A COERCIVE COMBINED FIELD INTEGRAL EQUATION FOR
ELECTROMAGNETIC SCATTERING
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Abstract. Many boundary integral equation methods used in the simulation of direct electromagnetic scattering
of a time-harmonic wave at a perfectly conducting obstacle break down, when applied at frequencies close to a
resonant frequency of the obstacle. A remedy is offered by special indirect boundary element methods based on
the so-called combined field integral equation. However, hitherto no theoretical results about the convergence of
discretized combined field integral equations have been available.

In this paper we propose a new combined field integral equation, convert it into variational form, establish its
coercivity in the natural trace spaces for electromagnetic fields, and conclude existence and uniqueness of solu-
tions for any frequency. Moreover, a conforming Galerkin discretization of the variational equations by means of
divp-conforming boundary elements can be shown to be asymptotically quasi-optimal. This permits us to derive
quantitative convergence rates on sufficiently fine, uniformly shape-regular sequences of surface triangulations.
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1. Introduction. The numerical simulation of direct scattering at a perfect conductor,
the so-called scatterer, is a central task in computational electromagnetism. The scatterer
occupies a bounded domain Q C R3. In general,  will have Lipschitz-continuous boundary
I := 99, which can be equipped with an exterior unit normal vectorfield n € L*(T"). With
boundary element methods in mind, we do not lose generality by only admitting scatterers €2
that are polyhedra with flat faces and Lipschitz continuous boundary. We emphasize that the
extension of the results to curvilinear faces is straightforward.

Electromagnetic waves propagate outside the scatterer in the “air region” €’ := R3 \
Q. From an electrodynamic point of view, €’ is filled with a homogeneous, isotropic, and
linear material. Excitation is provided by the electric field e; of an incident (plane) wave of
angular frequency w > 0. Hence, we can switch to the frequency domain and are left with
with complex amplitudes (phasors) as unknown spatial functions. After suitable scaling, the
complex amplitude e of the scattered field satisfies the following exterior Dirichlet problem
for the electric wave equation [20, Ch. 6]:

curlcurle — k’e =0 inQ, (1.1)

exn=g:=e xn onl. (1.2)

The constant k := w,/€gpg > 0 is called the wave number, because k /27 tells us the number
of wavelengths per unit length. Henceforth, x will stand for a fixed positive wave number.
These equations have to be supplemented with the Silver-Miiller radiation conditions

/ lcurle x n +ik(n x e) x n|* dS — 0 forr — oo, (1.3)

9B,

where B, is a ball around 0 with radius r > 0. Existence and uniqueness of solutions of (1.1)
and (1.3) can be inferred from Rellich’s lemma [15, 38].

Integral equation methods are a natural choice for the discretization of the direct electro-
magnetic scattering problem, which is posed on an unbounded domain. A prominent example
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are the electric field integral equation (EFIE) and magnetic field integral equation, see [38,
Sect. 5.6] or [15, Ch. 3]. These indirect methods display a worrisome instability when >
coincides with a Dirichlet or Neumann eigenvalue (resonant frequency) of the curl curl-
operator inside €2; then the integral equation may not have a solution. After discretization this
manifests itself in extreme ill-conditioning of the resulting linear systems of equations, if & is
close to a resonant frequency [16].

Two classes of integral equation methods are known to avoid this difficulty. The first is
the method of fundamental solutions [23], examined for electromagnetism in [27]. However,
it entails constructing an auxiliary surface and can be haunted by stability problems, too.
The second, vastly more popular class of methods are approaches based on combined field
integral equations. A particular representative will be the focus of this paper.

Combined field integral equations owe their name to the presence of both single and
double layer potentials in the ansatz for the electric field in '. As a theoretical tool they
were pioneered for acoustic scattering in [3]. Their analogue for Maxwell’s equations is
widely used in computational electromagnetism [42]. For acoustics, existence and uniqueness
of solutions can be shown for smooth scatterers [20]. Yet, in the case of electromagnetism
even this remains elusive. Hence, mainly for the sake of theoretical treatment, regularized
formulations have been introduced by R. Kress in [33]. However, the idea is only applicable
for scattering at smooth objects and it is not suitable for numerical implementation.

In this article we hark back to the idea of regularization in a different way. Based on
recent advances in the understanding of boundary integral operators of electromagnetic scat-
tering achieved in [14, 28, 30], we apply regularization to the double layer part of the integral
operator. Reformulation as a mixed problem and subsequent Galerkin discretization pave the
way to a practical computational scheme. It is the first method based on CFIE that can be
proven to converge quasi-optimally in relevant trace norms.

The developments in this paper rest on a huge body of previous work. We will restate the
most important results. However, in order to maintain a reasonable length we cannot elaborate
on most of the existing theory of boundary integral equations for electromagnetic scattering.
However, we will try to give comprehensive references for all results we rely upon.

The plan of the paper is as follows: the next section will give a concise survey of relevant
function spaces and trace theorems and prove some new results which are needed in the
sequel of the paper. Then we briefly recall the crucial integral operators of electromagnetic
scattering. In the fourth section we will present and analyze the new combined field integral
equation and the variational problem associated with it. The fifth section will be devoted
to proving asymptotic quasi-optimality of a Galerkin discretization. Based on it, the final
section will give quantitative convergence estimates.

2. Function Spaces and Traces. Let QO C R3 be any of the sets Q, Q' ,R3, and define
the Fréchet space LIQOC(Q) of complex, vector valued, locally square integrable functions
u: Q — C3. We recall the Sobolev spaces Hj, (), s > 0 (see, e.g., [1] for definitions),
and the convention H® = L? . The sub-fix |, will be dropped when € is bounded: in this
case, H*(1) is a Hilbert space endowed with the natural graph-norm [[u|| g, and semi-
norm |ul H+ () respectively [1]. Round brackets will consistently be used to express inner
products.

With D a first order differential operator, for any s > 0 we define

H: (D,Q) = {ue H. (Q): Duec HL ()}, @.1)

loc loc loc

s (D0,Q) = {ue H: (Q): Du=0}. 2.2)

loc

When s = 0, we simplify the notation by setting H’ = H. If Q is bounded, H{ .(D, )
is endowed with the graph norm || - |- p oy = || - [Fr=() + | D - I+ () and seminorm
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|- |?’-I°‘(D7Q) = |§{S(Q) +|D - |§P(Q). This defines the spaces H®(curl, Q), H*(div, ()
and H*(curl0,Q), H?®(div 0, ), for which [25, Ch. 1] is the main reference.

The integration by parts formulas for the operators curl and div suggest that we define
the tangential trace mapping 74 : u — ujr X n and the normal component trace v, : u —
u|r - . To begin with they are defined for u € C>(Q)3.

The trace theorem for H' () [26, Theorem 1.5.1.1] shows that the tangential trace

w : C(Q) — L*™(T) and the normal trace: vy, : C(Q) — L°°(T") are continuous
as mappings H (curl; Q) — Hﬁé(I‘) and H(div;Q) — H~z(I), respectively. Here,
H~2(T') and H: (") are the dual space of Hz (") and H? (T') := (H2(T))3, respectively,
with respect to the pivot spaces L?(I')/L*(T). Consequently, the traces can be extended to
H (curl; Q) and H (div; ), respectively. Moreover, if we define the anti-symmetric pairing

() p = /(u xn)-ndS, pneLil):={ue (L) u-n=0}, 23

then we can state the integration by parts formula for the curl-operator as [9, Sect. 4]

/(curl u-v-—u-curlv)dx = (v, %nu), . 24
Q

A meaningful strong form of the electric wave equation (1.1) has to rely on yet an-
other space: from the fact that a field u is a locally square-integrable function satisfying
curlcurlu — u = 0 we can conclude that curl curl u is locally square-integrable, too.
Hence, the space

Hoe(curl?, Q) := {u € Hyyc(curl;Q), curlcurlu € L (Q)}

loc

will play the role of the natural space for solutions of the electric wave equation with constant
coefficients.

Trace spaces for electromagnetic fields are essential for stating the boundary integral
equations and, in particular, their variational formulations. The corresponding results on
non-smooth boundaries are fairly recent: we refer to [6,9, 10] for the treatment of Lipschitz
polyhedra. The issue of traces of H (curl; ) for general Lipschitz-domains was settled in
[13]. The results are summarized in the survey article [7].

DEFINITION 2.1. We introduce the Hilbert spaces HS,(T) := ~(H*TY2(Q)), s €
(0,1), equipped with an inner product that renders ~, : H**Y/2(Q) — H?3 () continuous
and surjective. For s = 0 we set H) (') := L2(T'). The dual spaces with respect to the
pairing (-, -) . - are denoted by H *(T").

REMARK 1. When s = 1, the standard trace operator fails to map H3/?(Q) to H'(T"),
although H'(T') is well defined on the boundary T. In this case, we adopt the definition
HL(T) := v (y"tHY(T)3), where =1 represents any continuous lifting from H(T) to
H3/2(Q) (see [32]).

Next, we introduce the surface divergence operator divr, cf. [9, Sect. 2.1].

Let {T'1,... ,T'p}, P € N, stand for the set of open flat faces of I' and write ¥;; for the
straight edge OT'; N AL;. The vector ¥ lies in the plane of I';, is perpendicular to 3;;, and
points into the exterior of T';. Then, for u € C*(Q) we set

div;(veuyr,) onlV |

g y [ — 2.5
((’Ytum) v+ () - 1/”) i on IV NI 25)

divprysu == {
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where §;; is the delta distribution (in local coordinates) whose support is the edge nre
and div; denotes the 2D-divergence computed on the face I'V. By density, this differential
operator can be extended to less regular distributions and, in particular, to functionals in

H;%(I‘). We set
H (divp,T) :={p e H(T), divpp € H*(T')} s €[-1/2,0].

Finally, we denote by curly the operator adjoint to divy with respect to the pairing (-, ) .,
1.e.,

1
(curlpq, p), = (divrp,q)1 r» P € H,*(divr,T), g€ H:T). (2.6

It is known [7, Sect. 1.2] that curly : H*(T') — H?% (') is continuous for every s, 1/2 <
s < 1. The spaces just defined turn out to be the desired trace spaces, see [9, Prop. 1.7] - [10,
Thm. 5.4] and [13, Sect. 2].
_1

THEOREM 2.2. The operator -y, : H(curl; Q) — H 2 (divp, ') is continuous, surjec-
tive, and possesses a continuous right inverse. The following self-duality of the electromag-
netic trace space will be the foundation of weak formulations. The result was first given in
[10].

THEOREM 2.3. The pairing (-, ->_,_’F can be extended to a continuous bilinear form on

1 1

H, *(divr,I'). With respect to (-,-) .  the space H . * (divr, I') becomes its own dual.

Piecewise smooth scatterers offer the possibility that some considerations can be done
locally on the faces and, thus, become essentially two-dimensional. To provide a framework
for such considerations we introduce the spaces H (I';), s € (—1, 1), defined locally on a
face T'; in a straightforward fashion. We remark that H *(T';), s € (0, 1), denotes the dual
space of H? (I';) (Here we adopt the notion introduced in [35], and not the one used in [26]).

In addition, we define the localized spaces H o (divr,I';) :={u € H;l/z(l“j) ue
H  (divy,T')}, where ~ denotes the trivial extension by zero to all of I". These spaces will
be combined to

. P .
Hy(divp,T) := szl H o (divp,Ty) .

LEMMA 2.4. The space Hyx,(divr,T') is dense in H;% (divrp,T).

Proof. Let us adopt the notation ¥ for the skeleton of the polyhedron, that is, the union
of all edges >J;;, 1 < ¢,5 < P. Then we recall that regular functions compactly supported in
Q\ X are dense in H' () [37]. Of course, also the inclusion H'(Q) ¢ H(curl, Q) is dense.
By continuity of the tangential trace ~; operator, we deduce that tangential vector fields in
H IX/ 2(I‘) compactly supported in I" \ ¥ are dense in H ;% (divp, T"). Since the set of fields in

H 1X/ 2(I‘) compactly supported in I" \ ¥ is a subset of Hx,(divr,I") the statement is proved.
O

LEMMA 2.5. The embedding Hs,(divp, ') — H;% (divp,T') is compact.

Proof. To begin with, since Hx.(divp,I') € H «(divr,I'), we need merly prove that the
injection H « (divp,I') C H;l/Q(divF, I') is compact.

Let {uy, }nen C H «(divr,I") be a sequence such that ||u, || g, (givy,ry < 1, for all n.
Then, owing to the compact embedding LZ([") — H ;1/ 2(1“), there exists a subsequence
up, ofu,andau € H;l/z(I‘), such that u,,, — u strongly in H;l/Q(F). The operator
divp : HYAT) — H=32(T) is continuous (see [9] for a proof and the definition of
s H—3/2(T")). Hence, divru,, — divru strongly in H—3/2(T").
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On the other hand, we also know that ||divrup, ||z2(ry < 1, which implies that up to
extraction of a subsequence divru,, is strongly converging to an element in H -1/ 2(T). By
uniqueness of the limit, we deduce that divpu € H -1/ 2(F ), and, up to selecting a subse-
quence, u,, — U € H;%(divF, T') strongly. O

When we want to examine the convergence of boundary element methods quantitatively,
extra smoothness of the functions to be approximated is indispensable. A convenient gauge
for smoothness is offered by scales of Sobolev spaces. Again, localization is a handy tool:
forany s > 1, we define H® (') := {u € L{(T') : uy, € H{(IY)}. The corresponding
space of scalar functions will be denoted by H?* (T'). Them, for s > 1, we set: HS (T') :=
H: ()N H? (D).

To characterize extra smoothness of traces we resort to the family of Hilbert spaces

_1
H  2(divp,T), if s =—-1,
HS (divr, ) :=  {p € H (D), divep € H(D)}, if —3<s<1,
{pe H(T), divrp e HS(I)}, ifs>1.

The following trace theorem has been proved in the Appendix of [8].

THEOREM 2.6. Let 0 € R be the maximum real number such that {p € H'({2)
Ap € L*(Q), (Onp)ir = 0} € H'™75(Q), Ve > 0. Forall 0 < s < min{o,1}
the tangential trace mapping ¢ can be extended to a continuous and surjective mapping

—1
v @ H(curl,Q) > HS, ?(divy,T), which possesses a continuous right inverse.

3. Potentials and Integral Operators. Here, we define the boundary integral operators
relevant for electromagnetic scattering and recall a few of their properties. More details can
be found in [38, Ch. 5], [20, Ch. 6], [14, Sect. 3], and [31].

DEFINITION 3.1. A distribution e € H loc(curIQ, Q) is called a Maxwell solution on
some generic domain S, if it satisfies (1.1) in Q, and the Silver-Miiller radiation conditions
at oo, if Q) is not bounded. As far as the differential operator curl curl —x2 Id is concerned,
the integration by parts formula (2.4) suggests the distinction between Dirichlet trace ¢ and
Neumann trace vy ‘= k~ ‘7 o curl. The trace vy can be labelled “magnetic”, because it
actually retrieves the tangential trace of the magnetic field solution. From the trace theorem
Thm. 2.2 we see that v is meaningful on H 1oc(cur12, QuUQ):

LEMMA 3.2. The trace v : Hioe(curl®>, ' UQ) — H;%(divF,F) is a continuous
and surjective operator.

The integral representation for Maxwell solutions relies on the famous Stratton—Chu
representation formula for the electric field in QU €’ [41]. To state it we rely on the notion of
ajump [-]. across I defined by [y]p := v — v~ for some trace  onto I'. Here, superscripts
— and + tag traces onto I from €2 and €' := R \ Q, respectively. For notational simplicity,
it is also useful to resort to the average {v}; = (v + 7). Both operators can only be
applied to functions defined in Q U Q.

As elaborated in [20, Sect. 6.2], [38, Sect. 5.5], [15, Ch. 3,Sect. 1.3.2], any Maxwell
solution in U Q' satisfies

u(x) = =W ([relr (W)(x) — 5, (w]r (W)(x), xeQuU, 3.1

where we have introduced the (electric) Maxwell single layer potential

W (1)) = R () + - grad, W (divep)(x) . x 4T, ()
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and the (electric) Maxwell double layer potential

5 () (x) = curl By (u)(x), x ¢T . (3.3)

Here, U4, and W'y are the scalar and vectorial single layer potential for the Helmholtz kernel
E.(x) := exp(ik|x|)/47|x|, whose integral representation is given by (x ¢ I")

W (6)(x) = / O En(x—y)dS(y) , W (1)(x) = / () B (x — y) dS(y)

r

_1
Both potentials ¥'s; and ¥7,; are Maxwell solutions, that is, for 4 € H, 2 (divr,T'), they
fulfill

(curlcurl —£?Id)¥%E, (u) =0 , (curlcurl —x*Id)®¥%, (u) =0, (3.4)

off the boundary I in a pointwise sense, and, globally, in Lfoc (R?). In addition, they comply
with the Silver—Miiller radiation conditions.

(From the well-known mapping properties of ¥%, and W'y it is easy to get those for ¥
and O, see e.g., [14, Sect. 3]:

THEOREM 3.3. The following mappings are continuous

5 HL (dive,T) — Hieo(curl?, QU Q) N Hioo(div 0; QU SY),
_1
O, H 2 (divp,T) — Hige(curl?, QU Q) N Hioo(div0; QU Y) .

The fact that curl o¥S; = xk ¥’ and curl o¥; = k ¥, implies

NVEWE, =, R, =4 F e, (3.5)

This means, that the following two boundary integral operators are sufficient for electromag-
netic scattering

Ski={ntro¥s, ={wlro¥py , Cu:={nlro¥p,={wlro¥s..

The continuity of S, and C, is immediate from Theorem 3.3, in conjunction with Lemma 3.2
and Theorem 2.2. . L

COROLLARY 3.4. The operators S,;,C,. : H *(divp,I') — H. *(divr,T) are con-
tinuous.

A fundamental tool for deriving boundary integral equations are jump relations describ-
ing the behavior of the potentials across I'. For the Maxwell single and double layer potential
they closely resemble those for conventional single and double layer potentials for second
order elliptic operators [36, Chapter 6]. For smooth domains these results are contained in
[20, Thm. 6.11], [38, Thm. 5.5.1], and [40].

THEOREM 3.5. The interior and exterior Dirichlet and Neumann traces of the potentials

1
WS, and W', are well defined and, on H . 2 (divr, T'), satisfy

lp o WSy = [Wwlp o ¥h, =0, [N]poW¥s, = [w]po®h, =—1d.

As auxiliary boundary integral operators, which supply building blocks for S,; and C,,
we introduce the two single layer boundary integral operators

Vi = {7}[‘ © \Iﬂ\sf , Ag = {’Yt}r © ‘I’X .
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By inspecting the potential ¥'S; , and recalling ¢ o grad = curlr o 7, it is clear that we can
write

S. = kA, + kteurlp o V,. o divp . (3.6)

It is easy to see that the bilinear form associated with S is given by

1. .
(SRM7£>T,F = E <d1VFlJ’a VnleFN>%,r -k (lJ’v AK£>T,F : (37)

Obviously, it involves two parts of different order, non of which is a compact perturbation of
the other. In recent years a very succesful approach to variational problems of this kind has
emerged, see [29, Sect .5.1], [14], and [8]. The idea is to consider the above bilinear form
separately on the components of a suitable splitting

1
2

H 2 (divp,T) := X(T)a N(T), (3.8)
_1 _1
where N'(T') = H 2 (divr0; T), and X (') € H 2 (divr, I') is a closed subspace such that
1. the splitting (3.8) is direct, that is, X (I') N N(T') = 0.
2. the splitting is stable in the sense that there is C' > 0 such that || u||H_ 1 <

2 (divp,I)
C ||divru||H ) forall Vp € X (T),

— % (F
3. the embedding X (I") — H;% (T") is compact.

By R! and Z' we denote the projectors onto X (T') and N (T"), respectively, that are associated
with the splitting (3.8). Examples of splittings satisfying these requirements are given by
the “Lf (T")-orthogonal” Hodge decomposition [10] and the “projected regular splitting” [28,
Sect. 7].

To establish a generalized Garding inequality for S,; we employ the direct splitting (3.8)
and two auxiliary lemmata, see [30, Lemma 3.2] and [12, Prop. 4.1].

LEMMA 3.6. The integral operators 0V := V. — Vo : H 2(T') — H2(T') and
A, =Ax —Ap: H;%(F) — Hé(F) are compact.

LEMMA 3.7. The operators Vg and Ag are continuous, selfadjoint with respect to the
bilinear pairings (-, -) ir and (-,-) . ., respectively, and satisfy

1
Vol o = Cluly 3, Ve HHD).,

-1
o Ao = Clnly g (0 Y€ HLF (dive(sT) .

with constants C' > 0 only depending on I'.  The main result will be a generalized Géarding
inequality for S, that involves the isomorphism

Xp =RC — 7' : H,? (divy,T) — H? (dive,T) . (3.9)
LEMMA 3.8. There is a compact bilinear form cr : H;% (divp, ') x H;% (divp, T) —
C and a constant C > 0 such that
- — 2 -3/
(S Xe) - erua) > Clul?, g Vi€ L diveaT).
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Proof. To begin with it is clear from Lemma 3.6 that we can restrict ourselves to Sg.
Then we find

<SON7 XFZ>T’F = <V0diVF RFlJ/a diV[‘ RFZ>O;1—\+H <ZFlJ/a AOZFZ>T7F +

1

K

+ (AR B, RE) 1 — (AR R, Z€) |+ (AZTp,RTE)

1
The terms in the first row on the right hand side constitute a H , 2 (divr, I')-elliptic bilinear
form, whereas the second row yields the compact perturbation cr. Remember that Sy, is
the integral operator underlying the electric field integral equation. Lemma 3.8 tells us that
1 Z1

Sk H, 2 (divp,I') — H, 2 (divr, ") is Fredholm of index 0. This will ensure surjectivity
as soon as injectivity holds. However, the very problem of instability at resonant frequencies

is due to the failure of S, to be injective for certain discrete values of k, see e.g., [15], [38] or
[14, Sect. 5.2].

4. The Combined Field Integral Equation. The combined field integral equations
arise from an indirect approach which aims to exploit that both ¥, and ¥, yield Maxwell
solutions, see (3.4). The crudest variant starts from the trial expression

e=—inPs,(¢) —¥HL(C), 4.1

with some parameter > 0. By the jump relations, taking the exterior Dirichlet trace 7t+
results in the boundary integral equation

—inSx(€) + (31d =Cx)(¢) = 7es , (4.2)

which is generically posed in H ;% (divr,T'). At least on smooth surfaces the operator Cy :
H* (divp,T)

— H ;%(din, I') is compact [38, Sect. 5.5], but a generalized strengthened Gérding in-
equality for the sum —inS, + % Id remains elusive. On top of that, on non-smooth surfaces
C, cannot be dismissed as compact perturbation.

The bottom line is that existence of solutions of (4.2) cannot be established, let alone any
theory about discrete approximations. This dire state led R. Kress to propose the introduction
of a smoothing operator into (4.1) in [33]. His analysis was set in Holder spaces and he
targeted the single layer potential ¥, because, working on smooth surfaces, he could rely
on the compactness of C.

We cannot make this assumption, but we are aware of Lemma 3.8. This means that the
Fredholm operator S, is not the problem, but it is the innocent looking identity Id in (4.2).
Therefore, Kress’ policy should be turned upside down and regularization has to be aimed at
the double layer potential ¥, .

The crucial device for regularization is a compact “smoothing operator”

_1 _1
M: H. 2(divp, ') —» H, 2 (divp,T)
that satisfies
_1
peH, *(dive,T): (Mp, ), >0 & p#0.

According to the strategy outlined above it will enter the contribution of the double layer
potential to the representation formula: we get the trial expression

e=—inPs,(¢) —¥H (M(), 4.3)
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_1
where ¢ € H, ?(divr,T'), n > 0. By (3.4), this field is a Maxwell solution in Q U €. As
above, the exterior Dirichlet trace applied to (4.3) results in the new combined field integral

equation
—inSe(¢) + (31d —C)(MC) = ey (4.4)

_1
Since it is set in H 2 (divp, '), Thm. 2.3 hints how to cast it into a variational form: find
_1 _1
¢ € H *(divp,T') such that forall p € H, ?(divp, )

—i(15x(C), )7 p + (1A =Cr)(MC), ), 1 = (% e i) 1o - 4.5)

It shares the crucial uniqueness of solutions with other combined field integral equations.
THEOREM 4.1. For all n # 0 and wave numbers k. > 0, the boundary integral equation

1
(4.5) has a unique solution ¢ € H 2 (divr,T').

_1
Proof. To demonstrate uniqueness, we assume that ¢ € H , 2 (divp, I') solves
—inSx(¢) + (3 1d—Cx)(M¢) = 0. (4.6)

It is immediate from the jump relations that e given by (4.3) is an exterior Maxwell solution
with 7;"e = 0. By their uniqueness we infer that e = 0 in €’. Appealing to the jump relations
from Theorem 3.5 once more, we find

we=-M¢ , yye=—inC.

Next, we use (2.4) and see that

_ 1
iRain<C,MC>TF:<7&e,7{e> F:/ —|curle|?dx — xle|*dx € R.
s T, ok

Necessarily, <C , M_C>7_ r = 0, so that the requirements on M imply ¢ = 0, which settles the
issue of uniqueness.

1
2

_1 _
Next, we know from Cor. 3.4 that C,; : H, 2 (divp,T') — H , 2 (divr,T") is continuous

so that (3 Id—C,) o M : H;%(divF, r)— H;%(divF, ') turns out to be compact. Even-
tually, we conclude from Lemma 3.8 that the bilinear form of (4.5) satisfies a generalized
Garding inequality. Thus, a Fredholm alternative argument gives existence of a solution from
its uniqueness.t

An simple eligible operator M can be introduced through a variational definition: for

_1
¢ e H 2(divp,I') and all g € Hyx(divp, '), M¢ € Hyx(divp,T) is to satisfy

(M¢, q)o;r + (divpr M, divrq)o;F = {(q, C)T’F Vq € Hx(divr,T) , 4.7
1
where (-, -)o.- denotes the standard LZ(T) scalar product. Obviously, M : H_ * (divp,T) —
Hy(divp,T') is a continuous linear operator. To prove injectivity, let ¢ be such that M{ = 0
_1
and let n € H_*(divr,T) be the vector verifying (n,¢). » = [I<[* _, . Due to
’ H 2 (divr,I")

Lemma 2.4, there exists a sequence {7, }seny C H x:(divp, I') converging to 1. Now choosing
1, as test function in (4.7) and passing to the limit for / — oo, we obtain { = 0. The
injectivity of M immediately implies

<MCvE>.,.,F = ||MC||§-IX(divF,F) >0 & (#0.
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In addition, M inherits compactness from the embedding Hs,(divp, ") — H ;% (divp,T),
see Lemma 2.5: it meets all requirements listed above.

The composition of the integral operator C,; and the smoothing operator M in (4.5) is not
problematic. However, it cannot be handled in the context of Galerkin discretization, which
we intend to apply; we have to find an equivalent weak form that can be discretized easily.

The usual trick to avoid operator products is to switch to a mixed formulation. Here,
this amounts to introducing the new unknown p := M(. If we use the particular smoothing
operator from (4.7), we get p € Hyx(divr,I') and may simply incorporate (4.7) into the

eventual mixed variational problem: find ¢ € H ;%(diVF, I'), p € Hx(divr,T') such that
_1
forall p € H ?(divy,T"), q € Hx(divp,I),

_”7 (SKC7IJ’>T,F + <(%Id_cﬂ)pau>T’F = <’Y:_ei,l~t>.,_’p )

. . 4.8
<q,C>T,F - (paQ)O;I‘_<dlvavd1VFq)0;I‘ = 0. “5)

The next lemma tells us that we need not worry about Id in (4.8).
LEMMA 4.2. The bilinear forms (-,-). . and [ {Cy-,-), 1 are compact as mapping

Hy(dive,T) x H,? (divp,T) v C.
—1 —1
Proof. 1tis enough tonote that (-, -) . 1 / (Cyr, ). p 2 H, 2 (dive, I)x H, 2 (divp, ') —

C are continuous and the injection Hx(divp,I') — H;%(din,I‘) is compact due to
Lemma 2.5. 0

As an immediate consequence of this result we note that the off-diagonal terms in (4.8)
represent compact bilinear forms. It remains to investigate the diagonal terms. Firstly,
(P, q)o,r + (divep, divr)y, is clearly elliptic in Hx(divr,I'), because it gives rise to
its inner product. Secondly, the other bilinear form (S.¢, i), - has been found to verify a
generalized Garding inequality, see Lemma 3.8. 7

Let us summarize what we known about the entire variational problem (4.8). For the

sake of brevity we write U := H ;% (divy,T') x Hy/(divy, I') and denote by ||-||4; its natural
graph norm. We use the symbols u, v, 10, ... for pairs of functions in . Leta : B xW — C
be the bilinear form associated with (4.8). As an immediate consequence of the preceding
considerations, it will also fulfill a generalized Géarding inequality. It can be stated using the

isomorphism
X
Xp: %W XF(“) = ( ”‘) :
q q

COROLLARY 4.3. There is a compact bilinear form ¢ : 5 x 0 — C and a constant
Cg > 0 such that

|a(Xrv,0) +¢(0,0)] > Cg o]y Yo eU.

Since we have confirmed the uniqueness of solutions of (4.8), a Fredholm alternative argu-
ment shows that @ induces an isomorphism, in particular, that the inf-sup condition
|a(u, o)

sup ———— > Cg [[ullg (4.9)
e’y ||U| p1j

holds with C's > 0 independent of u € 3.
REMARK 2. Many choices of smoothing operators M are conceivable. For the following
reasons we opted for the definition (4.7).
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First,the operator M is the inverse of — gradp divr + Id with Dirichlet boundary condi-
tions on the skeleton .. We are anxious to use the inverse of a proper differential operator,
because any non-local operator in the definition of M will be awkward to deal with in an
implementation. We also tried hard to make M local on each face of the polyhedron, which is
satisfied by the concrete choice, since surface vectorfields H s (divr,T") have no flux across
any edge in Y.

Second, we have to take great pains to ensure sufficient regularity of the solution for the
new unknown p. If in (4.7) we used H 4 (divp,T') trial and test function spaces instead of
Hyx (divr,T), then the regularity of p would be impaired, because Laplace-Beltrami singu-
larities [12, Sect 5.2.1] would sneak into p through the associated smoothing operator. We
are going to resume the discussion at the end of Sect. 6.

5. Galerkin Discretization. We equip the piecewise smooth compact two-dimensional
surface I" with an oriented triangulation I'y,. This means that all its edges are endowed with
a direction. We assume a perfect resolution of ', that is I' = K; U ... U Ky, where
Ky = {Ki,... ,Kn} is the set of mutually disjoint open cells of T'y,. Moreover, no cell
may straddle boundaries of the smooth faces I'V of I'. We will admit triangular and quadrilat-
eral cells only: for each K € K, there is a diffeomorphism ® - : K +— K, where K is the
“unit triangle” or unit square in R?, depending on the shape of K [17, Sect. 5].

This paves the way for a parametric construction of boundary elements: to begin with,
choose finite-dimensional local spaces W(K) C (C*°(K))? of polynomial vectorfields to-
gether with a dual basis of so-called local degrees of freedom (d.o.f.). Possible choices for
W(K) and related d.o.f. abound [5, Ch. 3]: we may use the classical triangular Raviart-
Thomas (RT)) elements of polynomial order p € Ny [39] that use

W(K) = {x — p1(x) + p2(x) - x, x € K, p1 € (Pp(K))?, p2 € Pp(K)} ,

where Pp(f(\' ) is the space of two-variable polynomials of total degree < p. An alterna-
tive are the triangular BDM,, elements of degree p [4], p € Ny, which rely on W(K) :=

(Pp+1 (I? ))2. In both cases, the usual d.o.f. involve certain polynomial moments of normal
components on edges, together with interior vectorial moments for p > 0. For instance, in
the case of RT, edge fluxes are the appropriate degrees of freedom:

uhGW(I?)H/uh-ﬁdS, Zedge of K .

Similar local spaces and degrees of freedom are available for the unit square.
Using the pull-back of 1-forms the local spaces can be lifted to the cells of I'y,. In terms
of vectorfields this is equivalent to the Piola transformation

(Fxh)(x) = /det(C) G~ DEE(R)u(X) , 5.1)

where G := D®(X)TD®(X), x = Pk (X), X € K. Thus, we can introduce the global
boundary element space

Wi = {p € Hy(dive,T) : px € Fx(W(EK))VE € K} . (5.2)

In practice, Wy C H «(divp,T') is ensured by a suitable choice of d.o.f. Remember that
d.o.f. have to be associated with individual edges of K or the interior of K. 1t is crucial
that the normal component of any fi;, € W(K) on any edge € of K vanishes if and only if
1, belongs to the kernel of all local d.o.f. associated with €. In light of (2.5), this ensures



12 A. Buffa and R. Hiptmair

W C H,(divp,T). In the sequel W), will designate a generic H  (divr, I')-conforming
boundary element space. It may arise from the RT), family of elements, p € Ny, the BDM,,
family, or a combination of both.

Based on the degrees of freedom we can introduce local interpolation operators 11y, :
Dom(II,) — W,,. They are projectors onto Wp, and enjoy the fundamental commuting
diagram property [5, Sect. I11.3]

divp o II}, = Qp odivy  on H «(divp, ') N Dom(I1) . 5.3)

Here, Qy, is the L?(I")-orthogonal projection onto a suitable space @, of I',-piecewise poly-
nomial discontinuous functions. It must be emphasized that the interpolation operators IIp
fail to be bounded on H 4 (divy,T"); slightly more regularity of tangential vectorfields in
Dom(IIy) is required [30, Lemma 5.1].

Next, we turn our attention to asymptotic properties of the boundary element spaces,
in particular to estimates of interpolation errors and best approximation errors. We restrict
ourselves to the h-version of boundary elements, which relies on uniformly shape-regular
families {T', }pem of triangulations of T' [19, Ch. 3,§ 3.1]. Here, H stands for a decreasing
sequence of meshwidths, and H is assumed to converge to zero.

By means of transformation to reference elements, the commuting diagram property, and
Bramble-Hilbert arguments, interpolation error estimates can easily be obtained [5, I11.3.3].

LEMMA 5.1 (Interpolation error estimate). For 0 < s < p + 1 we find constants C > 0,
depending only on the shape regularity of the meshes, s and p, such that for all p € H$ (I')N
H, (divp,T), h e H,

e = Tossll oy < CB° (sl oy + Idivessl ey )
and such that for all p € H  (divp,T'), divpp € H2 (T)

ldive (e = Tnpe)ll 2y < CRdivepelare r) -

COROLLARY 5.2. The union of all boundary element spaces Wy, h € H, is dense in
_1
H 2 (divp,T).
A particular variant of the above interpolation error estimate addresses vector fields with
discrete surface divergence, cf. [30, Lemma 6.2].
LEMMA 5.3. Ifp € H ('), 0 < s < 1, and divpp € Qp, then

Jie = Uapal ey < Ol r -

where the constant C > 0 only depends on the shape-regularity of the meshes and the poly-
nomial degree p.

(From the interpolation error estimates we instantly get best approximation estimates in
terms of the H  (divp, I')-norm. Yet, what we actually need is a result about approximation

in the “energy norm” |- ||H,% v of the form
« 2 (divr,

. . S+l

lﬁlif I thH;%(divr,F) <O “”HHSX (dive,I) 54
The estimate in H 4 (divp, ') does not directly provide (5.4). The question of obtaining
(5.4) has been addressed in [8, Sect. 4.4.2], and the idea is to use the duality argument face

by face (which are seen as regular open manifolds), relying on the continuity of the normal
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components of vector-fields in H « (divr,I'). At the end of a technical procedure we obtain
the following result [8, Thm. 4.9]

_1
THEOREM 5.4. Let Py, : H, ?(divr,I') — Wy, be the orthogonal projection with
1
respect to the H  ? (divr, I") inner product. Then, for any —% < s <p+1wehave

1 .
[ — PhH”H < Chte ||H||H-~'X (dive,r)  VHE H (divr,T) . (5.5)

1

» 2 (divp,I)
This theorem tells us that we can expect good approximation properties, much better than
the estimates for the local interpolation error.

_1
Based on the boundary element spaces YW}, which are contained in both H | * (divr,I")
and H , (divp, "), we pursue a standard discretization of (4.8). Writing 0, = W), X W,
we end up with the discrete problem

- e
Find up, € By, : a(up,vp) = << tO ),Uh> Yoy €0, (5.6)
T,

We aim at establishing a uniform discrete inf-sup-condition of the form: there exists
Cp > 0 such that

la(up, vp)|

sup > Cp |unllyg Vup € Bp, he H. (5.7)
v, €0, ||Uh||%
According to [43] this guarantees existence of discrete solutions uy, := (¢, Pn) € By of

(5.6) and translates into their quasi-optimal behavior:

u—upllgg <Cp'Ca inf |Ju—vpllyy VhEH, (5.8)
v, €0,

h

where C; > 0 is the operator norm of a(-,-). We follow lines of reasoning laid out in
[8, 14,30]. As a first step towards a discrete inf-sup condition (5.7), we have to find a suitable
candidate for v in (4.9). To that end, introduce the operator T : 2 +— 0 through

a(v, Tw) =¢(w,0) VoW weW,

where ¢ is the compact bilinear form specified in Cor. 4.3. Owing to (4.9) this is a valid
definition of a compact operator T. It is immediate from (4.9) and Lemma 3.8 that

l@(ro, (Xp + T)10)| = [a@(r0, Xpiv) + cr (0, 10)] > C ||w]|5 (5.9)
for all v € 2W;. Consequently, the choice v := (Xp + T)to will make (4.9) hold with
Cs = Cqg.

Let wy, € U, and v := (Xp + T)wy. In general, v ¢ 2}, so that we have to use a
projection. Write Py, : Hx(divp, ") — W), for the H « (divr, I')-orthogonal projection and

introduce
Py W, P(“) = (Ph“> .
q Prq

Then a promising candidate for the discrete inf-sup condition is the vector vy, := Ppo =
(PpXr + P, T)tvp. The triangle inequality

la(ron, on)| > [a(rop, v)| — Cp|[ron|w[lo — valls (5.10)
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shows what is needed. Firstly, |[(I — Py)Tropl|es — O uniformly for all w;, € 2, since
the composition of pointwise convergent and compact operators gives uniform convergence
in operator norms [34, Cor. 10.4]. Secondly, it is important to note that Xp leaves the divy of
its argument function invariant, which means that the first component of Xrtvy has a surface
divergence in a space of ['-piecewise polynomials. This enables us to invoke Lemma 5.3
and we obtain, see [14, Section 4.2],

(I = Pr)Xrtopllas < [|(Id —TTp)Xepag || g2y < ChY? diveXepnll ;-3 1y
where p;, € Wy, stands for the first component of toy,.

Using these estimates in (5.10), and recalling that, by definition of v, |a(wp,v)| >
Cc||vop |35, we easily deduce the following theorem:

THEOREM 5.5. There is a h* > 0, depending on the parameters of the continuous
problem and the shape-regularity of the triangulation, such that a unique solution u;, € 0},
of the discretized problem (5.6) exists, provided that h < h.. It supplies an asymptotically
optimal approximation to the continuous solution u = (¢, p) of (4.8) in the sense of (5.8).

After choosing a local basis of Wy, we end up with a linear system of equations of the

form
inS iB-C ¢\ (8
7)) - () 1

Here S and C' will be dense square matrices arising from the discretized boundary integral
operators S,; and C,. The sparse, skew-symmetric matrix B is related to (-, -) o whereas
the s.p.d. matrix D corresponds to the Hs;(divr, I')-inner product. The other symbols have
obvious meanings.

Note that D is even block-diagonal with one sparse block foreach faceI';, j = 1,... , P.
Using advanced sparse Cholesky factorization techniques, it may be feasible to compute the
application of D~! to a vector directly. Then we face the linear system of equations

(inS+ (3B-C)D'BT)(=g. (5.12)
It can only be solved iteratively, because the matrix D1 is not available. Besides, iterative
solvers allow the use of fast summation techniques (multipole, 2-matrices) for the approxi-
mate application of S and C' to a vector.

REMARK 3. Of course, ¢ and p can be approximated in completely different boundary
element spaces, as long as these are contained in H  (divp,T). The analysis can immedi-
ately be extended to this case.

REMARK 4. The iterative solution of (5.12) (e.g. by means of GMRES) requires a
preconditioner, because the principal part of the related boundary integral operator is given
by Sk. As pointed out in [18] the condition number of S will deteriorate on fine meshes. Yet,
the fact that S is related to the principal part also means that preconditioning only needs to
target this matrix, which is the same matrix as in the Galerkin-discretization of the electric
field integral equation. An elaborate preconditioning strategy has been devised in [18].

Yet, if K is close to a resonant frequency, S will become nearly singular and precondi-
tioning might suffer. This requires further investigation, which is beyond the scope of this
paper.

REMARK 5. The choice of i is another issue, which has eluded theory so far. It is clear
that n has a major impact on the spectral properties of the final linear system (5.12), but it is
not clear how to choose 1 to achieve good properties of the discrete problem. This situation



Coercive CFIE in Electromagnetics 15

is commonly faced with CFIE approaches. Some investigations in the case of 2D acoustic
scattering can be found in [24, Sect. 2.4.1].

REMARK 6. For reasons explained in Remark 2, we have decided to use a localized
version of M. One could argue that localization could be carried further by considering
split faces. Of course, the theory will cover this, but it is important to keep in mind that the
result of Thm. 5.5 is asymptotic in nature. The choice of M will affect the threshold h* and
it may well be that certain choices of M will delay the onset of asymptotic convergence until
unreasonably fine meshes. We acknowledge that this might also be true for our choice of M.

6. Convergence Estimates. In light of the asymptotic quasi-optimality of the conform-
ing Galerkin solutions expressed in Thm. 5.5, we have to investigate how well the solution
(¢, p) of (4.8) can be approximated in 2. This entails knowledge about the regularity of
both ¢ and p.

Thanks to the localization of M onto the faces of I, studying the smoothness of p can
chiefly rely on two-dimensional considerations.

LEMMA 6.1. For a Lipschitz domain w C R? we denote by o the maximum regularity
exponent for the Laplace problem with Dirichlet or Neumann boundary conditions, i.e., if
Au € H 1(w) and u verifies either Dirichlet or Neumann homogeneous boundary condi-
tion, then u € H*T(w).

Let f € (H°(w))? and curlop f € (H(w))% o > 0. If p € Ho(div;w) satisfies

(div p, div V)O;w + <va)0;w = (f,v)o;w Vv € Hy(div;w) ,

then p € H™™M®o 1} () and divp € H™ir{etli+o} (),

Proof. Tt goes without saying that p is well defined. The main tool for the proof of the
asserted regularity properties will be LZ(w)—orthogonal Helmholtz decompositions, see [25,
Ch. 1],

L?(w) = curlyp Hy (w) @ grad H' (w) ,
Hy(div;w) = curlyp H} (w) @ grad Hy(A,w) ,

where

Ho(A,w) :={¢ € H'(w): Ay € L*(w), g—ﬁ =0ondw}.

Accordingly, we decompose
p =curlbp i +gradys , f =curlep ¢ + gradgs ,
with 1, 1 € H}(w), p2 € Ho(A,w), ¢po € H(w). A closer scrutiny reveals that
curlop curlap ¢ = —A¢y = curlopf € Ho(w) = ¢1 € Fmin{l+a24o} (w)

because of the 1 + a-regularity of the Laplacian. Testing with curlap v, v € H}(w), in the
definition of p, we immediately see that 1 = ¢;.
For vy € Ho(A,w) we deduce from the variational equation that

(div p,divgradva),,, + (p,gradva),,,, = (f,gradvs),,, -
After integrating by parts, this means

(divp, Ave — VQ)O;w = (f, grad VQ)O;w . 6.1)
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Now, consider ¢ € H'(w), solving
(grad ¢, gradv),., + (¢, V), = (f,gradv),,, Vv e HY(w) . (6.2

The regularity assumption implies that ¢ € H™ir{1+e14o} () We can pick v € Hy(A,w)
in this equation, carry out integration by parts, and subtract the result from (6.1). We end up
with

(divp— ¢, —Av + V)o;w =0.

Since, (—A+1d)(Ho(A,w)) = L?(w), we infer div p = ¢, i.e., divp € H™in{l+al+o} (),
0

We point out that for a polygon w the exponent « is directly related to the angles 6;,
i=1,...,n.atits corners:

a=min{l,7/0;,i=1,... ,n.} > %

This lemma can instantly be applied to all the smooth faces of I" and supplies lifting properties
of M, because there is no coupling between the faces.

COROLLARY 6.2. If p € HY(divp,T), o > 0, then Mp € H™™*7+ 1 (divp T),
where « is the minimum of the Api/Aneu-regularity exponents on the flat faces 'y, j =
1,...,P.

Assume that { € H;%(divF, I') is the unique solution of (4.5) and denote by e €
H 10C(cur12, QU Q') the Maxwell solution according to (4.3):

e=—inPs,(¢) — PhH,(M]) .

To study the regularity it is essential to recall that by the jump relations
we=-M{—-g , yye=in¢—h, (6.3)

where we wrote h := ve € H ;% (divr, T') for the exterior Neumann data of the scattered
field. As g := 7; e; is the tangential trace of an incident wave, it will belong to H% (divy,T")
for all s > 0. Additional information can only be gleaned from lifting properties of the
Maxwell operator. Its regularity theory, elaborated in [22], justifies the following assumption.
ASSUMPTION 6.2.1. There are two regularity indices 0=, 07 > % such that
1. any fieldu € H(curl® Q) solving

curlcurlu — graddivu — k’u=f nQ Yyu=0 or yyu=20,
belongs to H? (curl, Q) forall o < o, iff € H°~1(Q).
2. any fieldu € Hyoo(curl?, Q) satisfying the radiation condition and

curlcurlu — graddivu — k’u=f inQ , ~u=0 or 71‘{’,u=0,

lies in HY, .(curl, Q) forallo < o™, iff € HO=1(Y).

Owing to the trace theorem Thm. 2.6, this assumption implies h € H (j_% (divp, ).
Then we can resort to a “boostrap argument”.

Step 1. We remember a result by M. Costabel [21] confirming the existence of a constant
¢ > 0 that only depends on € such that for all u € H (div; Q) N H(curl; )

H'YEUHLQ(F) <c {H’Yt_uHIﬂ(r) + [[ullp2(q) + l[eurlul g2 o) + ||diVu||L2(Q)} » (6.4

H“Y(tu(F) <c {H’YJUHLQ(F) + [[ull g2 () + lleurlul| 2 o) + [|div u||L2(Q)} - (6.5)
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Since, e is a Maxwell solution in € these estimates combined with Thm. 3.3 give

H'Y]:/'EHLz(F) < C {H'Y; CurleHL2(F) + K:Q ||e||L2(Q) + ||Curle||L2(Q)}

< O averi el ey + 160 3 gy + M gy}

Similarly, we can use (6.4) and get
Hdivlﬂ'y;,eHLQ(F) =2 H'y;eHLQ(F) <C {H'Yt—eHm(r) + ||Curle||L2(Q) + ||e||L2(Q)}
<0 el + 160y 3 gy * MGl 0y}

The generic constants C' > 0 may depend on €2, k, and 7. The combined estimate reads

><

H%:feHHx(divr,r) <C {HW_QHHX(divF,F) + HCHHX%(diVnF)} )

which means yye € H (divp,T').

Step 2. Next, from (6.3) we infer ¢ € H « (divr,I"). Now, we can apply Cor. 6.2, get
M¢ e H™ ™ (divp, T), and (6.3) gives us v e € H™™ ) (divy, T)). Now, since e is
a Maxwell solution verifying v, e € Hmin{l’a} (divr,T), using Theorem 2.6 and Ass. 6.2.1,

11
we have that e, curle € H™ ™7 1 (curl, Q), i.e. yye € Hmm{a 2’z}(divr,l“).

o —1ot-11 .

Step 3. Finally, we can conclude that { € Hmm{ A }(dIVr‘, I'). On a polyhe-

dron we can take for granted that either 0~ < 1 or o+ < 1. This gives us

¢ e HM o  (givn 1)

Besides, we have already seen that p = M¢ € H‘:i“{a’l} (divp, T).
Now we can employ the best approximation estimates for divp-conforming elements
from Lemma 5.1 and Theorem 5.4, and get quantitative asymptotic convergence estimates.
THEOREM 6.3. If we rely on H « (divr, ')-conforming boundary elements for the dis-
cretization of both { and p we are guaranteed to get

1€ = Call -3 gy T 1P = Prllar aivery = < O(pmintrTioT} y pmin{atly

divp,I’
with a constant C' > 0 independent of the meshwidth h.

REMARK 7. Since we are solving an indirect boundary integral equations, there is no
surprise in the fact that the convergence is limited by singularities of both interior and exterior
Maxwell problem. On the other hand, the main observation here is that one can always
have o« > 1 since it is enough to split non-convex faces into convex ones. Thus, the rate of
convergence is not affected by the introduction of the auxiliary unknown p, i.e., p is always
much more regular than the primal unknown ¢.

REMARK 8. The above estimate relies on global regularity of the exact solutions. How-
ever, we know that ¢ is a combination of traces of Maxwell solutions. Besides, p emerges as
patched-together solutions of Dirichlet boundary value problems for Ar on the flat faces. In
both cases results on singularities of solutions of boundary value problems on non-smooth
domains reveal much detail about the behavior of { and p close to edges and corners. We can
make use of this knowledge in order to obtain significantly faster convergence on meshes that
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feature algebraically graded refinement towards the edges of " [2, 11]. In this case, making
use again of the regularity of p, one might need only to “resolve” the singularities of ¢ by
mesh grading. The use of different meshes, on which ¢ and p are approximated, seems to be
advisable in this case, cf. Remark 3.
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