AN ADAPTIVE MESH-REFINING ALGORITHM
ALLOWING FOR AN H!'-STABLE L>-PROJECTION
ONTO COURANT FINITE ELEMENT SPACES

CARSTEN CARSTENSEN

ABSTRACT. Suppose S*(7) C H'(Q) is the P;-finite element space
of T-piecewise affine functions based on a regular triangulation 7
of a two-dimensional surface Q into triangles. The L2-projection
IT onto S*(7) is H'-stable if ||[TIv|| g1 (q) < C'||v]|m1(q) for all v in
the Sobolev space H'(Q2) and if the bound C' does not depend on
the mesh-size in 7 or the dimension of (7).

A red-green-blue refining adaptive algorithm is designed which
refines a coarse mesh 7y successively such that each triangle is
divided into 1, 2, 3, or 4 sub-triangles. This is newest vertex
bisection supplemented with possible red-refinements based on a
careful initialisation. The resulting finite element space allows
for an H'-stable L?-projection. The stability bound C' depends
only on the coarse mesh 7p through the number of unknowns,
the shapes of the triangles in 75, and possible Dirichlet bound-
ary conditions. Our arguments also provide a discrete version
lh7 o]l L2y < C |lh7 vllz2() in L2-norms weighted with the
mesh-size hy.

1. INTRODUCTION

This paper concerns triangulations of a two-dimensional compact
polyhedral manifold €2 into triangles, i.e., T is a set of closed triangles
T in Q C R* with

uT =Q cc R

The triangulations are regular in the sense of Ciarlet, i.e., each non-
void intersection of two distinct triangles is either a joint vertex or a
common edge of both triangles.

Each triangulation 7 induces a finite element space S*(T), the T-
piecewise affine and globally continuous functions,

SHT):={veC’Q): VT € T, v|r affine }.
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Given a coarse regular triangulation 7y, an adaptive algorithm gener-
ates a sequence of triangulations by red-green-blue refinement which
divides each triangle into 1, 2, 3, or 4 sub-triangles as illustrated in
Figure 1, 2, and 3. The concept and refinement of a reference edge,
made precise in Section 2, essentially avoid degeneracies, e.g., main-
tain the minimum angle condition. In this paper, it also avoids over-
refinements.

T

T
T ¢ T3

Fig. 1: Red-refinement of a triangle 7" into 717, ..., Ty; thick edges
indicate old and new reference edges.

T Ty 15

Fig. 2: Green-refinement of a triangle 7" into 7} and T5%; thick edges
indicate old and new reference edges.

T T T
1 T 8 3
Fig. 3: The two possible blue-refinements of a triangle 7" into
T1,Ts, T3; thick edges indicate old and new reference edges. Each
blue-refinement consists of two consecutive green-refinement steps.

In the literature we find a priori [CT87, Car01] and a posteriori
[BPSO01, Ste01] conditions on the decay of the mesh-size in terms of
a distance of two elements which are sufficient for the H!-stability of
II. The observation [Car01] that the red-green-blue refinement strat-
egy controls over-refinements motivated this paper. We design Algo-
rithm 2.1 and 2.2 which steer the selection of reference edges in the
coarse triangulation 7y and in any red-green-blue refinement step. The
main purpose of Algorithm 2.1 and 2.2 is that any induced finite ele-
ment space allows for a stable L?-projection. The two algorithms do
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not bisect the longest edge (cf., e.g., [Riv84] for details on this alterna-
tive); instead we follow the newest-vertex bisection supplemented with
possible red-refinement steps (cf. Figure 1, 2, and 3).

Let & (resp. &) denote the edges in Ty (resp. 7) and let Ep C
&y denote the (possibly empty) set of edges on the (possibly empty)
Dirichlet boundary I'p = UEp. Set

Hp(Q) = {ve %) :VT € Ty,v|r € H(T) and v|r, = 0},
Sp(T) = {ve HLQ):VT € T,v|r affine}.

Let V denote the 7y-piecewise two-dimensional gradient. Then, the
formula

”VU”i?(Q) + ”UH%Q(Q) = ”Uqul(Q)

defines the norm in the Sobolev space H'(€). Our main result asserts
the H'-stability of the L2-projection

I L2(Q) — L*(Q)

onto the finite element space Sk (7).

Theorem 1. Let Ty be a reqular triangulation of the bounded two-
dimensional piecewise planar Lipschitz manifold Q C R™. Let T be a
red-green-blue refinement of Ty generated by Algorithm 2.1 and L steps
of Algorithm 2.2. Then, for any v € H}(2), we have Iv € Sh(Q2) with

IVITv|| 20y < T [Vl ra) and [|h7 vl pae) < [TI[|{IA7 vllc2(e)-

The bound ||I1|| for the L?-projection I onto SL(T) depends on Ty and
T'p but is independent of L or card(T).

The remaining part of the paper is organised as follows. Section 2
introduces the concepts of regular triangulations, red-green-blue refine-
ments, reference edges, and the two algorithms of Theorem 1. The key
result of Proposition 3.1 in Section 3 bounds the decay of refinement
levels of three connected elements in the class of triangulations under
consideration. This is the basis of Proposition 4.1 in Section 4 which
then defines a quantity d, for each node 2 € N. Neighbouring nodes
a and b satisfy d,/d, < v/8 and d, is equivalent to mesh-sizes of ele-
ments with vertex z. These properties permit a proof of Theorem 1 in
Section 5 with the theory of [Car01] based on [Ste01, BPS01].
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2. ADAPTIVELY REFINED TRIANGULATIONS

The piecewise planar Lipschitz surface €2 is a connected and closed
two-dimensional manifold decomposed by a coarse triangulation 7g:
Each T € 7T is a closed triangle in R", i.e., the convex hull of the three
vertices, called nodes, and has a positive two-dimensional measure |T'|.

Definition 2.1. A triangulation 7 of Q is regular if two distinct trian-
gles T} and Ty in T are either disjoint, 73 NT, = (, or share exactly one
node z € R*, Ty N Ty = {z}, or share exactly one edge E = conv{a, b},
Ty NTy = E, that combines two vertices a, b of both, T} and T5.

In particular, each vertex of some triangle in a regular triangulation
intersects with other triangles at precisely one of their vertices (hanging
nodes are not allowed cf., e.g., [BS94, CiaT78]).

Definition 2.2. Given a regular triangulation 7, let N denote the
nodes in T (i.e., the set of all possible vertices of triangles in 7") and
let £ denote the edges (i.e., the set of all possible edges E of triangles
in 7).

A fundamental concept within the green- and blue-refinements is the
reference edge of an element [Bdn91, Mic89, Mau95, AMP00].

Definition 2.3. For each element K in the coarse triangulation 7y, let
E(K) € & denote one of the three edges, called the reference edge of
K. An element T € 7y is called isolated if the reference edge E(T) is
shared with another element K € 7y, E(T) =T N K, with a different
reference edge E(K) # E(T).

Remark 2.1. In the literature on element bisection, a reference edge
is often called marked edge. In this paper, however, we introduced
the word reference to distinguish between marked objects (elements
or edges) which will currently be refined in the mesh-generation step
at hand and those which mark an object to steer the refinement rules
which may or may not be executed within the design of forthcoming
meshes.

The following algorithm generates the reference edges of a given
coarse triangulation in a proper way, i.e., two distinct isolated elements
do not share an edge.

Algorithm 2.1 (Define reference edges for the coarse triangulation).
Input is a coarse triangulation 75. Set 7 :=7; and j := 0.
Repeat

Choose T € TUW and look for K € TW with TNK =

E € &.

If such K € TU) exist,
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choose one of them and set E(T):=TNK =: B(K).
Set TUH) .= TUN{T K} and j:=j+1.
(Note that neither 7T nor K is isolated.)
If no such K exists,
choose some edge E of T and set E(T):=FE,
TUH) .= TUN{T}, and j:=j+ 1.
Until 7O =0.
Output is E(T) for all T € 7.

Proposition 2.1. (a) Algorithm 2.1 is feasible in the sense that it
defines one reference edge E(T) for each triangle T in Ty in at most
card(7y) steps.

(b) Two distinct isolated elements in Ty cannot share an edge.

Proof. The part (a) follows from the fact that 70U+ equals TV re-
duced by one ore two elements and so stops after at most card(7p)
steps. Suppose that (b) is wrong, i.e., assume K and T share an edge
and their (distinct) reference edges are defined in step k and ¢ of Algo-
rithm 2.1. We have k£ # ¢ as K and T are distinct and isolated. Also
k < ¢ is impossible as then T, K € T®) = T U{K} but TNK € &
and so this situation cannot arise. The same arguments prohibit ¢ < k
as well. This concludes the proof. O

The red-green-blue refinements divide a triangle 7" with reference
edge E(T) into 1,2,3, or 4 sub-triangles and define their reference
edges. Besides no refinement (i.e., T+ T') there are the three rules of
Figure 1, 2, and 3.

Example 2.1 (red). A triangle T" is decomposed into 4 congruent scal-
ed copies T4, T5, T3, Ty of it such that the edges’ midpoints are the new
nodes. The mapping T +— (T4, T3, T3, Ty) is called red-refinement. The
old and new reference edges are depicted in Figure 1.

Example 2.2 (green). A triangle T is halved along its reference edge
E(T). The green-refinement T+ (77, T3) is depicted in Figure 2 with
the old and new reference edges.

Example 2.3 (blue). Two successive green-refinements of a triangle 7'
describe one blue-refinement T' — (77, T, T3) depicted with reference
edge in Figure 3. Notice that either of the two non-reference edges of
T could be refined and hence the two resulting variants are shown.

In each step of our adaptive mesh-refining algorithm, we are given a
set of edges &(;) which will be refined.
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Algorithm 2.2 (Adaptive mesh-refining). Input is the coarse triangu-
lation Ty with reference edges E(T'), T' € Ty, from Algorithm 2.1.
Set T .= To) and j:=0.
Repeat
Select a set of edges &(;) such that each triangle

T €7T; with edge E € &) satisfies E(T) € &).
Perform red-green-blue or no refinement of T € 7(;
with edges El,EQ,Eg such that {El,Ez,E:g} N 80)
are halved.
Set new triangulation 7(;;;) with new set of
reference edges (E(T):T € Tj;1)) and j:=j+ 1.
Until & = 0.
Output is triangulation 7 = 7(j).

Example 2.4. In each step of Algorithm 2.2 we are given a set &;) of
edges which will be refined. This set is frequently defined by element-
oriented refinement indicators [Ver96]. For instance, if M; is a set of
marked elements in 7;), we may set

S((J(.])) = {Eedgeof T:T € M} and, for k=0,1,2,...,
EST = {B(T): 3T € T with edge in £} UL
The increasing sequence 5((;.])) C 8((].1)) C .-+ C &) will become constant

&Gy = 58.6)) for sufficiently large k. Then, Algorithm 2.2 red-refines each
T in M;) and red-green-blue refines further elements. It satisfies the
condition that each T' € M;y with edge E € ;) satisfies E(T') € &
and so avoids hanging nodes.

The output of Algorithm 2.2 has some particular properties.

Proposition 2.2. (a) Algorithm 2.2 generates a regular triangulation
T which is a refinement of Ty.
(b) For each T € T there exists exactly one K € To with T C K.
(¢) Each K € Ty with reference edge E(K) uniquely defines an affine
map ® : K — Tyes onto the reference triangle Tyes = conv{(0,0), (0,1),
(1,0)} by ®(E(K)) = conv{(0,1),(1,0)} and detD® > 0. The trian-
gulation

Tx ={®(T): TeT,TCK} of K
consists of right isosceles triangles. (A right isosceles triangle results
from a square halved along a diagonal.)

Proof. By mathematical induction on j in Algorithm 2.2. In (c) we use
that any red-green-blue refinement of a right isosceles triangle results
into right isosceles triangles. U
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Remark 2.2. Some bisection algorithms in the literature are based on
successive refinements in order to guarantee that at least the reference
edge of each refined element is bisected. This is occasionally called
closure algorithm. Algorithm 2.2 assumes this implicitly in the first
two lines of the repeat loop through a selection of £;) such that each
triangle T' € 7(;) with edge E € &;) satisfies E(T) € &;). Given any
set £(j,0) of marked edges in the current triangulation (e.g. selected
by refinement indicators), &£ o) is successively enlarged eventually to
obtain &(;) with the required property. This functions as a closure
algorithm to guarantee a regular triangulation.

Remark 2.3. The selection of a reference edge by Algorithm 2.1 seems
to be new. The condition in this paper that isolated elements are not
neighbours (via a shared edge) is less restrictive than that of no isolated
triangles at all (in the triangulation). The later condition is that all

triangles are compatibly divisible and employed to maintain regularity
[Mic89, Algorithm 2.1].

We conclude Section 2 on adapted meshes with a comparison to
another red-green-blue refinement algorithm which differs by another
choice of the reference edges, namely by the longest edge strategy.

Example 2.5. Figure 4 shows 6 configurations to illustrate the differ-
ence of two possible refinement algorithms. The left column depicts
three triangulations of the triangle (A, B,C) while the right column
displays the affine image of the left; A, B, C' is mapped onto A', B',C’
etc. Let us start with the first row. The triangle A, B, C is special in
that the length |AB| of the edge AB := conv{A, B} is smaller then
|AC| = |BC|. Suppose AC = E(A, B,C) is the reference edge in all
algorithms. The affine image reflects this in that A'C’ is the diag-
onal of the reference triangle. Any red-refinement of (A4, B, C') would
yield 4 congruent smaller configurations which essentially coincide with
(A, B,C), so let us look at one green-refinement. The reference edge
AC is divided at D and we obtain the first picture in Figure 4. The
triangle (A, B, C) is special in that |AB| = |DB|. Hence the longest
edge strategy may choose either the reference edge BD or the reference
edge AB, while our strategy insists on AB. A different scaling of the
vertical axis changes the reference choice: If we enlarge the distance
of C onto AB, |AB| < |BD| and the longest edge strategy uniquely
chooses the reference edge |BD|. A green- resp. red-refinement in the
two triangles of the top figures results in the situation of the middle
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C Al
D D'
A B B’ C’
C Al
G
D F D'
E G'
A B B’ F C'
C Al
D D'
HI
A H B B’ C’

Fig. 4: One green-refinement of a triangle (A, B,C)
(top) followed by one of (A, B, D) with respect to ref-
erence edge BD (middle) or AB (bottom). The right
column displays the affine image onto the reference tri-
angle (A’, B',C"). Algorithm 2.2 avoids the middle con-
figuration by E(A, B, D) = AB.
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pictures. We see clearly that A’E’ does not yield right isosceles trian-
gles in the affine image on the right. If, conversely, the distance of C'
to AB is smaller than in Figure 4, |BD| < |AB| and in both reference
choices we have E(A, B,D) = AB. A green-refinement in (A, B, D)
leads to the bottom pictures of Figure 4. The point is that the affine
image consists of right isosceles triangles.

Remark 2.4. The example clearly illustrates, firstly, our red-green-blue
refining algorithm is different to the usually proposed longest-edge
strategy; secondly, the latter algorithm does, in general, not lead to
affine images of triangulations into right isosceles triangles, whereas
Algorithm 2.2 does; thirdly, the number of different angles in the tri-
angulation generated for the longest-edge strategy is, in general, larger
than (or at least equal) in Algorithm 2.2.

3. MESH-SIZE DECAY IN ADAPTED TRIANGULATIONS

Throughout this section, we consider a regular triangulation 7 of €
obtained by Algorithm 2.1 and 2.2.

Definition 3.1 (Distance of Nodes). Given two distinct nodes a and
bin N let 6(a,b) be the smallest integer J such that J elements 77, T,
RN T_] € Texist with a € Tl,TlmTz 7£ @,T20T3 7£ @, c. ,Tj,lﬂTJ 7£ @
and b € Ty; set §(z,2) = 0 for each z € N.

Remark 3.1. (N, §) is a metric space.

Definition 3.2 (Level of Refinement). For each T' € T we define ¢(T")
> 0 through the macro element K € 7y with 7' C K by

U(T) := logy v/ |K|/|T|
where |T'| denotes the area of an element 7.

Remark 3.2. By mathematical induction, we infer

UT) € {0,1/2,1,3/2,2,...}.

The subsequent decay estimate is the key observation for the stability
proof.

Proposition 3.1. Suppose a,b € N\Ny, 6(a,b) <1,aeT,be K for
T,K € T. Then,

[6(T) — £(K)| < 3.
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Proof. Before we immerse ourselves in the most complicated configu-
rations possible in T, we stress the setting and the difficulty of this
proof. Proposition 2.2.(c) guides us to consider right isosceles triangles
which share one vertex z. There exists only a finite number of shapes
of such patches w, = U{T € T : z € T} and Figure 6 shows one of
those. The assertion gives a useful estimate of different mesh-sizes (rel-
ative to macro elements) of two elements in two overlapping patches.
The patch @, of Figure 6 is extremal in the sense that |T4|/|T1| = 8 is
the maximal quotient of the area for two elements of one patch. The
proposition asserts that 7" and K allow such estimates for one element
M € T with a,b € M, namely,

|K|/|IM| <8 and [M|/|T]<8.

In the simplest configuration, all three elements 7', M, K belong to the
same macro element K. Then

UT) = UK) = logy v/|Kol/|T| —logy /| Kol/| K|

= 1/2logy(|K|/|T|) < 1/2log, 64 = 3.

This is the idea of the proposition. The difficulty is that all three
elements may belong to different macro elements and with possibly
quite different areas. Nevertheless, Algorithms 2.1 and 2.2 provide
sufficient structural uniformity to maintain the above estimate in any
possible situation.

After the introduction to the simplest configuration, we consider the
most complicated configuration. For simpler situations several steps
below are redundant. It can indeed happen that T' C Ty and K C K,
belong to two distinct macro elements Ty and Ky in 7y and that edge
E € & between a and b does neither belong to Ty nor to K,. Since
neither a nor b are nodes in the coarse triangulation 7,, then a and
b belong to the boundary of another macro element M, € 7, with
a € MgNTy € & and b € My N Ky € &. Let us map M, to the
reference element as in Proposition 2.2. For the node a (resp. b) we
precede as follows. If a (resp. b) belongs to the reference edge of both
My and Ty (resp. My and Kj) or if it belongs to neither of the two, we
map Ty (resp. Kj) to the reference element and translate and rotate
the image such that it fits to the corresponding edge of T;.; to which
a (resp. b) is mapped by the first mapping. In case that a (resp. b)
belongs to the reference edge of My but not to that of Ty (resp. Kp)
we scale the picture of the map onto Ty.s by a factor /2 and then
translate and rotate to fit the two images of the edge My N Ty (resp.
KyNTyp). In the remaining case, a (resp. b) does belong to the reference
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Ty 15

17
T6

Fig 6: Extremal patch @, within a triangulation into right isosceles
triangles.

edge of Ty (resp. Kj) but does not belong to the reference edge of Mj.
Then we scale the affine image of Tj (resp. K;) by a factor 1/4/2 and
rotate and translate it to fit the two images of the edge My N T} (resp.
Ko N Ty). The resulting macro element configuration is of the form
shown in Figure 7 (we neglected some variants which are symmetric to
one of the displayed forms).

Because of Proposition 2.1.(b), the configurations of Figure 8 cannot
arise: In all cases shown, the reference edges of Ty and M, as well as of
My and K, do not coincide and so two neighbouring macro elements
are isolated. In conclusion, at least two of the three triangles shown
in the configurations of Figure 7 are congruent. Let us denote the
image of Ky, My, and Ty under the 7y-piecewise affine mapping, that
are possibly among the configurations of Figure 7, by Ko, My, and Ty,
respectively. Then

Kol /| To| < 2.

Owing to Proposition 2.2, the image of T|(MouK0UT0) onto KoU MyUT,
yields a triangulation T of K, U My U Ty into right isosceles triangles.
Within the triangulation 7, the patch of the node z := & (resp. z := b)
consists of at most 8 triangles (at most 4 if z belongs to an edge on the
relative boundary 92 of Q). Figure 6 shows such an example.

The patch @, of Figure 6 is extremal in the sense that for two trian-
gles T' and K in this patch we have

|K|/IT| <8
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AN N

Fig. 7: Some possible Tg-piecewise affine images Ky,
Mg, TO of three neighbouring macro elements Kg, My, Tg
in the proof of Proposition 3.1. Other variants are ob-
tained by reflection along the main diagonal.

NS

Fig. 8: Impossible Tg-piecewise affine images Ky, Mo, Tp
of three neighbouring macro elements Ky, My, Ty in the
proof of Proposition 3.1. The three configurations are
avoided by Algorithm 2.1.

and equality is possible, e.g., |T5|/|T1|] = 8. However, for any other
patch (i.e., different from a scaled and rotated version of @,) we have

[K|/[T] < 4.
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The images K and T of K and T belong to overlapping patches @, and
Op, 0(a,b) = 1. With any element M in their intersection, we deduce

|K|/|M| < 8 and |M|/|T| < 8.

Since two patches of the form of Figure 6 but of different size cannot
be overlapping neighbours, we have that only one equality is possible
and the other inequality can be replaced by < 4. Thus,

|K|/|T) = |K|/|M| |M|/|IT| <8 4=32.
Recall the above estimate |TO| /| [~('0| < 2 to conclude
Tl /IT| 1K/ | Kol < 64.

Moreover, Ty and T (resp. K, and K) are images of the same affine
map and so their quotient of areas is preserved,

Tol/|IT| = |To/|T) (resp. |K|/|Ko| = |K]|/|Kol).
Therefore, we have

UT) — UK) = logy/|To|/IT| |K|/|Ko|

— log, \/ITol/IT| 1K /||

< log, V64 = 3.
This concludes the proof (as K and T play symmetric roles in Propo-
sition 3.1 and so can be interchanged). O

4. TWO BASIC ESTIMATES

With the decay estimate of Proposition 3.1 we can define an auxiliary
nodal value d, introduced in [Car01].

Definition 4.1. For each node z € N we define

d, = 51111%_1 23/20@T)—UT) where 6(2,T) := min{d(z,z): = € NNT}.
S

Proposition 4.1. (a) For a,b € N with §(a,b) = 1 we have
do/dy < V8.

(b) There exists a constant ¢, = c1(Ty) which depends on Ty (but not
on T or card(T) or mesh-sizes) such that, for all z € N and T € T
with z € T, we have

dz/|T| +|T|/d: < ci.
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Proof. For b € N let T € T satisfy d, = 23/200T)-4T)  Given a € N
with 6(a,b) =1, we have §(a,T) < 1+ (b, T). Then,

d, < 2¥/20@D~T)  and 5o d,/dy < 23/20@T)-06D) < /3
This proves (a). Since §(z,7T) =0 in (b) we infer
&/|T| < (/DD 7] = 720 7).
By definition of ¢(T) for T C T € Tg, we have
&2/|T| < 27T/ |T| = 1/|T|
which depends on 7g only. This shows the first estimate in (b). The
remaining proof of the second estimate requires Proposition 3.1. Let
d, = 93/20(zK)~H(K)
for a minimising K € 7. Let J = §(z, K) + 1 be the minimal number
of elements T1, Ty, ..., Ty such that 2 € Ty, TyNTy # 0, ToNTs # 0, ...,
T;_1NTy # 0, and Ty = K. There are only a finite number of nodes

in the coarse triangulation, card(Np), and so, for a bounded number of
intersections T; N Tj41, we have

T, NTja NN C No.
Note carefully, that an infinite loop is not allowed, as the intersections
TyNTy ToNTs, ..., Ty NT; are pairwise disjoint (otherwise we
could link z and K with a smaller number of elements). Hence we have
L < card(Np) indices j; < j2 < ... < jp < J with

sz+1 n sz+2’ TJ’H2 n le+3, T leﬂ*l NTj

Je+1

is different from {z} for some z € Ny or from E for some E € &,
¢=1,...,L —1. Only the L exceptions T, N T},41, ¢ = 1,2,...,L,
may have this form. Given ¢ =1,2,..., L, we consider

T, Tins1y ..., T form =73, +1 and n = jpiq.

The triples (Tma Tm+1a Tm+2)a (Tm+2a Tm+37 Tm+4)7 (Tm+47 Tm+57 Tm+6)a

oy (Tot2ps Tt2ps1s Tmyopt2) for m+2p+2 = n or n — 1 satisfy the
conditions of Proposition 3.1. Indeed, for Ty, 2., Trni2vi1, Imiovia We
find a, be N\NO with a € Tm+2yme+2y+1 and b € Tm+2,,+1 me+2,,+2,
whence d(a,b) < 1. Therefore,

|£(Tm+21f) - Z(Tm-|—21/+2)| < 3.

Triangle inequalities show

[6(Tm) = UTms2ut2)| < 3(p+1).



H'-STABILITY OF THE L?-PROJECTION IN ADAPTIVE FEM 15

Proposition 3.1 is applicable to (T},_1, Ty, T,,) as well and we infer
U(Teasa) — UT)| <3,
Altogether, (in all cases, n — m even or odd)
10(Trw) — £(Tn)| < 3/2(n—m +1).
This reads, for £ =1,2,..., L,
6(Tj01) = 6T )| < 372 Gt — o)

For each z € N, with z € T}, N Tj,41, there are a limited number of
elements in the patch of z; one bound is 2 card(7,) (as 7o contains <
card(7y) elements in the coarse mesh and this could be doubled at most
by refinements).

The quotient of two areas of two neighbouring elements is bounded
by a constant which depends on the shape of the elements only. Hence,
there is a constant ¢y > 1, that depends only on 7y, such that

|sz+1|/|sz| < ¢ and |sz|/|sz+1| < C2,

where T}, C Tj,_, € To and Tj,41 C Tjﬁl € To. The definition of ¢(Tj)
gives the estimate

E(sz-l-l) - E(sz) = 10g2 \/|sz+1|/|sz+1| |sz|/|sz| < 10g2 Ca2-
In summary, we have

L-1

UTy) = €(T1) < Llogycs + > 3/2(jer1 — je) < Llogy ea +3/2 .
(=1

This shows

|T|/dz — |T| 2—36(z,K)+2Z(K) |T| 2—3J+3+2Llog2 c2+3J+2¢(T1)

|T| 8 c3E 224(T)

Recall that 2 € T N 77 and so the argument for the estimate for
U(Tj4+1) — £(Tj,) applies and analogously shows

U(Ty) — U(T) < logj ca.
Then, for Ty CTy € Toand T C T € T,
TI/|T| 2247 = |T|/|T| |Th]/|Th] < 6.
Hence, |T|/d2 < |T|8c2* ) =: ¢; — 1/|7. O
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Remark 4.1. From the proof it appears that ¢; in Proposition 4.1(b)
depends on the mesh-size of the coarse grid. A different scaling of d,,
e.g., by multiplication with /|K,| for some fixed Ky € Tp, results in a
constant ¢; that depends on the ratio of different mesh-sizes in 7, only.

5. Proof of Theorem 1

The asserted H!-stability in the theorem follows from the preceding
Proposition 4.1 and Theorem 2 in [Car01]. To be self-contained and
to verify the second inequality, we sketch the arguments and refer for
more details to [Car01].

The mass matrix M (T) of a triangle T € T is a multiple of M € R3*?
with M, = 1 + 6. Suppose Aq, A2, A3 > 0 are the entries of the
diagonal matrix A and satisfy \;/\; < v/8 =: k. Then the eigenvalues
of

AAN for A= (A2M + MA2)/2

can be calculated as in [BPS01]. Their smallest value is 5 — u for
pro= 30 A2/A < 34 2(1+ K%+ k%) = 21.25 < 25. Hence
A is positive definite and so (z - Az)'/? defines a norm for z € R®.

Consequently, we have
ch-AQMAzx <z-Mz< cix-Ax = cix~A2Mx.

We will employ these estimates for (A1, A2, A\3) = hr(1/ds, 1/dp,1/d,)
for the three nodes a, b, c of T' and d, from Definition 4.1. The condition
Aj/Ax < /8 follows from Proposition 4.1.(a). Part (b) of which implies
that c3 and ¢4 depend on ¢; but not on hr.

Let P be a weak interpolation operator with Pu € Sh(7T) [Car99,
Clé75, Cia78, BS94] which satisfies

17 (s — Pu)|2qey + [V Pull 20 < csl| Vull 2y

with the local mesh-size hy € L*(Q), hylr = hp on T € T. The
constant c5 depends on the shape of the triangles and so on 7, only.
Then, let g, := Pu—Iu = Y ,_, qepe € Sp(T) for the nodal basis
(@1, on) of SH(T) and pp, := >, qed; e € Sh(T) so that

n 3
Gl =Y apelr =Yy on TETs
=1

j=1
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for coefficient vectors xr = ({71, 67,2, €13) = (Qu(r,1)s et 2), der,3))- An
elementwise inverse estimate gives ||Vgn|lr2) < csllh7 anllr2@). A
triangle inequality shows

IVIu||z2) < [[VPullr2) + [|Vanllz2 @)
< C5HVUHL2(9)+C6|’h}1Qh\|L2(n)

and it remains to bound ||h7'qs||r2(). With the mass matrix M(T) of
T, this reads

Ih7 anllzey = Y ko’ er - M(T)ar
TeT
(1) < > hp'wr- MT)M(T)ar
TeT

3
2 ) ‘
= G Z Z d?(Tj) /TW(T,J)% dx

TeT j=1

= Ci/thh dz,
Q

where we used the above estimate and dy7 ;) = d. for the node z with
hat function ¢y ;) with global number /(T j) and local number j in
T. Since II is the L?-projection,

[ mande = [ paton ) d < sl Vo

Q Q

The above estimates then yield (since A?z7 are the nodal values of py)
(2) ”hTPh”%z(Q) = Z hier - N MA’zr <1/c3 ”h#QhH%%m-

TeT

The combination of the last three inequalities concludes the proof of
the first estimate on the H'-norms.

The proof of the second uses the aforementioned arguments for ¢, :=
Puand py := Yy, qud; >0 € SH(T). The formulae (1) and (2) remain
valid and are combined with [, prgn dz = [, pp udx. This shows

[h Tl 20y < i/cs |h7 ullz@)y. O

Remark 5.1. Proposition 4.1 holds for a class of triangulations into
parallelograms and triangles as well, but the mass matrices M(T") do
not allow a positive definite matrix A=t AA if T is a parallelogram.

Remark 5.2. The author expects similar results for three-dimensional
domains. Details, however, are less obvious and visible.
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