y gli)+ Y i=k+1+ (g(i)+i) (mod2).
i=1

Thus we find
n—k S
z—l :
- - S
(-1 )k+Z(h(z)+Z)]gl (fr(z,S)dlog(S /\ dlog t tn —1° h)
i=1 h(®) —
n—k—1
- S
3 Z (=12 1 (£ (2, S) dlog(S /\ dlog gy =S5 - 9).
x(h,9)#0 "

Now we consider the coefficient in d(—6.) in the g component when degg = m. If
m > 0 then it gets contributions from both lines in the right hand side of the last
equation. The contributions from the second line correspond to k = m — 1. There
are exactly m different h’s that would give g and the contributions are identical.
Thus it is visibly seen that the contributions from the second line cancel the ones
from the first line. The only term that survives is the one with m = 0. Here there
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is only a contribution from the first line. So we find

d(=6.) = (fo(z,S)dlog(S /\dlog f d)

—(dlog(1 — /\ dlog id)

=-w.
O

Now, again according to Corollary 4.12, i% reg([S],) — i3,reg([S]n) = 6., — 6.,
restricted to the fiber above any S in D(K). On this difference we need to apply
ol We will in fact compute Ilcg (6,) for any z. We integrate with respect to
the t’s keeping S fixed. We see that all the terms we need to successively integrate
are products of dlog’s, which the integration process converts into logs. The extra
sign coming from the formula for II is (—1)2(*()+9) hecause we are always in the

component where all the fixed coordinates are 0. So using Lemma 7.6 and the
definition of L,11(S) as in (1.3), we find Ice(6,) equals

D (Z) furi (2, 8)log"4(5)
= _”'Z fk+1(Z S)log"~*(5)

= —n! Z L1k+1(S) log" *(9)

1
+n!) (=1)*
; (n—k)!

(1)l Ly (S)

|

[~
Nl'_\

(log(5) — 10g(Z))lLik+1—z(Z)] log"~*(S)

T

~
I

<

+n! Zn:(—l)k 0 _1 T 2: log S) — log(z))k_’"Lir+1(z)] log" % (S)
= (=1)""'n! Ly (S)
33 e () Gom(5) — om(5) (- o)™ i)
= (-1)"'n! Ln+1(s>
)n! Z j(10g(5) — log(2) — 10g(5))""Lir41(2)
1 (L (2) Ln+1(S)) :
Thus we find

R([z1]n+1) — R([z2]n+1) = (=1)"n! (Lnt1(22) — Lnt1(S)) — (Ln+1(21) — Lnt1(9)))
= (—l)nJrln!(Ln(zl) — Lp(22)) .
O
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Proposition 7.10. For z in R” we have
(7.11) R([z]n) = (=1)"(n — 1)! L,(2) .
Proof. Let E,(z) be the difference of the two sides of the equation. By Proposi-

tion 7.7 E,(z) is constant on each residue disc. The function E,(z) satisfies the
distribution relation

(7.12) LY Bulca) =

(m=1

E.(z™)
mn

for each positive integer m. The left hand side of (7.11) satisfies the relation because
by [dJ95, Proposition 6.1] we have the relation

¢m=1

in K (nglolc;anl) (modulo terms involving (1 4+ I)*) and we then apply R.
(Note, in loc. cit. the relation is stated for elements in a field containing Q(¢). But
the proof of the statement shows there is a corresponding universal relation over
Z[X,X Y] which can be pulled back. Alternatively, it can be deduced from the
relation in Q[X, X '] because F,[X, X ~!] has no low weight K-theory, and the
localization map (in the limit) corresponding to Z — Q will induce an injection
(up to torsion) on the level of symbols, cf. Proposition 3.18.) The right hand
side satisfies the relation because it is true for Li, by (2.4) and for the remaining
terms by a straightforward standard computation. Multiplication by a p*—th root of
unity preserves the residue discs, as does raising to the p*—th power for sufficiently
divisible k£ (here we need to extend R to include these roots of unity). Therefore,
it is immediately seen that the function E, must be 0. a

Remark 7.13. The following comparison with the work of De Jeu is perhaps
interesting. In the complex case one again relies only on the explicit description
of the form w to obtain the corresponding formula for the regulator. A similar
constant must be fixed in that computation as well. There however, one relies
on the fact that the final result should be single valued. One then derives the
distribution relation from the corresponding formula for the complex polylogarithm
and Borel’s theorem. Here we have used this distribution relation so our proof relies
on the proof in the complex case. It may be interesting to mention that in the
work of Wojtkowiak on functional equations for polylogarithms [Woj91] a similar
phenomenon occurs: to obtain a functional equation for p-adic polylogs one starts
with a functional equation for the complex polylog and uses the multivaluedness to
show that a certain “motivic” functional equation is satisfied, which then translates
into a p-adic functional equation.

Proposition 7.14. Let F' be a field of characteristic zero for which the Beilinson—
Soulé conjecture holds, © C F a discrete valuation ring. Let o : F — K be an
embedding, such that o(O) C R (so that in particular the Beilinson—Soulé conjecture
holds for the residue field F of O). Then the map

[ ] CI) n (o2 n re.
HY(ME,)(0)) 5 K5 (0) & Ky (R) “5 K,

where the map ® is part of (3.17), is induced by the map M,(O) — K sending the
symbol [z],, to £(n — 1)! Ly(o(x)).
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Proof. Suppose Y a;[z;]y is in Hl(M('n)((’))). Let

a=a> afrda) € K{Y(0) = K{M(Xp~ 0.

By definition, the image of « in KM (ngl;c; 0" 1) is equal to 3 a;[z;],, modulo
(14 I)*U Symb,,_,(O). By functoriality, the image of o(a) in K,(ln)(XgH(}c; gt
equals Y a;[o(z;)], modulo (1+1)*U Symb,,_, (R). By Proposition 7.1 and Propo-
sition 7.2 we therefore have

reg(o(a)) = £R(Y ailo(@i)]n)
=23 @ R(o(@)])
==+ Zai(n — !L,(o(z;)) by Proposition 7.10.
g

Proof of Theorems 1.6 and 1.10. Part (1) of each Theorem was already proved in
Section 3. To prove part (2), note that any of the functions Lpeq,n(z) differs from
L,(2) by a linear combinations of the functions z — log"(2)L,_(z) for k > 1. Any
function in this combination, when composed with o, factors through the composed
differential

M, (0) = Mp—1(0) ® Of — -+ = My_,(0) ® (05)%*

which maps [z], to [z],—x ® 2 ® ... ® x. Therefore the functions L, (o(z)) and
Lioan(o(z)) (and in fact, also Li,(o(z))), coincide on HI(M('H)(O)). But any
function Lmoa,n(2) satisfies Lmod,n(2) + (—1)"Lmod,n(1/2). Therefore the map
[2]n = £(n—1)! Linoa.n(c(2)) factors through the map M, (O) — M,(O). But the
composition

H'(M},)(0)) = H'(M},)(0)) = K

is still given by [z], — £(n—1)! L,(c(z)). Thus, the Theorems follow from Propo-
sition 7.14. O

Proof of Theorem 1.12. Let F be a number field. Note that roots of unity will
not be special units in general, so we have to work in the complex for F rather
than for O. Namely, let ¢ in F' be a root of unity of order m > 1. If (m,p) = 1,
then ( is a special unit, and we have the result already. If m = p®l with s > 1
and (p,l) = 1, write ( = (3¢ with {; of order p* and (o of order I. As the
reduction of ( is the same as the reduction of (5, we see that { is special unless
m = p°. If m = p® let r > 1 be an integer congruent to 1 modulo p®. Then
¢" = (, and from the distribution relations Proposition 2.11 and (2.4) we find
that [(], = "t Y. ,[Caln in M, (F') with F' = F(u,). According to [Bes00a,
Lemma 8.8] the modified syntomic regulator commutes with finite base change.
This means in the case we are considering that if R’ is a finite extension of R there
is a commutative diagram

K" (R) —— K

l l

K (R) —— K,



THE SYNTOMIC REGULATOR FOR K-THEORY OF FIELDS 45

where the map K — K' is the natural inclusion. We can therefore do our com-
putations for the regulator just as well in K’ = K(u,). As all (o in the sum
are special units except when a = 1, we can solve for reg([(],) as r"~! # 1. As
reg([z]n) = £(n — 1)! Liyoa,n () if z is a special unit, and Lpeq,, satisfies the cor-
responding distribution relation by [Col82, Proposition 6.1], our result follows for
m > 1. For ( = 1 one uses the distribution relation similarly. O

Remark 7.15. Although not needed for the purposes of this paper, we would
like to sketch a somewhat less explicit method of doing the computations of this
Section. This was in fact our original method. The idea is quite easy to explain:
out of our regulator computations, we obtained the fact that for certain constants
«y, the function

n
P(sz) = Zakfk(zvs) lognik S
k=0
is a sum of a function of z and a function of S (first line of final computation).
In other words, its mixed derivatives vanish. We get this relation initially only for
z and S which belong to the same residue disc, even though we know that using
Coleman integration the functions f, themselves extend to all z and S. What we
did was to write explicitely f,(z,.5) in terms of logarithms and polylogarithms in
z and S separately and then show that P(z,S) can indeed be written as a sum
of a function of S and a function of z, the latter being our sought after regulator
function. Note that the separation of variables now holds for any z and S.

The alternative approach is to deduce the “global” separation of variables from
the same result for z and S in the same residue disc using Coleman theory in 2-
variables. The theory developed in [Bes02a] defines a notion of a Coleman function
in several variables. One then shows that iterated integrals of the kind used to define
frn(z,S) make it a Coleman function in both variables (in particular for fixed S it is
a Coleman function in z, but note that the notion of being Coleman in two variables
is stronger than the notion of begin Coleman in each variable separately). Coleman
functions form a ring, which shows that P(z,S) is also a Coleman function, and
so are its mixed derivatives. The theory then shows that the fact that the mixed
derivatives vanish on some residue disc imply that they vanish identically which in
turn implies a global separation of variables.

Knowing a global separation of variables is very convenient, for if P(z,S) =
P(2z)+g(S), and all we need to know is P(z) up to a constant, then this is supplied
by P(z,Sy) for any Sy we take. In our particular situation, if one substitutes
So = —1, whose log is 0, in the first line of the final computation we find that up
to a constant, P(z) = —(—1)"n!- f,11(z,—1). So one is then left with computing
this function.

APPENDIX A. CHERN CLASSES IN RELATIVE COHOMOLOGY

In this appendix we give the necessary constructions for the main paper as far as
relative K—theory and Chern classes in syntomic cohomology are concerned. Most
of this material is rather standard and has to be modified in a rather minor way
in order to fit the current context, so we are sketchy in places. One thing that we
work out in glorious detail is the description of a complex that computes the multi
relative syntomic cohomology encountered in Section 5.
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In [Bes00a] the first named author described a theory of rigid syntomic regula-
tors. This is not sufficient in all applications, for example those described in the
present work, since one often needs to extend the regulators (= Chern classes) to
the relative situation. Our goal in this appendix is to explain how the construction
extends to more general “spaces”, yielding in particular Chern classes from relative
K-theory to relative syntomic cohomology. The construction is completely formal,
and we follow known sources. The primary source is the preprint version of [GS99].
As the final version uses unpointed spaces as opposed to the preprint using pointed
spaces, we actually follow mostly treatments based on loc. cit., namely [HW98,
Appendix B] and [dJ95].

We consider the category S of Noetherian finite dimensional schemes over R and
the topos T of sheaves on it with respect to the Zariski topology. Following [HW98,
B.1] we call a pointed simplicial object of T' a space. If X € S, ¥ — hom(Y, X)
gives us an element of 7', which we still denote by X. With X, we will denote
the space consisting of the disjoint union of the constant sheaf X and the constant
simplicial basepoint *.

Following [dJ95, Section 2.2] we make the following definition.

Definition A.1. A space X, is called a smooth pointed simplicial scheme if it
is represented in each degree by a smooth R-scheme of finite type (interpreted as
sheaf) together with a disjoint base point and if it is furthermore degenerate above
a finite simplicial degree.

Clearly, if X is smooth of finite type over R, then X, is a pointed simplicial
scheme. According to [dJ95, Lemma 2.1] a smooth pointed simplicial scheme is
K-coherent in the sense of [HW9S8, Definition B.2.1] (this notion is also defined
in [dJ95, top of page 201]).

When X, and Y, are spaces, [X,,Ys] denotes the set of base point preserving
maps between X, and Y,~, where Y is a fibrant resolution of Y, in the category
of spaces described in [HW98, Definition B.1.2]. The point is that there is an
element K in T such that if X is of finite type (hence Noetherian and of finite Krull
dimension) over R, then [S™ A X, K] = K,,,(X) (loc. cit. Proposition B.2.3.a).

Gillet—Soulé therefore make the following Definition.

Definition A.2 ([HW98, Definition B.2.1]). If X, is a space, we define
K, (Xe) = H ™(Xe,K) =[S™ A X,, K]
for m > 0.

In the body of the paper we have systematically used the K—theoretic notation
for this, but in this Appendix we shall also use the notation H "™ (X,, K).

If X, is K—coherent, one can define A-operations on H~"(X,), see [HW9S,
Theorem B.2.10]. From these one constructs Adams operations 1*. In particu-
lar, when X, is K—coherent of cohomological dimension at most d, then accord-
ing to [GS99, Proposition 8 of Section 4.4], Kpn(Xe)g = @?Z;d K,(ﬁ)(X.), with
K (Xo) = H ™(X,, K) the Q sub vector space of K,,(Xe)g = H™"(X,, K)o
of elements x such that *(z) = kiz for all k > 2, and a = 2 if m > 2, a = 1 if
m =1 and a = 0 if m = 0. This will certainly apply to a pointed simplicial space
X, which is degenerate above simplicial degree N and where the maximum relative
dimension of scheme components over R is M, with d = M + N + 1, cf. loc. cit.
Lemma 1.2.2.2 or 3.2.4.
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For two K—coherent spaces X, and Y, we get a product map K,,,(Xe)x K, (Ys) —
Kpin(Xe AY,) from the composition of

STHIPA X AYe 5 SPAXeAS"AY, > KAK 5 K

because S™ A S™ = S™T" and K comes equipped with a map K A K — K,
see [HWO98, page 103]. Under this product map K,S?(X.) x K (Y,) maps to
K,(,ifn) (Xo AYS), cf. [GS99, top of page 136].

If X, and Y, are spaces with a base pointed preserving map Y, — X,, then the
reduced mapping cone C, = C(Ys, X, ), whose definition will be recalled later, see

(A.13), is also a pointed space, and one gets an exact sequence
oo K1 (Xe) = K1 (Ye) = K (Co) = K (Xe) — -

The most important applications of these are if Y, is a pointed closed simplicial
subscheme of X, (i.e., the map corresponds to a closed embedding of schemes on all
the scheme components of X,), in which case one gets the K—theory of X, relative
to Ye: Kin(Co) = K,y (Xe;Ye). Iterating this one gets multirelative K—groups as
in the body of the paper. E.g., if Y7 . and Y5, are closed simplicial subschemes
of X., and Y12. = Yl. nytz., with Cl. = C’(Yl.,X.), Cz. = C(}/]Q.,YZQ) and
C36 = C(Co4,C1e) wWe get an exact sequence

o ‘_>Km+1(Xo§)/lo) — Kerl(}/Qo;}/lQo) — Km(X;leo;YvQO) — Km(Xo§}/1.) —

where we write K, (X;Y1e; Yoe) for K,;,(Cse).

The other application is K—theory with support, in which case Y, is an open
pointed subscheme of X,. Let Z, be the closed pointed simplicial scheme comple-
ment of Y, in X, (i.e., the closed complement in every scheme component, together
with the base point ), and assume all scheme components of Z, are regular. If
also conditions (TC1) and (TC2) of [dJ95, page 202] hold for the embeddings in
Ze — X, then K, (Zy) = K,,(C(Ye — X,)). The sequence then becomes a
localization sequence

oo K1 (Xe) = K1 (Ye) = Kiy(Ze) = Kip(Xe) — -+ -

Under very restrictive hypothesis where Z, is of codimension d in all scheme
components (see [dJ95, Proposition 2.3]) one can prove a Gysin exact sequence

o KD(x) » KD (V) - KO (Za) = KD (X)) = -

In order to be able to define regulators with values in the cohomology of a
complex of Abelian groups, we briefly review how this is put into the context of
spaces.

When A, is a homological chain complex of Abelian objects in T', X, is a space,
and n > 0, we write H ™ "(X,, As) := [S" A X,, K(A,)], where K is the Dold-Puppe
functor, see [Qui73, II 4.11].

Let 8’ C S be the subcategory of schemes which are in addition smooth and
separated over R, again equipped with the Zariski topology. In [Bes00a] the different
versions of syntomic cohomology are constructed as cohomologies of bounded below
complexes of presheaves I'3 (i) on &', where ? could stand for any of the versions of
syntomic cohomology considered. By [Bes00a, Proposition 6.2] these presheaves are
pseudo-flasque in the sense that there is a Mayer—Vietoris exact sequence involving
U,V,X=UNV and U]V for two open subsets U and V of X.



48 AMNON BESSER AND ROB DE JEU

We will give a simpler name to what could be called a smooth separated pointed
simplicial scheme:

Definition A.3. A pointed simplicial S’-scheme is a smooth pointed simplicial
scheme were in addition all scheme components are separated (hence are in S').

We want to define Chern classes from K-theory landing in syntomic cohomol-
ogy. For this we would like to use the theory developed in [GS99]. However, this
theory demands that we work with sheaves on S. To do this, we will produce
out of I'(7) a complex of sheaves on S. We caution the reader not to regard the
cohomology groups of these complexes as extending syntomic cohomology to non—
smooth schemes. They should merely be viewed as a technical tool to allow us
to use [GS99]. What we will need to verify is that as long as we stay in §', i.e.,
work with pointed simplicial 8’—schemes, the cohomology is the same as syntomic
cohomology defined in terms of the syntomic presheaves.

Definition A.4. Let P(S) and P(S') be the categories of presheaves of abelian
groups on S and &' respectively. Let r : &' — S be the obvious inclusion. Let
ry @ P(S') = P(S) be the functor defined in [SGAT72, I, Prop. 5.1] (a left adjoint
to the obvious functor r.). Let T'$(i) be the complex of sheaves on S associated to
the complex of presheaves rI'9(7). For a space X, we define

(X0, T3) = [8" A Xo, K (20,75(0)]

where, for any cohomological complex A® in nonnegative degree, K (2i, A®) is the
Dold-Puppe construction applied to the homological complex A° — A' — ... —
A% — ker(A?" — A%*71) in degrees 2i through 0.

The remainder of this Appendix mainly consists of getting an explicit complex
that computes H~"(X,,['3(i)), specifically for the pointed simplicial S'—schemes
underlying the multi-relative K—theory. Together with the construction of Chern
classes in Proposition A.22 below, this provides the reference for the regulator and
the complexes used in the explicit calculations in the body of the paper.

If we write D for the derived category of Abelian chain complexes in T',

(A.5) H?*™(X,,T3(i)) = [S™ A Xo, K(2i,T3(1))]

is also isomorphic to [N.(S™ A X,),T%(i)]py, cf. [dJ95, (24) on page 213], where
N..(+) denotes the reduced chain complex associated to the pointed simplicial objects
involved. As in loc. cit., the Alexander—Whitney map, in degree n given by

n
(A.6) Xn AYn = Y digr - dp1dn Xy @ dyYy,
=0

induces a quasi isomorphism of N, (X, AY,) with N.(X,) ® N.(Y,). As N,(S") is
quasi isomorphic to N,(S1)®...®@ N,(S1) (n times) and N, (S') = Z[-1] (a copy of
7 in homological degree 1), we find that we have to compute [N, (X¢)[—n], T$(i)]py -
Note that we have not changed the differential in N,(X,). As we want to multiply
it by (—1)" to view it as a shifted chain complex, we identify the two complexes
via multiplication by (—=1)¥=' in (shifted) degree k. If T'3(i) — I*® is an injective
resolution, this equals [N.(X,)[—n],I*] (maps up to chain homotopy), cf. [GS99,
Lemma 2].
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Using the Yoneda lemma, we can compute this as in [dJ95, pages 214—216] as
the (2¢ — n)-th cohomology of the complex C*(X,,I*) given by

(A7) C!(X,,1°) = P hom(X,,I') = P T(X,,I"

t+s=q s+t=q

with 4! = (=1)4(dN-(Xe)yx 4 dtI., where of course we ignore the degenerate part
of the scheme component of X as well as the basepoint * as we are working with
the complex N, (X,).

Now we can show that for pointed simplicial S’-schemes we can use our syntomic
presheaves.

Proposition A.8. Let X, be a pointed simplicial S'~scheme. Then H*="(X,,T'%(i))
is functorially the (2i — n)—th cohomology of the complex C*(X,,T'3(i)) given by

(A.9) C1(Xa, T3(0)) = P T(Xs,Th(0)

s+t=q

Proof. By definition we have, for any F € P(S') and any U € S, I'(U,nF) =
L F(U"), where the limit is over the category of objects in &’ under U. If
U € &' there is an adjunction map I'(U, F) — T['(U,n F) and since the category of
objects under U has the initial object idy the adjunction map is an isomorphism.
We have the functorial maps

(A.10) [(X,,T3(i)) = D(X,,mD3(i)) = T(X,,T3(i)) = [(X,, I*)

where the maps from left to right are adjunction, sheafification and resolution,
giving the functorial map C%(X,,I'3(i)) — C¥(X.,I*). We want to show that this
induces an isomorphism on cohomology for X,. By using the spectral sequence

H'(X,,T3(i)) = H™(C*(X,,T9(1)))

and similarly with I'®, we are immediately reduced to proving that the map (A.10)
induces an isomorphism H*(T'(X,,T'%(i))) = H'(X,,T$(i)). We note that X is in
S'. By [Mil80, Proposition I1.1.10 and Remark I11.3.2] the last cohomology group,
as well as the map in question, can be computed on the small Zariski site of Xj.
It easily follows from the description of sheafification on page 62 of [Mil80] that we
can commute sheafification and restriction to the small site of Xs. Therefore, the
restriction of T'$(i) to the small site of X, is the same as the sheafification of the
restriction of mI'9() to this site. This last presheaf is the same as the restriction of
I'$(d) since any open U in the small site of X is again smooth and the adjunction
map is an isomorphism on these objects. Therefore, the following Lemma finishes
the proof. a

Lemma A.11. Let P*® be a complex of pseudo flasque presheaves of Abelian groups
on the small Zariski site of a finite dimensional Noetherian scheme, and let I°® be
an injective resolution of the associated complex of sheaves. Then the natural map
on global sections

I'X,P*) - T(X,I*)

is a quasi isomorphism of complexes of Abelian groups.



50 AMNON BESSER AND ROB DE JEU

Proof. The proof follows the proofs of Theorem 4 and Theorem 1’ of [BG73] ex-
tremely closely, but it is easier as it is in the context of complexes of Abelian
groups rather than simplicial sets. Namely, for every open set U of X, let F*(U) =
Cone(P*(U) — I*(U)). Then it follows that the cohomology of F*(U) satisfies
a Mayer—Vietoris exact sequence associated to two open subsets U and V', hence
is pseudo flasque. If we let T9(U) be the g—th cohomology group of the complex
F*(U), then the proof of Theorem 1’ applies verbatim if we replace x with 0 ev-
erywhere, and take into account that our indexing is cohomological rather than
homological. O

Remark A.12. Note that we are not using the fact that X, is degenerate above
a certain degree. Therefore, the description of cohomology as the cohomology
of (A.9) is valid for such spaces as well, provided the components belong to &’. In
particular, it is valid for the classifying spaces BGL,, over R.

In the paper, we have to use the complex (A.9) for specific pointed simplicial
S’—schemes arising as iterated simplicial reduced mapping cones C,. We recall the
definition of the reduced mapping cone:

For f : Y, — X, a map of pointed simplicial schemes, define the reduced mapping
cone of f by

(A.13) C(Ye, Xa) = X, [[ Yo x I/ ~,

where I is the simplicial version of the unit interval, given in degree s by all se-
quences {0,...,0,1...,1} of length s+ 1, and pointed by {1,...,1}, and ~ are the
usual identifications to obtain the reduced mapping cone.

Let X be a scheme, and let Y7, ...,Y,, be subschemes. Denote by X the pointed
simplicial scheme consisting of X in every degree, together with a disjoint basepoint
*. Consider the iterated mapping cone C (X, {Y1,...,Ys}) inductively defined by

cX,{nn} =04, X4)
C (XY, Ys1}) = C(C (Yaq1, {Y1,541,- 5 Yas41}), C (X, {Y1, ..., Ys}))

where Y; ; = Y; (NY;. Using induction, one sees easily that the space Cy one finds

for X,Y1,...,Y, is as follows, writing the elements corresponding to I as indices.
(A.14) Co=+11 ] Yar. .o
Aoy Qn
m—+1

——

with a; € {{0,...,0},{0,...,0,1},...,{0,1,...,1}}, Yo,, ..a, = ﬂa#{o’wo} Y;
and NypY; = X. The boundary and degeneracy maps are the natural maps coming
from the inclusions and the identity, which we get by deleting or doubling the i-th
place in the zeroes and ones, with the convention that we identify Y, o, with
x if at least one of the a’s consists of only 1’s. Clearly, C, is a pointed simplicial
scheme, smooth if X, all Y; and all of their possible intersections are smooth, and it
is a pointed simplicial S’-scheme if X, all Y; and all of their possible intersections
are in §&’. Due to our definition of the mapping cone, the reduced chain complex
N.(C,) no longer looks like an iterated mapping cone of reduced chain complexes
as there are too many nondegenerate copies of intersections for n > 2, and neither
does the complex in (A.9).
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So we also define O(C, ) to be the sheaf of homological chain complexes given in
degree k by Hlﬁlzk Z[Yp], with B a subset of {1,...,n}, Y5 =(,c5Yi, and Yp = X
(This has to be interpreted as the sheaf that to every U associates the homological
chain complex HI =k Z[Ys(U)].) The boundary is given on generators of O(C,) by

k
(A.15) d(Yg) = (1) 3 (=1)Va\(s)

if 8 ={pf1,...,0r} with f1 < 3 < -+ < B. (Just as in the complexes N,(-), the
maps here are the ones induced from the maps in the pointed spaces, which means
they correspond to the maps of sheaves that the scheme component represents in
our topos T'.)

Proposition A.16. N,.(C,) and O(C,) are quasi isomorphic.

Proof. Define a map
U : O(Ce) — N.(C,)

via
Vi ) (-1)Yig0
o€ESk
in degree k, where (—1)? is the sign of o, and (8,0) = a1, . . ., @, is an index defined
as follows. We make a; = {0,...,0} unless j is an element of 8. The remaining k

«; are indexed by 8. We consider the k standard (k + 1)-tuples {0,...,0,1}, ...,
{0,1...,1}, and put ag, ;, equal to the j-th (k + 1)-tuple in this list.

We have to check that ¥ defines a map of complexes. This is clear if £k = 0. For
k>1,U,_q0dis given by mapping Y3 (with || = k) to

k
Ty (-1 Z DRENTVED DIC D DI CaVip (CYER RS
j=1 TESK-1
On the other hand, \Ilk maps Yz to > g (—1)?Y (5 4), which d maps to
k
> (=17 (D Ys.0)
oESk j=0

where d; is the j-th simplicial face. Now notice that the j = 0 term here is zero,
as it introduces {1,...,1} among the indices so this correponds to * in C,, which
maps to zero in N,(C). Also, for j = 1,...,k — 1, the j—th and j + 1-st standard
tuples become the same after applying d;, so that o and o o (jj + 1) give the
same contribution, which cancels due to (—1)?. Therefore only one term survives,
corresponding to j = k, i.e., di, which eliminates the last element of all the indices.
So we are left with

—DF S (1) Y 5,0) = (- Z > (- —1)"Y{5\(5,}.1)

gESE J=17€SK_1

because if ¢(1) = j, the first standard (k+1)-tuple (corresponding to ag; ) gives only
zeroes after applying dj, and therefore the dj, applied to the remaining k—1 standard
k +1-tuples give the standard k—tuples. This means that dyag, ), ..., drag,,, are
the standard k—tuples (in the standard order). With v = {v1,...,v-1} = 8\ {5;},
we can also write this as ay_,,,..., @y, ,_, aslong as we can find 7 in S;_; with,
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fori=1,....,k—1,7() = o(i+1)if (i + 1) < j and 7(i) = o(i + 1) — 1 if
o(i+1) > j. This holds only for 7= (k...j)ooo (1...k).

In order to check that ¥ defines a quasi isomorphism, we proceed by induction
on the degree of relativity n, and investigate how ¥ behaves with respect to taking
iterated cones as described explicity in and preceeding (A.14).

So let Yy — X, correspond to taking the last (n—th) relativity into account, with
C, the corresponding reduced mapping cone, i.e., C4 is the reduced mapping cone
as in (A.13) for the map Y, — X,, where, with notation as in in (A.14), Y, =
%] ]_[al’...’av1 Youi, an1 NYn, Xm = =1 ]_[m’m’ozw1 Yoi ... .an_1, and Cp, exactly
asin (A.14). The map Y, — X, corresponds to the obvious inclusions on the scheme
components. In terms of (A.13), a contribution Yy, . ., [ Yo X1 X+ Xap_1 Xa,
with a in the m—th simplicial degree of I, maps to Yo, ... an_1,0 X Q1 XX Qp_1 X
in Cp,, unless @ = {1,...,1}, in which case it is identified with *. Note that
if a = {0,...,0}, then this takes into account the identification required in the
reduced mapping cone. X, is a pointed simplicial subscheme of C,, corresponding
to all ay, = {0,...,0} (together with * of course).

Let us first note that O(C,) is the cone of the map O(Y,) — O(X,). Namely, any
component Cg of O(C,) comes from O(X,) if and only if § does not contain n, and
that the components containing n correspond to Y\ ny’s, i.e., to O(Ys)[—1]. So
0O(C,) is the mapping cone of O(Y,) — O(X,) provided the differential is the one
on the cone. As O(X,) is a subcomplex, we only need to check what the differential
does on Cp with n in . Let k = |5|. Applying d we get

k k—1
(=D (=1)Cay 5,3 = —Caviny — (—DF 2D (1) Cay 5,3
j=1 j=1

which is exactly what we want.
We shall verify that we have a map of triangles
(A.17) O(Ys) 0(X,) 0(C,) o) [-1] ——
qzl \Ill qzl q:[1]l

s No(¥a) —> Nu(Xs) —> No(Co) — N.(Ya)[-1] —

with the maps as follows. The map O(Y,) — O(X,) comes directly from Y, — X,,
and similarly for N,(Ys) = N,(X,). The map O(X,) — O(C,) just views 3, a
subset of {1,...,n — 1}, as a subset of {1,...,n}. The map N.(Xs) = N.(C,) is
the natural map from the map X, — Co. The map O(C.) — O(Y,)[—1] maps Y3
to 0 if n is not in 3, and to Yj\ypy if n is in 8. The map N.(Ce) — N.(Ys)[—1]
is the composition of the natural map N.(Ce) — N.(S! AY,) corresponding to
contracting X, to *, and the Alexander—Whitney map N, (S' AY,) — N.(Ys)[-1],
a quasi isomorphism (see (A.6)) as N, (S!) is isomorphic to Z[—1] via the projection
to the {0, 1}—component in degree 1.

We shall check below that those maps give a map of triangles. It is well known
(and using Mayer—Vietoris for an open cover U |JV for nonreduced mapping cones
of the realization of simplicial sets easily seen) that the bottom triangle gives rise
to a long exact sequence in homology. As the top triangle also gives a long exact
sequence, we know by induction that ¥ : O(Cs) — N.(C,) is a quasi isomorphism,
as U is clearly an isomorphism if n = 0.
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In the diagram, the first square commutes because of the naturality of ¥. For the
second square, we note that applying ¥¢, on the image of O(X,) inside O(C,) is
the same as applying ¥ x, and tagging on an index {0,...,0} to the indices already
used in N,(X,). (The extra {0,...,0} corresponds to n € {1,...,n}.) This is
exactly the result as going around the second square counterclockwise, as X, is the
simplicial subscheme of C,, given by the components of C, that acquire a copy of
{0,...,0} from the simplicial interval involved in constructing the mapping cone.

For the third square, the map O(Cs) — O(Y,)[—1] corresponds to mapping to
zero Yg tozeroif 8 C {1,...,n—1} C {1,...,n},and to Yg\yny if 6  {1,...,n—1}.
If n & B, ¥(Ys) will always have the last index a, in Yy, ... 4, equal to {0,...,0},
which already goes to zero in N,(S! AY,). If we have a term Y3 with n € 3, let
k =8| > 1. Going clockwise, we get ¥j_1[—1](Ya\(n}) = D ses,_, (1) Y(5\{n}.0)
in N.(Ye)[—1]. Going in the other direction, we get

Vi Y (=1)Yig.
o€ESk

in N.(C,). The Alexander-Whitney map (A.6) maps this to

k
2D (1 i edipa 00 diYig o\ (5010 © A (B, 0)n:
j=0 c €Sk

After the projection to {0,1} in N,(S!), we only get a nonzero contribution if
(B,0)n = {0,...,0,1} and j = k — 1. Considering the definition of (8, 0), this
means that o(1) = k. So we find

S (-1)7di Y0 @ {0,1}

oc€Sk

o(1)=k
Considering that dj removes the last coordinate in all the first n — 1 tuples,
we see from the definition of (3,0) that diY(s,,) = Y(g\(n},r), With B\ {n} =
{B1,.- s Pr—1},and T =0 (1...k)in Sp_1 C Sk. Projecting to the {0, 1}-component
in N, (S!) = Z[—1] we therefore find

S DR CI VS VS
TESK_1
Because of the way we identify N, (Y,) shifted by one degree with N, (Y,)[—1] (with
the original d replaced by —d) this shows the diagram commutes. O

We now return to our original problem of computing the cohomology groups
using explicit complexes. For Cy = C(X,{Y1,...,Y,}) as above, if all scheme
components are smooth and separated of finite type over the base ring R, we can
replace N,(C,) by the quasi isomorphic complex O(C,) by Proposition A.16 from
the very beginning, so instead of (A.7) or (A.9), we can also use the complex
Cy(C,,I'3(i)) with

(A.18) CH(Co,T3(i) = P @)=sT(X5,T5(i))

t+s=q

and 40 — (_1)q(dSD(C-))* +th?'(i)'
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Remark A.19. In order to get products in K—-theory taking the relativity into
account, we define maps

C(X, Vi, Yors)) = C (X, Vi, Vs AC (X, {(Yoras- o, Yors))

by the diagonal embedding Y, .. a.r. = Yar,.,as X Yaui1,....a.4, and identifying
anything of the form - - - x % or * X ... with * in the right hand side. Taking reduced

chain complexes, and using the Alexander—Whitney map gives us a map
N(C (X, {Y1,...,Ysqs})) = N(C (X, {Y1,...,Ys}) @ No(C (X, {Ys11,..., Y1}))

which we want to compare with a similar map using the O(-) complexes. Namely,
let Y3 be a component in O(C (X, {Y1,...,Ys1:})), and let 51 = {1,...,s} 5,
B2 ={s+1,...,s+t}S. Then we define the map

O(C (X, {Yi,- ., Yexe}) = D(C (X AV, ., Y1) @ D(C (X, {Yorts - o, Ve )

via the map Y5 — (—1)I%111%21Y; © Vjs,. (Again this has to be interpreted at the
level of simplicial Abelian groups that are associated to those sheaves for every space
U. The maps are induced from the scheme embeddings Y3 — Y3, and Yz — Y3,.)
We have to check that this defines a map of complexes, but because the map ¥
defined in Proposition A.16 is an injection of free Z—modules, the same holds for
¥ ® ¥, and therefore it follows from the commutatitivity of the following diagram
(which we will show below), as all other maps in it are maps of complexes.

Suppressing X and Y from the notation for typographical reasons, we have a
commutative diagram

OC({1,...,s +1}) —=D0OC ({1,...,s1) @O ({s +1,...,5 +1}))

lm lm

No(C ({154 11) —= No(C ({1, ,51) @ No(C ({5 + 1.5+ 1)

Namely, write k = |8|, k1 = |f1] and ks = |B2|. Starting in the top left corner of
the diagram, going to the bottom left corner, and then to the bottom right corner
(using also the Alexander—Whitney map), we get on Yz:

Y Z (=1)7Y(s,0)

oc€Sk
= Y (DY (3001800 X Y(B.0)es1r(Br)oss
UGSk
= Z Z “djtrdiz - dkY(,0)1,(8,0), @ d6n570)3+17,,,,(570)3+t.

j=00€Sk
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Now observe that the nonzero indices involved in (5, 0) are k in total, of length
k+1,ie.,

{0,0,...,0,0,0,...,0,1}

{0,0,...,0,0,1,...,1,1}
(A.20) {0,0,...,0,1,1,...,1,1}
{0,0,...,1,1,1,...,1,1}

{0,1,...,1,1,1,...,1,1}.
———— —— ——
0..j—1 Gk

djt1djso . ..dy deletes the last k — j columns, dj deletes the first j columns of
all tuples involved. For fixed j, if any of the last j tuples end up among the
last ¢ tuples of (8,0), then one of the tuples becomes {1,...,1} under d} and the
corresponding component is mapped to zero in N,. So for a nonzero contribution,
the last j tuples must end up among (8,0)1,...,(8,0)s. If any more tuples end
up in (8,0)1,...,(8,0)s, then among (8,0)s+1,---,(8,0)s+s the nonzero ones will
be fewer than the first & — j standard tuples in (A.20). The same will hold for all

tuples in the index in déY([m) as the other ones are zero anyway, so

. 5+17‘~7(Bya')s+t
d(J))/(ﬁ,a)erl,...,(B,a)ert is degenerate for k¥ > 0, and goes to zero in N,. (For k = 0,
k1 = ko = 0, and there is only one term, see below.) As k; tuples must end up

among (3,0)1,...,(8,0)s, this shows that for a nonzero contribution we must have
j = k1, the nonzero tuples among (8,0)1,...,(8,0)s are the last k; rows above,
and the nonzero tuples among (8,0)s+1,- - -, (8,0)s+t are the first k —k; = ko rows

above. The sum then simplifies to

D ()i rdiggo - dkY 5.0y (300, © A6 Y(B.0) 01 (Buo) o
oc€ESk

:(_1)k1k2 Z (_1)”1/(51,‘&) ® Z (_1)7—21/(52’7_2)

T1E€Sk, T2E€Sky

because the permutation o must map {1,...,k — ki } to {k1 +1,...,k} as well as
{k—k+1,...,k} to {1,...,k1}, so we must have

(A... k)Mo =mnQk +1)...(ki ) (1ka +1)...(k k)

for some (unique) 7 in Sy, and 75 in Sk,. As this equals (—1)15111%210 (V5 ) 0¥ (V3,)
the diagram commutes as required.

Now suppose that A and B are homological chain complexes of sheaves, with a
bilinear map A x B — C. There is a map ¢ : K(A) A K(B) - K(A® B) (with K
the Dold—Puppe construction as before), which gives rise to a map

[S™ A Xo, K(A)] % [S™ AYs, K(B)] = [S™™ A Xo AYs, K(A® B)]
= [S™TA X AY, — K(C))].
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It is shown as on [dJ95, page 215] that under our identifcations [S™ A X, K(A4)]
with [N.(Xe)[—n], A]p, etc., this corresponds to the composition

Nu(Xo AYD)[=1 —m] = No(Xo)[=n] ® Nu(Ya)[-m] = A® B — C

with the first map the Alexander—-Whitney map and the last map the given prod-
uct. In the cases we are interested in this becomes a cup product of sections in
(pre)sheaves, and it follows from these formulae that the product on components
corresponds to cup products I'( X, A) x I'(Y;, B) — I'(Xs x Y3, C) up to signs. In
particular, for the explicit map at the very beginning of this Remark, the diagram
tells us that the product in the complex (A.18) is up to a sign given by the map

F(Yﬁl ) A) X F(Yﬁzv B) - F(Yﬁlﬁ‘b C)v
which is the composition of
F(YBNA) X F(Yﬁsz) - F(Yﬁl X Yﬁ‘Zv C) - F(Yﬁlﬁ%c’) ’

the last map being the pullback corresponding to the “diagonal” Y3, 3, — Yz, X Y3,.
This is clearly the same, since the products are functorial, as the map

(A.21) F(YBNA) X F(Ygz,B) — F(Yglgg,A) X F(YB]BZ7B) — F(Yglgg, C) .

Let now ~denote the composition of r and sheafification, as in Definition A.4.
Let F', G and H be three presheaves of vector spaces on &' with a bilinear map
F x G — H. Applying ~ we obtain, since ~ clearly sends products to products, an
induced map F' x G — H which is easily seen to be bilinear. For U in S’ there are
natural vertical maps making the following diagram commute.

I(U,F) x T(U,G) — (U, H)

| J

(U F)xT(UG) —=T(U,H).

The syntomic complexes come with products I'3(¢) x I'3(j) — T'$(i + j) (see for
example [Bes00a, Definition 6.5] where products are constructed on cohomology
but it clearly comes from a product on complexes). Taking injective resolutions and
using Proposition A.8 it is quite easy to see now that the product on multirelative
syntomic cohomology is induced from a map on the complexes (A.18) given by
maps like (A.21). The precise signs turn out to be non-important for us.

The previous constructions are applied in the body of the paper with the schemes
X =Pyp\{t=1)"and V; = {t; = 0,00},

with ¢ the standard affine coordinate on P!, and ¢; the i—th coordinate in the n—fold
product, or localizations of those schemes.

After this rather explicit exercise, we now turn our attention to the theory of
Chern classes. The theory of syntomic Chern classes of [Bes00a] can be extended
from schemes to arbitrary spaces as follows. In loc. cit. before Theorem 7.5 universal
Chern classes

cn € H*(BGL,T3(i))
were constructed. Again this was explicitly done in some of the theories but it
can easily be done in all the others. Further, this was done with the cohomology
defined as the cohomology of the complex (A.9), but since the components of BGL,,
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belong to &' it follows from Remark A.12 that this is the same as the definition
we have been using here. Now a standard procedure [GS99, 6.1] produces, for each
a € H ™(X,, K) a Chern class

ci(a) € H* ™™ (X,,I3(i) -

More precisely, if K = Z X ZBGL is the sheaf used to define algebraic K-theory
of spaces as K,(Xo) = [S™ A X,, K], then each ¢; defines a map K — K (2i,T3(i)).
If o is an element in K,,(X,), then by composition we get the element ¢;(a) in
[S7 A Xo, K (20, D3(0))] = H =" (Xo, T3 (0)).

For a K-coherent space X,, both

H™(Xo,T%) := H(Xo, Z) x ({1} x (9551 H (X4, T3(7))))

and @,,>0H "™ (X,, K) have A-ring with involution structures described in loc. cit.
6.1. and there is a total Chern class

¢: BpzoH "™ (Xe, K) = H™(X4,T3) |

Proposition A.22. When X, is K-coherent the total Chern class in a morphism
of A\-rings with involutions.

Proof. Everything is reduced to the properties of the universal Chern classes (see
for example the proof of [GS99, Theorem 5] for the A-structure). These properties
are deduced in the following way. There is a map of complexes of presheaves
(in the derived category) I'$(n) — I'jy, where the latter complex is the complex
of differential forms on the generic fiber. We get an induced map of cohomology
theories which is compatible with cup products and therefore also with A-operations.
This map gives an injection

(A.23) ©;H*(BGLyN,T3(i)) — @&;H3% (BGLy/K)

on the part of the cohomology of BGLy containing the Chern classes for any N.
The syntomic universal Chern classes are defined to map to the corresponding de
Rham Chern classes. Since both sides of (A.23) are closed under products, all re-
quired properties of syntomic universal Chern classes follow from the corresponding
results for the universal de Rham classes. a

As all the cohomology groups are Q-vector spaces, one gets a Chern character
from this in the usual way (cf. [Sch88, §4] or [Gil81, Definition 2.34]), which gives
a ring homomorphism

reg : K. (Xo) = H™*(Xo, K) = H*(Xe,T3(%)) .

with the property that reg(K$ (X., K)) C H¥~"(X,, I'3(5)), cf. [Sch88, Corollary
on page 28].
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